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Abstract: One of the recent trends in industry-based cluster analysis, especially in
marketing, is the development of different partitions (e.g., needs-based, psycho-
graphics, brand choice, etc.) of the same set of individuals. Such individualized
clusterings are often designed to serve different objectives. Frequently, however,
one would also like to amalgamate the separate clusterings into a single partition
- one that parsimonicusly captures commonalities among the contributory parti-
tions. In short, the problem entails finding a consensus partition of T clusters,
based on J distinct, contributory partitions (or, equivalently, J polytomous attri-
butes). We describe a new model/algorithm for implementing this objective. The
method’s objective function incorporates a modified Rand measure, both in initial
cluster selection and in subsequent refinement of the starting partition. The method
is applied to both synthetic and real data. The performance of the proposed model
is compared to latent class analysis of the same data set.

Keywords: Consensus clustering; Categorical variable clustering; Latent class
analysis; Hubert-Arabie modified Rand index.

1. Introduction

In many applications of cluster analysis, it is not unusual for the analyst
to construct alternative partitions using the same data set. These separate

Authors’ address: Abba M. Krieger and Paul E. Green, Suite 1450, Dietrich Hall,
University of Pennsylvania, Philadelphia, PA 19104, USA;
email: abba@stat.wharton.upenn.edu



64 A M. Krieger and P.E. Green

partitions reflect different viewpoints of how, for example, the classifications
are to be used by a firm. To illustrate, in the banking industry, multiple
classifications of the same customer base could entail different sets of vari-
ables, such as account assortments and balances, psychographic scores, atti-
tudes toward risk taking, and so on.

An amalgamated clustering is a type of consensus method in cluster
analysis. As the name suggests, consensus methods extract commonalities
across multiple classification trees (and, less frequently, partitions) of the
same objects. (By ‘‘partition”” we mean a set of mutually exclusive and col-
lectively exhaustive classes, such that any object is in one and only one
class.) An excellent survey of this research area can be found in Day (1986).
Related articles by Margush and McMorris (1981), McMorris and Neumann
(1983), Barthélemy, Leclerc, and Monjardet (1985). Neumann and Norton
(1986) and Vach (1994) also describe various aspects of this methodology.
DeSarbo, Carroll, Clark, and Green (1984) describe a procedure, called
Synclus, by which separate data sets for the same individuals can be amal-
gamated into a single partition. Those authors’ model derives both (original)
variable weights and the k-means (MacQueen 1967) based segments.
Synclus was one of the first models explicitly to incorporate separate batteries
of variables for a weighted type of consensus analysis.

1.1 Earlier Research: Multiple Correspondence Analysis Followed
by k-Means Clustering

Because separate partitionings of the same data base result in a set of
nominal, multi-state attributes (one for each partitioning), an amalgamated
segmentation is structurally similar to the clustering of a set of unordered
categorical variables irrespective of whether the contributory variables are,
themselves, cluster-based partitions. In such cases multiple correspondence
analysis (MCA), also known as homogeneity analysis or dual scaling, has
been proposed as a technique for finding a spatial representation of objects,
e.g., individuals or households. The individuals’ spatial coordinates can then
be clustered. General background on these methods can be found in Greena-
cre (1984), Gifi (1990), Nishisato, (1980, 1984, 1993, 1996), Heiser (1981),
Meulman (1982), and de Lecuw (1984).

As an early example of MCA, followed by the k-means clustering of
respondent coordinates, Lebart, Morineau, and Warwick (1984, pp. 132-143)
reported an application where data were available on 1,000 individuals,
described by 17 nominal variables. The authors chose six of these variables
(e.g., sex, age, education) with a total of 25 categories. Multiple correspon-
dence analysis was used to obtain a joint space of the 1,000 individuals and
each of the six active-variable categories in eight dimensions. The 1,000
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individuals were then clustered by k-means, based on their 8-dimensional
coordinates. Seven segments were obtained and later described using the full
set of categorical variables. Other applications of MCA, followed by a clus-
tering of objects in terms of their reduced-spaced coordinates, have been
described by Green, Krieger, and Carroll (1987), Green, Schaffer, and Patter-
son (1988), van Buuren and Heiser (1989), and Nishisato (1984). There is no
compelling theoretical rationale regarding the appropriateness of this two-
stage procedure to clustering. Rather, MCA is used as a device to convert
qualitative variables into continuous ones so that k-means clustering can be
easily applied.

1.2 Later Research: Latent Class Modeling

More recently, latent class analysis and related methods have been
applied to sets of polytomous variables. Contributions include research by
DeSarbo and Cron (1988), DeSarbo, Wedel, and Ramaswamy (1992), Poulsen
(1990), van der Pol and de Lecuw (1986), Dillon and Kumar (1994),
Ramaswamy, Chatterjee, and Cohen (1996), Dillon, Madden, and Mulani
(1983), and Dillon and Mulani (1989). Accordingly, we later compare a
latent class analysis approach to our proposed model.

1.3 Proposed Method and Format

The current authors propose a new model (called SEGWAY) for
developing a single clustering of a set of separate partitions, obtained from
different subsets of variables appecaring in a common data base. Alterna-
tively, SEGWAY can be used to provide a single clustering where the input
data are a set of unordered categorical variables. The procedure is based on a
generalization of the Rand criterion measure (Hubert and Arabie 1985). The
original Rand index was prepared as a way to measure agreement between
two partitions, rather than as a clustering tool. The Rand measure is used
here as a criterion function in both the initial selection of a higher-order seg-
mentation and in its later refinement. Unless noted otherwise, references to
the Rand measure assume that the Hubert and Arabie modified (to adjust for
chance agreements between two partitions of the same data set) version has
been computed.

We briefly describe the SEGWAY model and some of its properties.
We next employ synthetic data analyses to illustrate the model’s behavior
over different characteristics of data sets. The model is then applied to a real
data set consisting of 1975 individuals and four contributory partitions. The
model is compared empirically with latent class analysis. We conclude the
paper with a summary discussion. Appendix A describes the proposed
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algorithm more formally. Appendix B provides details of the synthetic data
simulations. Appendix C describes a formal relationship between the chi-
square statistic and Rand.

