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Abstract A great diversity of aquatic animals detects

water flow with ciliated mechanoreceptors on the body’s

surface. In order to understand how these receptors

mechanically filter signals, we developed a theoretical

model of the superficial neuromast in the fish lateral line

system. The cupula of the neuromast was modeled as a

cylindrical beam that deflects in response to an oscillating

flow field. Its accuracy was verified by comparison with

prior measurements of cupular deflection in larval zebrafish

(Danio rerio). The model predicts that the boundary layer

of flow over the body attenuates low-frequency stimuli.

The fluid–structure interaction between this flow and the

cupula attenuates high-frequency stimuli. The number and

height of hair cell kinocilia and the dimensions of the

cupular matrix determine the range of intermediate fre-

quencies to which a neuromast is sensitive. By articulating

the individual mechanical contributions of the boundary

layer and the components of cupular morphology, this

model provides the theoretical framework for understand-

ing how a hydrodynamic receptor filters flow signals.

Keywords Fish � Mechanosensation � Hair cells �
Biomechanics � Zebrafish

List of symbols

a radius of cupula at base

as radius of a sphere

bm force coefficient for cupular material

bw force coefficient for fluid

c speed of sound in water

C integration constant

Em Young’s modulus of cupular matrix

F stimulus frequency

Fb buoyant force

Fe elastic force

Fm inertial force

Fa acceleration reaction

Fu viscous drag

hh height of hair bundle

hc height of cupula

hk height of kinocilia

I second moment of area

k viscous drag coefficient

L hydrodynamic force coefficient

M bending moment

N number of hair cells

p distance between center of sphere and flat plate

ql linear spring bundle stiffness

qt torsion spring bundle stiffness

r distance from center of sphere

Re Reynolds number

Sh sensitivity of cupula to local flow

Sb sensitivity of local flow to freestream flow

Sf sensitivity of cupula to freestream flow

Sl Sensitivity of local flow to an oscillating sphere

Ss sensitivity of cupula to oscillating sphere

St Strouhal number

t time

U flow velocity
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U? freestream velocity

Us flow velocity generated by an oscillating sphere

Us,lin linearized flow velocity generated by vibrating

sphere

W sphere velocity

x̂ unit vector along body

z position along height

ẑ unit vector along height

b boundary layer flow velocity gradient

d boundary layer thickness

l dynamic viscosity of water

m cupula deflection

ms cupula deflection by vibrating sphere

qm density of cupular material

qw density of fluid

x angular rate of oscillation

Introduction

A wide diversity of animals senses water flow with ciliated

receptor organs on the surface of their bodies. These

hydrodynamic receptors are present in a variety of shapes

and sizes among animals as disparate as cnidarians (Arkett

and Mackie 1988), tunicates (Bone and Ryan 1978),

echinoderms (Moore and Cobb 1986), cephalopods (Bu-

delmann and Bleckmann 1988), fishes (Hofer 1908), and

amphibians (Scharrer 1932) (reviewed by Budelmann

1989). Despite the broad phylogenetic distribution of this

sensory system, the mechanics that govern hydrodynamic

reception are not well understood. It is therefore unclear

how sensitivity depends on the morphology of flow

receptors or how hydrodynamic interaction with the body

affects the signals that they detect. In the interest of

resolving these dynamics, the present study develops,

verifies, and analyzes a mathematical model of the

mechanics of the superficial neuromast of the lateral line

system of fishes.

Lateral line receptors may be classified as superficial or

canal neuromasts. Superficial neuromasts are located on the

surface of the body, where they are thought to sense flow

velocity. In contrast, canal neuromasts reside in channels

beneath the scales, where they are believed to detect

pressure gradients (reviewed by Bleckmann 1994; Coombs

and Montgomery 1999; Coombs and van Netten 2006;

Janssen 2004; Mogdans et al. 2004; van Netten 2006). Both

types of neuromast include a group of hair cells embedded

within the epithelium. Kinocilia from these cells extend

into a gelatinous matrix that forms the cupula of the neuro-

mast (Fig. 1). When the cupula is subjected to flow,

deflections of the kinocilia are transduced into graded

potentials across the hair cell membrane by their linkage to

a stair-step bundle of mechano-sensitive stereocilia (Harris

et al. 1970; Hudspeth and Corey 1977; Hudspeth and

Jacobs 1979). The motion of the hair bundles (kinocilia and

stereocilia) generates transducer potentials that are encoded

by changes in the frequency of action potentials in afferent

neurons (Flock 1965). These signals provide the central

nervous system with information about water flow around

the body.

The flow detected by the lateral line system is filtered by

the hydrodynamics of a fish’s body. The viscosity of water

causes flow close to the body’s surface to move slower than

the stimulus. This spatial gradient in flow, known as the

‘‘boundary layer,’’ has been studied extensively (Lamb

1945; Schlichting 1979). Models of the boundary layer

demonstrate that flows close to a surface increase in

velocity at greater frequency of oscillation. Therefore, the

boundary layer over the surface of a fish’s body behaves as

a high-pass filter that attenuates low-frequency stimuli

(Kuiper 1967; Hassan 1985; Kalmijn 1988; Teyke 1988;

Dinklo 2005). The present study considers whether this

filter has a substantive influence on flow sensing by

superficial neuromasts.

