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1. Introduction

Perceptions have been studied using graphical representations of
dissimilarity judgments of stimuli that either take the form of trees or spatial
configurations. The assumption underlying the analysis of dissimilarity
judgments is that subjects compare the stimuli on the basis of a number of
attributes, that are either discrete features or continuous dimensions (Gamer
1978; Johnson and Fornell 1987; Johnson, Lehmann, Fornell, and Horne
1992; Tversky 1977; Tversky and Gati 1978). Those attributes are recovered
through the analysis of dissimilarity judgments with models that represent
them as a tree (see Barthélemy and Guénoche 1991; Carroll and Chang 1973;
Corter 1996; DeSarbo, Manrai, and Manrai 1993; De Soete and Carroll 1996;
Gascuel and Levy 1996; Sattath and Tversky 1977) or as a spatial
configuration, respectively (see Carroll and Arabie 1998; Carroll and Green
1997; Green, Carmone, and Smith 1989). The choice between tree and
spatial models is based (a) on prior theory on the attribute-types discerned by
subjects for the stimuli in question, (b) on the basis of the relative fit of the
two models, or (c) on such diagnostic measures as the skewness of the
dissimilarity judgments (Ghose 1998; Glazer and Nakamoto 1991;
Pruzansky, Tversky, and Carroll 1982).

The question is, however, whether tree structures and spatial
configurations should be considered as substitutes or as complements.
Carroll (1976, p. 455) stated: “I am increasingly inclined to think of tree
structures and spatial structures not so much as competing models as
complementary ones, each of which captures certain aspects of a reality
which is probably in fact much more complex than either model alone”. Or
as formulated by Shepard (1980, p. 397): “It would be a mistake to ask which
of these various scaling, tree-fitting, or clustering methods is based on the
correct model. Different models may be more appropriate for different sets of
stimuli or types of data. Even for the same set of data, moreover, different
methods of analysis may be better suited to bringing out different, but equally
informative aspects of the underlying structure.” Recently, Ghose (1998)
stated: “...items such as the nature of the stimuli and the way consumers
process information influence the nature of the input data sets. Coupled with
the dimensional versus feature based structure of spaces and trees, this
demonstrates that spaces and trees should be considered complementary
approaches for representing data.”

These insights have given rise to the development of mixed or hybrid
models, i.e., models that contain a tree structure as well as a spatial confi-
guration. In recent literature reviews, hybrid models have been mentioned as
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one of the important developments in the field of psychometric methods (e.g.
Carroll and Arabie 1998; Carroll and Green 1997). However, despite the
added value such approaches may have over single tree structure models or
spatial multidimensional scaling (MDS) models, “much has been said but
little done about such mixed or hybrid models” (Carroll and Arabie 1998). In
the literature, only a few hybrid models for dissimilarity judgments have been
proposed. An important point to be made here is that although differences
between individuals have been shown to occur both in processing attributes
and in judging the dissimilarity of stimuli (Bijmolt, Wedel, Pieters, and
DeSarbo 1998; Johnson and Fomell 1987; Johnson et al. 1992), most
previous hybrid models for the analysis of dissimilarity judgments do not
account for heterogeneity among subjects (Carroll and Pruzansky 1980;
Degerman 1970; Hubert and Arabie 1994; Hubert, Arabie, and Meulman
1997, 1998), the model of Carroll and Chaturvedi (1995) being an exception.

In this paper we propose a stochastic mixture model of tree and spatial
representations for the analysis of dissimilarity judgments, which allows for
structural heterogeneity in perception. The mixture model accounts for
heterogeneity between subjects parsimoniously by identifying two
unobserved classes. The dissimilarity judgments of subjects in the first latent
class are represented using an additive tree structure, and those of the subjects
in the second latent class using a spatial structure. The stochastic formulation
allows for maximum likelihood estimation and testing which representation is
most appropriate. Our model differs importantly from previous mixture
models published in the classification, psychometric, and marketing
literature, in that it accounts for structural heterogeneity among classes,
whereas previous work has accommodated parametric heterogeneity,
assuming classes to be structurally homogeneous (see Wedel and Kamakura
2000, Part 2).

In this paper we first discuss the theoretical background of alternative
representations of dissimilarity judgments. Next, we present the mixture
model of tree and spatial representations. The performance of the model in
identifying whether a tree or spatial representation is more appropriate for a
particular subject is demonstrated through the analysis of synthetic data sets.
We illustrate our model on cola tasting data published by Schiffman,
Reynolds, and Young (1981, Chapter 3). We describe the results of analysis
of twenty empirical data sets to assess the relative importance of tree
structures and spatial configurations across different stimulus types. We
compare the model with aggregate tree and spatial models, and two-class
mixtures of pure trees and pure spatial configurations, respectively. Finally,
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we formulate some empirical generalizations from those analyses, discuss the
model and results, and provide directions for future research.

2. Background
2.1. Features versus Dimensions

In most studies involving dissimilarity judgments it is assumed that
subjects evaluate and exclusively compare stimuli on either discrete features
or on continuous dimensions (Garner 1978; Johnson and Fornell 1987;
Johnson et al. 1992; Tversky 1977, Tversky and Gati 1978). Discrete
features are attributes with a limited number of values, for example diet
versus regular cola. Continuous dimensions are attributes on which the
stimuli vary as a matter of degree, for example the sweetness of the cola. The
way a respondent processes an attribute may affect whether that attribute is
used as a discrete feature or as a continuous dimension in brand dissimilarity
judgments (Garner 1978; Johnson et al. 1992; Tversky 1977). In the cola
example, the continuous attribute cherry flavor, for example, could be used in
the judgment process as the presence or absence of that flavor rather than as
the degree of that flavor. Alternatively, a set of discrete features may be
combined into a continuous dimension. Several discrete taste aspects of the
cola could be integrated to form a quality dimension.

The processes by which subjects evaluate and compare stimuli to arrive
at dissimilarity judgments may be affected by factors related to the stimuli,
such as the format by which the stimuli are presented to the subjects (Bijmolt
et al.1998), and by factors related to the subjects, such as their experience and
familiarity with the stimuli (Johnson et al. 1992). The existence of
heterogeneity in subjects’ perceptions of stimuli has been widely recognized,
and may be related to personality factors such as cognitive complexity (Bieri
1955), a verbal versus a visual style of information processing (Childers,
Houston, and Heckler 1985), and the need and ability to achieve cognitive
structuring (Bar-Tal, Kishon-Rabin, and Tabak 1997).

