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Abstract Dopamine (DA) acts through Wve receptor sub-
types (D1–D5). We compared expression levels and distri-
bution patterns of all DA mRNA receptors in the spinal
cord of wild-type (WT) and loss of function D3 receptor
knockout (D3KO) animals. D3 mRNA expression was
increased in D3KO, but no D3 receptor protein was associ-
ated with cell membranes, supporting the previously
reported lack of function. In contrast, mRNA expression
levels and distribution patterns of D1, D2, D4, and D5
receptors were similar between WT and D3KO animals.
We conclude that D3KO spinal neurons do not compensate
for the loss of function of the D3 receptor with changes in
the other DA receptor subtypes. This supports use of D3KO
animals as a model to provide insight into D3 receptor dys-
function in the spinal cord.
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Abbreviations
D3KO D3 receptor knockout
DA Dopamine
GAPDH Glyceraldehyde 3-phosphate dehydrogenase
ISH In situ hybridization
PBST PBS containing 0.3% Triton X-100
PCR Polymerase chain reaction
WT Wild-type

Introduction

In genetically engineered animals in which the activity of a
single gene has been removed (“knocked-out”), adaptive
compensatory mechanisms may occur that can lead to sur-
prising behavioral changes (Pich and Epping-Jordan 1998;
Drago et al. 2003). The unpredictability of such complex
changes resulting from the deletion of a single gene func-
tion underlines the growing need for understanding physio-
logical functions in knockout animals (Branchi and Ricceri
2002). While a large body of literature has examined the
physiological consequences in knockouts (Drago et al.
1998; Hollon et al. 2002; Karper et al. 2002; McDougall
et al. 2005; Leggio et al. 2008), few studies assess the
potential compensatory consequences of gene deletions in
related genes or gene pathways at their expression level
(Goody et al. 2002; Hannon et al. 2002), or that map the
consequences of such gene deletions at the tissue level
(Tien et al. 2003; Gan et al. 2004). There is evidence that in
D2 receptor knockout animals D3 receptors compensate for
some of the lacking D2 function (Jung et al. 1999). Using
real-time polymerase chain reaction (PCR) and in situ
hybridization (ISH) techniques we have recently demon-
strated the expression levels and distribution patterns of all
Wve DA receptors in the lumbar spinal cord of the 14-day-
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old mouse (Zhu et al. 2007). Here, we determine whether a
disruption of the D3 receptor system in the loss of D3
receptor function knockout (D3KO) mouse (Accili et al.
1996) leads to similar compensatory changes gene expres-
sion or distribution patterns of the other four dopamine
(DA) receptor subtypes.

The catecholaminergic neurotransmitter DA acts
through Wve molecularly distinct receptors generally classi-
Wed as D1-like (D1 and D5) and D2-like (D2, D3, and D4).
A large body of literature has detailed the diverse functions
of these receptor subtypes (Joyce 1983; Jackson and West-
lind-Danielsson 1994; Jaber et al. 1996; Missale et al.
1998), often using knockouts for each speciWc receptor sub-
type (Karasinska et al. 2000; Park et al. 2001; Hollon et al.
2002; Centonze et al. 2003; Kobayashi et al. 2004; Tran
et al. 2005). In the D3KO mouse, spinal cord function is
modulated diVerently by DA, when compared to its JAX-
recommended wild-type (WT) control, C57BL/6J (http://
jaxmice.jax.org/strain/002958.html), suggesting a role for
the D3 receptor in limiting spinal cord excitability (Clem-
ens and Hochman 2004). Behaviorally, the D3KO mouse
displays hyperactivity, increased locomotor activity, and
hypertension (Accili et al. 1996; Asico et al. 1998). There is
evidence that the D3 receptor system may also be involved
in the regulation of anxiety (Steiner et al. 1998), mood dis-
orders (Leggio et al. 2008) and the sleep disorder Restless
Legs Syndrome (RLS) (Clemens et al. 2006; Zhao et al.
2007). While the disruption of the single D3 gene can lead
to complex and wide-ranging changes in behavior, there is
still a lack of understanding if these behavioral changes are
accompanied by corresponding changes in expression lev-
els and the distribution patterns of the other functionally
intact DA receptors in the CNS (Jung et al. 1999). Here we
explore this issue in the spinal cord of D3KO animals.

Our data in spinal cord show that the mRNA expression
levels and distribution patterns of the other four DA recep-
tors (D1, D2, D4, and D5) were unaltered in D3KO from
WT control. Thus, at least in the spinal cord, the expression
of other DA receptors does not appear to be altered follow-
ing the loss of D3 receptor function.

