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1. Introduction

Distances between pairs of observations, between pairs of populations
or between an observation and a population form the basis of many methods
of multivariate analysis. The Euclidean and Mahalanobis distances, the most
widely used for continuous data, exist in the three variants, but their func-
tional appearance is the same for all of them, which can lead to confusion.

If, following Arabie (1991), we realize that other distances may be
preferable in certain problems of data analysis, either due to data-induced
requirements or to the desire for an intrinsic mathematical model (as opposed
to an ad hoc formulation), it becomes apparent that the three concepts and
their inter-relationships need to be reconsidered.

When populations are identified with probability distributions in a
parametric statistical model, there exists an intrinsic way of obtaining dis-
tances between them, the Rao distance (see Rao 1945, Atkinson and Mitchell
1981, Burbea and Rao 1982, Oller and Cuadras 1985, Mitchell 1992). In the
non-parametric case, a definition of distance, based on the concept of affinity
between distributions, with applications in statistics and classification, is due
to Matusita (1956) and has a close relation with the Mahalanobis distance for
the multivariate normal distribution. Krzanowski (1983) extended this dis-
tance to the case of mixed variables.

The position is far from simple in the case of distances between indivi-
duals. For binary and continuous data there are many definitions (Gower and
Legendre 1986) and the distance can be modelled using subjective judge-
ments (Gordon 1990). Under the framework of a parametric model it is possi-
ble to define a distance between observations intrinsically (Cuadras 1989,
Oller 1989, Miiiarro and Oller 1992). For mixed data, as far as we know, the
only available distance is the one based on Gower’s (1971) similarity
coefficient.

In contrast, there are very few distances between an observation and a
population. Two strategies have been used for this purpose: Either a popula-
tion is represented as an ideal point in the space of individuals (Takane et al,
1987), or an observation is treated as a degenerate population. Krzanowski
(1987) extends the Matusita distance to this latter case; he then uses the
Matusita rule to allocate the observation to a population in the context of the
location model in discrimination with mixed variables (Krzanowski 1975),
i.e., the observation is allocated to the nearest population.

The aim of this paper is to study geometrical, probabilistic and statisti-
cal aspects of an alternative proximity function, introduced by Cuadras
(1989), also with the purpose of classification.

Given a dissimilarity d defined for every pair x,y of observations of a
population IT, i.e., 8(x,x) = 0 and &(x,y) = 8(y,x) = 0, we construct from & a
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proximity function ¢2(x,II). This construction, based on a suitable dissimilar-
ity, is quite general, since it can be used in discrimination (Cuadras 1992b),
regression (Cuadras and Arenas 1990), and generalized ordination (Krza-
nowski 1994a). We will refer to d as a distance when it satisfies the triangu-
lar inequality.

The assumptions underlying this approach lie in the belief that, in some
circumstances (mixed variables, missing values, data consisting of character
strings,...) it is more natural to work with dissimilaritics between observations
rather than postulating a given probability distribution. Anderson (1966,
p.24) stated that ‘‘A classification procedure cannot be distribution-free.”’
Here a probability distribution is assumed to exist, but only implicitly deter-
mined by dissimilarities between observations. Its relation with Mahalanobis
distance and its applications to discriminant analysis are presented and com-
pared with linear and quadratic discrimination (Anderson 1958, Lachenbruch
1975) and with the location model (Krzanowski 1975, 1986, 1987, 1993).

This approach can be seen as another avatar of the general concept of
multidimensional scaling, a technique which has been shown to be useful in
many areas of data analysis and statistics (see Cuadras et al. 1995).

2. Geometric Variability and the Proximity Function

The usual measure of variability of a second-order random variable X
(i.e., such that E(1X]| 2) < =) is the variance var(X). For a second-order ran-
dom vector X with covariance matrix X = Var (X), a scalar measure of varia-
bility is the total variation tr (X) (Mardia et al. 1979, p.31). It is worth noting
that both measures are related to the Euclidean distance, e.g.,
2var (X) = E[(X — X,)?*], where X;,X, are independently distributed as X.

Let us represent a population IT by a random vector X, defined on a
sample space €2, with values in S c R”, for some p > 1, with probability den-
sity function f with respect to a suitable measure A.