2.2. Tree Structures versus Spatial Configurations

It has been previously found that tree structure models outperform
MDS methods in fitting empirical customer perceptions of conceptual stimuli
such as brands (Johnson and Fornell 1987; Johnson and Hudson 1996;
Johnson et al. 1992; Pruzansky, Tversky, and Carroll 1982). On the other
hand, the fit of MDS models has been found to be better relative to tree
structure models for perceptual stimuli (Pruzansky, Tversky, and Carroll



Representations of Dissimilarity Judgments 247

1982) and abstract stimuli, such as product categories (Johnson et al. 1992).
When considering perceived usefulness and interpretability, spatial
configurations appear to outperform tree structures. Johnson and Horne
(1992) found that subjects were better able to indicate their perception of a
certain brand by representing that brand as a point in a spatial configuration
than as a branch in a tree structure. In addition, Johnson and Hudson (1996)
revealed that users found spatial configurations more useful when compared
to tree structures.

Before the tree or MDS models are fitted, one may attempt to decide
whether a tree or a spatial configuration is more appropriate on the basis of
characteristics of the dissimilarity data. Ghose (1988) and Pruzansky,
Tversky, and Carroll (1982) showed that the skewness of the data helped to
discriminate between the two representations, whereas other measures, such
as elongation, centrality, and reciprocity, performed less well in that respect.
The shape of a tree allows for many large distances between stimuli, whereas
a low-dimensional spatial configuration does not. Hence, dissimilarity data
with a large negative skewness generally fit a tree structure better relative to a
spatial configuration.

2.3. Hybrid Models

As noted in the introduction, it is generally accepted that features and
dimensions on the one hand and trees and spatial configurations on the other
are complements rather than substitutes (Carroll 1976; Ghose 1998; Shepard
1980). Despite the added value of approaches that combine trees and spaces
may have over single tree structure models or spatial MDS models, only a
few hybrid models for dissimilarity judgments have been proposed.
Degerman (1970) developed a model which combined continuous
dimensions with discrete dimensions. Carroll and Pruzansky (Carroll 1976;
Carroll and Pruzansky 1980) developed hybrid models that combine single
and multiple tree structures and a single multidimensional spatial
configuration. In their model, the dissimilarity between two stimuli
corresponds to the sum of the distances derived from the trees and from the
spatial configuration. Hubert, Arabie, and Meulman (Hubert and Arabie
1994; Hubert, Arabie, and Meulman 1997, 1998) developed procedures to
represent a dissimilarity matrix through distances among a set of entities
under certain types of constraints. Their procedures allow for approximating
the dissimilarity matrix by the sum of several distance matrices. Specifying
the appropriate sets of constraints for each of these distance matrices, results
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in a hybrid tree and space model as a special case of the Hubert, Arabie, and
Meulman model. These hybrid models represent the data at the aggregate
level, and both the tree structure and the spatial configuration is assumed to
hold for all subjects in the sample.

However, evidence has been provided that subjects differ in the way
they judge the dissimilarity between pairs of stimuli (Bijmolt et al. 1998;
Johnson and Fornell 1987; Johnson et al. 1992). Heterogeneity of subjects is
not accommodated in the hybrid models of Degerman (1970), Carroll and
Pruzansky (Carroll 1976; Carroll and Pruzansky 1980), and Hubert, Arabie,
and Meulman (Hubert and Arabie 1994; Hubert, Arabie, and Meulman 1997,
1998). Carroll and Chaturvedi (1995) proposed CANDCLUS, a general class
of multilinear models and methods for the analysis of multi-way data with
continuous, discrete, or mixed attributes. One of its important special cases is
a hybrid model that accommodates individual differences through combining
aspects of the overlapping clustering model INDCLUS (Carroll and Arabie
1983; Chaturvedi and Carroll 1994) with the spatial model INDSCAL
(Carroll and Chang 1970). In the CANDCLUS model heterogeneity is
accounted for by estimating subject-specific weights for both the discrete and
continuous attributes. However, this approach substantially increases the
number of parameters to be estimated, especially if the number of subjects is
large, as is often the case in empirical applications. An additional limitation
of the CANDCLUS model, as well as of the other hybrid model described
above, is that they do not allow for parametric statistical inference and
describe only the particular data set at hand. Stochastic models that explicitly
postulate a probabilistic data generation mechanism describing uncertainties
in the outcomes of the underlying process allow for parametric statistical
inference, and enable generalizations from the sample to the population.
However, in spirit our approach is consonant with that of Carroll and
Chaturvedi (1995).

3. Mixture of Tree and Spatial Representations
3.1. The Model for Dissimilarity Judgments

Let n = 1,...,N denote subjects, i, j, £ = 1,...,] denote stimuli, and ¢ = 1,
2 denote C = 2 classes of judgment processes. In particular, we assume ¢ =1
to correspond to a judgment process based on common discrete features
represented by an additive tree, and ¢ = 2 to a judgment process based on
continuous dimensions represented by a spatial MDS model. The data, 6;s,
are the observed dissimilarities of the pair of stimuli 7 and j by subject n.



Representations of Dissimilarity Judgments 249

Throughout this paper, we will use the Greek symbol & for observed data and
Roman symbols (e.g. ¢, d, i, p, and s) for reconstructed, output data and
model parameters. We consider the stochastic nature of the respondents’
decision processes, by formulating a model that consists of a representation
component and a measurement component, the former pertaining to additive
tree respectively spatial representations assumed to capture subjects’
dissimilarity judgments of stimuli. The measurement model involves
distributional assumptions on the error, which enable us to adopt maximum
likelihood (ML) estimation. Under certain regularity conditions, ML
estimates for mixture models have such important properties as consistency
of the estimates, not shared by models that include individual-specific
parameters (Amemiya 1985, p. 115, 123).

We assume C = 2 unobserved classes, where Class 1 corresponds to an
additive (or path length) tree structure and Class 2 to a spatial configuration.
Because mixture models are invariant under interchanging of the class labels
(McLachlan and Basford 1988, p. 12), this assignment is arbitrary. We
assume that a particular subject in the sample, when making a dissimilarity
judgment, draws from each of these two processes with prior probabilities,
denoted as p; and p,, respectively. Next, we assume the I(I-1)/2 dissimilarity
judgments for subject n, using the process of Class ¢, to follow a normal
distribution. Thus we have : :

(Siu-dse)

1
ifn di‘w [4 = €X - . 1
P Sinl dijer sc) m p 2Sf Y]

Here dj. is the expected value of 3, in Class c, and s.* its variance.