Signal detection by a superficial neuromast depends on

mechanical properties of the cupula. The shape and size of

the cupula affect both the fluid forces that may be gene-

rated by a stimulus and the structural resistance to these

forces. A major component of this resistance, the flexural

stiffness of the cupula, depends on how many rigid kino-

cilia are embedded within the compliant cupular matrix

(McHenry and van Netten 2007). The deflections of this

structure in flow are determined by interdependent struc-

tural dynamics and hydrodynamics of the cupula. The filter

created by this fluid–structure interaction can only be

understood with a theoretical approach that considers both

components. Therefore, in addition to examining the role

of the boundary layer, we have modeled the fluid–structure
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Fig. 1 The morphology of a superficial neuromast. a Photograph of

the cupula of a superficial neuromast of a zebrafish larva coated with

polystyrene microspheres and viewed with Nomarski optics (scale
bar 10 lm). b The morphological parameters of a cupula that factor

into the model: the heights of the cupula (hc), kinocilia (hk), and

stereocilia (hh), and the radius of the cupula (a)
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interaction of the cupula in our consideration of mechanical

filtering by the superficial neuromast.

Materials and methods

We have developed a model that relates the morphology of

a superficial neuromast to its sensitivity over a range of

stimulus frequencies. This model considers the boundary

layer over the body’s surface generated by an oscillating

stimulus. It calculates the forces generated by this flow

upon and within a cupula by treating this structure as a

cylindrical beam (Fig. 2). These forces are described by a

fourth-order differential equation, which is referred to as

the governing equation. Solutions to the governing equa-

tion provide predictions of cupular deflection as a function

of its height above the skin. These predictions permit the

calculation of the frequency response of a superficial

neuromast.

Structural dynamics

The cupula was modeled as two joined beams of different

flexural stiffness because the proximal and distal portions

of a cupula differ in their material properties (McHenry and

van Netten 2007). The flexural stiffness of a beam is equal

to the product of its second moment of area, I, and the

complex modulus, E, of its material. The complex modulus

characterizes the viscoelastic properties of the material and

therefore consists of elastic, E0 (i.e. Young’s modulus), and

viscous, E00, components (E = E0 ? iE00, Wainwright et al.

1976). Assuming a cylindrical shape, the second moment

of area may be calculated with the following equation

(Gere 2001):

I ¼ p
4

a4; ð1Þ

where a is the radius. The distal tip of the cupula is

composed entirely of extracellular matrix (McHenry and

van Netten 2007). Therefore, the flexural stiffness of the

distal beam was calculated as follows (Gere 2001):

ðEIÞ2 ¼ EmI2; ð2Þ

where (EI)2 and I2 are, respectively, the flexural stiffness

and second moment of area for the distal cupula, and Em is

the complex modulus of the cupular matrix. In quasi-static

mechanical testing, it was found that flexural stiffness of

the proximal region varies as a linear function of the

number of kinocilia (McHenry and van Netten 2007).

Therefore, we calculated the flexural stiffness of this region

with the following relationship:

ðEIÞ1 ¼ EmI1 þ NðEIÞk; ð3Þ

where (EI)1 is the flexural stiffness of the proximal region,

(EI)k is the flexural stiffness for an individual kinocilium, n

is the number of kinocilia (equal to the number of hair

cells), and I1 is the second moment of area for the proximal

cupula.

The structural forces generated by a beam depend on its

flexural stiffness and mass. If the beam’s deflections are

sufficiently small that its arclength approximates its height,

the Euler–Bernoulli equations predict the following rela-

tionship for the elastic force acting upon a beam element of

height dz (Gere 2001):

FeðzÞ ¼ Elm0000ðzÞdz: ð4Þ

where Fe is the elastic force, and m0000ðzÞ is the fourth

derivative of deflection with respect to beam height, z

(Gere 2001). The mass of a beam plays an increasingly

prominent role in the dynamics at high oscillation

frequencies. We calculated the inertial force as the

product of the mass (qpa2dz) and acceleration (-m(z)x2)

of a beam element:

FmðzÞ ¼ �pqma2x2mðzÞdz; ð5Þ

where x is the angular speed of oscillation (x = 2pf,

where f is stimulus frequency), Fm is the inertial force, m is

cupular deflection, and qm is the density of the cupular

matrix.

z^

ν(z)
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plate

(body)

Local
flow,
U(h

h
)

Stiff
proximal

beam

Hair bundle
torsion
spring

Freestream flow, U∞
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x̂

B
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Fig. 2 The fluid–structure interaction model of a superficial neuro-

mast. The cupula is modeled as a two-part beam excited by a

pressure-driven oscillating boundary layer. Deflections, m(z), were

calculated over a range of stimulus frequencies. The juncture between

the cupula and the sensory epithelium is modeled as a pivot and

spring to simulate the torsion stiffness generated by the hair bundles
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Hydrodynamics

The model treats the stimulus as an oscillating pressure

field and calculates its boundary layer over a flat surface.

The flow velocity of the boundary layer varies with dis-

tance from the surface according to the following function

(Batchelor 1967):

UðzÞ ¼ U1 1� exp
�zð1þ iÞ

d

� �� �
; ð6Þ

where U? is the freestream velocity, and d is the boundary

layer thickness. This is calculated with the following

equation (Batchelor 1967):

d ¼
ffiffiffiffiffiffiffiffiffi
2l

qwx

s
; ð7Þ

where qw and l are, respectively, the density and dynamic

viscosity of water.

