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Abstract Temperature affects the mating displays of
many ectothermic animals, yet almost no information
exists on the temperature preferences of ectotherms
while they are displaying for mates. This study inves-
tigated the preferences of displaying male field crickets
(Gryllus integer) for microhabitats of different temper-
atures. G. integer males attract sexually receptive fe-
males by calling from cracks in the ground. We
collected data from the field on the temperature of
male calling sites (cracks in the ground), on the amount
of herbaceous cover (which affects crack temperature)
surrounding calling sites, and on the temporal proper-
ties of male calls at different temperatures. Laboratory
experiments demonstrated that males prefer warmer
sites and confirmed that temperature influences mating
calls. We conclude that males of this ectothermic spe-
cies prefer to call for mates from warmer sites, and that
microhabitat choice on the basis of temperature affects
their mating calls, and potentially their reproductive
success.
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Temperature Æ Temperature preferences

Introduction

Temperature is an important determinant of activity for
many animals, especially for ectotherms (Riechert and
Tracy 1975; Huey and Slatkin 1976; May 1979; Bennet
1980; Dunham et al. 1989; Huey et al 1989; Huey 1991).
In particular, temperature often influences mating ac-
tivity. Within the range of temperatures normally ex-
perienced by a species, warmer temperatures tend to
increase mating activity, whereas cooler temperatures
depress it (Bligh et al. 1976; Navas 1996a; Simmons and
Marti 1992; Munro 1990; Hoffmann 1985a, 1985b;
Gillet et al. 1995). Temperature determines the mating
strategies adopted by different individuals in a digger
wasp (Larsson 1989), whereas in many other species,
mating displays are dramatically affected by ambient
temperature. For example, temperature changes the ca-
dence of head-bobbing displays in iguanid lizards
(Phillips 1995), and both the rate (Liu and Haynes 1994)
and nightly duration (Webster and Yin 1997) of pher-
omone emission by moths. Similarly, in crickets, frogs
and a variety of other organisms including spiders,
fireflies and electric fish, the temporal properties of ad-
vertising signals change with temperature (Edmunds
1963; Enger and Szabo 1968; Walker 1975; Carlson et al.
1976; Prestwich and Walker 1981; Pires and Hoy 1992a,
1992b; Gerhardt 1994; Shimizu and Barth 1996; Silva
et al. 1999; Martin et al. 2000; Ritchie et al. 2001). These
signals often encode species-specificity via their temporal
patterning (Walker 1957; Walker 1962; Bentley and Hoy
1972; Bennet-Clark 1989; Gerhardt 1994; Doherty and
Callos 1991; Doherty and Storz 1992). Therefore, tem-
perature-induced changes in the properties of mating
signals raise the interesting question of how the re-
sponding sex recognizes a species-specific signal when
the signal changes with temperature. Previous work
demonstrates that in many acoustically advertising spe-
cies such as crickets and frogs, the responding sex’s song
preferences also change with temperature. The result is
that responders at the same temperature as the displayer
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can recognize the displayer’s call (e.g., Walker 1962;
Gerhardt 1994). This phenomenon has been called
‘‘temperature coupling’’ (Pires and Hoy 1992a, 1992b;
Gerhardt 1978; Ritchie et al. 2001).

The influence of temperature on the mating displays
of ectotherms, particularly those with ‘‘temperature
coupling’’, suggests that these animals should be sensitive
to differences in temperature when they are choosing a
location from which to display for mates. Although some
studies have documented the temperatures at which these
animals call (e.g., Navas 1996a, 1996b; Walker 1980;
Souroukis et al. 1992; Ciceran et al. 1994), virtually none
have demonstrated the choice of particular temperatures
by ectotherms that are engaged in mating displays.
Here, we describe choice of warmer calling sites by male
field crickets (Gryllus integer) and demonstrate that
warmer temperatures modify their mating calls.

The study system

In the cricket G. integer, males call from cracks in the
ground to attract sexually receptive females, and females
travel above-ground to search for males in their calling
sites. Females enter the male’s crack to mate with the
male, and leave it after mating. The male’s call is a rapid
trill (produced by rubbing the wings together), and
males vary individually in the durations of uninterrupted
trilling (hereafter referred to as calling bout lengths;
Hedrick 1986). Previous work demonstrated that fe-
males prefer calls with longer bout lengths (Hedrick
1986), and that bout length is a heritable trait in males
(Hedrick 1988). Females also show preferences for fine-
scale aspects of male calls, e.g., syllable period, chirp
pause, and syllable number (Fig. 1, Hedrick and Weber
1998). Although studies of several closely related species
(Gryllus spp.) have shown that temperature affects the
temporal properties of song (Martin et al. 2000; Ciceran
et al. 1994; Souroukis et al. 1992; Pires and Hoy 1992a,
1992b; Walker 1962, 1975; Koch et al. 1988), the effects
of temperature on the calling song of G. integer have not
previously been studied.

