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1. Introduction

The metric unidimensional scaling of a non-negative symmetric
proximity matrix, P = {p;}, has traditionally focused on the placement of n
objects along a continuum so as to minimize a measure of error between the
proximity measures and the pairwise distances associated with the
coordinates (Brusco 1999; de Leeuw and Heiser 1977, 1980; Defays 1978;
Eisler 1973; Groenen 1993; Groenen and Heiser 1996; Groenen, Heiser, and
Meulman 1999; Hubert 1974; Hubert and Arabie 1986, 1988; Hubert,
Arabie, and Meulman 1997; Pliner 1996; Poole 1990; Simantiraki 1996).
Perhaps the most common approach has focused on the establishment of
coordinates (x;, x,...,X,) along a linear continuum with the objective of
minimizing the following least-squares measure:

Min:Zl=Z(pij—~‘x,.—-xj|)2 (1)

i<j

Using notation similar to De Soete, Hubert, and Arabie (1988), the Defays
(1978) reformulation of this problem can be stated as:
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and
¥ = the set of all permutations, {y, ys,...,\m}, of objects 1,...,n;

y(k) = the object in location 4 of the sequence vy, Vk =1,...,n.

Hubert, Arabie, and Meulman (1997) recently proposed a generalized
version of (1) via the inclusion of a constant, ¢, as follows:

Min:Z3=Z:(pij+c—’xi—xj‘)2 (3)

i<j
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An important advantage of this generalized model is that it enables the
removal of the non-negativity restrictions on the proximity measures.
Hubert, Arabie, and Meulman (1997) also presented a model comparable to
(3) that corresponds to a closed circular continuum. Citing the work of
Plutchik and Conte (1997), Hubert, Arabie, and Meulman (1997) observed
the fact that circular representations are prevalent in a wide spectrum of
areas in psychology. Defining x, as the total length of the continuum, the
circular unidimensional-scaling model they presented is:

Min:Z, =Z(pij+c——min{1x,.—xj,xo—\x,.—xj|})2 4

i<j

The combinatorial optimization problems associated with (1) — (4) are
generally quite difficult to solve optimally for » > 20, and there has been
considerable research interest in the development of efficient and effective
heuristic procedures. Regardless of which of the four objective criteria
described above is used, the essence of most heuristic solution approaches is
an integrated, two-stage process. The first stage of the process is to identify
a permutation or sequence of objects along the continuum, whereas the
second stage focuses on the establishment of specific values on the
coordinate axis. Local-search procedures may generate feasible
permutations via pairwise interchange of objects (De Soete, Hubert, and
Arabie 1988; Groenen 1993; Heiser 1989; Hubert, Arabie, and Meulman
1997), object-block rotations (Hubert and Arabie 1994; Hubert, Arabie, and
Meulman 1997), and/or object insertions (Hubert and Arabie 1994; Hubert,
Arabie, and Meulman 1997). For each permutation generated, the
coordinate values must be established and the appropriate objective criterion
value evaluated. For Z,, the specification of coordinates can be conducted
through the use of algebraic formulae (Defays 1978), whereas Hubert,
Arabie, and Meulman (1997) described an iterative projection procedure for
estimating the coordinates for Z; and Z,. These two-stage procedures are
known to be sensitive to the initial permutation that is manipulated so as to
reduce the least-squares error in the objective function. In most instances,
solution procedures have typically been implemented using 20 to 100
randomly generated starting permutations (Brusco 1999; De Soete, Hubert,
and Arabie 1988; Groenen 1993; Hubert, Arabie, and Meulman 1997,
Hubert and Schultz 1976; Pliner 1996). For large problems, the final
permutations and their corresponding objective values, as well as the
computer time required to obtain the final permutations, should be
considerably improved through the use of better initial sequences. That is, a
good starting permutation should improve the quality of the final
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permutation and reduce the computational time required to converge to a
near-optimal solution.  Hence, a method for generating a starting
permutation that improves the computational effectiveness and efficiency of
solution methods for (1) — (4) is desirable.

This paper demonstrates that the solutions to a simpler seriation
problem associated with the quadratic assignment problem (QAP) can
provide very good starting permutations for least-squares unidimensional
scaling algorithms. We present the results of a computational study that
investigated the utility of QAP solution methods for efficiently improving
initial random sequences. These improved sequences were subsequently
passed to a pairwise interchange / block reversal / object insertion algorithm
that generates solutions to the least-squares unidimensional scaling problem
posed by (2). The results indicated that good starting sequences lead to
much better final solutions for (2), as well as much faster convergence to
solutions and thus require less computation time.