For Class 1, it is assumed that the dissimilarity judgments are produced
by the distances in an additive tree (Corter 1996, p. 16-26; Gascuel and Levy
1996; Sattath and Tversky 1977), in which each quadruple of distances
satisfies the additive or four-point inequality:

d gt dy <min (dik] Tdundint djkl) \AI{ A (2)

This inequality is identical to restricting the largest two of the three sums of
distances between pairs of the four objects to be equal. The set of constraints
in (2) imposes the additive inequality for Class 1 only.

For Class 2, it is assumed that the dissimilarities are produced by a
constant term, a, and the Euclidean distances of a T = 2 two-dimensional
spatial model, where the location of stimulus i on dimension ¢ is represented
by x;. We restrict the spatial configuration to two dimensions throughout this
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paper for ease of interpretation and because a tree apparently contains about
the same amount of information as a two-dimensional spatial configuration
(Carroll 1976, p. 453). In Ghose’s (1998) and other comparisons of trees and
spatial configurations, the spatial configurations were also restricted to be
two-dimensional. Thus, for Class 2:

dy‘2=a+1i(Z(Xiz‘th)2) . 3)

The effective number of parameters for the additive tree in ¢ = 1 is 2I-3
(Corter 1996, p. 51); the MDS solution has 2I-2 effective parameters
(DeSarbo, Manrai, and Manrai 1994, p. 199). In addition, there are 2 variance
parameters and 1 prior probability to be estimated, adding up to K = 4I-2
effective parameters estimated for the model as a whole. The unconditional
distribution of the dissimilarity judgments for subject # is formulated as:

G(Sin)= ch¢,,c( Sinld oS, )= Z pJ o Suldics:) . @
i<j
3.2. Estimation
The likelihood: N 2 4
L = Hzpc¢nc(5ijnldijcrsc) (5)

n=1 ¢=1

1s maximized under the constraints on the fitted distances provided by (2) and
(3) using an EM algorithm (Dempster, Laird, and Rubin 1977). We provide
the main features. That algorithm maximizes the likelihood through a series
of major iterations, each consisting of an expectation step (E-step) and a
maximization step (M-step), and minor iterations within each M-step for ¢ =
1, 2. The E-step of the algorithm involves taking the expectation of the
complete log-likelihood with respect to unobserved 0/1 class membership
indicators, which amounts to replacing these indicators with their expected
values. These expected values equal the posterior probabilities, p,., that
subject n belongs to Class c, calculated at the current parameter estimates by
means of Bayes's Theorem (see Equation (6) in Section 3.3).

Each M step for ¢ = 1 is started using unconstrained estimation of the
distances. We then parameterize the addltive tree as an ultrametric tree plus a
constant for each stimulus d;, =d; +d +dl ., (Carroll 1976; DeSarbo,
Manrai, and Manrai 1993) Doing so allows us to 1mpose the (fewer)
ultrametric constrains: d ; Smax( d,k,dy ), Y(i,jk) on d, ;; Tather than the
additive constraints on d ;1. This reduction is first done approx1mately by
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using the triple reduction method (TRM). TRM involves a repeated
sequential averaging of the largest of two pairs of each triple (Roux 1987).
The resulting distances do not yet completely conform to the ultrametric
inequality. Subsequently, a Sequential Quadratic Programming method,
involving a quasi-Newton maximization algorithm (Scales 1985, Section
3.5), is applied to enforce the ultrametric constraints on dl ., exactly. This
step completes the M-step for ¢ = 1.

The M-step for ¢ = 2 is initialized by a metric MDS based on a singular
value decomposition of the double-centered matrix of dissimilarities averaged
across subjects weighted with the class probabilities. Then an unconstrained
maximization algorithm, involving a quasi-Newton maximization algorithm
(Scales 1985, Section 3.5), is used, after imposing identifying constraints on
the parameters. We approximate the required derivatives for bothc=1and ¢
= 2 numerically using forward differences. In each M step the parameter
estimates from the previous steps are used as starting values, for ¢ = 1, 2.
The convergence criterion used on the average log-likelihood is 10°. For
further details on the EM algorithm we refer to Dempster, Laird, and Rubin
(1977) or Wedel and Kamakura (2000, Appendices Al and A2). The EM
algorithm is started from equal posterior probabilities (p,.=0.5; n=1,..,.N; ¢
=1, 2), so that each subject has an equal a priori probablhty of belongmg to
the additive tree and the spatial class.

3.3. Evaluation

Once the parameters of the model are estimated, the posterior
probabilities, p,, that subject n has drawn upon process c (tree versus space),
can be calculated using Bayes's Theorem. For the tree class the posteriors
equal:

p1¢n1(5ijn|dijlr51)
p1¢n1(5ijn‘dij1151) + 0,0, Spldizs2)

where ¢, is implicitly defined in (4). For the MDS class: p,> = 1 - pa;
These posterior probabilities are important quantities in our study, because
they enable us to assess post hoc whether subject # has used the additive tree
representation (p,,; = 1, p,2 = 0), or the spatial representation (p,,; =0, p,»=1),
or a mixture of both. The p,’s provide a probabilistic allocation of the
subjects to the additive tree and spatial MDS classes, and thus enable one to
judge & posteriori which judgment strategy a particular subject employs. We
investigate this using an entropy measure E, (see Wedel and Kamakura 2000,

Pui= (6)
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p. 92):

2 N & ~
BT Nl 9.5
E=1-20, NIn@2) @

c=I n=]

The entropy measure E, assesses the separation of the two classes and can
thus be interpreted as the extent to which subjects use a single judgment
process. Values close to unity indicate that subjects use a single strategy: i.e.,
a subject’s dissimilarity judgment process can be represented by either a tree
or a spatial representation. Values close to zero indicate that there is not
enough information in the data to distinguish between the two processes for a
particular subject, so that the available data indicate that subjects use a mix of
the two strategies; i.e., for each judgment, subjects draw with nonzero
probabilities from both processes to arrive at their dissimilarity judgments.

To assess the fit of each model and to compare this fit across
alternative model formulations, we compute an R” fit measure, being defined

as: c N
zzpnCZ(é‘ijn - dijC)Z

R2:1_c=1n;1 ij — ) (8)
ZZ(é‘tjn '5[]"1)
n=] ij

where §;, equals the average of the dissimilarity judgment across all
subjects and pairs of stimuli. In addition, we compute AIC = -2 In L + 2K
(Akaike 1974). The estimated prior and posterior probabilities, the entropy,
the R® fit measure, and AIC are the statistics by which we evaluate the
empirical results to draw generalizable conclusions on the use of discrete
versus continuous dimensions in the pairwise dissimilarity judgments of
stimuli.

