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Clusters of Time Series
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Abstract: This paper presents a test of hypotheses to compare two stationary time
series as well as an accompanying classification procedure that uses this test of
hypotheses to cluster stationary time series. Our hypotheses testing procedure, which
unlike the existing tests, does not require the time series to be independent, is based on
the differences between estimated parameters of the autoregressive models that are
fitted to the time series. The classification procedure is based on the p-value of the test
that is applied to every pair of given time series.

Keywords: Stationary time series; Autoregressive models; Seemingly unrelated
regressions; Clustering algorithm. '

1. Introduction

The comparison and classification of time series has applications in
various fields including economics, business, demography, geology,
medicine, and climatology. By using a classification procedure we could, for
example, group together those countries that have similar economic
indicators such as Gross Domestic Product (GDP) or those countries that
have similar birth rates. Then instead of forecasting each of the given time
series, forecasting can then be performed on a representative from each
group. This strategy is especially useful if one has to forecast a large
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number of time series. Given the reduced time and cost, this approach would
certainly be more practical than forecasting each and every time series.

Existing hypotheses tests designed to compare two stationary
independent time series involving the use of fitted parameter estimates were
considered by De Souza and Thomson (1982) and Maharaj (1996). Other
tests in the literature for the comparison of two independent stationary series
involve the use of the estimated spectra of the series. Some relevant papers
are by Jenkins (1961), Swanepoel and Van Wyk (1986), Coates and Diggle
(1986), and Diggle and Fisher (1991). In practice the application of these
tests to real time series is limited because comparisons are often made
between time series that are influenced by similar factors.

Existing techniques for classification of time series are discriminant
analysis (Shumway 1982) and cluster analysis (Bohte, Cepar, and Kosmelu
1980; Piccolo 1990; Shaw and King 1992; Tong and Dabas 1990). Kosmelj
and Batagelj (1990) also take time series into account in their proposed
general model for cluster analysis. This procedure can be performed on time
varying data by including the time factor as a third dimension to the data
matrix that contains the units and variables as the other two dimensions.

Discriminant analysis requires the existence of known groupings
before further classification can be carried out. While cluster analysis does
not require known groupings, definite conclusions cannot be drawn from the
results of cluster analysis because clusters are usually identified on a
subjective basis, that is, the choice of clustering method and the distance at
which clusters are identified are decided upon by the analyst. The procedure
proposed by Maharaj (1996) for clustering stationary time series that are
assumed to be independent does not require known groupings beforehand as
discriminant analysis does, and definite conclusions can be drawn from the
results of this analysis as opposed to conventional cluster analysis. However
the assumption of independent time series limits the applicability of this
method of classification, because in many situations we may want to
classify time series that are influenced by similar factors. By introducing a
test of hypotheses that can be applied to related as well as independent time
series, we extend the clustering procedure of Maharaj (1996) so that it will
be applicable to stationary time series that are not necessarily independent.

In Section 2 we present a test of hypotheses to compare two stationary
time series that are not necessarily independent. In Section 3 the results of a
simulation' study to investigate the distributional properties, size, and power

1. All simulation results and the results of the application have been obtained by
programming in Gauss.
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of this test are reported, and we make power comparisons with some of the
existing tests. In Section 4, we discuss the clustering procedure and, from
the results of a simulation study, discuss the distribution of a measure of
discrepancy between the true number of correct clusters and the number of
exactly correct clusters that have been obtained. In Section 5 we apply the
clustering procedure to a set of economic time series.

2. Hypotheses Testing Procedure

We now consider the comparison of two stationary time series that are not
necessarily independent. We will assume that if the series are not stationary,
the same order of differencing will be needed to make each one stationary.
We will also assume that the stationary times series can be fitted by linear
models. Autoregressive infinity (AR(0)) models, truncated to order k, are
fitted to each series, and the test statistic is based on the difference between
the AR(k) estimates, which are generalized least squares estimates. It will be
assumed that the disturbances of the models are correlated for series that are
not independent and uncorrelated for series that are independent.

