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Introduction

Domesticated Rock Pigeons (Columba livia f. domes-
tica), also known as homing pigeons, have been used for 
studies of animal navigation for decades because they are 
domesticated, can be raised in large numbers, and almost 
always return home despite the experimental manipula-
tions. Songbirds by comparison are widely distributed 
during the breeding season, much harder to capture in 
large numbers, and might abandon their breeding site after 
capture, thus making them more difficult to study. Conse-
quently, much of our knowledge about avian navigation 
is based on the study of pigeon homing. There are recent, 
extensive reviews on avian navigation (Wallraff 2005a; 
Wiltschko and Wiltschko 2009, 2015; Deutschlander and 
Beason 2014; Holland 2014), and the reader is encouraged 
to pursue those for more detailed information. The purpose 
of this review is to place the paper by Hagstrum and Man-
ley (2015), published in this issue of the Journal of Com-
parative Physiology A, in the context of research on pigeon 
navigation cues.

Avian navigation is usually considered to be based on 
the Map-and-Compass Model proposed by Kramer (1953, 
1957). Proposed alternate mechanisms include piloting, 
i.e., following a sequence of landmarks from one to the 
next (Griffin 1952), gradient following toward the value of 
the goal and goal-emanating cues that provide a direction 
toward the goal, but not a compass direction (for review, 
see Deutschlander and Beason 2014). The Map-and-Com-
pass Model is based on a map that provides information on 
the birds’ location and the compass direction to its goal and 
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a compass cue that provides information where this direc-
tion lies. The map component usually is considered to have 
(at least) two independent, non-parallel gradients to pro-
vide location coordinates. The gradients do not need to be 
perpendicular, but should also not be too acute (see Ben-
hamou 2003). They need not be from the same source but 
their variations should be independent of one another. Two 
direction-finding or compass mechanisms that fit Kramer’s 
(1953, 1957) Map-and-Compass Model have been well 
documented in pigeons: sun compass and magnetic com-
pass, and their way of functioning is fairly well understood. 
By contrast, the location-determining or map component 
has been more difficult to elucidate. Pigeons have proven to 
be opportunistic in their use of the environmental cues that 
are available and that they can detect (Walcott 2005). Their 
use of multiple sources of information has made it diffi-
cult to evaluate the roles of specific sources of information. 
This has resulted in controversies and unresolved issues 
regarding the roles of individual sources of information in 
pigeon navigation. The present mini-review is devoted to 
the mechanisms and cues involved in the first step of avian 
navigation that allows pigeons to determine their location 
and the course to the goal.

Sensory perception

Visual landmarks

It seems intuitive to humans that displaced pigeons could 
use visual landmarks to determine their locations at a famil-
iar release site or to guide them along a familiar route to 
their home loft, but this does not seem to be the case (Wall-
raff 2005a, b). Pigeons use landmarks around the familiar 
area of their loft but apparently not at greater distances, not 
even at very familiar sites (Holland 2003). Pigeons fitted 
with frosted lenses and released remotely were able to fly 
in the direction of their lofts and get within 1 km (Schmidt-
Koenig and Walcott 1978; Benvenuti and Fiaschi 1983); in 
some cases, they were even able to enter the loft (Schlichte 
1973). A variety of studies indicates that pigeons released 
within view of distinctive visual landmarks near their loft 
do not seem to use those landmarks as beacons to select 
their direction of travel. The birds appear to know their 
locations relative to the loft, but they depart neverthe-
less from the release site with a deflection predicted by 
the experimental manipulation of their sun compass (e.g., 
Keeton 1974; Wiltschko et al. 2005; Biro et al. 2007; Arm-
strong et al. 2013). On the other hand, pigeons do use their 
vision to guide their flight path on a local scale and in the 
vicinity of home (Wallraff 2005a; Guilford and Biro 2014). 
It appears possible that they do not rely more strongly on 
visual cues while homing because their visual fields are 

organized very differently from our own (Martin 2014); 
in particular, their lower visual field myopia (Fitzke et al. 
1985; Hodos and Erichson 1990) might make it difficult to 
distinguish and identify individual features.