Calling sites (cracks) of male G. integer are sur-
rounded with varying degrees of herbaceous cover,
which may affect calling site temperature. Cover also

affects female choice of mates, presumably because it
reduces the perceived risk of predation (Hedrick and
Dill 1993). Although females prefer long-bout calls to
short-bout calls, they also prefer to move through cover,
and when cover is present, they make tradeoffs in their
mating decisions, sometimes choosing short-bout calls in
cover over long-bout calls in the open (Hedrick and Dill
1993). These results suggest that males with short bouts
(whose calls are less attractive to females) might be able
to gain matings by calling from areas with more cover.
Nonetheless, in the field, cover itself is likely to affect
crack temperatures.

Accordingly, in this study we present data on the
temperatures of male calling sites (cracks) in the field,
the effects of cover on crack temperatures, and the as-
sociations between crack temperature, cover and male
calling bout length. We also demonstrate preferences for
warmer versus cooler cracks by males in the laboratory.
Finally, we describe changes in male song with temper-
ature, which may affect female choice of mates.

Materials and methods

Field studies

Data were collected in the field during July- September 1991 and
1992 inDavis, California.Male calling sites (n=106) were located by
listening for males during peak calling times for males, between 2100
and 2400 hours. Once the male was calling continuously, we mea-
sured the sound pressure level of his song in decibels (re 20 lPa,
‘‘fast’’ mode) using a Simpson (886-2) sound level meter and mi-
crophone at a distance of 1 m from his crack. His song was then
recorded for 5–10 min using a Sony Professional Walkman and
Sony ECM-series microphone. Immediately after recording the
male’s song, we measured the calling site temperature (±1�C) using
a digital thermometer placed 6 cm into the male’s crack, and the air
temperature using the same thermometer held 10 cm above the
ground. All calling sites were marked with colored tape and a
number to facilitate relocation the next day, when sites were mapped
and a 1-m2 area around each crack was photographed. Photo-
graphic slides of male cracks and the surrounding 1-m2 area (calling
site) were later projected onto a digitizing tablet, and the area of each
patch of cover on the calling site was measured using Sigma Scan
(Jandel Scientific, San Raphael, Calif., USA). These areas were then
added together to calculate the total area of cover for each calling
site. Cover on these sites consisted of low grasses and herbs (1–2 cm
high); in many cases, cracks were surrounded by bare ground. Al-
though males were not marked, we minimized the probability of
resampling individual males by recording from each crack no more
than once every 3 days. Available evidence suggests that the tenure
of individual males at cracks is less than three days (A.V. Hedrick,
personal observation). Tape recordings were later analyzed (see
below) to yield data on syllable number, syllable period, chirp pause,
and the number of calling bouts per 5 min of calling. As in our prior
work (Hedrick 1986, 1988), a bout was defined as a period of calling
containing no pause longer than 0.1 s. Complete data were not
available for all 106 calling sites, so sample sizes for most statistical
analyses ranged from 94 to 106. Syllable number, syllable period and
chirp pause were analyzed for only a subset of the males (n=20 for
syllable number and syllable period; n=19 for chirp pause).

Laboratory experiments on temperature preferences

To determine whether G. integer prefers warmer cracks to cooler
cracks, we conducted choice experiments in the laboratory. For

Fig. 1 Gryllus integer song. The diagram represents two chirps,
each with three syllables, and shows the syllable period, consisting
of the syllable plus the time interval until the next syllable in a
chirp; the chirp, consisting of three syllables; and the chirp pause
(i.e., the time interval between consecutive chirps). Calling bouts
are made up of long trains of chirps. Syllables are delivered at a
rate of approximately one syllable per 14 ms at 25�C
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these experiments, an electric soil warming cable (Gro-Quick, 5200
series) was placed on one side of an aquarium (62 cm·
32 cm·42 cm high), and the aquarium was filled to a depth of
10 cm with a layer of clean sand. When connected to a power
source, this cable warmed the sand sufficiently over a 2-h period to
create at least a 2�C difference in temperature between the two sides
of the aquarium. Artificial cracks (14.5 cm long·3.5 cm high·1 cm
wide) were constructed from cardboard, and were open at the top
and bottom. Two identical cracks were placed inside the aquarium,
one on the side with the heating cable, and the other on the un-
heated side. The cracks were separated by 15 cm of sand. We used
mercury thermometers to monitor the temperature at the bottom of
each crack prior to each trial, and removed them before the start of
the trial. Ambient air temperature was also recorded at the
beginning and end of each trial.