The model of fluid forces acting on the cupula was based

on the flow that develops around a uniform cylinder in

oscillating flow. Such flow generates both viscous and

inertial forces on the surface of the cylinder. The viscous

drag, Fu, on an element of the cylinder is given by (Stokes

1851):

FuðzÞ ¼ 4plkðUðzÞ � ixmðzÞÞdz; ð8Þ

where m is the deflection of the cupula, and k is a viscous

drag coefficient. The viscous drag coefficient is calculated

as follows (Stokes 1851):

k ¼ � L

L2 þ p=4ð Þ2
: ð9Þ

Under the assumption that k � 1, L may be calculated as

(Stokes 1851):

L ¼ cþ ln
affiffiffiffiffi
2d
p
� �

; ð10Þ

where c is Euler’s constant (c & 0.5772). The relative

acceleration of the flow and the cupula results in a second

force, the acceleration reaction, Fa, that can be calculated

as (Stokes 1851):

FaðzÞ ¼ pqwa2 � p2lk

xL

� �
ixUðzÞ þ x2mðzÞ
� �

dz; ð11Þ

Lastly, the pressure field that develops around the cupula as

the flow accelerates results in a buoyant force, Fb, that may

be calculated as:

FbðzÞ ¼ iqwpa2xUðzÞdz: ð12Þ

These equations rely on some simplifying assumptions.

Stokes’ (1851) treatment of an oscillating pendulum

in fluid assumes a rigid cylinder with a circular cross-

section. These hydrodynamics focus exclusively on the

two-dimensional flow field around the cross-section of an

infinitely long cylinder and therefore neglect forces that

may be generated by gradients in pressure or shear stress

along the cylinder’s height. This blade-element approach

has been applied to modeling the rigid filiform hairs of

insects in both air and water (Humphrey et al. 1993;

Devarakonda et al. 1996). However, it is unclear if

the same approach comprehensively describes the

hydrodynamics of less elongated structures. Studies on

the hydrodynamics of protuberances with an aspect ratio

comparable to a cupula (the height is about four times its

base diameter, Van Trump and McHenry 2008) have not

explicitly examined the role of height-wise gradients (e.g.

Pozrikidis 1997; Shatz 2005). Therefore, our blade-element

approach should be regarded as a first-order approximation

of the hydrodynamics of a cupula.

Stokes’ (1851) further assumes that viscous forces

dominate and the inertia of the freestream flow may be

neglected. This approximation has been verified for par-

ticular hydrodynamic regimes in previous studies. These

regimes are expressed by the dimensionless Reynolds

number, Re, and Strouhal number, St, both of which vary

with height in our model because of the boundary layer

over the body:

Re ¼ 2aqw

l
UðzÞj j; ð13Þ

St ¼ ax
UðzÞj j : ð14Þ

When Re \ 1, the hydrodynamics of a cylinder are domi-

nated by viscous forces. In accordance with Stokes’

assumptions, when 0.1 \ St \ 100, the inertia of the

freestream flow has been confirmed to play only a minor

role (Stuart 1963; Hussey et al. 1967; Williams and Hussey

1972; Sarpkaya 1986). Thus, in this range of Strouhal

numbers, the Oseen correction (Oseen 1910; Lamb 1911,

1945) may be neglected and the Stokes solution applies.

Our model remains within this regime for a particular range

of freestream velocities. At high frequencies, the free-

stream velocity must remain high enough that St \ 100.

This velocity may be calculated by substituting the

boundary layer equation (Eq. 6) into the St equation

(Eq. 14) as: U?[ ax/(100|1 - exp(-z(1 ? i)/d)|). This

suggest that at the height z = 5 lm, which is relatively

close to the body, the freestream velocity should exceed a

value of 0.9 mm s-1 for a typical superficial neuromast

(a = 5 lm) at f = 1,000 Hz. At low frequencies, the St

values in the distal region are relatively low. Combining

Eqs. 6 and 14 for St [ 0.1 yields the following inequality:

U?\ 10ax/|1 - exp(-z(1 ? i)/d)|. This suggest that at a

height of z = 35 lm, near the distal tip of the cupula in

zebrafish (McHenry and van Netten 2007), the freestream

velocity should be less than 0.9 m s-1 at f = 0.1 Hz.
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However, combining Eqs. 6 and 13 and solving for Re \ 1

yields: U?\ l/(2aq|1 - exp(-z(1 ? i)/d)|), which sug-

gests that U?\ 0.3 m s-1. Therefore, the hydrodynamics

assumed by Stokes (1851) have been verified for conditions

where the freestream flow remains within the following

range: 0.9 mm s-1 \ U?\ 0.3 m s-1. For comparison, a

larval zebrafish may swim at speeds below 1 mm s-1

(McHenry and Lauder 2005) and the flow generated by a

predator fish may reach velocities up to 0.6 m s-1 (Higham

et al. 2006). Therefore, the extremes of biologically

relevant velocities may fall outside the bounds of hydro-

dynamics assumed by our model that have been verified by

prior experimentation (Stuart 1963; Hussey et al. 1967;

Williams and Hussey 1972; Sarpkaya 1986).