Suppose that 3(-,) is a dissimilarity on S. Cuadras and Fortiana (1995)
define the geometric variability of X with respect to 0 as

Vs(X) = % [sxs 82, Y)F)fYMAXOMdY) . (1)

This quantity is a variant of Rao’s diversity coefficient DIVC (Rao
1982a, 1982b), in which the distance is not squared and there is no factor 1/2,
When d is the Euclidean distance, we have V§(X) = var (X) for p = 1 and in
general V(X) = tr (Var (X)). For other dissimilarities 8, V5(X) is a general-
ized measure of dispersion of X.
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Assume now that we have two populations IT and I1,, represented as
two independent S-valued random vectors X and Y, defined on €2, absolutely
continuous with respect to a common measure A. Let us denote the probabil-
ity density functions of X and Y by fand g, respectively. The quantity

A1, 1) = [5xs82(%, ) (MMMY) - V5(X) = V5(Y)  (2)

is the Jensen difference (Rao 1982a, 1982b) between the distributions of IT,
and I,:

J(.8) = H( f+—g) —H(f) —H(g) 3

taking as the diversity function H(f) = 4V3(X).
Given xo € R?, we define the proximity of xq to the population IT with
respect to O as

03 (x0,IT) = J5 82 (X0, X)fOMdX) — V5(X) . @

Definition (4) appears as a particular case of (2), taking as Y the con-
stant xo, and using the fact that for every two probability measures v; and v,
there exists a measure A such that both v, and v, are absolutely continuous
with respect to A.

A natural analog of the concept of mean value in the present context is
that of a 8-center of the population I, which we define as an x, e S such that
q>5(x0,l'l) is a minimum. Some of the usual properties of a mean cannot be
extended: in general it is not umque and the fact that x; is a d-center of IT;,
i = 1,2 does not imply 8%(x;,x,) = A2(T1;,I1).

Remark 1. Geometric variability and proximity function are quantities that
refer to a single population. In the context of discriminant analysis, (1) and
(4) could be obtained using a different dissimilarity for each of several popu-
lations. However, to compute A%(I1;,IL,), a single (global) dissimilarity is
needed.

Remark 2. The dissimilarity § appears squared in (1), (2) and (4) as a nota-
tional convenience for the metric scaling interpretation of these quantities
and in order to recover classical concepts, e.g., that of variance when § is the
Euclidean distance.

For this same reason, A2(H1 ,I1;) is written conventionally as a square,
yet the right hand side of (2) is not necessarily positive. It will be so when-
ever Vg is a concave function on the space of probability distributions, and
this property is satisfied if & (x,y) is a negative definite function (see Rao, op.
cit. and Lau 1985).
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2.1. Basic Properties of the Proximity Function}

Theorem 1 below gives support to the interpretation of A%(I1;,IT,) and
q)%(xo,l'l) as measures of proximity. In the statement, (L, (-,), stands for a
Euclidean (or Hilbert) space with scalar product (-,-), and ||ju|| = (u,u)"? is the
natural normofu € L.

Theorem 1. Assume that there exists a representation of (S,8) in an (L,(,")),
i.e. a function Y:S— L, such that for all (x,y)e SXS the equality
8%(x,y) = ||wx) — w(y)|P holds, and that the expected values E(|w(X)|P) and
E(\w(Y)|P) are finite. Then

Ve(X) = E(wX)P) - |EquX)IP (5a)
AX(I1y,IT) = | EQp(X)) = EQu(Y)IF (5b)
03(x0,11) = |ly(xo) — Equ(X)F . (5¢)

Proof: Denoting x = y(x), etc., we have
Vs = T IEE + 5P -2 (£ 7007@) Maxrdy)
=E(XP) - (EX), EX)),
i.e., (5a). Similarly,
ATy, Th) = Jx P + 71 - 231 f)g(y) MdxMdy) i
- Vs(X) - Vs(Y) = E(]|X|E) +EQYP) - 2(EX), E(Y)) E(XP)
-IE)P) EQYIH -|EDIP),
which gives (5b). Since (5¢) can be considered as a particular case of (5b), as

discussed above, the proof is complete. Alternatively, a direct proof mutatis
mutandis in the preceding one could be written, =