Let Z, be a zero mean univariate stochastic process such that Z, € L,
where L is the class of stationary and invertible ARMA models. Using the
standard notation of Box and Jenkins (1976, p. 74), such a model is defined
as

0(B)Z, = 0(B)a,,

where a, is a univariate white noise process with mean 0 and variance, cj
and where
0(B)=1-¢,B—,B —.. - ¢,B”  and

6(B)=1-06,B-0,8" - .—6,B°,

with the usual stationarity and invertibility restrictions on the roots of
¢(B)and 6(B). Z, can be expressed as

Z, =Z7er,_j +a,,
j=1
where
n(B)=¢(B)"(B)=1-nB-n,B* ~.. ...

Letx, andy, r=1,2,..., T be two stationary time series. Then using a
definite criterion such as Akaike’s Information Criterion (AIC) (cf. Box,
Jenkins, and Reinsel 1994, p- 201) or Schwartz’s Bayesian Information
Criterion (BIC) (cf. Box, Jenkins, and Reinsel 1994, p. 201) for modelling
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autoregressive structures, truncated AR(ec) models of order &, and %, can be
fitted respectively to x, and y, Define the vector of the AR(k;) and AR(k,)
parameters of the generating processes X, and Y, respectively as

[ ro
T, = l’Tu Ty, e Tckli and 7, = [nly Ty, e nkzyj,

and the AR(k;) and AR(k,) parameter estimates of the series x, and y,
respectively as@t,, j=1,2,..., k and ﬁjy, j=1,2, ...,k Letk=
max(k,” k). In constructing the test statistic the maximum determined order
k will be fitted to both series.
Given the series x, and y,, = 1,2, ..., T, the hypotheses to be tested
are
H,: There is no difference between the generating processes of two
stationary series; thatis, 7 _=m s
H,: There is a difference between the generating processes of two
stationary series; thatis, @, # 7, .
The model to be considered is of the form of “the seemingly unrelated
regressions model” as proposed by Zellner (1962). The T-k observations of
the models fitted to x, and y, can be expressed collectively as

x=Wmn +a, and y=Wrmn +a, (2.1)

where
r_

x'= [x,(+1 N xTJ,

- _
Xy Xy X
W, = ,

xT—2 xT~3 xT—k—l
_xT~1 Xr_s X1k i

ax = [ak+1x ot aT—lx aT)c] '



Clusters of Time Series 301

The quantities y', W, , @, and a) are similarly defined. Furthermore

E[a]=0, E[a.a’]= o°l,,,Ela]=0,and Efa,a’ =01,

where I, is a (T-k) x (T-k) identity matrix. We will assume that the
disturbances of the two models are correlated at the same points in time but
uncorrelated across observations. That is

E(a,a))=0_I,.

The dimensions of X, Y, a,, and a, are (T-k) x 1, of t, and m, are k x 1, and of
W, and W, are (T-k) x k.

Then assuming that a total of 2(7-k) observations are used in
estimating the parameters of the two equations in (2.1) the combined model
may be expressed as

Z=Wn+a, 2.2)
Where X W 0 . a
= , W=| ,n=| |, a=| "],
Y 0 Wy T, a,
and
E(a)=0,and E(aa’)=V =281,
where

. {ci GW}
= 5 .
GX}’ Gy
Thus, the generalized least squares estimator 1s
a=[WviW]'Wvz.

Now assuming that the white noise process a, is normally distributed, then
by results in Anderson (1971, p. 189) and Amemiya (1985, p. 187), & is
asymptotically normally distributed with mean 7 and covariance matrix

. . wv'w)'
lim Var(ﬁ n)= plim (———-——) .
T T
Now Hp:m, =7, may be expressed as Hy: Rn = 0, where R = [I, -Ld, and
I, is a k x k identity matrix. Hence, R7 is asymptotically normally
distributed with mean Rz and covariance matrix

rg7-1 -1
lim Var(ﬁ Rﬁ)= plimR (E_\%_W_) R'.

T



302 E. Mabharaj

It can be shown (cf. Maharaj 1997) that under H,,
D=(R#) [R(WV*W)‘ R'II(R 7)

1s one possible test statistic, and it is asymptotically distributed as chi-square
with k£ degrees of freedom. V is estimated by V = X ® I where according to
Zellner (1962), least squares residuals may be used to estimate the elements
of Z consistently.