Linear and circular seriation problems corresponding to the QAP are
briefly reviewed in Section 2. Section 2 also describes the heuristics we
used to generate solutions to the QAP. An overview of the computational
study and a brief description of the algorithm for solving (2) are presented in
Section 3. The computational results for a set of large problems are also
given in Section 3. The potential applicability of QAP methods for
providing initial sequences for other least-squares objective criteria, such as
(3) and (4), is addressed in Section 4 via demonstrations using two well-
studied sets of proximity measures (Levelt, van de Geer, and Plomp 1966;
Rothkopf 1957). Section 5 presents conclusions and avenues for further
research.

2. Methodology
2.1 Quadratic Assignment Problem

The QAP was originally developed by Koopmans and Beckmann
(1957) within the context of economic assignment of facilities. Since that
time, it has it has received considerable attention in fields such as computer
science (Taillard 1991), engineering (Steinberg 1961), and business (Armour
and Buffa 1963; Nugent, Vollman, and Ruml 1968). The role of QAP in
combinatorial data analysis was thoroughly developed by Hubert and
Schultz (1976) and Hubert (1987, Chapter 4), who noted potential
applications for hierarchical clustering, subset identification, linear and
circular seriation, and the discrete placement of objects in multidimensional
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space. The QAP has subsequently been deployed in a variety of
psychological applications. For example, Holloway (1982), Margolin and
Wampold (1981), and Wampold and Margolin (1982) have deployed the
QAP as a method for independence testing in counseling and clinical
psychology studies. Harris and Packard (1985) used QAP to compare
intensity judgments of emotion words to a hypothesized structure. Gliner
(1981) and Medina-Diaz (1993) have reported studies that used QAP models
in the assessment of cognitive structure.

In this paper, solutions to seriation problems posed as QAPs are used
as initial permutations for solution procedures for (2). Defining the pairwise
distance between objects in locations & and / along a continuum as dy = | k-
1|, the QAP can be described as:

Max:Z; = ,Z:, dy Pyopy ©)

we¥

Hubert and Schultz (1976) originally presented (5) as a linear seriation
problem and noted that the distance measure, dy = | k — [ |, can be attributed
to Szczotka (1972). This measure is also a specific case of the rectangular
distance associated with the facility layout problem (Nugent, Vollman, and
Ruml 1968). Hubert and Schultz (1976) also investigated a circular seriation
problem using the following measure, which 1s also attributed to Szczotka
(1972):

. n
|k—1] if[k-1|<—
If n is even, then d, = 2 ;

n—|k—1|  if|k-1|>=
2

k-1 it k-1 =L
2

if n is odd, then d,, = :
n—|k—1| if\k—1|>f’2;

Solution procedures for the QAP posed by (5) should tend to separate
dissimilar objects just as procedures designed for (1) — (4). That is, the
maximization of (5) will tend to give greater distance in the sequence to
pairs of objects with higher dissimilarity. It is important to note that we are
not suggesting that the QAP objective criterion (5) is a superior measure to
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the least-squares criteria in (1) — (4). Rather, we propose that the solution of
the QAP (5) can provide an important supplement to the more
computationally demanding least-squares methods by supplying a good
initial permutation. The evaluation of alternative sequences for (5) can be
conducted in an extremely efficient manner because there is no need to re-
estimate coordinate locations when the sequence is modified. To illustrate,
consider the case of a pairwise interchange of the objects in locations k and /.
For the least-squares methods, this interchange would necessitate the use of
formulae (in the case of (2)) or iterative projective mapping (in the cases of
(3) and (4)) to specify new coordinate values and the resulting effect on the
objective function. However, for the QAP objective posed by (5), the effect
of the interchange of the objects in locations k and / on the objective function
can be rapidly evaluated using the following equation:

AZE= 3 @A) Byt ts ~Potonwtis) ©

mzk,m#l
2.2 Overview of Existing Solution Procedures

Optimal solution procedures for the QAP are primarily based on
branch-and-bound algorithms, and Hubert and Schultz (1976) provided a
review of some of the early methods in this area. During the past 25 years,
there has been some advancement in the development of branch-and-bound
methods for the QAP (Hahn, Grant, and Hall 1998), particularly with respect
to the establishment of tighter lower bounds (Li, Pardalos, Ramakrishnan,
and Resende 1994; Resende, Ramakrishnan, and Drezner 1995).
Nevertheless, as Resende, Ramakrishnan, and Drezner (1995) have recently
observed, obtaining optimal solutions to QAPs with n as small as 16 can still
be extraordinarily difficult.