2. The Amalgamated Clustering Model

To motivate subsequent discussion we assume that various clustering
tools have been applied to various subsets of variables of the same data base.
Each individual has been separately assigned to one and only one cluster in
each of the separate partitions. (The number of clusters per selected base is
allowed to vary across clusterings.) The summary matrix, consisting of
individuals and J partitions is denoted as

Cij;iz1,2,...,I;j=1,2,...,.]
where the j-th partition has M; classes, indexed asm = 1,2, ... ,M;.

The problem is to create a new partition, called D, with T classes. We
choose as our objective function the highly popular Rand measure, denoted as
R;(D), to represent the degree of association between clustering j and a to-

be-found, amalgamated clustering D. The objective function is written as:

J
V(D)= Y, W,R;(D) (1
j=1

vsghere the W; are researcher-supplied, nonnegative weights, such that

2, W; =1.0, and R;(D) is the Rand measure computed between the original
j=1
Jj-th clustering and the new (amalgamated) clustering.

2.1 The Rand Measure

As Milligan and Cooper (1987) note, the Hubert-Arabie modified Rand
measure has become the index of choice in comparing the agreement between
two separate partitions of the same data set. This measure adjusts for chance
agreement and is not restricted to comparing partitions with the same number
of segments. Table 1 shows the logic underlying the basic Rand measure and
the explicit formula for both the unadjusted index and the Hubert and Arabie
modification. As noted, the Rand index compares agreement between pairs
of entities (e.g., individuals) across two different partitions.

Complete independence between the two partitions yields a Rand index
of essentially zero. Complete association yields an index of 1.0. We utilize
the Hubert and Arabie index in the following ways:
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Table 1
The Structure of the Modified Rand Measure

Second Partition
Pair of Items in Pair of Items in
First Partition Same Cluster Different Clusters Marginals
Pair of Items in
Same Clusters A B A+B
Pair of Items in
Different Clusters C D C+D
A+C B+D N

Notes: Unadjusted Rand Index = (A + DYN, where N= A + B + C + D = I(I - 1)/2, where | = number of
individuals

Hubert and Arabie’s Modified Rand Index:

N@A+D) - [(A+B)A+C) + (C+D)B + D)

Rand(adj) =
and(edy) N2 -[(A+B)(A+C) + (C+D)(B +D)]

1. A Rand measure (in conjunction with a greedy algorithm) can be
used to find an initial amalgamated partition of the individual profiles
(Stage 1).

2. A Rand measure is then used to reassign individuals across clusters

| after the starting partition has been found (Stage 2).

3. Alternatively, Stage 2 can be applied to an initial partition found by
some other procedure (e.g., random assignment of individuals to clus-
ters).

2.2 The Algorithm

Finding the partition D to maximize the Rand measure is NP hard.
Accordingly, a two-stage algorithm has been developed. As noted above,
Stage 1 consists of choosing a starting partition via one of several options.
Stage 2 then considers the systematic reassignment of individuals to maxim-
ize V(D).

Siage 1

Several methods are available for finding a starting partition of the indi-
viduals: (a) random assignment; (b) multiple correspondence analysis, fol-
lowed by k-means clustering; (c) latent class analysis; and (d) a greedy
heuristic (utilizing the Rand measure, as noted above).

We consider each procedure in turn;
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Random Assignment: If we were to assign individuals to clusters ran-
domly (i.e., ignoring the clustering data), we would expect V(D) to be
approximately zero. However, because in Stage 2 we iteratively
reassign individuals to maximize V(D), the purpose of the initial (ran-
dom) assignment is to look for possible local optima. Because we
can vary the initial random start, we can also get a sense for the pre-
valence of local optima and the sensitivity of the final solution to
starting partitions.

Multiple correspondence analysis (MCA): As described earlier, one
could apply MCA to the input matrix, consisting of individuals by
concatenated initial partitions. The resulting analysis yields a set of
coordinates for each individual. These profile data can then be

-clustered (e.g., via k-means) to obtain a ‘‘representative’’ starting

partition that reflects association across the contributory partitions.
(One problem with this approach is to determine the appropriate
number of MCA dimensions to retain for the ‘‘person’’ clustering
step.)

Latent class analysis: One can fit a traditional latent class model to
the given J segmentations. Doing so implies that, given the latent
class structure, within-class local independence applies to the result-
ing segments. Various methods such as the EM Algorithm
(Ramaswamy, Chatterjee, and Cohen 1996), can be used to obtain the
latent classes. The resulting latent class solution can also provide a
starting partition for Stage 2.

Greedy heuristic: We can begin by creating a higher level clustering
consisting of as many clusters as there are unique vectors of
C; =(c;1,¢i2, - - - ,¢iy) and then combine pairs of clusters to reduce
the number of higher level clusters by one at each step. The pair
chosen at each step is the one that maximizes V(D). We stop when
the procedure produces the desired number of clusters 7 that serve as
the starting partition. (Further details of this greedy heuristic are
described in Appendix A.)

At this point, we have an initial partition obtained by one of the

methods suggested above. The problem now is to reassign individuals so as
to maximize V(D). We consider moving each individual from its current
cluster to any of the other clusters (i.e., a singleton reassignment approach to
combinatorial optimization). All I(T — 1) possible moves are considered and
the one that maximizes V(D) is chosen. This procedure is repeated until none
of the I(T — 1) possible moves leads to an increase in V(D).
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This approach need not necessarily lead to a global optimum. Various
constraints can also be imposed on the final solution. For example, con-
straints can be introduced to preclude finding a clustering that is identical to
one of the contributory partitions. One can also input the minimal number of
individuals that must appear in each class. These possibilities are illustrated
later in the paper. Appendix A provides a detailed and more formal account
of Stage 2 of the SEGWAY algorithm.