The governing equation

The net force acting on an element of the cupula is the sum

of structural and hydrodynamic forces. This sum is given

by the following equation:

FeðzÞ þ FmðzÞ ¼ FuðzÞ þ FaðzÞ þ FbðzÞ: ð15Þ

Substituting from Eqs. 4, 5, 8, 11 and 12 yields the

following relationship:

EIm0000ðzÞ ¼ ixbmmðzÞ � bwUðzÞ; ð16Þ

where

bm ¼ �4plk � ipðqm þ qwÞa2xþ ip2lk

L

and

bw ¼ �4plk � 2ipqwa2xþ ip2lk

L
:

For a beam of uniform stiffness along its length, we found

the general solution to this equation to be:

vðzÞ ¼ � ibwU1
xbm

1� ixbmd4

4EI þ ixbmd4
exp

�ð1þ iÞz
d

� �� �

þ
X3

j¼0

Cj exp ijz

ffiffiffiffiffiffiffiffiffiffiffi
ixbm

EI

4

r !
;

ð17Þ

where Cj is a sequence of four integration constants. This

solution describes the deflections of each of the two beams

of the cupula model (Fig. 2).

Formulating a specific prediction for the deflection of a

cupula requires defining the conditions at the ends of the

two beams. At the very tip of the distal beam, the cupula

lacks any height or area for fluid forces to be generated.

Therefore, one may assume that there is no bending

moment (EIm2
00(hc) = 0) or shear force (EIm2

000(hc) = 0) at

this position (Fig. 2). The two parts of the cupula are made

consistent where they intersect by matching their deflection

(m1(hk) = m2(0)), orientation (m1
0(hk) = m2

0(0)), bending

moment ((EI)1m1
00(hk) = (EI)2m2

00(0)), and shear force

((EI)1m1
000(hk) = (EI)2m2

000(0)). Finally, the cupula was

assumed pinned at the base (m(0) = 0) and the hair bundles

were modeled as a torsion spring that resists changes in

orientation at the base of the proximal cupula. This stiff-

ness is generated in a hair cell by the anchoring of the

kinocilia and their linkage to the stereocilia (Hudspeth and

Corey 1977; Hudspeth and Jacobs 1979; Hudspeth 1989).

This stiffness was set equal to the product of the number of

hair cells, N, and hair bundle torsional stiffness, qt:

m0ð0Þ ¼ ðEIÞ1m00ð0Þ
Nqt

; ð18Þ

where the product (EI)1m00(0) is equal to the total bending

moment acting on the base of the cupula.

Specific predictions of cupular deflection were calcu-

lated from the general solution to the governing equation.

The eight integration constants for the two beams were

calculated using the boundary conditions prescribed above.

These boundary conditions provided eight simultaneous

linear equations that were solved numerically to find values

for all integration constants of the general solution

(Eq. 18). Since the cupula of a superficial neuromast bends

in flow (Schulze 1861; Cahn and Shaw 1962; Dinklo

2005), it is necessary to examine cupular deflection at a

particular height. Unless otherwise noted, we chose to

evaluate cupular deflections at the height of the tip of the

tallest stereocilium because of its close proximity to the

site of mechanotransduction (Hudspeth 1982). Normalizing

this deflection with respect to the freestream velocity pro-

vides a measure of sensitivity that is independent of

stimulus intensity. Therefore, we calculated neuromast

sensitivity as the following ratio:

Sf ¼
mðhhÞ
U1

; ð19Þ

where hh is the height of the tip of the stereocilia

(hh = 5.2 lm in zebrafish) (Dinklo 2005). This measure of

sensitivity has real and imaginary components, and pro-

vides information about both the degree and timing of the

cupular deflection with respect to the freestream flow. The

amplitude and phase of this response were, respectively,

calculated as the modulus and argument of sensitivity with

the amplitude having units of time (s = m(m s-1)-1), as in

van Netten (2006). The viscous component of the cupular

material has yet to be measured in zebrafish. We therefore

treated the cupular matrix as a purely elastic material with

a complex modulus equal to its Young’s modulus

(E = E0 = 21 Pa, McHenry and van Netten 2007). For

model validation and analysis, we focused on the superfi-

cial neuromasts of zebrafish larvae, Danio rerio, using
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parameter values (Table 1) for that species. A frequency

response for sensitivity was calculated by finding solutions

to the general solution (Eqs. 18, 20) numerically for hun-

dreds of frequencies between 0.01 and 1,000 Hz. In a

sensitivity analysis, individual parameter values were var-

ied in multiple simulations between realistic lower and

upper parameter values. The frequency responses of simu-

lations were compared by calculating their maximum

amplitude and cut-off frequency. Cut-off frequency was

approximated as the frequency at which the maximum

amplitude occurred.

The frequency response to a vibrating sphere

The frequency response of a superficial neuromast to a

vibrating sphere was also considered through a modifica-

tion of our mathematical model. A vibrating sphere is

commonly used as a stimulus for behavioral and neuro-

biological experimentation in lateral line research. We

therefore used Stokes (1851) treatment of the flow gene-

rated by an oscillating sphere, which considers viscous

hydrodynamics in the near field. At a distance r from the

center of the sphere, in a direction perpendicular to the

sphere’s motion, this model predicts flow velocity parallel

to the motion of the sphere to be given by (based on Eq. 29

in van Netten 2006):

UsðzÞ ¼ �
3asW

2r
1þ ð1� iÞd

2r
� 1d2

2r2

� �

exp
�ð1þ iÞðr � asÞ

d

� �
þ 3a3

s W

2r3

1

3
þ ð1� iÞd

2as

� 1d2

2a2
s

� �
;

ð20Þ

where W and as are the velocity and radius of the sphere,

respectively. This model neglects the acoustic pressure

wave that dominates flow in the far field at higher fre-

quencies. To evaluate this assumption for superficial

neuromasts, we compared the frequency responses pre-

dicted by Eq. 20 with a model that considers both fluid

compressibility (far field) and viscosity (near field) (art.