For large QAPs (n > 20), a variety of heuristic procedures have been
offered. Many early solution procedures are based on the pairwise
interchange strategy described in the previous subsection (Armour and Buffa
1963; Nugent, Vollman, and Ruml 1968). More recently, a wide variety of
more sophisticated local-search methods have been developed and tested.
These methods include simulated annealing (Burkard and Rendl 1984,
Connolly 1990; Heragu and Alfa 1992; Laursen 1993; Wilhelm and Ward
1987), tabu search (Skorin-Kapov 1990; Taillard 1991), genetic algorithms
(Ahuja, Orlin, and Tiwari 2000; Tate and Smith 1995), as well as hybrids of
these procedures (Chiang and Chiang 1998; Gambardella, Taillard, and
Dorigo, 1999).



Least-Squares Unidimensional Scaling of Symmetric Proximity Matrices 203

In this paper, we evaluate the efficacy of three methods for solving the
QAP posed by (5). The first method consists of replications of a locally-
optimal pairwise interchange (LOPI) heuristic (Armour and Buffa 1963).
The second method is a simulated annealing (SA) implementation
comparable to those used by Wilhelm and Ward (1987) and Heragu and Alfa
(1992). The third method is a hybrid approach that uses both LOPI and SA
to develop QAP solutions. Each of the three methods was supplied with sets
of initial permutations that were generated based on a uniform distribution.
In this paper all uniform random variates were generated using a procedure
suggested by Knuth (1997, Chapter 3). The three solution methods are
described in the following subsections.

2.3 Locally-Optimal Pairwise Interchange (LOPI) Method

There are a variety of possible implementations for LOPI algorithms
(see, for example, Groenen 1993, Chapter 4). The particular implementation
used for the QAP in this paper is based on replications of the early facility
layout procedure developed by Armour and Buffa (1963). We use 80
replications in our implementation. For each replication, the randomly
generated initial permutation serves as the incumbent sequence, \y
initiate the LOPI algorithm. The algorithm consists of the following two
steps.

Step 1: For the incumbent sequence, ', compute AZ ®D v k=1,...n-
1; I = k+l,..,n. Let AZ™ =max(AZ* “) and let k' and I
indicate the locatlons that correspoﬁd to AZ

Step 2: If AZS™ <0, then store the incumbent permutation, y', and
STOP. otherwise, interchange the objects in locations £” and [’ to
create a new incumbent permutation, ', and return to Step 1.

Step 1 consists of the evaluation of all possible pairwise interchanges of
objects in the incumbent sequence. If none of these interchanges results in
an improvement of the objective function, then the LOPI algorithm
terminates in Step 2 by storing the incumbent permutation, y'. Otherwise,
the interchange that results in the greatest improvement in the objective
function is made in the incumbent sequence and the procedure is repeated by
returning to Step 1. The above algorithm places no bound on the number of
iterations within a replication. Upon completion of 80 replications of the
LOPI algorithm, a total of 80 permutations and their corresponding objective
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function (5) values are stored. The permutations associated with the 20
largest (best) objective function values are subsequently passed to an
algorithm designed to minimize (2).

2.4 Simulated Annealing (SA) Method

The SA algorithm has been successfully applied to solve QAPs for a
number of years (Burkard and Rendl 1984; Connolly 1990; Heragu and Alfa
1992; Laursen 1993; Wilhelm and Ward 1987), and has also been tested by
De Soete, Hubert, and Arabie (1988) within the context of least-squares
unidimensional scaling.  Simulated annealing provides a local-search
process that allows for the probabilistic acceptance of inferior solutions. The
probability is a function of the magnitude of the worsening of the objective
function value, as well as the progress into the heuristic algorithm. As the
progress into the solution algorithm increases, the probability of accepting
an inferior solution decreases. The purpose of accepting an inferior solution
is to dislodge a local optimum so as to investigate other local optima that
might be preferable. Toward the completion of the SA procedure, the search
process tends to converge to a local optimum rather than jump to other
solution neighborhoods.