The following properties of the proximity function ¢* associated with a
squared dissimilarity 8% are readily verified:

e The transformation rules of (])2 corresponding to affine transforma-
tions of &* are: ) )
Fora e R*,if§ =a &, thend =a ¢
2
Forbe R*,if8 =& + b, thend = ¢ + b/2.
e Assume that X = (X{,X;) and that 87 is related to X;, with associated
proximity function ¢?, i = 1,2. If we define the squared dissimilarity
& =81 + 8}, (6)

then its associated proximity function is
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0% = 0% + ¢3. @)

Definition (6) is natural when X; and X, are stochastically independent
(Oller 1989). Cuadras (1989, 1992a) proposed an extension for dependent
variables.

2.2 Examples of Proximity Functions

Example 1. Let II=N,(1,Z) and &(xy)=(x-y) T (x-y), for
X,y € R?, the Mahalanobis distance. Then the transformation y(x) = 2 x,
taking values in R? with its ordinary Euclidean scalar product, provides the
proximity function

0*(x0. I = (xg — )" =7 (xp — ).

A generalization of this formula is given in Section 3.2.

Example 2. Let X be a random variable with values on an interval I = (a,b)
cR*=RuU { =<} U {e}. Denote its c.d.f. by F, and consider the distance
dx,y)y=(Ux-y l)m. In this case the following identity holds (Cuadras and
Fortiana 1995)

Vs(F) =2 F(x)[1 - F(x)) dx . ®)

If Y is another random variable with values on I, with ¢.d.f G, and indepen-
dent of X, a straightforward computation, using (3), gives

A (F,G) = [} [F(x) - Gx))* dx ®)

that is, the distance (2) between populations associated with
8(x,y) = (1 x —y )'? is the Cramér-von Mises distance.

Taking, in (9), G as the degenerate probability distribution with unit
mass at xo € (a,b), we obtain the proximity function

(o, F) =[5 [FO)1? dx ~ b [2F(x) - 11 dx, (10)

which has a minimum for x such that 2F(xy) — 1 = 0, i.e., the median of X is
the d-center of F. Note that if in (10) we let F be the degenerate probability
distribution with unit mass at y, € (a,b), we recover the squared distance
I x 0—Yo I

An explicit Euclidean representation is available when F is a uniform
(0,1) distribution. Let L =%, the Hilbert space of square summable
sequences {x,}, ¢ N, With its standard inner product ;7; x;y;. The mapping
y:(0,1) = L given by
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y(x) = ij_- -i-cos (nx),%cos (2nx),%cos Bmx),...| , x€ (0,1),

provides a Euclidean representation of a uniform (0,1) random variable X in
Lie,
i cos/mx JZCOS”W)Z , x,ye (O,1).
The random variables Z; = (\/_ 2 cos(jnX))/(jm) have mean O and are uncorre-
lated, therefore the sequence {Z;};en can be interpreted as a (countable) prin-
cipal coordinate solution for the distance 3(x,y) = (1 x —y )2, See Cuadras
and Fortiana (1993, 1995) for details and an additional example.

Computing in (10) the proximity function, we obtain
02 (xg,F) = x§ —x0 + 173, x9€ (0,1). As E(y(X)) = (0,0,...), the equality
(5c¢) is equivalent to

Fy)=lx-yl _—2;

2 o0

U-)I»—t

x% —-Xp +

2
COSjTX g
J ] ’

which can be checked directly, by expanding x5 —xg + % in Fourier cosine
series on (0,1) and using the identity cos(2¢) = 2cos® t — 1.
3. Distance-based Discrimination

The motivation underlying the construction of (4), and its most impor-
tant application so far, is to provide a theoretical framework for the distance-
based allocation rule for discrimination (briefly DB rule) proposed by Cua-
dras (1989).

Suppose that we have g populations Iy, o= 1,...,g. Let ¢2 be the
proximity function for Il,, computed by using the squared dissimilarity
between observations 82, =1, ... ,8.

The DB rule for allocating an individual for which x¢ has been
observed is:

Allocate xo to ITy if $3,(xo) = min {¢p(Xo), . . ., d3(X0)} - 11

Theorem 1-(5¢) shows that this DB rule, although computed on dissimi-
larities between observations, is in fact a Matusita rule, i.e., a rule based on
the distance between an observation and a ‘‘mean’’ of the population, at least
when a Euclidean representation exists.