It has been shown in Maharaj (1997) that this testing procedure can
be extended to multiple comparisons of stationary time series. However,
multiple testing is not required for the clustering procedure that follows in
Section 4,

3. Simulation Study
3.1. Assessment of the Test

To check on the suitability of the test statistic D, which is the
cornerstone of the clustering procedure that can be applied to related series,
we investigate the finite sample behavior of D. Series of lengths 50 and 200
were simulated from a number of ARMA processes. Distributional
properties of the test based on D were checked by obtaining estimates of the
mean, variance, and skewness of the test statistic, and the size of the test.
This approach was implemented by applying the test to pairs of series
simulated from the AR(1) processes: ¢ = 0, 0.1, 0.5, 0.9, the MA(1)
processes: 6 = 0.1, 0.5, 0.9, the AR(2) process: ¢; = 0.6 and ¢, = 0.2, the
MA(2) process: 0; = 0.8 and 6, = -0.6, and the ARMA(1,1) process: ¢ = 0.8
and 6 = 0.2. It was assumed that the correlation between disturbances of
each pair of processes from which the series were generated, were in turn 0,
0.5 and 0.9. Estimates of size were obtained for the 5% and 1% significance
levels. Estimates of power for the 5% and 1% significance levels were
obtained by applying the test to series generated from the following
processes: AR(1) ¢ = 0 versus AR(1), ¢ >0, AR(1) ¢ =0 versus AR(2) ¢, =
0,d,>0, and AR(1) ¢ = 0.5 versus AR(1) ¢ # 0.5. This procedure was
repeated while assuming that the correlation between disturbances of each
pair of processes from which the series were generated was in turn 0, 0.5
and 0.9.

The order (up to 10) of the truncated autoregressive model to be fitted
to each series was determined by Schwartz’s BIC (cf. Box, Jenkins and
Reinsel 1994, p. 201). However in estimating the model in (2.2), the
maximum determined order & was fitted to both the series in each pair. The
test statistic D was then obtained. This process was repeated 2000 times. As



Clusters of Time Series 303

Table 1

Overali Estimates of Size for T'= 200

Correlation
Process Level of 0 0.5 0.9
Significance
AR(1) =0 5% 0.073* 0.073* 0.051
1% 0.018* 0.019* 0.011
¢=0.1 5% 0.074* 0.077* 0.053
1% 0.018 0.020* 0.100
$=0.5 5% 0.074* 0.074* 0.046
1% 0.022* 0.020* 0.013
$=0.9 5% 0.083* 0.068* 0.070*
1% 0.023* 0.013 0.020*
MA(1)6=0.1 5% 0.084* 0.060 0.061*
1% 0.027* 0.017 0.013*
6=0.5 5% 0.080* 0.069* 0.058
1% 0.015 0.019* 0.013
6=0.9 5% 0.088* 0.099* 0.086*
1% 0.022* 0.025* 0.026*
AR(2) 5% 0.070* 0.068* 0.063*
$,;=0.6 ¢,=0.2 1% 0.019 0.021* 0.010
MAQ2) 5% 0.088* 0.077* 0.075*
0,= 0.8 0,=0.6 1% 0.022* 0.022* 0.015*
ARMA(1,1) 5% 0.085* 0.072* 0.072*
¢=0.8 6=0.2 1% 0.024* 0.016 0.018*

Note: * size differs from nominal size by a significant amount (5% level)

well as obtaining size and power estimates for the various degrees of
freedom, overall estimates of power and size were also obtained by
aggregating the respective estimates over the various degrees of freedom.

For T = 50, size was considerably overestimated, and estimates of the
mean, variance, and skewness did not correspond closely to the respective
theoretical values. Because the test statistic has an asymptotic distribution, it
seems that series of length 50 are not long enough for the test statistic to
display this asymptotic behavior. Hence, no further analysis was performed
on series of this length.