At the start of the trial, a male cricket was transported from its
cage to the aquarium using a small plastic vial, and placed in the
center of the aquarium, equidistant from the two cracks. We ob-
served the male for the next 2 h, recording the time spent in each of
the cracks. We defined the time to enter the crack as the time at
which the animal’s entire body entered the crack, and time to leave
the crack as the time at which the animal’s entire body emerged
from the crack. We measured the temperature of each crack at the
end of the trial. To minimize pheromone cues, the sand was stirred
and new cracks were constructed for each trial.

Crickets were randomly chosen offspring of field-caught
mothers from Davis, California. We tested 16 different males. Be-
fore trials, crickets were reared and maintained singly at 24�C, on a
12:12 h light-dark cycle, and continuously provided with com-
mercial chick starter and water. Ambient temperature during the
trials was 24.1±0.7�C. Warm and cold temperatures were signifi-
cantly different during trials (mean warm temperature=
27.0±0.9�C, mean cold temperature=24.0±1.2�C, t=–9.554, df=
15, P<0.001), and warm cracks averaged 3.04±0.32�C higher
temperature than cold cracks.

Temperature effects on male song

Temperature effects on male song were examined using both tape
recordings of male songs made in the field, and recordings of males
singing in a controlled laboratory setting. Laboratory males were
first-generation offspring of mothers caught in Davis, California in
1995. The males were spatially and acoustically isolated from all
conspecifics during recording, and recordings were made using a
Marantz stereo recorder and Audio-Technica AT815A microphone
during peak calling times for laboratory males, approx. 2–4 h after
the onset of dark. Room temperature was monitored continuously
during the recordings. Each of ten males was recorded twice, once
at a high (26±1�C) and once at a low (22±1.5�C) temperature.

To examine temperature effects on song in the field, we
analyzed field recordings of 20 different males made in Davis,
California during July–September 1992, at crack temperatures of
17–28�C. Each recording represented a single male calling in the
field at a single temperature. The sound pressure level of each
male’s song (dB re 20 lPa, ‘‘fast’’ mode) was measured using a
Simpson sound level meter and microphone (model 886-2) at a
distance of 1 m from the cricket’s crack.

Field recordings were analyzed using Superscope 1.27, and
laboratory recordings were analyzed using SoundEdit (v. 2.05). The
following aspects of male calls were measured using at least 12
chirps per male (field) and 10 chirps per male (lab): syllable num-
ber, syllable period, chirp pause (Fig. 1). As an estimate of calling
bout length, we measured the number of calling bouts per 5 min
calling (field only; a bout was defined as a period of calling con-
taining no pause longer than 0.1 s). Data that fit a normal distri-
bution were analyzed using linear regression and t-tests. Decibel
levels were converted to absolute sound pressure levels before cal-
culating means and standard deviations. All other data were ana-
lyzed using non-parametric analyses (Fisher’s Exact Test, Wilcoxon
Signed Rank Test, Spearman Rank Correlation, Kendall Rank
Correlation).

Results

Field studies

Crack temperatures recorded at 103 calling sites during
July–September ranged from 17.0 to 29.0�C
(mean±SE=24.3±0.2; Fig. 2). Crack temperatures
exceeded the air temperature by a mean of 5.4±0.2�C
(n=103). This difference between the crack and air
temperature was affected by the amount of cover sur-
rounding the crack, as was absolute crack temperature.
Sites with more cover were generally cooler than those
with less cover (linear regression, crack temperature
versus cover, cover log-transformed, r2=0.07, t=–2.68,
n=103, P<0.01) and showed greater disparities from
the air temperature (r2=0.05, t=2.40, n=103, P<0.02)
than sites with less cover. Crack temperature was cor-
related with the loudness of male calling song, with
males at warmer cracks singing more loudly than males
at cooler cracks (Fig. 3, Spearman Correlation=0.266,
n=100, P<0.01 ). The mean sound intensity of male
calling song at a distance of 1 m from the male’s crack
was 60.5±0.3 dB (n=104, range 50–66 dB). Crack
temperature was not correlated with the number of
bouts per min of calling (n=97, Kendall rank correla-
tion=–0.03, P=0.661), nor with syllable number
(r2=0.07, t=1.16, n=20, P=0.26), but it did affect
syllable period (Fig. 4A, r2=0.58, t=–5.02, n=20,
P<0.001) and the length of the pause between chirps
(Fig. 4B, r2=0.29, t=–2.62, n=19, P<0.02). Both the
syllable period and the chirp pause became shorter at
warmer temperatures.