Materials and methods

Animals and slide preparations

A total of 20 D3KO mice (B6.129S4-Drd3/J, Jackson Labo-
ratory, Bar Harbor, ME, USA), postnatal day 14 and approx-
imate WT controls (C57BL/6J) (n = 17) were used in this
study. For the quantiWcation of the D3 receptor subtype lev-
els in the spinal cord, three WT and three D3KO animals
were anesthetized with i.p. injection of urethane (2 mg/kg
body mass) and decapitated. The complete spinal cords were

quickly dissected out and stored in RNA later (Qiagen,
Valencia, CA, USA) until use, when they were extracted to
process for real-time PCR (Zhu et al. 2007). For the ISH
experiments, animals (WT: n = 5; D3KO: n = 4) were anes-
thetized and perfused with 4% paraformaldehyde, 0.1 M
PO3, pH 7.4, and cryoprotected in 10% sucrose, 0.1 M PO3

(RNAse free) for 1 h. Whole cords were dissected out and
stored at ¡80°C in OCT compound (Sakura Finetek, Tor-
rance, CA, USA) for later sectioning. For immunohisto-
chemistry, animals (WT: n = 4; D3KO: n = 3) were
anesthetized, perfused with 1:3 volume/body weight ice-
cold 0.9% NaCl, 0.1% NaNO2, 1 unit/ml heparin, followed
by equal volume/body weight of modiWed Lana’s Wxative
(4% paraformaldehyde, 0.2% picric acid, 0.16 M PO3, pH
6.9). Spinal cords were removed and cryoprotected in 10%
sucrose containing 0.1 M PO3 until sectioning.

Quantitative real-time RT-PCR

All protocols have been described in detail previously (Zhu
et al. 2007). In short, total RNA was extracted from these
cords by using Qiagen RNeasy Mini kits (Qiagen, Valen-
cia, CA, USA) and cDNA was synthesized by using the
High Capacity cDNA Archive Kit (Applied Biosystems,
Bedford, MA, USA), allowing us to compare the levels of
gene expression relative to the housekeeping gene glyceral-
dehyde 3-phosphated dehydrogenase (GAPDH) (Law et al.
1999), using the same primers as previously (Zhu et al.
2007). To normalize the amount of total mRNA present in
each reaction, levels of the GAPDH in WT and D3KO ani-
mals were monitored in parallel samples. Results are
expressed as relative levels of mRNA, normalized to
GAPDH expression (Livak and Schmittgen 2001).

Non-radiographic in situ hybridization

Total RNA was extracted from the mouse spinal cord by
using Qiagen RNeasy Mini kits (Qiagen, Valencia, CA,
USA). Five microgram of total RNA was subjected to
cDNA synthesis with oligo-dT15 primer and Superscript II
Reverse transcriptase (Invitrogen, Carlsbad, CA, USA) for
1 h at 42°C. The reverse transcriptase was inactivated, and
RNA was degraded by heating at 95°C for 5 min. Of the
20 �l of cDNA obtained from the synthesis reaction 5 �l
were directly added to the PCR reaction using a PCR Mas-
termix kit (Eppendorf, Hamburg, Germany) containing
1 �M gene-speciWc primers. The primers used in this study
were designed by the Invitrogen-OligoPerfect™ Designer
program (Invitrogen, Carlsbad, CA, USA). We then deter-
mined the Wve DA receptor probe sequences and performed
the PCR reactions and ISH protocol as described previously
(Zhu et al. 2007). In most cases, as in our previous study,
we stopped the color development reaction for each recep-
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tor subtype when a just visible reaction product was
observed in the sense probe of the sense/antisense probe
pairs. However in two animals for each strain we also time-
matched the color development reaction of the D3 receptor
between WT and D3KO animals (set at 8 h), to allow for a
comparison of the signal intensities.

Immunohistochemistry

Spinal cords were isolated and post-Wxed 1 h in modiWed
Lana’s Wxative, cryoprotected in 10% sucrose, 0.1 M PO3,
pH 7.4 until sectioning in 10-�m thick slices on a cryostat
(Leitz 1720). All incubations were performed in 0.1 M PO3

buVered saline containing 0.3% Triton X-100 (PBS-T) with
1% donkey serum and washes were performed without
serum. Tissue was washed overnight in PBS-T at 4°C fol-
lowed by incubation in rabbit anti-D3 receptor (Chemicon
Inc.; diluted 1/250) for 48–72 h. Tissue was washed at
room temperature 3£ 30 min, followed by incubation in
biotinylated donkey anti-rabbit (Jackson Immunoresearch;
diluted 1/250) for 1.5 h. Slides were washed 3£ 30 min and
incubated in Cy3 conjugated extravidin (Sigma, diluted
1:1,000) for 1.5 h. Subsequently, slides were washed
20 min in PBS-T followed by 2£ 20 min in 50 mM Tris–
HCl, pH 7.4 and coverslipped with vectashield.