3. A Monte Carlo Simulation of SEGWAY Under
Different Data Generation Conditions

Before presenting an empirical application of SEGWAY, it is appropri-
ate to describe the model’s behavior under various researcher-specified
assumptions. We set up a group of initial conditions specifying the character
of the contributory partitions that SEGWAY takes as input data.

3.1 Simulation Design

A Monte Carlo study was designed with the following features:

1. Six different partitions were generated, each with four clusterings.
The first four partitions were used for calibration purposes and the
last two for cross tabulation.

2. Partitions were generated according to a latent class model (Dillon
and Kumar 1994).! Each of the four latent classes was assumed to
have an equal probability of occurring. Each of the six partitions was
initially generated independently, conditioned by latent class. The
probability distribution of clusters varied, by latent class, according
to a parameter p.

3. There were four sets of conditions, designed according to the follow-
ing settings for (which, in turn, is defined mathematically in Appen-
dix B).

a. All p =0 (i.e., independence);

b. All p = 1 (weakly dependent);

c. All p =2 (strongly dependent);

d. p =0 for the first three clusterings and p = 2 for the last three
clusterings (mixed).

1. Details of this procedure appear in Appendix B.
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Table 2
Results of Monte Carlo Simulation, Comparing the Cross Validation
of “True” Latent Class, SEGWAY, and the Data-Based Latent Class Algorithm
(Cell Values are Hubert-Arabie Modified Rand Index Measures)

Calibration Validation
Clusterings Clusterings
1 , 2 ! 3 I 4 5 6
Theoretical LC 273 278 .181 280 274 278
Independent | Segway 628 282 265 287 287 279
Data-Based LC .439 382 548 430 278 278
Theotetical LC 518 530 489 535 522 513
Weakly
Dependent Segway 647 643 731 654 507 .543
Data-Based LC .604 602 616 658 500 .520
Theoretical LC .583 .580 597 .604 586 .590
Strongly
Dependent Segway .824 799 821 799 745 758
Data-Based LC 746 124 NiD! 744 639 631
Theoretical LC 273 278 .281 .604 586 590
Mixed
Dependence Segway 314 288 298 902 672 .683
Data-Based LC 396 358 330 .608 523 528

4. Three higher-order clusterings were analyzed. The first higher-order
clustering is simply the original latent classes that generated the data.
The second is based on SEGWAY, using a random starting partition.
The third higher-order clustering is based on empirically finding the
probabilities that each individual belongs to each of the latent classes
and then assigning each individual to the latent class with the highest
posterior probability. We use a standard approach, based on the EM
algorithm (Dempster, Laird, and Rubin 1977).

3.2 Simulation Results

Results of the simulation are shown in Table 2. All table entries
represent Rand values. Each row of three calibration conditions consists of:
(a) theoretical latent classes used to generate the data; (b) the SEGWAY solu-
tion based on the actual generated data; and (c) a latent class solution based
on the actual generated data. Not surprisingly, the theoretical latent class
condition performs worst, because it does not capitalize on the ‘‘observed’’
data.

Our primary interest is in the comparative performance of the three
calibration conditions when cross validated with the simulation-generated
holdout classes, designated as columns 5 and 6 in Table 2. Results differ by
condition: (a) when the clusterings are generated independently (p = 0), all
three calibration sets, of course, cross validate with columns 5 and 6 about the
same; (b) however, as the dependence across latent classes increases, the
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extent to which SEGWAY predicts the holdout clusterings (in terms of the hit
ratio) improves, relative to the empirically-based latent class method;> (c)
when p = 2 (high dependence), SEGWAY does particularly well, compared to
latent class. These results are encouraging, because the data were initially
generated according to a latent class structure.

Why does SEGWAY do so well? Under a special set of conditions (i.e.,
equal row marginals and equal column marginals), maximizing Rand is
linearly related to maximizing chi square which, in turn, is more in keeping
with the common prediction problem of maximizing the hit ratio in a holdout
sample. Appendix C details the relationship between Rand and the chi-
square statistic under the foregoing conditions.

Furthermore, it is not clear how the process of finding latent classes
(via a maximum likelihood approach) relates to the objective of maximizing a
hit ratio between calibration and holdout sample. A second reason is that
latent class solutions obtain posterior probabilities that each object belongs to
each latent class. Researchers typically assign objects to the modal class.
Doing so is tantamount to choosing probability 1.0 for the modal class and
0.0 for all other classes. These reasons may, in part, explain the somewhat
poorer performance of the empirically-based latent class alternative when the
latent classes themselves exhibit higher dependence, as demonstrated in the
present Monte Carlo simulation.

4. An Empirical Example: Clustering Options for
Sport Utility Vehicles

We now turn to a (disguised) empirical application of the SEGWAY
algorithm. Since the early 1990’s, with the introduction of the Ford Motor
Company’s Explorer, sport utility vehicles have captured the public’s fancy.
Five of the largest sellers in 1996 were the Ford Explorer, Chevrolet Blazer,
Jeep Grand Cherokee, Toyota 4Runner, and Nissan Pathfinder.

Our disguised firm, Alpha, is planning on introducing a new sport util-
ity vehicle. One of the issues confronting Alpha’s management is the promo-
tion and sale of four optional (at extra cost) features: electronic navigational
system; CD player; rear TV monitor; and security system.

2. The “‘hit ratio’’ is defined on a square table summarizing the association between separate
partitions of the same individuals. Given a specific ordering of the row set of clusters, the
column set of cluster labels are permuted so as to maximize the trace (sum of the diagonal ele-
ments of the square matrix). The hit ratio is defined as the ratio of the trace over the total
number of individuals.
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4.1 Market Survey

In the Spring of 1996, Alpha initiated a survey of prospective buyers
for the new sport utility vehicle. The survey was conducted at various dealer-
ships throughout the U.S. Respondents were shown color photographs and
descriptions of each extra-cost option in randomized order. For each such
option the respondent was asked to indicate if he/she would purchase the
option if it were offered at the stated price. In addition, respondents were
asked a standard series of background questions. Information was obtained
on six categorical background variables. A total of 1975 respondents sup-
plied both option evaluations and background data. Table 3 shows a descrip-
tion of the six background attributes: home ownership; living area; working
status; commuting-to-work method; marital status; and occupation,

Each response to the willingness-to-buy question yields an a priori
market partitioning, based on a yes or no answer; hence, there are four a
priori partitions, in total. Rand measures were first computed between all six
pairs of willingness-to-buy responses. These are shown in Table 4. As noted
from Table 4, the highest pairwise associations between partitions are Elec-
tronic navigation with CD player (.312) and Rear TV monitor with Security
system (.235).