3.4. Analysis of Synthetic Data Sets

To check the performance of the algorithm described above, we
generated three synthetic data sets with C = 2 classes, I = 5 stimuli, and N =
20 subjects. The first data set was generated on the basis of one single tree
for all subjects. The distances were generated according to Equations (1) and
(2), where the true distances were taken from subsets of the stimuli in Table
5.3 n DeSarbo, Manrai, and Manrai (1993), and random error was drawn
from N(0, 0.5). This data set was analyzed with the above mixture of tree and
MDS configurations, starting from posterior probabilities of 0.5 for all
subjects. The estimation procedure assigned all subjects correctly with a
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posterior probability of 1.0000 to Class 1, the tree structure. The second
MDS class, was empty, all posteriors equaling 0.0000. Consequently p,= 1.0
p: = 0.0, and E, = 1.0, indicating that all subjects use the tree representation.

The second data set was generated on the basis of a single MDS model,
where the distances were generated to conform to Equations (1) and (3). The
stimulus coordinates were drawn from a N(0,2) distribution, random error
from a N(0, 0.5), and a = 20 was used. This data set was analyzed with the
mixture model. The algorithm correctly assigned all subjects to Class 2, the
MDS class, with a posterior probability of 1.0000. Class 1, with the tree
structure, was empty, all posteriors being equal to 0.0000. Consequently p, =
0.0, p; = 1.0, and E, = 1.0, correctly indicating that all subjects use the spatial
configuration.

The third data set was generated on the basis of an additive tree model
for Class 1, and an MDS model for Class 2. Each of the two classes
comprised 10 subjects. The distances for the two classes were generated as
for the first and second data set above, respectively. The third data set was
analyzed with the mixture model. The EM estimation algorithm correctly
assigned subjects 1 through 10 to Class 1, with the tree structure, with a
posterior probability of 1.0000, and subjects 11 through 20 to Class 2, with
the spatial structure, all posteriors equaling 1.0000. Consequently p; = 0.5,
p.=0.5, while again E,= 1.0, indicating that all subjects use a single strategy,
but that half the subjects fit the spatial, and the other half the tree structure.

Thus, from these analyses of synthetic data, it appears that the
proposed mixture model is capable of identifying the true decision process
from the data, even if the number of stimuli (I = 5) is relatively small, which
theoretically leads to a weak posterior update in the E-step of the algorithm.
Both a pure tree structure, a pure spatial structure, and a mixed structure were
correctly identified, while the posterior probabilities and the entropy statistic
indicate that the classification of subjects into both processes is quite good.

4. An Illustrative Application

To provide an example of alternative representations of dissimilarity
judgments, we analyze the data published by Schiffman, Reynolds, and
Young (1981, p. 33-34). In a sensory experiment, 10 subjects (nonsmokers,
aged 18-21 years) tasted ten different brands of cola: Diet Pepsi, RC Cola,
Yukon, Dr. Pepper, Shasta, Coca-Cola, Diet Dr. Pepper, Tab, Pepsi Cola, and
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Diet Rite.! Each subject provided 45 pairwise dissimilarity judgments on a
graphical anchored line-scale. The judgments were transcribed on a scale
from 0-100 representing same (near 0), and different (near 100). In addition,
ratings on thirteen taste attributes, for example bitterness, sweetness, and
fruitiness, were collected from the same subjects.

To assess which structure best represents the dissimilarity judgments,
we compare the proposed model to a number of alternative models. Two
candidate models are the aggregate additive tree model and the aggregate
spatial model. In addition, we estimate a two-class parametric mixture of trees
and a two-class parametric mixture of spatial configurations. These
benchmark models allow us to assess whether the proposed mixture of tree
and spatial structure merely represents parametric heterogeneity in the
sample. If the proposed mixed model outperforms the two-class tree model
and the two-class spatial model, there is support for the existence of structural
heterogeneity. Hence, we estimate the following five models:

1. The C = 1 additive tree, TREE(1), i.e., the model provided by
Equations (1) and (2) with C = 1. This model corresponds to
traditional additive tree models, estimated with ML. The number of
parameters estimated equals K = 21-2.

2. The C = 2 additive tree, TREE(2), i.e., a model provided by
Equations (1) and (2) with C = 2. This model accounts for
heterogeneity in the tree structure across unobserved classes. The
additive restrictions in Classes 1 and 2 may differ, so that this
model simultaneously identifies latent classes of subjects, as well as
an additive tree structure for each class. This model has not been
published previously and presents an extension of the mixture
model for ultrametric trees by Wedel and DeSarbo (1998). The
number of parameters estimated equals MK= 41-3.

3. The C=1and T =2 MDS model: MDS (1), i.e., a model provided
by Equations (1) and (3) with C = 1 class only and T = 2 latent
dimensions. This model corresponds to a traditional metric MDS
model for pairwise dissimilarity data, estimated by ML. The
number of parameters estimated equals K = 2I-1.

4. The C = 2 MDS model: MDS(2), i.e,, a model provided by
Equations (1) and (3) with C =2 and T = 2. This model accounts
for heterogeneity in the spatial representation of the stimuli across

1. Unlike the diet colas currently on the market, the diet versions in this data set were still
saccharine-based, which affects the results of the taste test presented.
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unobserved classes. The positions of the stimuli in the two-
dimensional spatial configurations in Classes 1 and 2 may differ,
reflecting different perceptual orientations. This model
simultaneously identifies latent classes of subjects, as well as a
spatial MDS structure for each class and was proposed by DeSoete,
Meulman, and Heiser (1992) and described by DeSarbo, Manrat,
and Manrai (1994, p. 198-200). The number of parameters
estimated equals K = 41-1.

5. The C = 2 mixture of additive tree and spatial T = 2 MDS model,
that identifies latent classes of subjects that potentially differ in the
type of representation of the stimuli as described in section 3. The
number of parameters estimated equals K = 41-2.

The fit of the additive tree and MDS mixture (AIC = 1021.2; R =
0.509) is much better than that of either the aggregate tree (AIC = 1148.1; R?
=(.291) or aggregate MDS (AIC = 1136.0; R*=0.313) solutions for the cola
data. In addition, the mixed tree and MDS model fits better than either a
mixture of two trees (AIC = 1034.1; R* = 0.494), or a mixture of two spatial
configurations (AIC = 1060.3; R? = 0.463). Hence, for the cola data the
mixed additive tree and MDS model is to be preferred.