One outstanding feature of the DB discriminant rule is its adaptability
to different types of data. By adjusting 9, the data analyst can reflect in the
model properties of the problem like scales of measurement, weights and
relationships of variables.
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Table 1: Proximity functions and the DB rule for some statistical models and classic equiva-

lents.

. . . Proximity .
Statistical Squared Distance Equivalent
function
Mocdel (for I1,,) 82(x,y) 62 (x0) = to
Multivariate Bernoulli
1 1 1~ ok
hmsis Fep -d0 (Lo1) Lo
with m states Eq,..., [, ( kt) PR Tk ML
fa(x) =TTkzr a0k @6 € {01} If (x,y) falls in (Ex, E1) If zop = 1
Y o =1
Multinomial
- Ik (7 — yi)? o~ (zox = nqak) .
— Chi-Square
fn(x m L a ! H ]k n ‘; Gok ’; 7 ok
ZZ‘;, T =N
Normal, Xy = 3, =1
‘ : Enclidean (x0 — pa) (X0 = Ha) EDF
Np(jtan 1)
Normal, &, =%, =% )
Mahalanobis (X0 — ta)' 27 (%0 — fa) LDF
Ny (o, )
Normal, ; # Z, Mahalanobis (%0 = pa)' B3 (X0 = Ha) QDF
+
No(ptes o +log | Eal
Pl ) additive constant
Any regular model
& Score distance ZhG™1Z,

Ja(x,6)

3.1 Classic Discriminant Functions

Using appropriate distances, (11) reduces to some classic and well stu-
died rules (see Table 1).

Linear Discriminant. If ITy is N,(1q,Zq), & = 1,2, with Z; = X, and taking
the Mahalanobis distance (Example 1), the halved difference

L(xo) = % [03X0) — 3 (X0)] (12)

is equal to the linear discriminant function (LDF; Lachenbruch 1975, pp. 9-
11). Therefore, (11) coincides in this case with the LDF rule.
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Quadratic Discriminant. If I, is Ny Zg), 0 = 1,2, with 1 #%,, then we
take the squared distance

X-y) I (x-y) +log 1241, ifx=y,
0,

2 —
Sa(X’Y) - le = y ,

(13)
to compute ¢§(XO), o = 1,2. i.e,, the Mahalanobis distance plus a constant
(without loss of generality we can suppose | X, | > 1; otherwise an arbitrary
constant can be added). Now the halved difference of proximity functions

0(xo) = 5 [03(x0) ~ 0501, (14)

is equal to the quadratic discriminant function (QDF; Lachenbruch 1975,
p.20). Note that in (13) we have only added a constant to a squared distance,
a well-known procedure in multidimensional scaling (see Lingoes 1971, Mar-
dia 1978).

Euclidean Discriminant. A particular case is obtained when X; = X, =1,
where I is the identity matrix. Then 9 is the usual Euclidean distance and the
DB rule provides the Euclidean discriminant function (EDF)

E(o) = [xo = - (1 + 1)) (1 ). 15)

This function has been studied by Marco et al. (1987), and has advan-
tages when the number of variables is large in relation to the training sample
size.

3.2 Generalized Discriminant Functions

More generally, if we have a regular statistical model {f(x;0);
xe ScR’,0c Oc R}, and 0 =0, for Iy, o= 1,2, an appropriate dis-
tance is based on Rao’s efficient scores (Rao 1973, pp.367). Writing
Z= —aa—e log f(x;0), for x € S, and similarly Z = ry log f(X;0), for an S-valued
random vector, this distance is defined by

8 (x1,%) = (71 - 2)" G (21 - 1), (16)

where Gy = E(Z Z") is the Fisher information matrix. Then, as E(Z~ G§1Z) =
E(tr (G5'ZZ")) = tr (Gg! Gy) = k, we easily find the discriminant function

$*(x0) = 279 Ga'zg . amn

The functions for the multinomial and multinormal (Z; = X,) models
(Table 1) are particular cases of (17).
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3.3 The Bayesian DB Discriminant Rule

If probability densities {fo (X)}q=1,... ¢ (with respect to a suitable
common measure A), and prior probabilities { dota=1,..., g for
{Ily}a=1,...  are given, the classic Bayes discriminant rule (BR) is

Allocate X to I if gpfp(xo) = rrllax {(qofuX0)} . (18)
a= g

.....