We next consider two questions related to applying the SEGWAY
model. The proposed two-stage algorithm consists of, first, finding a starting
partition, followed by reassignment of individuals to maximize R(D). The
SEGWAY algorithm provides only a local optimum, similar to other
approaches, such as k-means and latent class analysis. Hence, we first con-
sider the question of rational versus random starting partitions. We then
examine, via Monte Carlo methods, the robustness of SEGWAY solutions to
changes in random starting partitions,

4.2 Rational Versus Random Starts

We first apply the SEGWAY model, using the greedy start, to the
1975 x 4 matrix, consisting of the four separate input partitions, as described
above. Ilustratively, we seek three clusters. In this application, the number
of possible option profiles is 2%, or 16. Not surprisingly, all 16 profiles are
present. The first row of Table 5 indicates that the Stage 1 greedy-heuristic
solution is a local maximum; the Rand index could not be increased by mov-
ing respondents across clusters (in Stage 2). The cluster sizes of the SEG-
WAY partition are 1086, 767, and 122. As noted, the overall (amalgamated)
Rand is .440. The highest Rand indexes between it and the four contributory
partitions are .511 (Electronic navigation) and .632 (CD player).
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Table 3
Description of the Six Background Attributes

Attribute Levels

Home ownershi Own; rent
}

Living area Urban; suburban; town; rural

Working status Full-time; part-time; self-employed; retired; student; housewife; currently
unemployed

Commuting method Car; public transport; walking; work at home; car pool

Marital status Married, single; single with parmer; widowed; divorced/separated

Education Some high school; high school grad; vocational; some college; college grad;

post-graduate work

Pairwise Hubert-Arabie Modified Rand ;::gjes Based on Willingness-to-Buy Partitions
Second Partition
Ch Rear TV Security
First Partition Player  monitor system
Electronic navigation 312 126 092
CD player 153 132
Rear TV monitor 235

Table 5
Summary Hubert-Arabie Modified Rand Measures with Original and Amalgamated Partition
for Each of Four Starting Configurations

Modified Rand Between Original Partition
and Amalgamated Partition Amalgamated
Rand
No. of
Starting Partition 1 2 3 4 Iterations
SEGWAY (greedy start) 511 632 373 244 0 .440
Multiple Correspondence Analysis 402 443 549 | 306 92 425
Random start 1 488 655 369 4 .249 1295 440
Random start 2 .488 655 369 | 249 1277 440
Table 6
Summary of Percentage of Hits Between Each Pair of Solutions,
Based on Four Different Starting Partitions
Second Partition
First Partition MCA-based Random 1 start Random 2 start
SEGWAY (greedy start) 77.8 98.5 985
MCA-based start 76.3 76.3
Random 1 start 100.0
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We next considered a ‘‘rational’’ starting configuration for stage 1.
Multiple correspondence analysis was applied to the original 1975 X 4 matrix
of the four nominal (yes/no) responses. A 3-dimensional solution for the
respondent score matrix was obtained.> As noted in Table 5, 92 iterations
were required in Stage 2 to reach a local optimum. The amalgamated Rand
index, as shown in Table 5, is .425, which is slightly below that for the greedy
heuristic start. The final cluster sizes from the MCA-based start are 1039,
560, and 376.

Next, two different randomly selected starting partitions were con-
structed with an essentially equal number of cases in each of the three clus-
ters of the initial amalgamated partition. As Table 5 shows, the number of
iterations required in Phase 2 of SEGWAY is 1295 for the first random start
and 1277 for the second random start. Interestingly, the two random
configurations converge to the same amalgamated solution. Cluster sizes are
1086, 797, and 92, for each of the two random-start solutions. A permutation
of labels for the second partition indicates complete agreement between the
two partitions, despite differences in starting configurations and number of
iterations.

Hence, in this empirical data set all four solutions result in fairly simi-
lar amalgamated partitions. This conclusion was verified by constructing
two-way cross tables for all pairs of final clusterings. First, the ordering for
rows was fixed. Next, we permuted the columns to maximize the trace of the
cross table; we then found the number of ‘‘hits’’ between each pair of cluster-
ings. Table 6 shows summary results according to hit ratios.

As evinced in Table 6, the MCA-based start averages a hit ratio of 7 6.8
percent across the three remaining partitions. The average hit ratio for all
paired clusterings of the remaining three starting configurations is 99.0 per-
cent.

4.3 Sensitivity of SEGWAY Solution to Random Starting Partitions

Given the fact that SEGWAY obtains only a local optimum, one
wonders if the reassignment part (i.e., Stage 2) of the computer program is
“‘robust’’ to changes in starting partitions. To examine this question, a com-
puter program was written to generate 100 random starting partitions of three

3. Although not shown, MCA solutions were also obtained for 1, 2, and 4 dimensions. The 3-
dimensional solution provided the best cross-validation with the six background attributes of
Table 2. This persons-by-scores matrix was then clustered (by k-means) to obtain a starting
partition of individuals for refinement by Stage 2 of SEGWAY.



A Generalized Rand-Index 75

segments each. SEGWAY was then applied to each such random start, and
amalgamated Rand measures were computed, similar to those shown in the
last column of Table 5. (As noted in Table 5, the two explicit random starts
each resulted in an amalgamated Rand of .440.) Apparently Stage 2 of SEG-
WAY is quite robust. The average higher-order Rand of the 100 simulated,
random starting partitions was .440. Better still, the minimum amalgamated
Rand was 4392, and the maximum was .4409. Clearly, for this data set, at
least, Stage 2 of SEGWAY is quite insensitive to randomly determined start-
ing partitions.