For T = 200, the results for which there were at least 100 test statistics
corresponding to particular degrees of freedom were recorded. The size
estimates for series generated from the autoregressive models were fairly
close to the prespecified significance levels, when the correct order k was
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Table 2
Overall Power Estimates for 7=200 (AR(1) $=0 versus AR(1) ¢>0)

Correlation
Process Level of 0 0.5 0.9
Significance
AR(1) ¢
0 5% 0.073 0.073 0.051
1% 0.018 0.014 0.011
0.1 5% 0.203 0.264 0.854
1% 0.074 0.118 0.681
0.2 5% 0.549 0.721 1.000
1% 0.312 0.495 1.000
0.3 5% 0.859 0.972
1% 0.672 0.903
04 5% 0.985 1.000
1% 0.937 0.993
0.5 5% 0.998
1% 0.994

fitted. However, size was often overestimated for other values of k. For the
series generated from the MA and ARMA models, the size estimates were
fairly close to the pre-specified significance levels for some values of k but
were overestimated for other values of k. Because of this problem, the
overall size was slightly overestimated. These overall size estimates are
shown in Table 1 from where it can be seen that in most cases size improves
(that is, gets closer to the nominal 5% and 1% levels) as the correlation
between disturbances of processes from which the series were generated
gets larger.

For those values of £ for which reasonably good size estimates were
obtained, the estimates of the means, variances, and skewness of the test
statistic were very often observed to be fairly close to their respective
theoretical values.

Power estimates based on at least 100 test statistics corresponding to
particular degrees of freedom and overall power estimates based on all 2000
test statistics were obtained, and from these results it was observed that the
test appeared to have reasonably good power for series of length T = 200.
Some overall power estimates are given in Table 2, from where it can also
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be seen that the power of the test improves as the correlation between
disturbances of processes from which the series were generated gets larger.

3.2 Power Comparisons

Because other tests in the literature are applicable to independent series
only, we compared the power of the test D (which we shall refer to as the
autoregressive fitted models test (AR)) for independent series to some of the
other tests, namely, those proposed by Jenkins (1961), Diggle and Fisher
(1991), and Swanpoel and Van Wyk (1986). There is no evidence in the
literature that Jenkins’s (1961) test was previously simulated, whereas
Diggle and Fisher (1991), and Swanepoel and Van Wyk (1986) simulated
their tests and obtained estimates of size and power. All these tests
compared two independent stationary time series by comparing their
estimated spectra.

When the series were generated from the following processes: MA(1)
8 = 0 versus MA(1) 6 > 0, and MA(1) 6 = 0.5 versus MA(1) 6 # 0.5, we
found that when power comparisons were made, the autoregressive fitted
models test had better power than the other tests at both the 5% and 1%
levels of significance. Power curves for the 5% level of significance are
shown in Figures 1-2.

Comparisons which were also made when the series were generated
from the following processes: AR(1) ¢ = 0 versus AR(1), ¢ > 0; AR(1) ¢ =
0 versus AR(2) ¢, = 0, ¢, > 0; and AR(1) ¢ = 0.5 versus AR(1) ¢ # 0.5
produced similar results. While power comparisons using series generated
from autoregressive processes favor the AR test over the others because of
the autoregressive nature of the test statistic, it is clear the test still performs
well in a fairer situation, that is, when the series were generated from the
moving average processes.

The reasonably good performance of the test for the simulated
scenarios would appear to justify its use in the clustering algorithm that
follows in the next section.

4. Clustering Procedure

The clustering procedure that we now consider has the following
steps: First perform the test of hypotheses for every pair of series,
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Figure 1. Power Curve for MA(1) 8=0 versus MA(1) 6>0
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Figure 2. Power Curve for MA(1) 8=0.5 versus MA(1) 620.5
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For each pair of given series, fit the maximum determined order
autoregressive model
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Figure 3. Clustering Algorithm
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Table 3

Distribution of MD, : Measure of Discrepancy between the True and Obtained Clustering

Correlation
0 ] 0.5
MD, Level of Significance
5% 1% | 5% 1%

Frequency
0 1 4 35 57
1 8 6 49 20
2 147 407 381 683
3 385 446 381 213
4 368 133 140 25
5 91 40 14 2

determining the p-value associated with the test D. Use these p-values in an
algorithm’ (see the flow chart in Figure 3) that incorporates the principles of
agglomerative algorithmic approach to hierarchical clustering (cf. Sneath
and Sokal 1973, Ch. 10) but will only group together those series whose
associated p-values are greater than some user prespecified significance
level (for example, 5% or 1%). If one of the series, say x, is already in a
cluster, then the other series, say y, will merge into this cluster if the p-
value associated with y and every other series in this cluster is greater
than the prespecified significance level. If each series from a pair under
consideration is in a different cluster, then the two clusters will merge if
the p-values of all pairs of series across the two clusters are greater the
prespecified significance level.