The additive tree structure for the ten cola brands is presented in
Figure 1. The additive tree can be thought to represent the distinctive features
of the colas (Corter 1996). One branch of the tree contains three diet colas,
which have relatively low interpoint distances: Diet Pepsi, Diet Rite, and Tab.
The arc-length separating these diet colas from the others represents the
summed weights of the distinctive features that these brands share. The
interpretation of the arc as diet/regular feature is hampered by the fact that the
fourth diet cola in the stimulus set, Diet Dr. Pepper, is joined to the regular
Dr. Pepper, albeit with a relatively large distance. The arc connecting these
two brands to the others seems to be a distinctive brand taste feature: Dr.
Pepper versus other brands, which can be interpreted as the presence/absence
of the characteristic cherry flavor. The subtree in the upper part of the
additive tree in Figure 1 shows a set of nodes that can be interpreted as
representing distinctive brand features, distinguishing the five remaining
nondiet brands.

Figure 2 presents the spatial representation of the ten cola brands. We
try to fit the thirteen taste attributes into this configuration so as to label the
dimensions. However, only two attributes, namely fruitiness and sweetness,
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Figure 1. Additive Tree for the Schiffman et al. (1981) Cola Data
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Figure 2. T=2 Dimensional Spatial Configuration for the Schiffman et al. (1981) Cola Data

reach a good fit (tho above 0.80) and two attributes, namely bitterness and
stale versus fresh, a satisfactory fit (rtho between 0.70 and 0.80). Seven
attributes are clearly not useful for interpreting the dimensions (rho below
0.60). The four attributes that can be used to label the dimensions are highly
correlated, and define only a single direction in the plot. Colas at the lower
right of Figure 2 can be interpreted as more fruity, sweet, and fresh, and less
bitter, whereas colas in the upper left are less fruity and sweet and more stale
and bitter. The vertical dimension separates the Dr. Pepper brands at the top
from the other brands, which apparently results from the specific cherry taste
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of the Dr. Pepper brand. The horizontal dimension separates the diet versus
the nondiet brands: on the left side of the horizontal axis one observes Diet
Dr. Pepper, Diet Pepsi, Tab, and Diet Rite, on the right side, the nondiet
brands Yukon, RC Cola, Pepsi, Shasta, and Coca-Cola. Among the nondiet
cola brands on the upper right side of the plot there seems to be fairly little
distinction, but among the diet colas Diet Dr. Pepper stands out. To
summarize, the two dimensions in the plot can be interpreted as a diet versus
regular and a cherry taste dimension.

Comparing the additive tree and the spatial representations
(respectively Figures 1 and 2), one has to conclude that the interpretation of
both is very similar: the same three groups of brands emerge: Dr. Pepper and
Diet Dr. Pepper; Diet Pepsi, Diet Rite, and Tab; and Yukon, RC Cola, Pepsi,
Shasta, and Coca-Cola. Both the additive tree and the spatial configuration
depict the taste distinction between diet and regular colas, and between
brands with and without cherry flavor. These attributes are best interpreted
as discrete features. No clear, continuous dimensions are found in the spatial
representation. Because discrete features correspond to the behavioral model
underlying tree structures, the tree representation seems to depict a clearer
structure among the cola brands.

To illustrate the insights provided by our mixed model of a tree and a
spatial configuration, we provide in Figure 3 the results of an analysis of the
Schiffman, Reynolds, and Young (1981) cola data with our procedure. The
mixture model results show that there are two well separated classes: all
posterior probabilities of membership deviate less than 0.001 from either zero
or one, and the entropy measure E, equals 0.999. Each class comprises 5
subjects. The subjects in the tree-class seem to identify specific brand tastes:
Dr. Pepper and Diet Dr. Pepper, and their respective counterparts Coca-Cola
and its diet version Tab, are in separate subtrees. Note that the Dr. Pepper
brands stand out particularly, as indicated by the length of the arc connecting.
them to the other brands. However, the exception is that Diet Pepsi and Pepsi
are not joined in a specific subtree, which shows Pepsi was not able to
produce a diet version tasting similar to its nondiet version. Nevertheless, we
conclude that the specific brand tastes are the distinctive features determining
dissimilarity judgments in this class. In the MDS class, the vertical dimension
separates the diet and the nondiet colas. However, in this case the horizontal
dimension is very clearly a continuous dimension on which the brands are
well dispersed. This continuous dimension underlies both the diet and the
regular versions of the brands, with the Dr. Pepper brands being on the one
extreme and Coca-Cola brands on the other extreme of the dimension. We
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Panel (a), Class 1: Additive Tree Structure
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Panel (b), Class 2: Spatial Configuration
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Figure 3. C=2 Mixed Tree-Space Solution for the Schiffman et al. (1981) Cola Data

fitted the thirteen attributes into the configuration of this MDS class; now six
attributes reach a good fit (tho above 0.80) and three a satisfactory fit (rho
between 0.70 and 0.80), all of them having a high correlation with the
horizontal dimension. This dimension reflects sweetness and bitterness, with
the brands on the left side being perceived more sweet and fresh and less
bitter, sour, stale, and chemical. It is interesting to note that the subjects in
the MDS class all have the ability to taste phenylthiocarbamide (PTC; a
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chemical compound that tastes bitter), while subjects in the tree class do not
have this ability. This ability is determined by one gene on chromosome
seven (Srb, Owen, and Edgar 1965, p. 401). For the subjects in this sample,
whose perceptual process appears based on continuous dimensions, such as
sweetness and bitterness, or instead on discrete features, the judgments seem
to be determined here by a single genetic factor. Once subjects have the
ability to taste bitter, the continuous sweetness/bitterness dimension
dominates their perceptions. Subjects lacking this ability base their judgments
on discrete brand-taste features.

Comparing the mixed additive tree and spatial solution in Figure 3
with the aggregate tree and spatial configuration in Figures 1 and 2, it is
obvious that the sample is heterogeneous with respect to the representation
underlying the dissimilarity judgments. The aggregate level analyses mask
important characteristics that are recovered by the tree and spatial structures
identified at the latent class evel. In the mixed model, the continuous
sweetness dimension is evident, which is not recovered in the separate
additive tree and MDS analyses, for example. Hence, the empirical
application demonstrates the insights obtained with our procedure and that
incorrect and incomplete conclusions may be drawn from aggregate level
solutions if the subjects’ true underlying perceptual structures are
heterogeneous.

5. Analysis of Twenty Empirical Data Sets

Following studies by Pruzansky, Tversky, and Carroll (1982), Johnson
et al. (1992), and Ghose (1998), we analyze twenty data sets of pairwise
dissimilarities to investigate the adequacy of tree versus spatial
representations. We restrict the analysis to data sets that pertain to pairwise
dissimilarity judgments’, and do not consider other types of dissimilarity
judgments (for example triadic combinations or free sorting), derived
dissimilarity data (for example computed from attribute ratings), brand
switching data, or co-occurrence data. The reason is that we are interested in
identifying the processes underlying pairwise dissimilarity judgments, and in
particular in identifying differences in those processes. The analyses enable
us to draw conclusions on whether or not the type of representation model

2. Strictly speaking, the dissimilarity judgments in our twenty empirical data sets are ordinal.
However, given the large number of scale points (7 to 11), this type of data can arguably be
treated as interval scale (see e.g. Bijmolt and Wedel 1999), which is commonly done in
empirical applications.
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that best describes the dissimilarity judgments depends on factors related to
the stimuli, the subjects, and the measurements.