5. Comparing SEGWAY to Latent Class Analysis

As described earlier, the latent class model represents the principal
competitor to SEGWAY in developing either higher-order clusterings or in
partitioning multistate, categorical data. Accordingly, we now apply the trad-
itional latent class model to the same empirical data set, consisting of the four
dichotomous, contributory partitions. A latent class analysis program was
written to implement this task. A random procedure was used to obtain an
initial partition of three clusters. These clusters were then modified by a
latent class, EM algorithm. A local optimum was reached after 38 iterations.
The resulting three cluster sizes were 861, 796, and 318, respectively (com-
pared to SEGWAY s cluster sizes of 1086, 767, and 122).

To provide a description of the closeness of SEGWAY (greedy start)
and the latent class analysis solution, we found (after column permutation)
that 74.9 percent of the individuals were clustered similarly, They differed in
the sense that latent class analysis assigned about one-fifth of SEGWAY’s
largest cluster to SEGWAY’s cluster 3. Other assignments were relatively
close between the two methods.

5.1 External Comparisons

A more compelling empirical exercise is to compare SEGWAY and
latent class analysis on exogenous variables not used in the internal analysis.
As noted earlier, Table 3 lists six qualitative background variables for the
same individuals in the survey. In industry studies it is not unusual to collect
such background data to examine inter-profile differences in an effort to reach
types of respondents who could behave differently across clusters. The origi-
nal designers of this study sclected background variables on the basis of their
judged relationships to controllable variables (i.e., vehicle options). This
external comparison provides a more level playing field for comparing SEG-
WAY with latent class analysis.
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The first question is: which of the two clusterings is more highly related
to the six “‘holdout’” attributes (that played no role in developing the parti-
tions)? To examine this question, we prepared cross-tabulations of SEGWAY
(greedy start) and latent class, respectively, with each of the six background
variables, in turn. We then computed the p-value associated with the xz
statistic of each cross table. Smaller p-values, of course, indicate higher asso-
ciation between clustering and background variable.

As we note in Table 7, the partition obtained from SEGWAY shows, on
average, a better cross validation with the six background variables than that
associated with latent class, namely, an average p-value of .058 for SEGWAY
versus .118 for latent class. However, on a variable-by-variable basis, the
results are generally very close. The large difference (most affecting the aver-
age) results primarily from SEGWAY’s much better performance on the
“‘Commuting Method’’ variable, which itself is non-significant.

5.2 Product Profiling

The second question of interest is: do the SEGWAY (greedy start) and
latent class partitions also show different product profiles? To examine this
question, we computed cluster profiles for SEGWAY (greedy start) and latent
class analysis for each of the four willingness-to-buy questions. The profile
results appear in Tables 8 and 9, respectively. Table 9 for the latent class
solution shows somewhat different product profiles when compared to those
of Table 8 for the SEGWAY (greedy start) solution, after permuting columns
to maximize the trace of the original cross tabulation between the two cluster
memberships. Clusters 1 and 2 in Table 9 seem to correspond roughly to their
counterparts in Table 8. The largest difference between the two appears in
cluster 3 (as noted earlier).

5.3 Further Description of the SEGWAY Segmentation

At this point, we focus on the SEGWAY solution (first row of Table 5),
whose overall Rand index is .440. As shown earlier, the SEGWAY solution
consisted of three clusters with respective sizes of 1,086, 767, and 122
respondents. Table 8 summarizes the profiles of ‘‘yeses’” to the willingness-
to-buy question for each cluster. As earlier observed from Table 8, cluster 1
evinces high interest (over 80 percent) in all of the four extra-cost options.
Cluster 2 shows extremely low interest in the navigational system and CD
player and only moderate interest in the two remaining options. Cluster 3
shows reasonably high interest in the first two options and relatively low
interest in options 3 and 4.
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Table 7
Cross Validation p-Values Obtained from Each Amalgamated Partition
and the Six Background Variables

Background Variable
Home Liviag Working Commuting Marital
Partition Ownership area status method status Occupation Average
SEGWAY (greedy start) 000 .002 .001 344 002 000 058
Latent class 000 .001 .002 691 012 000 118

Table 8
SEGWAY (Greedy Start) Cluster Profiles for Vehicle Option Preferences
Percentage of Respondents Saying “Yes™ to
Willingness-to-Buy Question
Clusters Size Navigation CD player TV monitor Security
1 1086 81% 91% 95% 84%
2 767 2 5 39 37
3 122 76 63 25 36
1975
Table 9
Latent Class Based Profiles for Vehicle Option Preferences
Percentage of Yeses to Willingness-to-Buy Question
Latent
Classes* Size Navigation CD player TV monitor Security
1 861 82% 88% 100% 100%
2 796 2 8 38 39
3 318 85 86 64 21
.
1975

* Permuted to maximize the trace in the cross table with the SEGWAY (greedy) solution

Table 10
SEGWAY { Greedy) Cluster Profiles for Selected Levels of Five Demographic Variables
(Table entries are the percentage of individuals in each cluster displaying column caption)
Percentages Involving: *
Urban/
suburban Full-time College/
Clusters Size Home owner dweller employed Married post-grad
1 1086 82% 75% 59 35% (12)
2 767 (54) (70 63% 35% 15
3 122 78 72 (54) (32%)
1975

highest | (lowest)
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How do the SEGWAY-based clusters differ in terms of the background
attributes? Table 10 compares the three SEGWAY clusters using five of the
six demographic features. (The ‘‘non-significant’’ commuting method vari-
able was excluded.) As noted from Table 10, SEGWAY cluster 1 is highest
with respect to home ownership and urban/suburban dweller, but lowest with
regard to college/post-graduate. Cluster 2 is highest with respect to full-time
employment and lowest with respect to home owner and urban/suburban
dweller. Cluster 3 is highest on college/post-grad and lowest on full-time
employment and married. Hence, some differentiation with respect to back-
ground variables is also noted across the three clusters.