A Bayes version of the distance-based rule, which we indicate by BDB,
is constructed as follows: For the multivariate Bernoulli model with parame-
ter vector (1, . . . ,4g), we have the proximity functions (see Table 1)

OPIE=¢q -1, a=1,...,g. (19)

In the absence of additional information, the ‘‘prior’ DB rule is
equivalent to allocating the new individual to Ig, where B is such that qp is
maximum. Since prior and observed information may be understood to be
independent of each other, the proximity functions ¢§ related to the variables
are combined with ¢[P](2, by using the additive property (7), obtaining the
posterior proximity functions

OBl =04+q5 -1, a=1,...,g. (20)
Clearly, for the multinomial and multivariate normal model, BR is
equivalent to BDB if gq; =..= g, = 1/g. Cuadras (1991, 1992b) evaluated

the difference between the two rules in some particular cases, concluding that
the discrepancy is not too marked on a broad interval of prior probabilities,
i.e., excluding the most extreme values.

4. Sample Properties of Proximity Functions

In applied problems, the distance function is typically a datum, but the
probability distributions for each population are unknown, or known only up
to parameters. Natural estimators of Vs, A? and ¢§, given samples
x()q, ..., x(a),, of 1, a=1,...,g, and an additional observation x, to be
classified, are:

Va0 =~ = ¥ 8 x(odi.x(@)). @1a)
Mo ij
Ry = - lnﬁ 3 82(x(@);.x(B))) - V(@) - V5B,  (21b)
[0 3 lj

§alXo) =~ 3 2o X(@)) — V5(@). @10
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Theorem 2 below is a sampling analog of Theorem 1. Like the latter, it
gives support to the interpretation of the DB discriminant rule as a Matusita
(i.e., a minimum distance) rule. It should be emphasized that the Euclidean
coordinates which appear in its statement and proof are only a theoretical
scaffolding: its explicit computation is not generally needed in actual appli-
cations. In particular, DB allocations need only the dissimilarities between
observations, which are used to compute the estimations (21c) of proximity
functions.

Let D@(a) = B4(x(ew);,x(e);)) be the ng xn, matrix of squared
intradistances between observations in I, and let U(c) be a matrix of com-
plex Euclidean coordinates for I,. That is, the n, rows u;(cr) in U(c) are the
vectors representing the individuals from IT, in some L, = R* X iR’®, where
i=V=1,54>0,1420,(0=1,...,0).

The principal coordinates solution for D‘®(c;) gives one such represen-
tation, with the additional property that the centroid u(c) = (1/1 )Zu;(Q) is
the null vector. This assumption is too restrictive in the present context: As
observed above (see Remark 1), a global distance function is required for
(23b), and a global principal coordinates solution will be accordingly built in
the proof. In it, the centroids w(a), o =1, ... ,&, are not null. However, for
any Euclidean representation, (Gower 1982, Eq.1), there exists an ny X 1 vec-
tor b(a) such that

U(@U(w)” = - % D@() + 1, b(e)” +b(o) 17,_, (22)

where 1, isthe ny X 1 vector of 1's.

Theorem 2. For 1 <a,f<g,

V5,00 = = X ui@ff - [af @39)
o i=1

A (T, Tg) = () — aB)F , (23b)

baxo) = [uo(c)) — (o) P , 230)

where uy(Q0) is a vector representing Xq in L.

Proof. From (22),

A 1 .
Vs.(0) = —5 1, DP(a)1,,
2ng
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- -;12— 1, (o) - 1, U@L,

o na
2 4

o

n D(0) = [[u(o)f ,

and using (22) again, since tr D®(a) = 0,

L 3w = L [U@U©)] = 217, b0),
na i=] ”a na

which gives (23a). Cuadras (1989) proved result (23c), by extending a result
of Gower (1968). A more straightforward proof follows from:

3, B0, x(@)) = —— 3 Juo(@) - w(@ff

o ;=1 o =1

not
= [uo(@IP ~ 200(@) (@) + —— . fu@)f,
o =1
taking into account (23a).