Table 1 lists the twenty data sets and their characteristics: the type of
stimuli, the number of stimuli, the type of subjects, the number of subjects,
and the number of points of the dissimilarity rating scale. The stimuli in
thirteen data sets are commercial stimuli, in particular brands of fast moving
consumer goods (fmcg), durables, services, and media. In addition, we
analyze seven data sets on non-commercial stimuli, namely locations and
emotions. The number of stimuli in the data sets ranges from 8 to 15, the
number of subjects ranged from 10 to 60. Dissimilarity judgments are
provided on 7-, 9-, or 11-point scales. The two data sets on emotions have
been published previously and accompany the MULTISCALE program
(Ramsay 1982, 1991). The other data sets are collected by the authors, and
some of these data sets have been used in other studies (Bijmolt and Wedel
1995; Bijmolt, et al. 1998; Bijmolt, DeSarbo, and Wedel 1998).

Before running the analyses, the dissimilarity data are standardized to
zero mean and unit variance by subject, to prevent the solutions becoming
confounded with the effects of response strategies (Bijmolt et al. 1998).
Most data sets do not contain missing values, but a few data sets have a small
percentage of missing values that are imputed by mean substitution for each
individual before standardization. As in the application to the cola taste data,
for each of the twenty data sets we estimate the same five models as in
Section 4, namely a single additive tree model, a two additive trees model, a
single spatial configuration model, a two spatial configurations model, and
the mixed tree and spatial configuration model. Following the previous
literature in this area (Johnson et al. 1992; Pruzansky, Tversky, and Carroll
1982; Ghose 1998) we report the fit for each of those five models, in
particular the AIC criterion and the percentage of variance explained’.
Tables 2 and 3 present the results, where the model that has the lowest AIC
value, or respectively, explains the largest percentage of variance for a
particular data set is underlined. Because the R? and AIC statistics yield
highly similar conclusions (by identifying the same models as best for all data
sets except for supporting facilities), we only discuss the results based on the
latter.

3. Note that the Likelihood ratio test cannot be used to compare the models. The tree and
spatial models are not nested, while the one-class specification of a tree or spatial model is on
the boundary of the parameter space of the corresponding two-class specification
(Titterington, Smith, and Makov 1985, p. 4; Aitkin and Rubin 1985).
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Table 1: Characteristics of the Twenty Data Sets

Stimuli Typeof  Number Typeof  Numberof Scale
Stimuli ~ of Stimuli  Subjects Subjects  Points
Soft drinks FMCG' 12 Students 60
Candy bars FMCG 12 Students 50 9
Shampoos FMCG 10 Consumers 47 7
Beer FMCG 9 Students 20 7
Cars Durables 12 Consumers 48 9
Audio Durables 9 Consumers 20 11
Supermarkets Services 12 Students 50 9
Recreation facilities Services 12 Students 50 9
Banks Services 12 Students 50 9
Restaurants Services 10 Consumers 32 9
Supporting facilities Services 10 Managers 15 7
Bars Services 9 Students 20 11
Weekly magazines Media 12 Students 60 7
Women’s magazines Media 10  Consumers 40 9
TV Channels Media 9 Consumers 20 1
Countries Locations 15 Students 14 9
Capitals Locations 9 Students 13 11
Cities Locations 9 Consumers 20 7
Emotions-1 Emotion 14 Students 15 9
Emotions-2 Emotion 8 Students 14 9

' FMCG = fast moving consumer goods

Model selection based on the lowest value of AIC clearly shows that
heterogeneity is important. For nineteen out of the twenty data sets, a model
with two latent classes yields the lowest AIC. For one data set, namely
supporting facilities, the single spatial configuration model is indicated as
most appropriate. The two-tree model does best seven times, the two spatial
configurations model four times, and the model with both a tree and a spatial
representation eight times. This result supports the need for modeling
heterogeneity in stimulus representation, be it either parametric or structural.

We examined whether the type of stimuli, the number of stimuli, the
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Table 2: AIC statistics for the Twenty Data Sets

Stimuli TREE(1) TREE(2) MDS(1) MDS(2) MIX

Soft drinks 9944.1 9721.7 9885.0 10445.6 9827.9
Candy bars 8484.9 82762 8511.0 8899.8 8358.9
Shampoos 5980.7 5889.6 5980.8 5953.0 5885.8
Beer 1964.5 1904.9 1966.1 2023.6 1921.8
Cars 8941.8 8857.9 8947.9 8871.1 8931.0
Audio 1983.0 1945.3 1977.3 19389 1944.2
Supermarkets 8747.0 8507.2 8696.3 8466.8 8499.0
Recreation facilities 9162.4 8739.0 9141.2 8962.0 9012.6
Banks 8828.7 83483 8813.9 8412.1 83753
Restaurants 3963.9 3939.5 3986.7 3960.1 3921.8
Supporting facilities 1781.5 1742.0 17286 1764.5 1746.1
Bars 1890.3 1824.2 1891.0 1831.4 1802.1
Weekly magazines 10516.7 9845.6 10497.8 10043.6 97924
Women’s magazines 5092.8 5018.1 5095.2 5063.0 5011.8
TV Channels 1501.6 13708 1507.5 15493 14183
Countries 4173.0 41449 4162.8 4180.1 4]35.2
Capitals 1289.7 1262.9 1292.7 12426 1270.8
Cities 1732.6 1662.0 1712.1 1667.9 1643.8
Emotions-1 2891.4 2865.8 2846.8 2883.3 28375
Emotions-2 1038.3 1026.6 995.1 9703 991.0

! l\g}?:i(osn): S-class MDS solution; TREE(S): S-class Tree solution; MIX: 2-class mixed Tree-MDS

type f subjects, the number of subjects, and the number of scale points, as
shown in Table 1, affect the model indicated as most appropriate by AIC.
Bivariate analyses (analysis of variance with F-tests and cross tabulations
with chi-square tests) did not show any significant relationship (all p-values >
0.05). In addition, examining the effects of all factors simultaneously in a
discriminant analysis (see Stevens 1996, Chapter 7) showed no significant
differences between the alternative models (Wilks’ A = 0.55, X =898, df =
10, p = 0.53). Hence, we tend to conclude that the relative fit of the three
types of mixture models is not related to the factors mentioned above (the
results are supported by a similar analysis of the R? statistics).
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Table 3: The R” statistics for the Twenty Data Sets