6. Introducing a priori Weights and Minimal Rand-Value Constraints

The SEGWAY model can incorporate user-supplied a priori weights
and minimal Rand values (between the higher-order partition and the contri-
butory partitions), at the user’s discretion. One can also fix the minimal size
of a higher-order cluster. We illustrate the application of constraints in the
context of the empirical example. We consider three hypothetical conditions:
(a) a priori weights of .5, .3, .1, and .1, respectively, for the four contributory
partitions: Electronic navigational system, CD player, Rear TV monitor, and
Security system; (b) a minimal Rand value of .3 between the higher-order
partition and each of the four contributory partitions; and (c) a minimal clus-
ter size of 300 respondents.

As a starting configuration, we first set up a randomly determined ini-
tial partition of the 1975 respondents with an essentially equal number of
individuals in each of three clusters.

A Priori Weights

We first arbitrarily consider the a priori weights condition of .5, .3, .1,
and .1, respectively, for the four contributory partitions. We expect, of
course, that the results will show a relatively high Rand index between the
amalgamated partition and the first contributory partition. Table 11 shows
that the algorithm finds only two clusters with an almost equal number of
consumers in each. As expected, the first partition (Electronic navigation)
exhibits the highest Rand index between it and the amalgamated partition.
Both Rear TV monitor and Security system display much lower Rand values.
The higher-order Rand index is .615. This value exceeds the counterpart
higher-order Rand (.440), noted for the control (i.e., equally-weighted) case,
shown at the bottom of Table 11. However, these two Rands are not strictly
comparable, given the differences in the contributory partition weights.
Indeed, we caution the reader that the a priori weights option should be used



A Generalized Rand-Index 79

Table 11
Results of Applying Different Constraints to Hubert-ArabieModified Rand Coefficients
(Random start partition for each case)

Individual Rand Indexes

Amalgamated Electronic CD Rear TV Security
Type of Modification Rand Index navigation player monitor system

« A priori weights of .5, .3, 615 1.000 312 126 .092
.1, and .1 for contributory
partitions 1,2, 3, and 4
No. of individuals:

C-1 982
C-2 993
Iterations = 1302

Minimal Rand of .3 for 436 .527 577 339 300
each contributory partition
No. of individuals:

C-1 1059

C-2 824

C-3 92
Iterations = 445

¢ Minimal cluster size of 300
respondents 384 413 .542 297 283
No. of individuals:

C-1 975

C-2 700

C-3 300
Iterations = 1087

= Control case: no constraints 440 A88 655 369 249
Ne. of individuals:
C-1 1086
C-2 797
C-3 92
Iterations = 1295

with discretion. Solutions can be highly sensitive to disparity in & priori
weights across partitions.

6.2 Minimal Rand Constraint and Sample Size

Table 11 also shows the results of requiring each contributory Rand
index to have a value of at least .3 between the contributory and the amal-
gamated clustering. Compared to the control case, the amalgamated Rand
index drops slightly as a consequence of this constraint. In both cases, how-
ever, three clusters are obtained. Table 11 also shows the case where we con-
strain the clusters of the amalgamated partition so that each has a minimum of
300 respondents. The resulting Rand index drops to .384. We also note that
cluster C-3 has 300 respondents. It should be mentioned that user-supplied
constraints on Rand index values (between the amalgamated and contributory
partitions) and minimal cluster size may result in not finding a solution that
satisfies all of these constraints. If so, the algorithm informs the user of this
condition. In sum, the use of side conditions increases the flexibility of SEG-
WAY and permits the user to conduct rudimentary kinds of sensitivity ana-
lyses of the data set. However, the user should exercise the usual cautions in
applying constraints, because solutions can be sensitive to these factors.
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7. Summary

This paper has introduced and illustrated a procedure for finding an
amalgamated clustering of a sct of contributory partitions, each based on
separate sets of variables for the same individuals. Because the contributory
partitions consist of nominal variables, the proposed model can also be util-
ized as a way to cluster categorical data sets. The SEGWAY model is based
on a generalization of Rand index maximization, as defined in Table 1.

For comparison purposes, we also considered the highly popular latent
class method. We found (Table 7) that the generalized Rand approach cross-
validated slightly better with the exogenous (demographic) variables than did
the latent class model. We also demonstrated the potential value of various
weighting constraints that can be imposed on SEGWAY solutions. These
include the assignment of & priori weights to contributory partitions, minimal
Rand values for each starting position, and minimal sample sizes.

As we have tried to point out, the SEGWAY model represents a com-
petitor to traditional latent class analysis as applied to categorical variables in
sclecting either the initial partition of a set of categorical variables or an
amalgamated clustering of contributory partitions of the same data set.

7.1 Caveats

The generalized Rand index procedure, like similar approaches (e.g.,
latent class analysis), is subject to the fundamental problems of: (a) local
optima and their dependence on starting configuration conditions and (b)
determining the “‘best’” number of clusters. Insofar as the Rand approach is
concerned, our earlier findings indicated that stage 2 of the algorithm is rea-
sonably insensitive to randomly determined starting partitions, at least for the
empirical data set used here.

Following up on these preliminary findings (reported earlier), we exam-
ined the comparative behavior of SEGWAY versus latent class analysis in
recovering similar partitions under different starts. First, ten sets of randomly
determined starting partitions (three clusters each) were developed. We then
separately applied Rand and latent class to each starting partition to obtain
final partitions for the data set of this paper and computed the number of hits
(after column permutation) for each of the 45 distinct pairs of partitions. We
found that the average number of hits was 1381(69.9 percent) for latent class
and 1923 (97.4 percent) for SEGWAY. Of course, this exercise entails both a
small sample and only one empirical data set. Clearly, more investigation of
the topic of robustness for each method is needed. Still, the problem of solu-
tion robustness is an important one, given that this class of techniques finds
only a local optimum.
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Finding the ‘“‘best’” number of clusters or classes is a still-unsolved
problem. The principal difficulty is the lack of a compelling external criterion
of “‘goodness.”” Such internal criteria as AIC, BIC, and CAIC (Wedel and
DeSarbo 1994) need not lead to the ‘‘correct’”’ number of clusters, as related
to an external criterion.