Data and image analysis

For the real-time PCR analysis, all values are given as
mean § SE. We used SigmaPlot and SigmaStat (Systat
Software Inc., San Jose, CA, USA) to analyze the data and
test for signiWcant diVerences between WT and D3KO
receptor subtypes, ANOVA and paired t-test procedures
were applied as appropriate. DiVerences were considered
signiWcant if P < 0.05.

For ISH, images were digitized with Nikon ACT-1 soft-
ware, using identical settings for both sense and antisense
ISH probes and for the immunohistochemical study respec-
tively, before being converted into gray scale images.
Image editing and montages were performed subsequently
using CorelDraw software (Corel, Ottawa, ON, Canada).

For immunohistochemistry, slides were visualized on a
confocal microscope (Zeiss LSM 510) under identical set-
tings and images were transformed using Zeiss LSM (Carl
Zeiss Inc., Thornwood, NY, USA) and CorelDraw soft-
ware.

Results

We Wrst performed real-time PCR to assess the expression
levels of DA receptor mRNAs in the cord and to compare
these levels between WT and D3KO animals (n = 3 for

each). Figure 1 shows the expression values of all Wve DA
receptor mRNAs in the whole spinal cord normalized to
WT (Fig. 1a) and D1 expression (Fig. 1b). In both WT and
D3KO animals all Wve receptor mRNAs are expressed, and
we observed a strong increase in D3 receptor mRNA in the
D3KO animals (P = 0.005, Fig. 1a). Importantly however,
we did not Wnd any signiWcant diVerences in receptor
mRNA expression between WT and D3KO for D1, D2, D4,
and D5 receptor subtypes (Fig. 1a). This suggests that the
system-wide dysfunction of the D3 receptor in the D3KO
animal does not lead to compensation in mRNA expression
levels of the other four DA receptor subtypes in the spinal
cord. We further found that, as in WT animals (Zhu et al.
2007), D2 mRNAs in the D3KOs were expressed at signiW-
cantly higher values than the other DA receptors
(P < 0.002, Fig. 1b). Thus the D2 receptor appears to be the
dominant receptor subtype expressed in spinal cord neurons
of both WT and D3KO animals.

To assess the distribution of the Wve DA receptors in the
lumbar spinal cord between WT and D3KO, we next initi-
ated a comparative ISH study of D3 receptor expression in
the spinal cord. Antisense and sense receptor probes were
generated as described earlier (Zhu et al. 2007), but only
antisense data are illustrated here. To compare labeling
intensities of the D3 receptor mRNA between WT and
D3KO animals, we time-matched the color reactions in this
study (cf. Sect. ”Materials and methods,” n = 2 for WT and
D3KO each).

Figure 2 shows low-power views of lumbar spinal cords
of a representative WT and D3KO animal at lumbar level
L2 for all DA receptor antisense probes. Using identical
exposure and time-matched settings, staining intensities
and distribution patterns of D1, D2, D4, and D5 receptor
subtypes are similar between WT and D3KO, whereas the
staining intensities of the D3 receptor subtype appear to be
stronger in the D3KO animal than in the WT. This staining
pattern was similar throughout the lumbar region examined
(L2–L5). The apparent stronger staining in D3KO mice is
consistent with the real-time PCR data showing increased
D3 receptor mRNA expression in the D3KO animals.

To generate the D3KO animals, a premature chain-ter-
mination mutation was introduced in the second predicted
intracellular loop of the D3 receptor gene of mouse embry-
onic stem cells (Accili et al. 1996). This intervention does
not prevent mRNA transcription of the D3 receptor, but it
obstructs translation of the gene into a functional protein.
We therefore used immunolabeling to assess the D3 recep-
tor labeling patterns of the D3 receptor protein in WT and
D3KO animals (Fig. 3). In all WT animals (n = 3), we regu-
larly found evidence of membrane-delineated D3 receptor
distribution in both unidentiWed neurons (Fig. 3a 1,2
arrows) and motoneurons (not shown). In comparison, we
never observed such a punctate staining in D3KO animals
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(Fig. 3b 1,2 arrowheads). These Wndings support previous
binding studies reporting that in D3KO the D3 mRNA is
not translated into functional proteins (Accili et al. 1996).