4.1 Simulation Study to Assess the Clustering Procedure

To evaluate the performance of the clustering algorithm, four series of
length 200 were simulated from each of the following processes: AR(1): ¢ =
0.5; MA(1): 6 =0.7; AR(2): ¢, =0.6, ,=0.2; MA(2): 6,=0.8,0,=-0.6;
ARMA(1,1): $ = 0.8, 8 = 0.2, and the clustering algorithm was applied. This
process was repeated 1000 times.

2. The software for this algorithm is available from the author on request.
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Table 4

Distribution of MD, : Measure of Discrepancy between the True and Obtained Clustering

Correlation
0 | 0.5
MD, Level of Significance
5% 1% | 5% 1%

Frequency
0 228 666 248 663
1 410 274 398 286
2 265 58 279 47
3 90 2 69 4
4 7 0 6 0

We assess the performance of this clustering procedure for series
whose generating processes are assumed to be uncorrelated (correlation
between the disturbances of every two generating processes = 0) as well as
for series whose generating processes are assumed to be correlated
(correlation between the disturbances of every two generating processes =
0.5). The level of significance was in turn set at 5% and 1%.

For each of the 1000 simulations, the number of exactly correct
clusters produced at each simulation (clusters containing the four series
from the same generating process) was observed. Now, because four series
were generated from each of five different processes, the true number of
correct clusters is five (that is, one would expect the four series generated
from the same process to cluster together). A measure of discrepancy
defined as: MD, = [5 - number of exactly correct clusters] was determined
for each of the 1000 simulations. The distribution of MD, for each scenario
is given in Table 3. It can be seen that for the uncorrelated scenario, at both
the 5% and 1% levels of significance, and for the correlated scenario at the
5% level of significance, the clustering algorithm performs poorly because
the discrepancy is too high. However for the correlated scenario, the
performance of the clustering algorithm is more reasonable at the 1% level
of significance. For both the uncorrelated and correlated scenarios, the
algorithm performs better at the 1% than at the 5% level of significance as
would be expected, while at each significance level it performs better for
related than for independent series.

The simulated results were examined further to try to establish
reasons for this algorithm's poor performance. One possible reason is the
number of times some series that were generated from the AR(1), AR(2),
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and ARMA(1,1) processes came together to form a mixed cluster. Statistics
on mixed clusters revealed that far too much mixing occurred. Clearly the
test of hypothesis cannot always distinguish between these three processes.
This conclusion was supported by further simulated results, showing that the
test does not have very high power for series generated from the pairs of
processes (AR(1); AR(2)), (AR(1); AR(2)), and (AR(2), ARMA(1,1)).

To determine if the algorithm will perform any better for series
simulated from processes that are forced to be quite different from each
other, the algorithm was applied to a new set of sixteen series, each of
length 200. Four series were generated from each of the following
processes: AR(1): ¢ =0; AR(1): ¢ =10.5; MA(1): 6 =0.9; and ARMA(1,1)
¢ = -0.6 and 6 = 0.3. The true number of correct clusters is now four. The
distribution of the measure of discrepancy, MD, = (4 - number of exactly
correct clusters) is given in Table 4.

Clearly, the performance of the algorithm is now much better than it
was for the previous set-up. For all four scenarios, the discrepancy is
relatively lower than before, with MD, having a higher cumulative
frequency for 0 and 1 than for 2, 3, and 4. No mixed clusters were produced.
For both the uncorrelated and correlated scenarios, the algorithm performs
much very better at the 1% than at the 5% level of significance. However
there is very little difference in the distribution of MD, for related and
independent series.

Thus, from the results of these simulation studies, it can be seen that
the clustering algorithm performs poorly when some groups of series are
generated from fairly similar processes whereas it performs reasonably well
on groups of series that are generated from clearly distinguishable
processes.