Result (23b) is due to Digby and Gower (1981). See also Cuadras
(1991). The proof below follows that of Digby and Gower: Let D@ be the
full n X n matrix of squared distances between the n = £§_, n, sample obser-
vations. Consider its principal coordinate solution B=
H(- 12D®)H = UU’, where H = I, — 1/n1,1", is the n X z centering matrix.

Given 1 £ a < g, denote by 1(o) the n x 1 column vector containing 1’s
at the ny positions corresponding to the Il, sample, and 0’s elsewhere. For
1<o.B<g,

u(uP)’ = .

1) BI®) - 5

aynﬁ o B

1

1(0)"'UU"1(P)

1(0) HD®HIB) .

Since HI(o) = 1(ct) — (n/n)1,,, and similarly for 1(B), we have
~ 2nqngu(IAB) = 1@ DV1) -~ 1, DO1B)
- nTBI’nD(Z)l(a) + "“nﬂl',,nmln .

Substituting in |[u(c) — u(B)|f = u(oyu(e)” + uB)u(B)” - 2u(cyu(B)” and sim-
plifying, gives (23b). =
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4.1 Error Rates

The probability of misallocation for the DB discriminant rule can be
estimated by several methods (McLachlan 1992, Chap.10). The leave-one-
out estimator (Lachenbruch 1975) will be used in Section 5 for comparative
purposes. It is worth noting that the amount of computation required is
surprisingly small if the distance function does not contain parameters to be
estimated from the sample, as is the case with the Minkowski distances, or
with the distance considered in the second example in Section S (the square
root of a Minkowski distance).

This statement can be verified as follows: Given a sample
{x;}i=1,... n of n = Z§_1 n oObservations, assume that x; is an observation
belonging to I, and denote by ‘W‘]B the estimated proximity between x; and
I, (1 =B < g), evaluated from the sample minus the k-th observation. Then,

~ A2 f
BIKIE = copdp(xi), Where cop = (n D). ifgi %2 24)

This equality is clear for  # o, and for [3 = o, writing (T)a(xk) in (21c) as

Sl = 3 B - 3 SR = A/ng —B/QnE),
Mo ;=1 2”(1 ij=1

removal of the k-th observation from the training sample amounts to: 1) Sub-

stituting (n4 — 1) for n in the denominators, and 2) Eliminating the k-th row

and column from the matrix of squared distances. We obtain the equality

Bk1% = A/(ng—1)— (B =24)/Q(ng — 1?)

which, after simplification, yields (24). Then the estimation e of the probabil-
ity of misallocation easily follows.

It is worth noting that the DB discriminant rule is robust to non-
overlapping samples. It can easily be seen that, in fact, e = 0 in such situa-
tions.

4.2 DB Canenical Variate Analysis

If g > 2, we can construct a g X g matrix A(Z) = (Az(Ha,HB)) of squared
distances between populations and perform a metric scaling to exhibit them
in a low-dimensional Euclidean space.

This useful representation originated in Digby and Gower’s (1981)
paper. The same construction is given in a more general form by Cuadras
(1991), and is applied in Fortiana et al. (1995). Fortiana (1993) and Krza-
nowski (1994a) also follow this approach, making a link with classic
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canonical variate analysis.

More precisely, the classic representation appears as a particular case,
when the distance between individuals is the Mahalanobis distance, for (23b)
implies that, in this case, the distance between groups o and J is

~Q _ _ s _
AP (M, M) = Ry — Xp)S Ry ~ %),

where S is the pooled within-groups sample covariance matrix, and the sam-
ple means X, and X are written as row vectors to keep notation consistent
with that of (23b). The conclusion now follows from the well-known result of
Gower’s (1966) which states the equivalence of principal coordinates and
canonical variates for the Mahalanobis distance function.

Of course, this method is especially interesting for non-Mahalanobis
distances, and for mixed data. Another possibility, as observed by Krza-
nowski (1994a) lies in the representation of individual points in the resulting
diagram, by using Gower’s (1968) adding-a-point formula.