361 in Lamb 1911). The magnitude of the acoustic effect

increases with frequency, distance from the sphere, and the

sphere’s radius. Yet, we found that this effect remains

negligible even at parameter values (e.g. f = 2 kHz,

r = 100 mm, and as = 5 mm) beyond the range that is

typically used in behavioral (e.g. Coombs and Conley

1997) or physiological (e.g. Kroese and Schellart 1987)

studies. We therefore conclude that the viscous hydro-

dynamics of an oscillating sphere (Eq. 20) dominate the

flow detected by superficial neuromasts under experimental

conditions.

We have approximated the flow field generated by a

sphere oscillating near a flat plate with the method of

mirror images. This approach approximates the hydro-

dynamics between a sphere and a flat plate by modeling the

flow generated between two spheres oscillating in anti-

phase. This approximation relies on two assumptions. The

components of velocity that are parallel to the bisecting

plane cancel and thereby obey the no-slip condition.

However, the component of the velocity that is normal to

the plane sums. Thus, the calculated flow field is a solution

for the case in which the plate bends slightly with the flow

rather than remaining perfectly flat. Second, this approach

requires that the displacement of the sphere is small rela-

tive to the distance p between the sphere and the plate (i.e.

2pUs/x � p). When this displacement is small, the posi-

tions along the plate are almost equidistant to both spheres

and the velocities cancel at the plate. Under these

assumptions, the flow is given by:

Us;mirðzÞ ¼ Usðp� zÞ � Usðpþ zÞ; ð21Þ

where z is the height from the surface of the plate. To more

easily examine how the flow acts on the cupula, we

Table 1 Parameter values for

neuromasts of zebrafish larvae

a, radius of cupula; Em, Young’s

modulus of cupular matrix;

(EI)k, flexural stiffness of

kinocilium, hb, height of hair

bundle; hc, height of cupula; hk,

height of kinocilia; N, number

of hair cells; ql, linear spring

stiffness; qt, torsion spring

stiffness; l, dynamic viscosity

of water; qm, density of cupular

matrix; qw, density of water

Parameter Value Source

a (lm) 4.44 Dinklo (2005)

Em (Pa) 21 McHenry and van Netten (2007)

(EI)k (N m2) 2.4 9 10-21 McHenry and van Netten (2007)

hb (lm) 5.2 Dinklo (2005)

hc (lm) 45.0 Dinklo (2005), McHenry and van Netten (2007)

hk (lm) 16.0 McHenry and van Netten (2007)

N 10 Dinklo (2005)

ql (N m-1) 1.3 9 10-3 van Netten and Kroese (1987)

qt (Nm rad-1) 2.9 9 10-14 van Netten and Kroese (1987)

l (Pa s) 0.7975 9 10-3 Weast (1987)

qm (kg m3) 996 qm = qw

qw (kg m3) 996 Weast (1987)
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calculated a linear expansion of Eq. 21, which is valid in

the vicinity of the flat plate:

Us;linðzÞ ¼ �
3asWz

dp
ð1þ iÞ þ 2d

p
þ 3ð1þ iÞd2

2p2
� 3id3

2p3

� �

� exp �ð1þ iÞðp� asÞ
d

� �

þ 3a3
s Wz

p4
1þ 3ð1� iÞd

2as

� 3id2

2a2
s

� �
ð22Þ

where z/d � 1 and x/p � 1. The sensitivity Sl of local

flow at the stereocilia height was calculated with respect to

the sphere’s velocity (Sl = Us,lin(hh)/W) to relate its fre-

quency response to that of the cupula. The hydrodynamics

of a sphere oscillating near a plate have been treated more

comprehensively in prior studies (Wakiya 1961; Wakiya

1963).

The boundary layer generated by a sphere is well

approximated by a linear function of height [U(z) = bz; cf.

Eq. 22]. We found the general solution to the governing

equation of our cupula model using this linear boundary

layer profile [U(z) = Us,lin(z) in Eq. 16] instead of the

nonlinear profile used to find the general solution for

pressure-driven flow (Eq. 17). The following equation

describes the solution to the cupula model (Eq. 16) for such

a boundary layer:

msðzÞ ¼ �
ibwb
xbm

zþ
X3

j¼0

Cj exp ijz

ffiffiffiffiffiffiffiffiffiffiffi
ixbm

EI

4

r !
: ð23Þ

The sequence of integration constants Cj was solved for

using the same boundary conditions as for pressure-driven

flows and the sensitivity Ss of cupular deflections to the

sphere was again calculated as Ss = ms(hh)/W.

Results

The model predicts that the boundary layer and mechanics

of the cupula behave as a band-pass filter of freestream

flow. Sensitivity, defined as the ratio of cupular deflection

to freestream velocity (Eq. 19), increases at low frequen-

cies at a rate of 12 dB dec-1 and attenuates at high

frequencies with a rate around -15 dB dec-1 (Fig. 3a).