Stimuli TREE(1)  TREE(2) MDS(1) MDS(2) MIX

Soft drinks 0.275 0,323 0.286 0.185 0.305
Candy bars 0.232 0289 0.227 0.142 0.267
Shampoos 0.004 0.061 0.005 0.036 0.063
Beer 0.118 0223 0.118 0.091 0.189
Cars 0.013 0.053 0.012 0.049 0.030
Audio 0.095 0.180 0.104 0.192 0.183
Supermarkets 0.169 0.237 0.182 0.248 0.239
Recreation facilities 0.057 0,155 0.064 0.124 0.111
Banks 0.148 0256 0.152 0.247 0.248
Restaurants 0.083 0.119 0.070 0.112 0.133
Supporting facilities 0.205 0.290 0.267 0.271 0.272
Bars 0.204 0.301 0.205 0.299 0.326
Weekly magazines 0.163 0.278 0.167 0.238 0.290
Women’s magazines 0.006 0.066 0.005 0.044 0.067
TV Channels 0.536 0.610 0.533 0515 0.606
Countries 0.027 0.082 0.035 0.059 0.089
Capitals 0.115 0.223 0.113 0.244 0.207
Cities 0.360 0.446 0.380 0.435 0.457
Emotions-1 0.526 0.552 0.542 0.547 0.561
Emotions-2 0.200 0.259 0.287 0.363 0.346

! rs\g]l?z(osrz: S-class MDS solution; TREE(S): S-class Tree solution; MIX: 2-class mixed Tree-MDS

Next, we examine the results of the hybrid mixture model for the
twenty data sets more closely. The AIC and R’ statistics of the hybrid
mixture model are shown in Tables 2 and 3, and the entropy statistic and the
proportions of the tree and MDS classes are reported in Table 4. In addition,
we report the average skewness of the dissimilarities for the tree and the
MBDS class in Table 4, because those statistics seem to be the most important
indicators of the appropriateness of a tree or spatial configuration (Ghose
1998). We use the third central moment divided by the cubed standard
deviation as measure of skewness, as used by Ghose (1998) and Pruzansky,
Tversky, and Carroll (1982).
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Table 4: Mixed Tree and MDS Model Results for the Twenty Data Sets

Data set Entropy », r; Skewness tree  Skewness MDS
Soft drinks 0.990 0.850 0.149 -0.718 -0.403
Candy bars 0.987 0.898 0.101 -0.449 -0.291
Shampoos 0950 0.774 0.226 0.019 -0.050
Beer 0997 0.850 0.149 -0.311 -0.261
Cars 0.956 0.907 0.092 -0.449 -0.351
Audio 0.869  0.583 0416 -0.036 0.168
Supermarkets 0.905 0.440 0.559 0.395 0.149
Recreation facilities 0.881 0.499 0.500 -0.052 -0.036
Banks 0.979  0.395 0.604 -0.028 0.020
Restaurants 0.876 0.436 0.563 0.540 0.471
Supporting facilities 0991 0.734 0.265 -0.214 -0.226
Bars 0.999 0.249 0.750 -0.114 -0.344
Weekly magazines 0989 0432 0.567 -0.062 0.001
Women’s magazines 0976 0.777 0.222 0.029 + 0.023
TV Channels 0.999 0.800 0.200 -0.595 -0.567
Countries 0.999 0571 0.428 0.098 - -0.173
Capitals 0972  0.693 0.306 -0.164 0.056
Cities 0.988 0.500 0499 . -0.023 -0.298
Emotions-1 0973  0.261 0.738 -0.269 -0.088
Emotions-2 0976 0211 0.788 -0.069 0.072

The percentage explained variance, R*, as defined in Equation (8) and
shown in Table 3, varies substantially across the data sets, with a minimum of
0.030 for cars and a maximum of 0.606 for TV channels. Several R” values
are rather low, which might result from the fact that a large number of
observations, NI(I-1)/2, is represented by a relatively small number of
parameters, K= 41-2. The values of R? are paralleled by those of AIC.

In seventeen of the twenty applications, the classes are very well
separated (E; > 0.900), thus indicating that nearly all subjects contributing
these data sets base their judgments on either the additive tree structure or the
spatial configuration. In particular, looking at the entropy and the prior
probabilities, candy bars and cars seem to be almost entirely judged on the
basis of features, while bars and emotions appear to be perceived
predominantly according to continuous dimensions. For three sets of stimuli,
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namely audio, recreation facilities, and restaurants, the entropy measure is
somewhat lower (around 0.85), and both proportions are around 0.50, which
indicates that subjects are somewhat inclined to perceive these stimuli using
both discrete features and continuous dimensions.

The estimates of the prior probabilities show that across all twenty data
sets, the additive tree structure is somewhat more important than the spatial
configuration. The respective average proportions, 0.593 and 0.407 for the
additive tree and the spatial configuration, differ significantly at an a-level of
0.10 (paired samples t-test: t = 1.85; df = 19; p = 0.08). For twelve data sets
the tree structure is more important; i.e., p, is larger than p,, whereas for
eight data sets the spatial configuration is more important; i.e., p; 1s larger
than p,. However, this result does not significantly deviate from a 50-50 split
(non-parametric sign-test assuming a binomial distribution; p = 0.50). For
most sets of stimuli, the size of both tree and spatial components is
substantial. The contribution of the tree structure (spatial configuration)
ranges from 0.907 (0.092) for cars to 0.249 (0.750) for bars.

We perform three analyses of covariance (see Stevens 1996, Chapter 9)
to determine whether the proportion of tree versus MDS classes, the entropy
measure, and the R? fit statistic (see Tables 3 and 4) are affected by the type
of stimuli, the number of stimuli, the type of subjects (students versus
consumers/managers), the number of subjects, and the number of scale points
(see Table 1). The analyses of covariance yield one significant effect: the
type of stimuli affects the proportion of the tree class (F = 4.44; d.f. =5, p =
0.02). The tree class is larger for fast moving consumer goods (average
proportion of 0.843) and durables (0.746), and smaller for services (0.459)
and emotions (0.237).*  This result is in line with results of previous studies
(Pruzansky, Tversky, and Carroll 1982; Johnson et al. 1992) that reported
effects of the type of stimuli on the relative fit of additive tree structure
models and MDS methods. In particular, tree structure models have been
shown to outperform MDS methods in fitting conceptual stimuli rather than
perceptual stimuli (Pruzansky, Tversky, and Carroll 1982) and concrete

5. When we tested the relative fit of three competitive mixture models, no significant effect
of the type of stimuli was found. However, the direction of the results were similar to those
presented in this paragraph, e.g., for fast moving consumer goods and durables in four out of
six cases the two tree structures model was indicated by AIC as most appropriate, whereas for
services and emotions this was the case for two out of eight data sets (see Table 2). The fact
that this effect was not significant might caused be by the relatively small number of data sets
(20), which reduced the power of this particular chi-square test having a substantial number
of degrees of freedom (10).
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stimuli such as brands rather than of more abstract stimuli such as product
categories (Johnson et al. 1992). Bivariate analyses show a negative
correlation between the number of subjects and the explained variance
(correlation = -0.44, p = 0.05). This effect can be explained by the fact that
for larger numbers of subjects, the model parameters represent the judgments
of individual subjects less well, which results in lower R?.