The number of calling bouts per 5 min of calling
ranged from 4 to 276 with a mean of 75.9±5.89 (n=101,
Fig. 5). Because our prior experiments in the laboratory
showed that females make tradeoffs in their mating

Fig. 2 Temperature (�C) of cracks used by calling G. integer in the
field (n=103)
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decisions between perceived predation risk (the amount
of cover surrounding male calling sites) and male calling
bout lengths, we also examined the relationship between
cover and male calling bout length, measured as the
number of bouts in 5 min. Cover on male sites
ranged from 1.6 to 10,000 cm2 (mean±SE=2494.09±
286.14 cm2, median=1255.80, n=106; Fig. 6). Males
with the shortest bout lengths (>150 bouts in 5 min; 13
of 100 males) were found exclusively in sites with low
cover (<3,000 cm2 of cover per 1 m2 area surrounding
the male’s crack), whereas the remaining males were
situated in both these and sites with more cover (3,000–
10,000 cm2; Table 1; Fisher’s Exact P=0.019, n=100
males). Bout length and loudness were significantly and
positively correlated, even when temperature was held

constant (partial Kendall correlation=0.128, n=94,
P<0.05). Note that although cover might be expected to
decrease sound intensity through attenuation of sound,
in this study we found no correlation between cover and
sound intensity.

Laboratory experiments

In our laboratory tests of temperature preference, males
spent significantly more time in warmer cracks than in
cooler cracks (mean±SE=76.2±9.98 min warm,
20.8±10.6 cold; Wilcoxon signed ranks test, T=187,
n=16, P=0.004). Experiments on the effects of warm
(26.0±1.0�C) versus cool (22.0±1.5�C) temperatures on
the songs of individual males revealed that both syllable
period and chirp pause were shorter at the warmer
temperatures than at cooler temperatures (syllable pe-
riod, mean warm duration=12.8±0.4 ms, mean cold
duration=14.9±0.2 ms, paired t-test, n=10, t=4.57,
P=0.001; chirp period, mean warm duration=33.3±
2.6 ms, mean cold duration=50.1±3.3 ms, paired t-
test, t=3.81, P=0.004). Syllable number was not
affected by temperature.

Discussion

In the field, the cracks inhabited by calling male
G. integer had mean temperatures of 24.3±0.2, exceed-
ing the ambient air temperature by a mean of 5.4�C. Our
laboratory experiments clearly demonstrate that males
prefer warmer cracks, at least within the temperature
range (21–28�C) used in our laboratory experiments.
When offered a choice of cracks at two temperatures,
males spent significantly more time in the warmer crack.
Both in the field and in the laboratory, crickets singing
at higher temperatures shortened their syllable periods
and chirp pauses, but did not change syllable number.

Fig. 3 Sound intensity (dB) of male calling song versus the
temperature (�C) of a male’s crack

Fig. 4 Effects of temperature (�C) on A syllable period (n=20
males) and B chirp pause (n=19 males) in the field
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The latter results are similar to those from other species
of Gryllus in which higher temperature has been shown
to increase song rate (G. firmus, G. bimaculatus,
G. rubens, G. campestris, G. texensis; Pires and Hoy
1992a; Doherty 1985; Walker 1962; Koch et al. 1988;
Martin et al. 2000). Previous work (Hedrick and Weber
1998) conducted at 25�C on female preferences and male
calls in G. integer indicated that females prefer slightly
longer syllable periods (20 ms) and chirp pauses (36 ms)
than those produced by conspecific males calling at 25�C
(syllable period=14.0±0.2 ms, chirp pause=30.4±
5.0 ms, n=20 males). However, females search for males
above-ground, and are unlikely to find males that are at
the same temperature as themselves in the field (unless
the locomotory activity of running towards males sig-
nificantly increases the females’ thoracic temperatures).
Rather, males in cracks are probably warmer than fe-
males at the surface, so females must often be attracted
to males who are calling at a warmer temperature than
themselves. This suggests that any ‘‘temperature cou-
pling’’ in this species between the songs of males and the
preferences of females must be relatively permissive. As
in a number of other species (Ritchie et al. 2001), the
microclimates of calling males and acoustically orienting
females are probably often different.