The geomagnetic field

Wiltschko and Wiltschko (2013, 2014) recently reviewed 
the proposed mechanisms birds might use to sense the 
Earth’s magnetic field. The two mechanisms that have 
received the most experimental and theoretical support are 
(1) the use of a radical pair mechanism involving a pho-
topigment and (2) the use of a magnetic material, such as 
magnetite. The two mechanisms have been suggested to 
serve different functions, with the radical pair mechanism 
providing directional information for the magnetic compass 
and the magnetite-based mechanism information on mag-
netic intensity used as a magnetic component of the map 
(Beason and Semm 1987; Wiltschko and Wiltschko 2007). 
Here, we focus on the latter function.

Indirect support for pigeons using magnetic informa-
tion in their map comes from experiments in which birds 
were released within or near magnetic anomalies (Walcott 
1978, 1992, 2005; Kiepenheuer 1982; Dennis et al. 2007; 
Wiltschko et al. 2009; Schiffner et al. 2011). The mag-
netic anomalies were characterized by steep gradients in 
the ambient magnetic field, typically caused by ancient 
volcanism and iron deposits that generate local fields with 
gradient directions different from the overall gradient of the 
region. Pigeons released within strong anomalies typically 
showed greater scatter in direction up to random and took 
longer to return home. Once free of the influence of the 
anomaly, New England birds turned toward home (Walcott 
1978); in Germany, birds corrected their course even while 
still in the anomaly, probably switching to non-magnetic 
cues (Schiffner et al. 2011).

A magnetic map has also been tested in cage studies 
with migratory birds that were exposed to fields simulat-
ing sites within and beyond their natural migration range. 
In the former case, birds continued in their migratory direc-
tion; in the latter case, they went random (Henshaw et al. 
2010; Deutschlander et al. 2012).

As magnetoreceptor mechanism for this magnetic infor-
mation, deposits of magnetite found in the in ethmoid 
region in pigeons were proposed (Walcott et al. 1979). 
Magnetite (Fe3O4) is the most common magnetic mineral 
on Earth and has the strongest magnetic moment of any 
naturally occurring magnetic material. Deposits of mag-
netite were also reported in the skin of the upper beak 
(Fleissner et al. 2007; Tian et al. 2006) in pigeons and 
several migratory species (Falkenberg et al. 2010). These 
latter deposits were later claimed to be contained within 
macrophages not magnetoreceptors (Treiber et al. 2012), 
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although electrophysiological and behavioral evidence 
strongly supports the existence of magnetite-based recep-
tors in the beak and the ethmoid region (see Wiltschko and 
Wiltschko 2013).

Pigeons that were treated to a magnetic pulse strong 
enough to remagnetize magnetite and too rapid for the par-
ticles to rotate produced a deflection in the homeward ori-
entation of the birds (Beason et al. 1997). Because the birds 
were not disoriented, i.e., they were significantly oriented 
as a group but in a direction other than homeward, their 
compass systems appeared to function normally. Instead 
they acted as if they were transported to another location 
and released. Thus, the authors concluded that the treatment 
changed the way the magnetic receptors transduced infor-
mation about location. Similar experiments with migrants 
produced corresponding results (Holland and Helms 2013).

Electrophysiological recordings from the ophthalmic 
nerve and trigeminal ganglion in a songbird revealed the 
presence of spontaneously active units that respond to 
changes in the magnetic field (Beason and Semm 1987; 
Semm and Beason 1990). These findings were confirmed 
by neuroanatomical studies with c-Fos and ZENK, reveal-
ing neuronal activity in the ophthalmic tract and the trigem-
inal brain stem after exposing pigeons and a migratory spe-
cies to a constantly changing magnetic field (Heyers et al. 
2010; Lefeld et al. 2014). Mora and coworkers (2004) con-
ditioned pigeons to distinguish a large change in magnetic 
field intensity (and resulting change in direction) around 
them. This ability disappeared when the ophthalmic branch 
of the trigeminal nerve was transected. These results, 
together with cage studies where ophthalmic nerve section 
(Beason and Semm 1996) or local anesthesia of the upper 
beak of migrants abolished the effect of a strong magnetic 
pulse (Wiltschko et al. 2009b), support the idea that recep-
tors in the rostral and ethmoidal area of the pigeon, inner-
vated by the ophthalmic nerve, provide information on the 
ambient magnetic field. Because the magnetic compass was 
unaffected—the birds continued in their migratory direc-
tion—this information was interpreted as information on 
location, i.e., map information, for pigeons and songbirds. 
Responses of pigeons to small fluctuations in the geomag-
netic field suggest a sensitivity in the range of 10–20 nT 
(Keeton et al. 1974; Schiffner and Wiltschko 2011).