7.2 Future Outlook

So far, the performance of the proposed Rand-based algorithm looks
promising. Clearly, more studies are needed of its comparative performance
with traditional latent class modeling. In one sense SEGWAY is ‘‘less
theoretical’’ than latent class analysis. On the other hand, SEGWAY’s design
is directly related to the objective of finding a ‘‘best amalgamated’” partition
that is free of local independence assumptions about the resulting classes. In
addition, SEGWAY may be more robust to initial configurations than is latent
class analysis. It seems to us that both methods have their respective places,
depending upon the assumptions that the researcher wishes to make about the
data set’s structure.

Appendix A

In this appendix we describe the algorithm that finds D, the higher
order clustering as discussed in the body of the paper. We let R;(D) be the
adjusted Rand index between partition j and the target, as defined by D. The
problem is then to

J
mlglx V(D)= 21 W;R; (D), (A1)
J =
subject to
R; (D)2R;, (A2a)
and
!
2 Vy;j(D)=2h, foreachj, (A2b)
i=1

where W; is a ss:t of nonnegative weights indicating the importance of each

partition, with 3, W; = 1; R; is a user-specified lower bound on the adjusted
j=1

Rand measure between the target and partition j, and the second constraint

(A2b) ensures that each of the target classes has at least & (a user-supplied

number of individuals) in it. Note that y; (D;) is an indicator variable taking
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on a value of 1 if D; = j and 0O otherwise.
Stage 1

We assume that we have an initial solution D© that satisfies (A2a) and
(A2b). This solution can be obtained by multiple correspondence analysis,
randomly generating a solution, or creating a solution with many more levels
than desired and then combining levels via a greedy heuristic to reduce the
number of levels for the target clustering. If none of these methods produces
a feasible solution, then individual cluster assignments are changed to max-
imize the objective function and move the solution closer to the constraints,
Note that if no feasible solution is obtained, then the constraints on the right-
hand side of (A2a) and (A2b) are altered.

Because the greedy heuristic may be less familiar to most readers, we
now describe its use in obtaining an initial partition. The objective is to make
an initial assignment of I individuals to T user-specified classes. Ideally, the
Stage 1 solution should, in itself, result in a high value of V(D) in Equation
(1), even before Stage 2 of SEGWAY is applied. The [ individuals can be
characterized by H <7 distinct patterns of the contributory categorical vari-
ables. Also, in general, H will be much larger than 7, the number of user-
desired clusters. We begin with a clustering based on H > T clusters. This
initial partition consists of all possible patterns, C;1,C;2, ... ,C;y across the 1
individuals, If all 7 people have different patterns, then H = I. Two (or more)
individuals who have the same levels across all the J original categorical
variables are assigned to the same cluster.

The number of clusters, at this point, is the number of unique patterns.
If H is no greater than T (an unlikely event) the problem is solved. However,

in practice H > T. The greedy heuristic now considers all [SI] distinct pairs

of clusters for potential merging. The heuristic chooses the pair with the
highest V(D). The process is replicated until the number of clusters is
reduced from H, one at a time, to the user-specified number of T classes. The
user is then free to choose still other values of 7, the desired number of start-
ing clusters for later refinement via Stage 2 of the SEGWAY model.

Stage 2

Stage 2 represents the main part of the model. One starts with an initial
partition (obtained by any of the methods described in the body of the paper)
of I individuals assigned to T clusters. In Stage 2 the algorithm allows a
change in any individual cluster assignment pair to maximize V(D).
Specifically,



A Generalized Rand-Index 83

Step 1: Initialization

pe« 0
NCT(j) « T ;DM
NR(n.j) & X ¥;j(Ca),
where y;(Cy,) = 1if C, = j and O otherwise.
NCRT(1.,j,k) < X ¥ (Cin) Wi D) ;
X4e1(I-1)/2;
T
X2« 122 Y. NCT(GYNCT(G)-1);
j=1

M,
X3(n) < 172 3, NR(n,j)(NR(n,j)—1);
j=1

M, T
X1(n) « 12 Y 3 NCRT(n,j,kXNCRT (n,j,k) — 1) ;
j=1k=1

J
» X1(n)X4 — X3(n)X2
VP 2 Y W, X2(X4 -X3(n) + X3(m)(X4-X2)

n=1
Step 2:
Fori=1,...,,andk=1,...,T,
X2T « X2: X1T(n) < X1(n);
1. X2T « XT2 + NCT(k) + 1 - NCT(D®));
2. X1T(n) « X1T(n) + NCRT(n,Cj,k) + 1 = NCRT(n,C,,,DP);
3. RI() <2 X1T(n)X4 — X3(m)X2T

X2T(X4 — X3(n)) + X3(n)(X4 — X2T)
e+l = max Y. W, RT(n) subject to the constraints.
1

! n
If ve+rD <y®), stop; otherwise let (i * k™) be the arguments
corresponding to the maximum.

Step 3: Update
pep+1,
k< D¢V,
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P-1) e i*.
DY f‘t‘ ﬁzi*
NCT(k) < NCT(k) - 1 ;
NCT(k™) « NCT (k™) + 1;
NCRT(n,C;+y,k) <= NCRT(1,Ci*,,k) — 1 forall n ;
NCRT(1,C;+y,k ™) ¢~ NCRT(1,C,,k™) + 1 forall n .
X1(n) « X1(n) + NCRT(n,C;+,k*) + 1 = NCRT(n,C;*y,k) ;
X2 « X2 + NCT(k™ + 1 -NCT(k).
Go to Step 2.

Appendix B

In this appendix we describe the model underlying the simulation
described in the body of the paper. We also describe the design parameter p,
used in the simulation.