Taken together our data show that a system-wide loss of
function of the DA D3 receptor does not aVect the presence
and expression levels of the other 4 DA receptor subtypes
in spinal cord neurons.

Discussion

This study used real-time PCR, ISH and immunohisto-
chemistry to compare the expression levels and distribution
patterns of all known DA receptors in the lumbar spinal
cord between WT and D3KO mice. The principal Wndings
are that (1) all Wve receptor mRNAs are expressed in the
lumbar spinal cord in both WT and D3KO, (2) D1, D2, D4,
and D5 receptors are expressed and distributed similarly,
with D2 receptor expression being dominant in both WT

and D3KO, and (3) while D3 mRNA expression levels are
increased in D3KO mice, membrane bound D3 receptor
protein appears to be absent in these animals. The increase
of D3 mRNA expression might be due to an interruption of
a feedback signal associated with membrane insertion.
Overall, these data suggest that, in contrast to the D2 recep-
tor knockout (Jung et al. 1999), the D3KO animal does not
compensate for the loss of D3 receptor function with corre-
sponding changes in the functional DA receptor population.

There is evidence for both excitatory and inhibitory
actions of DA in the spinal cord (Carp and Anderson 1982;
Gajendiran et al. 1996; Barriere et al. 2004; Clemens and
Hochman 2004; Han et al. 2007), and these actions are
thought to be mediated by excitatory D1-like or inhibitory
D2-like pathways, respectively, possibly as a function of
the diVerent receptor aYnities for DA (Clemens and Hoch-
man 2004; Clemens et al. 2006). The D3 receptor has very
high aYnity for DA (http://pdsp.med.unc.edu/pdsp.php),
and we recently reported in the D3KO mouse a DA-medi-

Fig. 1 Quantitative real-time PCR of dopamine (DA) receptor mRNA
expression in wild-type (WT) (black bars) and D3 receptor knockout
animals (D3KO, n = 3 each) (gray bars). a Comparison of expression
levels between WT and D3KO normalized to WT expression. There
was no signiWcant diVerence between WT and D3KO for D1, D2, D4,
and D5 receptor subtypes (D1: P = 0.99; D2: P = 0.37; D4: P = 0.48;
D5: P = 0.09). In contrast, D3 receptor mRNA expression was signiW-

cantly enhanced in D3KO (P = 0.005). Values are expressed as
mean § SE. b Expression levels are normalized to D1 expression lev-
els of WT and D3KO, respectively. In both WT and D3KO, D2 recep-
tor mRNA expression was signiWcantly greater than all other DA
receptor expression values respectively (P < 0.005 for both WT and
D3KO comparisons)

Fig. 2 Anti-sense DA receptor 
mRNA labeling in the lumbar 
spinal cord of WT and D3KO 
animals (shown here only: lum-
bar segment L2). Low power 
magniWcation reveals that all 
DA receptors are present in both 
WT and D3KO animals, and that 
overall distribution and staining 
intensities are similar for the D1, 
D2, D4, and D5 receptor sub-
types. In contrast, D3 receptor 
mRNA expression appears to be 
more prominent in the D3KO 
animals
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ated unmasking of excitatory actions in the spinal cord
(Clemens and Hochman 2004). The Wnding that expression
levels and distribution patterns of the functional DA recep-
tors present in the spinal cord are unchanged in D3KO ani-
mals (Figs. 1, 2) suggests that the alterations in spinal DA
actions on reXexes observed in D3KO mice (Clemens and
Hochman 2004) are not due to a compensatory eVect of any
of the other four DA receptor subtypes.

A loss of D3 receptor function is not only involved in
hyperactivity, increased locomotor activity, and hyperten-
sion (Accili et al. 1996; Asico et al. 1998), there is also evi-
dence that reduced D3 receptor function may be involved in
the pathophysiology of RLS (Montplaisir et al. 1999; Barri-
ere et al. 2005; Ondo et al. 2007). RLS is a sleep disorder of
CNS origin that involves abnormal limb sensations with a
strong circadian pattern and increased spinal cord excitabil-
ity, and which is relieved by D3 receptor-preferring ago-
nists (Bara-Jimenez et al. 2000; Montplaisir et al. 2000;
Odin et al. 2002; Zucconi and Ferini-Strambi 2004). The
lack of compensatory responses in expression and distribu-
tion of D1, D2, D4, and D5 receptors in the D3KO animals
supports further use of these mice to study the consequence
of D3 receptor loss on dopaminergic modulatory actions in
the spinal cord (Clemens et al. 2005; Clemens et al. 2006).
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