Odors

The role of airborne chemical cues in pigeon navigation 
has been long debated since Papi and associates first put 
forth experimental evidence that airborne odors influence 
pigeon navigation (Papi et al. 1972, 1978a). Other research-
ers reported conflicting results when replicating the experi-
ments (Papi et al. 1978b). The viewpoints of the debate 
have been reviewed in depth elsewhere (Papi 2001; Wallraff 

2004, 2005a, 2014; Phillips and Jorge 2014). As research 
on the topic progressed, the proposed navigation mecha-
nism was that the pigeons identified the direction toward 
home by comparing the odors at the release site with the 
direction the wind was blowing when those odors were 
smelled at home. Thus, the spatial distribution of odors in 
the environment provided the compass course to the home 
loft: an olfactory map. A proposed strategy was that expe-
rienced pigeons used a gradient map of odors to determine 
their location with respect to home and their home direc-
tion (Papi 1986). Later, it was also considered that pigeons 
might return home by following increasing or decreasing 
concentrations of specific odors (Wallraff 2005a). Results 
from release experiments by other researchers challenged 
the use of odors by pigeons for navigating (Keeton and 
Brown 1976; Keeton et al. 1977). Wiltschko coworkers 
(1987a, b), suggested that pigeons exposed to reliable cues 
in their loft might use olfactory cues at the release site; 
those that only had unreliable cues, caused by wind eddies 
around buildings, did not.

In a series of releases, experienced pigeons were 
exposed to bottled air during transport and had access to 
natural odors only at a location opposite to the release sites 
(Experimental birds), or only at the true release site (Con-
trol birds). This caused the Control birds to depart directly 
toward home, whereas the experimental birds departed in 
the opposite direction (Benvenuti and Wallraff 1985). Sub-
sequent manipulations of the air en route and at the stopo-
ver site and release site were similar to those of the origi-
nal experiments and consistent with the idea that pigeons 
obtain location or map information from natural odors 
(Wallraff 2004, 2005a).

Jorge et al. (2010) replicated the experiments in which 
pigeons were exposed to natural air or filtered air with 
results similar to Benvenuti and Wallraff (1985) and con-
firmed the importance of odors in pigeon homing. How-
ever, the exception to the pattern predicted by the olfac-
tory map model was a group of birds exposed to artificial 
odors at the site opposite to the release site rather than to 
the natural odors of that site. Those birds could not have 
received any map information by natural odors during 
their treatment, but they responded as if they had received 
navigational information from the opposite site. This find-
ing led Jorge et al. (2010) to conclude that odors served as 
a motivation cue rather than navigation cue (if they were 
navigational cues the birds should have been disoriented), 
promoting the processing of non-odorous navigational 
cues. The results of other behavioral and neuronal studies 
are consistent with the idea that odors are motivational in 
nature rather than navigational (Jorge et al. 2009, 2014, 
but see Gagliardo et al. 2011). These results indicate that 
at least some “olfactory navigation” effects may be motiva-
tional rather than navigational.
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Gravity

Gravity has been discussed as a navigational cue, but its 
possible role is unclear. First experiments in a gravita-
tional anomaly were negative in the sense that the pigeons’ 
behavior seemed unaffected (Lednor and Walcott 1984), 
but Dornfeld (1991) reported that gravity anomalies had 
some effect, occasionally leading to poor initial orienta-
tion. Recently, Blaser et al. (2013, 2014) reported increased 
scatter, disoriented behavior and losses in and near gravity 
anomalies, which they attributed to the altered gravity con-
ditions. They proposed a “gravity vector hypothesis”, with 
gravity as a navigational factor. However, this hypothesis 
requires extremely precise measurements and unrealistic 
storage conditions and is incompatible with the Map-and-
Compass Model.