Assume there a J partitions, where partition j has M; clusters.
Let P(l4, . . . ,l;) = Prob (any individual belongs to cluster /; of
partition j; j=1,...,J)

We also assume that J clusters are independently and identically drawn from
P(ly. .. ..l across the I individuals.

In a latent class model, the probability that an individual is in class
l1,...,l; of partitions 1 through J, respectively, is independent, conditional
on the individual’s latent class membership. Hence,

J
Pyl 10 = TP 1 D) (B2a)
j=
and
T T
t=1 /7

where T is the number of latent classes and Q(¢) is the probability that an
individual belongs to latent class ¢.

In the simulations we assume that Q(¢) = 1/T. Therefore, we only need
Py 1nforl;=1,...,M;and t=1,...,T. However, there are clearly too
many parameters to make sense of the results. For this reason, we
parametrize P;(l; | ©).

(B1)



A Generalized Rand-Index 85

Table B.1
IHustrative Probabilities, Relating Partitions to Cluster and Latent Class

Latent Class 1 Latent Class 2
Cluster 1 Cluster 2 Cluster 1 Cluster 2
Partition 1 .8808 1192 1192 .8808
Partition 2 311 2689 2689 7311

Defining Rho

Specifically, associated with each of the J partitions is a parameter p;;
j=1,...,J. Wethenlet

p,(Li=)(t-T)

e
Pl 11)=— — (B3)
+ Pim=)=T)
e
m=1
- M;+1 —
where j = ! and T = I+l for centering.
For example, assume there are two latent classes (T'=2 and
T = 2 -‘2' L_ 1.5). Assume there are two partitions, each with two classes

(J=2,M1 =M222).
Then P (1 | 1) = Prob(segment 1 in partition 1 | latent class 1)
o Pr1-1A)A-1%)

= 1-14)(1-1% 2-14)(1-1%
ePl( )( )+ epl( X )

e%‘Pl

e%Pl + e‘J/‘P1

Similarly,
Yap, —Yepy
P2(1|1)= 1 ) ’P1(1|2)= ) 1
eﬁpz +e Y Ps e Yepy +e/«m
and
4Py
Py (112)= l; (Pj(th)=1-—Pj(Ilt)).

—Y Yu
e ‘Pz+e P

If p; =4 and p, = 2, then we have Table B1.
Consider a data set with 7 rows and two columns, where the entry in
row i and column j is either a 1 or 2 depending on whether individual i
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belongs to cluster 1 or cluster 2 in partition j. There will be many more rows
that are (1,1), predominantly individuals that belong to latent class 1, and
(2,2), predominantly individuals that belong to latent class 2 than (1,2) or
(2,1). Hence, the associated 2 by 2 contingency table has a large x2 value.

The extent to which the probabilities of being in a given class for a
given partition differ across the latent classes affects the size of the x2 value.
Specifically, in the structure of our example,

w2 =16 I[P1(111) =% [Po(11 1) =], (B4)

Since P(1 I 1) increases with p; and P,(1 | 1) increases with p,, then the x?
values increase from zero, when p; = p, = 0, to infinity, as p; and py go to
infinity (.e., PA1D=P,111)=1). For our example,
x% = 16 1(.8808 - .5)%(7311 -.5)* =.12371.

Appendix C

The purpose of this Appendix is to compare two different measures for
the agreement between two clusterings of n objects. The two clusterings can
be visualized as an R X C contingency table with entries n,.. R and C denote
the respective number of clusters for the first and second clustering, 7, is the
number of data points in cluster  in Clustering 1 and cluster ¢ in Clustericng 2.

The number of data points in cluster r in the first clustering is n,. = Y, 71,.
=1

and the number of data points in cluster ¢ in the second clustering is
R

e =3 Ny
=1

The two measures that we consider are chi-squared (?) and adjusted
Rand (). Each of these measures is a function of n,., #,., and n.. as follows:

R C
XZ = 2 Z (A1rc _Erc)Z/Erc , (0]
r=1c=1
where E,. = n,. n../n;

R C
r=1c=

/ [(A1 +A)/2 —A1A2/T] @

AR _|n
2],atndT-- [2]

It is assumed that the sizes of the clusters in each clustering (n,. and
n..) are fixed. Hence, E,. in (1) and A, A, and T in (2) do not vary. As a
result,

R n,.
and where A; = 3, | 5
r=1

C
JAy= 3
c=1
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R C
XZ = E E n%c/Erc —hn (Cla)

r=1c=1

and

R C
R= |45 T n2—n/2-A14,/T|/ [(A1 +A2)/2—A1A2/T] (C2a)
r=1c=1

In general, it is difficult to relate x* to R because each depends on n,.
and #n.. in complicated ways. If the sizes of each cluster within each cluster-
ing are the same however, then x> and X are linearly related to each other.
For example, if there are 100 individuals, one clustering could have 25, 25,
25, 25 individuals and a second clustering could have 20, 20, 20, 20, and 20.
Toward this end,

n.=n/Rforr=1,...,R, (C3a)
and
n.,=n/Cforc=1,...,C. (C3b)
Equations (C3a) and (C3b) imply:
E, . =n/RC, (C4a)
Ai=n(n-R)/2R, (C4b)
Ay =n(n-C)/2C. (C4c)

Substituting (C4a) into (C1a) yields
x> =a,+b,x

where
R C
a,=-n, b,=RC/nandx=Y ¥ nZ. (C5a)
r=1c=1 ’

Substituting (C4b) and (C4c) into (C2a) yields
R=a;+b;x, (C5b)

where a; == [n/2 + n(n - R)(n — C)/(2(n - 1) RC))/d,
and by = 1/Q24),

withd = —n*{n(R + C =2) + R + C —2RC)/[4(n — DRC].
Finally,
R =[a; —aob1/bol + [b1/bol ¥*. (C6)
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Remark. If the two clusterings are independent, then xz =0, and R is close
to, but not necessarily, zero. The former comment is obvious because
independence implies #,. = E,.. To see that R need not be zero, consider
(C5b). For example, withn =20,R =C =2then R =-1/18.
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