The possibility of this representation Aisza consequence of (23b) and
(23c). Firstly, (23b) allows us to interpret A~ as a matrix of squared dis-
tances between the population centroids, ensuring its Euclideanarity provided
that D® (notation as in the proof of (23b)) has this property. Second, equal-
ity (23c) allows us to interpret the vector (§1(xo), ... ,dy(Xo))" of sample
proximity functions from a given xq to the populations as the vector d® of
squared Euclidean distances from x; to the centroids of the populations,
needed in Gower’s formula

wo =5 (VY'Y (e -d®),

which gives a vector ug representing x, in the space L of principal coordi-
nates of A"". Y is the matrix having as rows the vectors representing
Iy, ... I in L, and c is the g x 1 vector having as entries the diagonal ele-
ments of YY”,

5. Four Comparative Real Data Examples

We used several real data sets to compare the DB method with linear
(LDF), quadratic (QDF) and Euclidean (EDF) discriminant functions. As dis-
cussed in Section 3.1, LDF, QDF and EDF can be interpreted as particular
cases of DB by using appropriate distances (namely, Mahalanobis,
Mahalanobis plus an additive term and Euclidean distances, respectively). In
this section we adopt the distance based on Gower’s similarity coefficient to
carry out the DB discrimination.

Data set 1, DNA data, (Fortiana et al. 1995) consists of sequences of
length 360 bp (base pairs) taken from a given segment (called the I-region
from the D-loop) of the mitochondrial DNA for a set of 120 individuals
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Table 2: Total number of observations in each population and number of misallocations

DNA data Skulls data
I, TI, TI; TI; | Total II, II, TI; | Total
Numberof 95 41 37 17 120 Numberof 39 30 30 | 90
observations observations
Misallocations Misallocations
nB 22 1T 12 || DB 11 16 15 | 42
EDF 2 16 0 7 25 || LDF 10 18 15 | 43
wDB 13 27 13 || QDF 10 24 10 | 44
EDF 11 19 14 | 44
Cancer data Students data
I, II, | Total II, II, II3 | Total
Numberof = 7g 59 | 137 Numberof o5 117 26 | 168
abservations observations
Misaltocations Misallocations
ni I8 2 | 39 DB 12 69 16 | 97
LDF 3 27 | 58 LDF 1185 13 | 109
QDF 13 35 | 48 QDF 10 98 9 | 117
EDF 29 37 66 EDF 10 8 11 | 103
LM 21 21 | 45 LM 10 88 12 | 110
QLM 23 20 | 43 QLM 13 8 9 | 106
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belonging in 4 human groups: !Kung (Il{), Bantu-speaking Africans (Il;),
Pygmies (Il3) and Hadza (Il4). These data are extracted from a larger set,
studied in Bertranpetit et al. (1995), where precise bibliographic references

for the sources can be obtained.

Since all variables are four-state qualitative, with values on the set of

bases

{ Adenine, Guanine, Cytosine, Thymine },

they should be converted into 1080 = 3 x 360 dummy variables (Lachenbruch
1975, p.54), in order to apply LDF or QDF, but then the sample size is
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insufficient to give a nonsingular covariance matrix, so neither method can be
used. EDF can be applied, but results depend on the actual coding of each
base as three values of the dummy indicator variables. A typical result is
included for comparison in Table 2. A third method (wDB), using a weighted
modification of the distance based on Gower’s similarity coefficient, has been
considered for this data set, where weights are inversely proportional to the
probabilities of transition between each pair of bases.

Data set 2, Skulls data, comes from Manly (1986, Table 1.2, p.4-5), and
reports four biometric measurements on male Egyptian skulls from five
epochs (Early predynastic, Late predynastic, 12-th & 13-th dynasties, Ptole-
maic period and Roman period). Canonical variate analysis reveals that some
groups overlap, so the discrimination is made taking only the three separate
groups: Early predynastic (I1;), 12-th & 13-th dynasties (IT,), and Roman
period (I13),n7 = ny, = n3 = 30.

Data set 3, Cancer data, consists of eleven measurements (seven con-
tinuous, two binary and two three-state categorical variables) on 137 women
with breast tumours, 78 benign (I1;), and 59 malignant (IT,). These data are
described in Krzanowski (1980) and as they involve mixed variables, we also
perform a comparison with the location model for discrimination (LM) and
with the quadratic location model (QLM) (Krzanowski 1994b).