Sounds

Griffin and Hopkins (1976) reported that birds aloft can 
hear many natural and anthropogenic sounds emanat-
ing from the ground long distances away. Natural sounds 
include waves on a shore, wind, animal vocalizations, 
etc. (Mukhin et al. 2008). Hearing a coastline would be 
as effective as seeing it and would have a greater range, 
especially in the range of infrasound frequencies (<20 Hz) 
(Arrowsmith and Hedlin 2005). Lower frequency sounds, 
especially infrasound, travel farther in the atmosphere with 
less attenuation compared to higher frequencies, because 
atmospheric attenuation is a function of the square of the 
frequency (Bedard and Georges 2000). This makes infra-
sound an attractive mechanism to consider as a source of 
location information for long-distance navigation. Pigeons 
have demonstrated behavioral and neural sensitivity to fre-
quencies as low as 0.05 Hz (Kreithen and Quine 1979; Sch-
ermuly and Klinke 1990).

The direction of an auditory sound source can be deter-
mined by comparing the differences in phase or sound 
intensity between the ears. The long wavelength (100–
10,000 m) of low-frequency sound, particularly infrasound, 
and the small spacing of a pigeon’s ears (cm) make detect-
ing interaural differences in timing impossible. In addi-
tion, at infrasound wavelengths, the sound refracts around 
objects that are much smaller than the wavelength (such as 
a bird’s head), negating the ability to discern differences in 
sound intensity. One approach to determine the direction 
to an infrasound source might be to determine the Dop-
pler shift or intensity changes as a bird flies fly around, 
as pigeons often do when taking off (Quine and Kreithen 
1981; Hagstrum 2000). Thus, a bird could use a single 
source of infrasound as a landmark or a reference point.

Hagstrum (2013) suggested that the flying around at 
the release site may be used to deduce the direction to the 

home loft directly if the bird could detect the infrasound 
originating at the loft. He modeled atmospheric propaga-
tion of infrasound from the late W. Keeton’s Cornell Uni-
versity pigeon loft to selected release sites where the ori-
entation behavior had proven enigmatic. At one of these 
sites, the Cornell pigeons were always disoriented, whereas 
at the other they showed a large deflection from a direct 
path to the home loft. Based on data collected by Keeton 
and his colleagues, Hagstrum (2013) showed a correlation 
between the model’s predictions of atmospheric infrasound 
propagation and the ability of the pigeons to orient toward 
home. On dates, when the atmospheric model-predicted 
infrasound from the loft was available at the release site, 
the pigeons were oriented homeward or at a predicted angle 
way from home. When the model-predicted that infrasound 
would be ducted upwards and not available at the release 
site, the birds were disoriented. Hagstrum (2013) con-
cluded that a site where Cornell pigeons were always diso-
riented, Jersey Hill, was shadowed from the home loft by 
persistent atmospheric conditions. Note that this model of 
navigation by infrasound is not compatible with the Map-
and-Compass Model; infrasound is not considered a map 
factor indicating the home direction, but rather something 
related to a beacon guiding the birds without a compass.

In their paper published in the present issue, Hagstrum 
and Manley (2015) analyzed data from other sites near 
Keeton’s loft to test whether orientation and homing per-
formance of pigeons deafened by removal of their cochleae 
and lagenae was impaired. The results are rather inhomo-
geneous: for most releases the Control birds were better 
homeward oriented than the deafened birds, but there were 
also cases where the opposite was true. For some releases 
in which the Control birds were not well oriented toward 
home, atmospheric propagation models seemed to indi-
cate infrasound frequencies were refracted upwards and 
would not have been detectable on the ground. In cases 
not explained by the daily atmospheric models, the authors 
inferred a lack of infrasound cues at the release site caused 
by atmospheric shadowing. Consequently, the acoustic 
propagation models can explain at least some of the behav-
ioral responses at Keeton’s loft, but not all of them.