The maximum amplitude and the cut-off frequency depend

on cupular morphology and the height at which deflections

are evaluated.

Model validation

The model was tested by comparing its predictions with

measurements of cupular deflections in the superficial

neuromasts of zebrafish larvae (Dinklo 2005). We chose a

value for cupular height (hc = 33 lm) within the range for

the species (Van Trump and McHenry 2008) that matched

the measured maximum amplitude of sensitivity (Fig. 3a)

because this parameter was not reported with the deflection

measurements. Although these adjustments prohibit an

evaluation in terms of absolute values, the form of the
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Fig. 3 Model predictions compared with measured deflections in

zebrafish larvae. The measurements of Dinklo (2005) (filled circles)

are overlaid on the prediction of the model (solid curve) for the same

conditions. The predictions of the model are shown with the standard

parameter values (Table 1), except cupular height: hc = 33 lm.

Measurements of the a amplitude (|Sf|), and b phase (180� arg(Sf)) of

sensitivity with respect to the freestream flow are shown for

z = 29 lm. c The amplitude (|m(z)|) and d phase (180� arg(m(z)/

U?)/p) of the cupula at three heights (z = 8 lm, z = 19 lm, and

z = 34 lm) for a stimulus frequency of f = 44.0 Hz. The stimulus

amplitude was adjusted to U? = 11.4 lm s-1 to match the data in c
and d
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measured frequency response shows good agreement with

the model in the amplitude of sensitivity (Fig. 3a). Mea-

sured phase also agreed with the model at frequencies

above 30 Hz (Fig. 3b), but diverged at lower frequencies,

where the model predicts a phase around 45�. That the

measurements reflect a phase closer to -30� at low

frequencies may be attributed to a difference between

the discrete fluid jet stimulus in Dinklo’s (2005) experi-

ments and the fluid velocity field assumed by our model

(Eq. 6).

Our model predicts a similar profile of cupular deflec-

tion with height as was measured in zebrafish neuromasts.

Dinklo (2005) measured deflection at three different

heights along the cupula for a single stimulus frequency

(Fig. 3c, d). For comparison with these measurements, the

freestream flow was adjusted to 11.4 lm s-1 such that the

magnitude of deflection approximated the data. Although

this freestream velocity is slower than the range for which

the model’s hydrodynamics have been validated (Stuart

1963; Hussey et al. 1967; Williams and Hussey 1972;

Sarpkaya 1986). The model predicts cupular bending that is

similar to measurements (Dinklo 2005) and previous

observations (Schulze 1861; Cahn and Shaw 1962).

Effects of cupular morphology on the frequency

response

We used a sensitivity analysis to test the effects of the hair

cells on the frequency response of the cupula. Varying the

torsion spring stiffness of the hair bundles (Fig. 2) showed

little effect on cupular sensitivity unless reduced to an

unrealistically small level (Fig. 4ai–ci). Hair cells influence

cupular mechanics by contributing kinocilia to the flexural

stiffness of the cupula. This is demonstrated by the similar

effect of the number of hair cells and kinocilium flexural

stiffness on maximum amplitude and cut-off frequency

(Fig. 4aii–cii, aiii–ciii). Cupulae with taller kinocilia

exhibit greater sensitivity up to the point where kinocilia

height approaches that of the cupula (e.g. hk = 30 lm in a

45 lm cupula, Fig. 4aiv).
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mechanical properties on the frequency response of the cupula with
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ences in maximum amplitude a and cut-off frequency b of sensitivity

(Sf, Eq. 19) are shown as a function of each morphological and
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The dimensions of the cupular matrix affect a superficial

neuromast’s frequency response by influencing structural

mechanics and hydrodynamics. A wider cupula causes the

maximum amplitude of sensitivity to decrease for an

increase in cupula radius above 6 lm (Fig. 4av). In con-

trast, there is a monotonic increase in sensitivity with

increases in cupula height over the range that we examined

(Fig. 4avi). However, the influence of cupula height is

mediated by the material composition of the cupular matrix

(Fig. 4avii–cvii).

The role of the hair bundles in the dynamics of the

cupula was further considered by comparing simulations

that differed by the coupling between the cupula and body

(Fig. 5). The boundary conditions of the model were

modified by replacing the pivoting base (Eq. 18) with a

zero angle of orientation at the base of the cupula

(m0(0) = 0) and resisting sliding with a linear spring

(m(0) = EIm000(0)/nql, where ql is linear stiffness, Table 1).

The frequency response predicted for these conditions did

not differ greatly from the pivoting base (Fig. 5; orange

curve) or when both rotation and translation were fixed at

zero (Fig. 5a; orange curve). The only substantial dis-

crepancies occurring in phase at higher frequencies

(f [ 100 Hz, Fig. 5b), where the neuromasts are relatively

insensitive (Fig. 5a).

The functional consequences of a flexible distal tip were

examined by comparing the predictions of different simu-

lations. Simulations using flexural stiffness greater than

what was observed ((EI)2 & (EI)1/15; McHenry and van

Netten 2007) predicted higher maximum amplitude in

sensitivity and a higher cut-off frequency (Fig. 6). There-

fore, the composition of the matrix material that comprises

the tip of the cupula has a substantial influence on the

frequency response.