Data set 4, Students data, taken from Mardia et al. (1979, p.294), is also
used by Krzanowski (1983). This data set is concerned with the average
grade (a single quantitative variable) and a qualitative variable with three
states: 2, 3 or 4 A-levels, obtained by 382 students who were classified in
seven groups. The number of misallocations for the complete data are high:
LDF (313), QDF (319), EDF (312), DB (290), LM (310), as the 7 groups
overlap somewhat. So, we select 3 more separate groups, i.e., as denoted by
Mardia et al. (1979), the following groups: ‘T’ (ITy), ‘II(ii)’ (I;) and ‘-’ (I13)
respectively, the sample sizes being ny = 25,n, = 117, n3 = 26.

Error rates were computed using Lachenbruch’s leave-one-out pro-
cedure, as described in Section 4.1, and are given in Table 2,

Our understanding of these results is as follows: For data set 1, LDF
cannot work, as explained above. For data set 2, LDF works well because
Mahalanobis distance is appropriate. However, for data set 4, the better per-
formance of DB than LDF may be interpreted as suggesting that the distance
based on Gower’s similarity coefficient is more appropriate than Mahalanobis
distance. In other words, the probability model implicit in using the first dis-
tance fits the data better than the multivariate normal. Coincidentally, Mardia
et al. (1979, p.293) stated that ‘‘the assumptions of normality would be com-
pletely unwarranted in this example.”” A similar reasoning could explain why
the location model is not the best for data set 3.
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6. Discussion

We have studied a proximity function which can be interpreted as a
squared distance between an individual and a population. It is constructed
using only distances () between individuals. The advantage of this
approach appears for mixed variables, where it is difficult to construct a pro-
babilistic model, while a proximity function is more accessible.

Takane et al. (1987) also use a proximity function defining a Euclidean
distance between subject points and ideal points representing populations.
They assume a probability distribution which depends on this proximity func-
tion. The construcion of (4) is quite different, as it can provide a non-
Euclidean distance, which is not an obstacle for discrimination, and does not
require an underlying probabilistic model.

For the multivariate normal distribution N,(i1,X), the natural proximity
function ¢2 i.e., the Mahalanobis distance between x and |, is monotonically
related to the probability density function f(x). An open problem is to decide
whether this relationship can be extended to other cases.

If we allow in (4) any symmetric function s(-,*) instead of a squared dis-
similarity 32(-,"), the problem has a solution for every probability density f(x),
taking

s(x,y) = —log f(x) —log f(y) .

Then, ¢ (x)=—logf(x) and the geometric variability is the Shannon
entropy

(N = -] fix) log f(x) dx.

However, it is not clear what geometric interpretation could be given to such
generalized ‘‘dissimilarities.”

The distance-based discrimination is the main application of the prox-
imity function. The use of dissimilarities between individuals is useful for
this method (Krzanowski 1993). The distance based on Gower’s (1971) all-
purpose coefficient has the additional advantage of dealing with missing data.
However, like all distance functions satisfying additivity with respect to vari-
ables Gower (1992, 1993), it implicitly ignores any association (e.g., correla-
tion) between variables (Krzanowski 1994a). Comparing the product of pro-
bability densities with the additive expression (6) in the case of independent
variables, we find some connections with the construction of distributions
with given marginals (Cuadras and Augé 1981, Cuadras 1992a). From this
perspective, a distance between observations for dependent variables under a
parametric model is proposed and studied in Cuadras (1989, 1991) and
justified in Cuadras (1992a), but this is an open question when the context is
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general. The recommendation of Sneath and Sokal (1973, Section 4.7) con-
cerning the use of distance functions which are as simple as possible can be
taken into account, together with their performance in discrimination.

Finally, let us consider the relation between linear discrimination,
Mahalanobis distance and canonical variate analysis. This relation is optimal
under multivariate normality. Similarly, we can relate the location model for
discrimination, Krzanowski’s (1986) distance from an individual to a popula-
tion and Krzanowski’s (1983) representation of populations with mixed vari-
ables. This relation is also considered optimal under conditional normality
(Olkin and Tate 1961). The generalization for any type of data (categorical,
continuous, mixed) is the distance-based discrimination Cuadras (1989, 1991,
1992b), the proximity function (4) and the generalized ordination to represent
the populations (Digby and Gower 1981, Krzanowski 1994a).
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