Whether the acoustic navigation model can account for 
pigeon homing across the hundreds of kilometers used 
in pigeon races is a question yet to be answered. Yet the 
model, as it stands now, has other serious weaknesses: (1) 
It does not explain convincingly the use of the sun compass 
as demonstrated by numerous clock-shift experiments. (2) 
The assumption that untreated and operated birds in princi-
ple use different strategies is highly speculative and unsup-
ported. If the operated birds generally use route-reversal, 
why are there cases where they are poorly oriented or diso-
riented? (3) Birds need to fly around to detect the direction 
of infrasound. However, already Kramer (1959) reported 
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that pigeons are oriented in the direction in which they 
later vanish 10 s after release, i.e., after flying about 150 m. 
Experiments releasing pigeons from a cage clearly showed 
that they are normally already aware of their later vanish-
ing direction even before they fly (Chelazzi and Pardi 1972; 
Kowalski 1994; Mazzotto et al. 1999). This excludes the 
sole use of infrasound cues that Hagstrum and Manley 
(2015) seem to promote; it seems possible, however, that 
infrasonic information is later included in the navigational 
process. (4) How acoustic cues are integrated with the oth-
ers cues whose involvement is documented by numerous 
experimental manipulations is a completely open question 
which the authors not even attempt to answer.

Conclusions

There is strong evidence that the navigation of Domestic 
Pigeons is based on the Map-and-Compass Model: hun-
dreds of examples demonstrate the deflection caused by 
manipulations of the time-compensated sun compass. This, 
in turn, means that the birds derive their home direction as a 
compass course probably from the scalar values of gradient 
fields, comparing the local values at the release site with 
those at the home site with the help of their map, a men-
tal representation of how the respective gradient fields are 
distributed in their home region. Such a procedure largely 
excludes strategies like directly following gradients of, e.g., 
magnetic intensity or odors, but also the exclusive use of 
cues like infrasound that do not indicate compass courses.

While the compass mechanisms are well understood, 
candidate cues for the “map” part of the navigation system 
are less clear-cut. Experience has shown us that there is no 
single source of navigation information for pigeons, but that 
the map is a multifactorial system (Walcott 2005), and here, 
Hagstrum and Manley (2015) introduce an important new 
component. The map, i.e., the pigeons’ mental representa-
tion of the navigational cues and their spatial distribution, is 
learned. Young pigeons acquire the first map information as 
soon as they begin flying around their loft; they explore the 
home area and the lay of the land. Doing this, they famil-
iarize themselves with the potential navigational factors in 
their home region. Pigeon seem to be adaptive in exploit-
ing the sources of navigation information that are available 
in the environment, relying on those that prove most suit-
able and most reliable. This may lead to the phenomenon 
that pigeons in different regions prefer different cues—the 
findings in one region cannot necessarily be generalized, 
and the same treatment does not necessarily have the same 
effect in different countries (see, e.g., Wiltschko et al. 1986 
for an example). Infrasound signals may be a helpful cue in 
the Ithaca region with its topography of steep cliffs and deep 
gorges, but may be completely unsuitable in other regions 

with different sound profiles. The same may be true for 
other cues—we must expect that the specific map cues used 
by pigeons directly reflect the situation in their home region. 
This has the advantage that the navigational system is opti-
mally adapted to the region where it is used, but makes the 
analysis of the navigational cues not easier.

Do Rock Pigeons make a good model species to study 
navigation of migrating songbirds, shorebirds, waterfowl, 
and other species? The implicit answer has been “probably 
yes”. There are many parallels between pigeons and other 
birds (see Wiltschko and Wiltschko 2015), a most promi-
nent one being that at Castor Hill, where Ithaca pigeons 
show a strong deflection from the home direction that Hag-
strum (2011) attributed to a deflection of infrasonic cues—
Bank Swallows (Riparia riparia) from a colony near the 
loft show a very similar deflection (Keeton 1973).

Are there any unknown sources of positional informa-
tion in the environment? This is unclear. Our difficulty in 
understanding the “map” component of avian navigation is 
likely due to other problems: the lack of understanding of 
the sensory physiology of the receptors involved, how the 
bird interprets the sensory information, or how the informa-
tion from multiple sensors is integrated.
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