The skewness of the dissimilarity data is lower in the tree class than in
the MDS class for twelve of the twenty data sets (Table 4). This finding
corresponds to those of previous studies, for example Ghose (1998), which
have shown that skewness discriminates between trees and spatial
configurations, the former having a more negative skewness. However, a
non-parametric sign-test shows that the result of our study does not deviate
significantly from a 50-50 split (assuming a binomial distribution; p = 0.50).

6. Conclusion and Discussion

We propose a mixture model of an additive tree structure and a spatial
configuration for the analysis of dissimilarity judgments. The mixture model
accounts for heterogeneity among subjects in the extent to which they use a
feature-based or a dimension-based representation of stimuli through a
mixture model specification, where the dissimilarity judgments of one class
are modeled as distances in an additive tree and the dissimilarity judgments
of the other class are modeled as distances in a Euclidean space. The model
thus accommodates structural heterogeneity among classes, which is an
advance over the parametric heterogeneity accommodated in previous
mixture models. Through the analysis of synthetic data sets, we show that the
model adequately recovers known mixed tree and spatial structures that may
underlie dissimilarity data. The results of the mixture model are illustrated in
an application to previously published data from a sensory experiment with
colas. Analysis with the mixed tree and MDS model yields a much better and
richer representation of the dissimilarities than the results obtained from
using aggregate level models. Hence, the application demonstrates that our
model yields highly interpretable, useful solutions, whereas pure tree or MDS
models, ignoring structural heterogeneity, may lead to erroneous conclusions.

In the application of the mixed model to twenty empirical data sets, we
find substantial evidence of heterogeneity across subjects for each data set.
When examining the mixed tree structure and spatial configuration model, in
general, both the classes turned out to be reasonably large and they were well
separated. Hence, there seem to be clear differences among individual
subjects with respect to whether a feature-based or a dimension-based



Representations of Dissimilarity Judgments 267

representation fits their dissimilarity judgments better. These results support
the need to model heterogeneity in stimulus representation, either by
assuming parametric heterogeneity or structural heterogeneity. MDS, tree, or
hybrid models that do not deal with heterogeneity among subjects with
respect to the representation of stimuli and the decision process may lead to
erroneous results.

There turned out to be no significant relationship between on the one
hand the relative fit of the two-tree structures, two spatial configurations, and
tree-space mixture models and on the other hand study design factors like the
number of stimuli, the type and number of subjects, and the number of points
of the rating scale. Furthermore, we found that these study design factors had
little to no effect on the relative importance of the tree versus the space in the
tree-space mixture. These findings may be considered reassuring, because in
applying our model one may assume that the outcomes are relatively robust
against the study design.

Consistent with previous studies (Johnson and Fornell 1987; Johnson
and Hudson 1996; Johnson et al. 1992; Pruzansky, Tversky, and Carroll
1982), we found the importance of the tree structure relative to the spatial
configuration to depend on the type of stimuli. In particular,the class
proportions show that the additive tree class is larger than the MDS class for
fast moving consumer goods and durables, whereas the MDS class is larger
than the tree class for services and emotions. Previous studies showed that
tree structure models outperform MDS methods in fitting dissimilarity
judgments between conceptual stimuli and concrete stimuli such as brands,
whereas the opposite holds for perceptual stimuli and more abstract stimuli.
Our results appear to support these earlier findings, because services and
emotions can be considered more abstract than fast moving consumer goods
and durables.

The skewness of the dissimilarity judgments is somewhat lower for the
tree class than for the MDS class, although the difference is not significant.
This result corresponds to findings of Ghose (1998), who has shown that
skewness discriminates between trees and spaces, the former having a more
negative skewness.

Further research is needed several directions. First, as evidence of the
appropriateness of spatial versus tree representations for certain types of
stimuli accumulates, a meta-analysis of published results should provide a
more definitive conclusion on the topic. Second, whereas previous studies
have primarily focussed on characteristics of the stimuli and the task as
causes of differential ability of trees versus spaces to represent dissimilarity



268 M. Wedel and T.H.A. Bijmolt

data, our study revealed that individual differences may be more important in
that respect. Therefore, future research should address subject-related factors,
such as cognitive complexity (Bieri 1955), style of processing (Childers,
Houston, and Heckler 1985), and the need and ability to achieve cognitive
structuring (Bar-Tal, Kishon-Rabin, and Tabak 1997), as possible
determinants of the adequacy of tree and spatial structures to fit dissimilarity
Judgments at the individual- or class-level. Because our analyses are based
on previously collected data, information on those characteristics was not
available. Third, research on the psychological processes underlying
dissimilarity judgments is needed. As demonstrated by Glazer and Nakamoto
(1991), an observed pattern of dissimilarity judgments may not always
accurately reveal what is the correct model from a cognitive perspective.
Those authors showed that the relative fit of alternative tree structures
(ultrametric and additive trees) and spatial configurations (Euclidean and
city-block distances) may not be very strongly related to the psychological
processes presumed to underlie the data. Hence, care should be taken in
considering the results of tree structure models, MDS models, or mixed
models as direct evidence of the underlying psychological processes. If the
main interest is to reveal the processes underlying dissimilarity judgments,
alternative approaches should be used in conjunction with statistical
modeling procedures such as the one described in this paper. One could
examine the underlying psychological processes and the judgment task
through studies extending, for example, the work of Bijmolt et al. (1998)
using a process-tracing perspective, that is through the analysis of verbal
protocols of dissimilarity judgments. In addition, carefully designed
experiments can shed further light on the issue. Such studies may focus on (a)
the nature of the attributes used by respondents while comparing stimuli and
(b) the characteristics of the respondents, the stimuli, and the judgment task,
that affect subjects’ perceptual representation of stimuli.
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