5. Application

To see how our clustering algorithm performs on empirical data, we
consider time series of the number of dwelling units financed by all lenders
(banks and other institutions) in the states and territories of Australia® from
January 1978 to March 1998. Clearly, these series are related because they
are all influenced by the same economic factors. The natural logarithmic
transformation was taken for each series, and they are shown in Figure 4

3. ACT:Australian Capital Territory, NSW:New South Wales, NT:Northern Territory,
QLD:Queensland, SA:South Australia, TAS: Tasmania, VIC:Victoria, WA:Western
Australia (Source: Australian Bureau of Statistics - web address: gopher://gopher.abs.
gov.au:70/11/PUBS/finan/56090)
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Figure 4. Number of dwelling units financed from January 1978 to March 1998 for all states
and territories in Australia
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Figure 5. Clusters of stationary series: Number of dwelling units financed from January 1978
to March 1998 for all states and territories in Australia
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Table 5

Associated p-value for each pair of stationary series: Number of dwelling units financed from
January 1978 to March 1998 for all states and territories in Australia

Pair p-value Pair p-value
NSwW NT 0.8241 NSW  TAS 0.0421
QLD SA 0.6632 VIC WA 0.0397
VIC ACT 0.6278 WA TAS 0.0342
TAS ACT 0.6116 VIC NT 0.0228
QLD NT 0.4302 NSwW  VIC 0.0095
NT ACT 0.4241 WA ACT 0.0070
TAS NT 0.3293 QLD TAS 0.0064
NSW QLD 0.2427 SA NT 0.0054
QLD ACT 0.1768 SA ACT 0.0053
NSwW ACT 0.0781 WA NT 0.0035
SA WA 0.0720 NSW  SA 0.0026
VIC QLD 0.0631 NSwW WA 0.0004
QLD WA 0.0630 SA TAS 0.0000
VIC TAS 0.0467 VIC SA 0.0000

from which it can be seen that the series are not stationary. Some series
appear to have fairly similar patterns but one cannot clearly distinguish how
similar or how different these patterns are. First differencing of each of
these series appeared to render them stationary. The algorithm was then
applied to these differenced series.

When the level of significance was set at 5%, the algorithm produced
the following clusters (QLD, SA, WA), (NSW, NT), (VIC, ACT), and
(TAS). However when the significance level was set at 1%, the following
clusters (QLD, SA, WA), (NSW, NT), (VIC, ACT, TAS) were produced.
Inspection of the p-values of the test of each of the pairs of series (VIC,
TAS), (VIC, ACT), and (ACT, TAS) revealed that for the pair (VIC, TAS),
the p-value was 0.0467. Hence at the 1% level of significance, TAS merged
with VIC and ACT. Table 5 shows the p-values associated with every pair
of series, and Figure 5 which is a variation of the conventional dendogram
shows how the clusters form.

These results show that it is possible for series on different levels but
having similar patterns to cluster together. The reason is that while the test
of hypotheses differentiates between the stochastic nature of series it does
not differentiate between their corresponding deterministic natures. This
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result in no way affects any further analysis of the series in each cluster. For
example, if we are analyzing a large number of series and we obtain
forecasts of a representative from each cluster, then these forecasts will
apply to all series in a particular cluster and in turn to all the corresponding
original series. This advantage will, of course, be achieved by reversing the
operation of differencing and any other transformation of the stationary
series that would have been carried out to render the original series
stationary in the first place.

6. Concluding Remarks

The test of hypotheses as well as the clustering technique can be applied to
independent as well as to related time series of reasonable length. The
simulation results show that, for series of reasonable length, the
distributional approximations of the test statistic to the chi-square
distribution are fairly adequate and that the clustering algorithm performs
reasonably well under some circumstances only. The results of the
application of the algorithm to empirical data appear to be quite reasonable.

Conventional hierarchical clustering methods have no rule for
deciding on the number of clusters; that is, the decision is usually
subjective. By contrast, our clustering algorithm has a rule for deciding on
the number of clusters to choose, even though the choice of the significance
level remains somewhat subjective.

This application of the algorithm is restricted to reasonably long
stationary series that can be modeled as linear processes. Because in
practice, we may encounter short or stationary series that cannot be fitted by
linear models or nonstationary series that cannot be easily tranformed to
stationary series, further research is being undertaken to extend our
clustering algorithm so that it can be more generally applied.
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