Bout length, a heritable trait that females of this
population use to discriminate among potential mates,
was unaffected by temperature in the field. Bout length
and loudness were positively correlated, even with

temperature held constant; this correlation between bout
length and loudness was also seen when field-caught
males were recorded in the lab (A.V. Hedrick, personal
observation). Additionally, loudness was correlated with
temperature even with bout length held constant: males
in warmer cracks in the field sang significantly more
loudly. Calling efficiency may increase with temperature
(Heath and Josephson 1970; Prestwich and Walker
1981; Walker 1975), allowing warm males to increase the
power of their wing strokes, resulting in higher sound
pressure levels (louder songs). However, it is also pos-
sible that inherently louder males competed more suc-
cessfully for the warmer cracks. Laboratory experiments
on the effect of temperature on sound pressure levels
(loudness) in a controlled environment are necessary to
distinguish between these alternative explanations.

Crack temperature was strongly affected by the
amount of cover over the crack; cracks with more cover
were cooler. Although females have strong mating
preferences for males with longer calling bouts, in the
laboratory they also prefer to move through cover ver-
sus open space (Hedrick and Dill 1993), sometimes
choosing a less attractive call in cover over a more at-
tractive call in the open. Cover around a site presumably
reduces the perceived risk of predation on that site,
making it more attractive to females. However, it is not
clear how females value cover in the field, where cover
results in colder temperatures (as we have shown here); if
females also prefer warmer temperatures, then cover
may be less important to searching females than tem-
perature. In this study, males with the shortest calling
bout lengths were found exclusively at sites with low
cover. This implies that males with very short bouts do

Fig. 5 Number of calling bouts per 5 min of calling for males in
the field (n=101)

Fig. 6 Total area of herbaceous cover surrounding male calling
sites (n=106)

Table 1 Association between bout lengths of males and the total
area of cover on their calling sites. Short bouts: >150 bouts/5 min;
long bouts: <150 bouts/5 min; low cover: <3000 cm2 of cover per
m2; high cover: >3000 cm2 of cover per m2. Fisher’s Exact
P=0.019 (n=100 males)

Short bouts Long bouts

Low cover 13 61
High cover 0 26
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not ‘‘compensate’’ for their unattractive calls by choos-
ing safer sites with more cover. Rather, they appear to
choose less safe sites, perhaps because they prefer higher
crack temperatures. Note that if females also prefer
warmer temperatures, this strategy may improve the
mating success of less attractive males.

In summary, the cracks inhabited by male G. integer
are warmer than ambient air temperature, and males
prefer warmer cracks. Warmer temperatures alter some
elements of male song (syllable period and chirp pause)
and may make it energetically more efficient to call
loudly. Crack temperature does not seem to affect calling
bout lengths of males, a trait used by females in mate
choice. Although cover over a male’s crack presumably
decreases the perceived risk of predation, it also lowers
the temperature of the crack. Therefore males may have
to make tradeoffs between safety (more cover) and tem-
perature when choosing a crack from which to advertise.

Thermoregulation by microhabitat choice has been
observed in numerous ectothermic organisms (e.g.,
snakes, Huey et al. 1989; lizards, Bauwens et al. 1996;
butterflies, Kingsolver 1983, Pivnick and McNeil 1986;
spiders, Henschel et al. 1992; ants, Porter and Tschinkel
1993). Its function has been variously described as a
means to optimize predator escape (Bennet 1980), aid in
food capture (Ayers and Shine 1997), increase the de-
velopment rate of eggs or larvae (Porter and Tschinkel
1993), or reduce competition with heterospecifics (re-
viewed in Huey and Slatkin 1976; Dunham et al. 1989;
Huey 1991), among others. In a few organisms (e.g.,
dragonflies, May 1977; butterflies, Pivnick and McNeil
1986) thermoregulation is thought to enhance mate-
searching abilities of males by enabling sustained flight.
However, virtually no previous studies have linked
thermoregulation by microhabitat choice to mating
displays or mating success (but see Larsson 1989, 1990;
Larsson and Tengo 1989). The results of this study
demonstrate that while they are breeding, ectotherms
can choose microhabitats based on temperature prefer-
ences, and that this microhabitat choice may influence
their mating behavior, including their mating displays.
In these animals, thermoregulation by microhabitat
choice can clearly influence reproductive success.
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