Frequency response with a sphere stimulus

A cupula is most sensitive to the oscillations of a sphere

at low frequencies (Fig. 7). For a sphere of small radius

(e.g. as = 1 mm), sensitivity attenuates at a rate of

*-15 dB dec-1 throughout the frequency range consi-

dered. The same trend is predicted at higher frequencies

(f [ 10 Hz) for spheres of larger radius. However, these
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larger spheres also exhibit a flat response for a range of

lower frequencies (e.g. 0.2 Hz \ f \ 2 Hz for as = 5 mm,

Fig. 7a). None of the frequency responses with a sphere

exhibit the low-frequency attenuation predicted for pres-

sure-driven flow (Fig. 5).

Discussion

Filtering by the boundary layer

Well-established hydrodynamic theory suggests that the

boundary layer over the surface of a fish’s body plays a major

role in determining the signals detected by a superficial

neuromast (Batchelor 1967; Schlichting 1979). Boundary

layer thickness, and therefore signal attenuation, reduces

with increasing stimulus frequency and therefore exposes a

neuromast to more rapid flow (Fig. 8). These changes in the

boundary layer with frequency are reflected in the sensitivity

Sb of local flow (the velocity at the stereocilia height U(hh),

Fig. 2) to freestream flow (Sb = U(hh)/U?, Eq. 6). The

amplitude of this sensitivity increases with frequency at a

rate of 10 dB dec-1 (Fig. 9a) and creates a 45� phase lead of

local flow (Fig. 9b). This filtering influences the response

over all frequencies considered and dominates changes in the

amplitude and phase shift of cupular deflections at low fre-

quencies (f \ 1.0 Hz in Fig. 9a).

The frequency response of a cupula is different when

stimulated by a vibrating sphere. The boundary layer

between a sphere and the body’s surface may be considered

by normalizing local flow to the velocity of the sphere

(Sl = Us,lin(hh)/W, Eqn. 20). This measure of sensitivity

exhibits a two-gain frequency response with greater

attenuation at higher frequencies than at lower frequencies

(Fig. 10). This frequency response contrasts the high-pass

filtering of a pressure-driven boundary layer (Fig. 9) and

may be understood by examining its profile (Fig. 11). At

low frequencies, the sphere viscously carries a large vol-

ume of fluid and the amplitude of velocity near the body’s

surface is consequently large (e.g. f = 0.1 Hz in Fig. 11b,

c). At high frequencies, the flow generated by the sphere

saturates to an irrotational dipole field (e.g. f = 100 Hz,

Fig. 11d, e) with an amplitude that varies with distance to

the sphere as a3/r3 (i.e. the second term of Eqn. 20 domi-

nates). Therefore, the flows that excite a cupula are

determined by the boundary layer hydrodynamics of both

the sphere and the body’s surface.

This consideration of the viscous flows generated by a

sphere is a departure from many prior studies on the lateral

line system. The flow field generated by a vibrating sphere

can be calculated using a simple dipole model if the flow is

assumed to be inviscid and irrotational (Denton and Gray

1983; Denton and Gray 1982; Kalmijn 1988; Kalmijn

1989; Bergeijk 1967). This inviscid theory successfully

predicts the microphonic and afferent potentials generated

by canal neuromasts (Coombs et al. 1996; Coombs and
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Conley 1997; Curcic-Blake and van Netten 2006), but fails

to model the boundary layers to which superficial neuro-

masts are exposed (Kuiper 1967; Daniel 1981; Hassan

1985; Kalmijn 1988; Teyke 1988; Anderson et al. 2001;

Dinklo 2005). Therefore, the present approach, which is

consistent with van Netten (2006) and previously suggested

by Kalmijn (1988), is more appropriate for the signals

detected by superficial neuromasts than prior models.

These findings have implications for neurophysiological

experiments on superficial neuromasts. The form of the

reported frequency responses (e.g. Kroese and Schellart

1987; Montgomery and Coombs 1992; Münz 1985; Kroese

et al. 1980; Harris and Milne 1966) varies among neuro-

physiological studies and some investigators using similar

techniques have reached conclusions differing from the

consensus view (e.g. Kroese et al. 1978; Münz et al. 1984).

As demonstrated by our results and previously suggested

(Kroese and Schellart 1987; Kalmijn 1988), some of these

discrepancies may be attributed to filtering by the boundary

layer. For example, frequency responses vary greatly with

the diameter (Fig. 7) and position (Fig. 10) of a vibrating

sphere. Therefore, measurements of frequency response

may vary with small differences in an experimental setup.

Frequency response measurements may be examined

independent of filtering by the boundary layer. The sensi-

tivity of cupular deflection to local flow exhibits a similar

frequency response regardless of the stimulus source. This

is revealed by the similar responses with pressure-driven

flow (Sh, thin line in Fig. 9) to those with an oscillating

sphere (Ss, thin line in Fig. 10). Sensitivity defined with

respect to local flow allows an examination of filtering by a

neuromast without the confounding influence of the
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boundary layer, but requires a model (e.g. Eq. 6 or 22) or

measurement of local flow.

Filtering by fluid–structure interaction

The cupula exhibits a nearly flat (2 dB dec-1) response in

amplitude (Figs. 9a, 10a) and a phase (Figs. 9b, 10b) to the

local flow velocity at low frequencies (Figs. 9, 10). This

suggests that a superficial neuromast encodes the velocity

of flow close to the body with low-pass filtering. Therefore,

the band-pass frequency response of a superficial neuro-

mast to pressure-driven flow (Figs. 3, 4, 5, 6) is generated

by the combination of low-pass filtering by the fluid–

structure interaction of the cupula and the high-pass

filtering by the boundary layer (Fig. 9). The low-pass fil-

tering of the cupula combines with the two-gain filtering of

the boundary layer to determine the frequency response

with a vibrating sphere stimulus (Fig. 10).

The frequency response of a superficial neuromast to

local flow may be understood by considering the forces

acting on the cupula. At low frequencies (e.g. f = 1 Hz),

viscous drag dominates the forces acting on the cupula

(Fig. 12ai). This viscous coupling causes the cupula to

deflect in proportion to (Figs. 9a, 10a), and in phase with

(Figs. 9b, 10b) local flow. At higher frequencies (e.g.

f = 100 Hz), acceleration reaction acts to accelerate the

cupula with the surrounding water (Fig. 12bi). Therefore,

cupular deflections become closer to deflecting in propor-

tional to, and in phase with, the displacement of the water

at higher frequencies. Therefore, the frequency response of

the cupula is due to changes in the relative magnitude of

hydrodynamic forces with frequency.
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Effects of cupular morphology on filtering

Although the form of the frequency response is predicted to

be similar among all superficial neuromasts, the cut-off

frequency and maximum amplitude of sensitivity vary with

cupular morphology. Sensitivity is especially affected by

the number of hair cells and the height of their kinocilia.

Our results suggest that the high stiffness of the kinocilia

causes hair cells to stiffen the proximal cupula and thereby

act to reduce mechanical sensitivity (Fig. 4a).

The deflections of a kinocilium are resisted by their

linkage to the stereocilia of a hair cell. We have modeled

this linkage as a linear torsion spring, as in biophysical

models of hair cells (Howard and Hudspeth 1988), and

found the frequency responses of the cupula are almost

indistinguishable from that of a beam that is rigidly fixed to

the epithelium (Fig. 5). Furthermore, varying the spring

stiffness of the hair bundles showed little effect on cupular

sensitivity unless reduced to an unrealistically small level

(Fig. 4i). The stiffness of the hair bundles and the gating

spring play an integral role in the biophysics of hair cells

(Hudspeth and Corey 1977; Hudspeth and Jacobs 1979;

Hudspeth 1989) and thereby affects the receptor potentials

generated by the deflection of the hair bundle. However,

our model does suggest that these deflections are inde-

pendent of bundle torsion stiffness and are instead

dominated by the fluid–structure interaction of the cupula.
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This minor role for the torsion spring of the hair bundles

of superficial neuromasts contrasts the micromechanics of

canal neuromasts. In canal neuromasts, the cupula behaves

as a rigid body that slides along the epithelium against the

stiffness of the hair bundles (van Netten and Kroese 1987;

van Netten 1988). This coupling between the cupula and

the hair cells causes the neuromast to resonate like an

underdamped oscillator with a peak in sensitivity at 100–

1,000 Hz (van Netten 2006). Therefore, the essential role

of hair bundle stiffness in the filtering by the canal neu-

romasts may partially be attributed to the rigid body

dynamics of the cupula.

The cupular matrix is composed of a highly compliant

glycosaminoglycan gel (Sato 1962) that, in some species,

includes fibrils of unknown composition (Jielof et al. 1952;

Münz 1979; Kelly and van Netten 1991). These fibrils

likely increase the Young’s modulus and hence the flexural

stiffness of the cupular matrix. Our sensitivity analysis

(Fig. 4vii) suggests that the cupula is most sensitive when

the matrix is composed of a Young’s modulus close to that

of zebrafish larvae (E = 21 Pa; McHenry and van Netten

2007). However, greater flexural stiffness in the distal

cupula enhances sensitivity (Fig. 6) by transmitting greater

bending moments and hence cupular deflection at the

stereocilia. Furthermore, larger cupulae may benefit from

the greater structural integrity of a stiffer material. For

example, the cupulae of the Mexican blind cavefish

(Astyanax fasiatus mexicanus) are about ten times the

height of zebrafish (Teyke 1990) and nearly three orders of

magnitude more stiff (Peleshanko et al. 2007). This high

material stiffness is likely aided by the presence of fibrils

within the matrix that are not present in zebrafish larvae

(Münz 1979; McHenry and van Netten 2007).

In conclusion, our model suggests that there are multiple

levels of mechanical filtering between a hydrodynamic

stimulus and the neurobiological response of a superficial

neuromast. The cupula is predicted to respond to pressure-

driven flows with bandpass filtering (Figs. 3, 4, 5, 6) that is

generated by the combined effects of the boundary layer

and the fluid–structure interaction of the cupula with flow

near the body’s surface. The cupula filters in a similar

manner with a vibrating sphere stimulus, but a sphere

creates a boundary layer with a two-gain frequency

response. For either stimulus, the cupula is sensitive to the

velocity of flow near to the body’s surface (Fig. 8) and

serves as a low-pass filter (Figs. 9, 10). The maximum

amplitude and cut-off frequency of this response varies

with the dimensions and Young’s modulus of the cupular

matrix and the number and height of hair cell kinocilia

(Figs. 4, 5, 6). These results demonstrate that the sensi-

tivity of a superficial neuromast depends critically on the

hydrodynamics of a stimulus, the boundary layer that it

generates, and the fluid and structural dynamics of the

cupula.
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