Within the context of combinatorial optimization, SA . terminology
tends to reflect its origin in statistical mechanics (Metropolis, Rosenbluth,
Rosenbluth, Teller, and Teller 1953). The temperature, T), controls the
probability of accepting an inferior solution, and the cooling factor, r (0 < r
<1), controls the rate at which the probability decreases. The temperature
length, TL, represents the maximum number of solutions that will be
evaluated at any given temperature. During the execution of the annealing
algorithm, a generatlon mechanism is applied to obtam a neighboring
permutation, \u of the current incumbent permutation, w Consistent with
previous research (Heragu and Alfa 1992; Wilhelm and Ward 1987), the
generation mechanism deployed herein consists of a pairwise interchange of
objects in two randomly selected locations, k and /. If this interchange
improves the objective function value, then y’ replaces ' as the incumbent
permutation (i.e., object locations are interchanged). Otherwise, the
prol()k%l))ility of ' replacing y' as the incumbent permutation is computed as,

A% Tr " If the number of solutions evaluated at the current temperature is
equal to 7L, or if the number of accepted inferior solutions at the current
temperature equals a maximum limit, n/imit (see Heragu and Alfa 1992),
then the temperature is reduced by the cooling factor. The total number of
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temperature reductions, TR, controls the number of times that the annealing
schedule will be implemented.

We used 20 replications of the SA algorithm in our implementation.
For each replication, the initial randomly generated permutation served as
the incumbent sequence, /', to initiate the SA algorithm. The details of the
algorithm are as follows:

Step 0: Initialize \VB = \pl, TR, TL, nlimit, T;; r, h=1.

Step 1: If A > TR, then return y® and STOP. Otherwise, set nsol = 0 and
nacc = 0, and go to Step 2.

Step 2: If nsol = TL or nacc = nlimit, then set h = h + 1, set Ty =rT,,
and go to Step 1. Otherwise, go to Step 3.

Step 3. Select a location k based on a uniform distribution and a second
location [, I # k, based on a uniform distribution. Compute
AZS("’I) using (6), set nsol = nsol + 1, and evaluate the solution
using the following logic;

Step 3a: If AZék’l) > (), then interchange objects in locations k and
[/ to obtain néw  incumbent sequence y' with objective
function Zs(y'"); go to Step 4. '

: . )
Step 3b. Generate a uniform random variate, 4. If u < ets T

then interchange objects & and / in the incumbent sequence
', update Zs(y"), and set nacc = nacc + 1. Go to Step 2.

Step 4: If Zs(yw") > Zs(y®), then set y? =y". Go to Step 2.

Step 0 of the SA algorithm initializes parameter values and counters.
The incumbent permutation is stored as the best solution, y?. InStep 1, a
test is made to ensure that the maximum number of iterations of the
annealing schedule (7R) will not be exceeded. Heragu and Alfa (1992) have
observed that smaller values of TR (say 10 to 50) are somewhat ineffective
for large QAPs and this motivated our selection of a larger value. For our
study, the number of temperature reductions was specified at 7R = 240. In
Step 2, two possible criteria are tested for termination of solution evaluations
at the current temperature. Specifically, tests are performed to evaluate
whether the number of solutions evaluated at the current temperature equals
the temperature length (i.e., nsol = TL) and whether the maximum number of
accepted inferior solutions at any temperature has been attained (i.e., nacc =
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nlimif). If either termination criterion is met, then the outer loop counter, 4,
is incremented, the temperature is reduced, and control returns to Step 1.
Consistent with Heragu and Alfa (1992), we used parameter settings of 7L =
1007 and nlimit = 10n.

In Step 3 of the SA algorithm, two locations are randomly selected
and the effect on the objective function value of interchanging the objects in
those locations is computed using (6). If this interchange is beneficial to the
incumbent permutation ('), then the locations of the objects are
interchanged in the incumbent permutation (Step 3a) and control is
subsequently passed to Step 4. If the interchange investigated in Step 3
would result in a permutation with a lower (worse) objective value than the
incumbent permutation, ', then a decision regarding the acceptance of this
inferior solution is based on a probability distribution, as shown in Step 3b.
This probability is function of both the magnitude of the negative effect on
the objective criterion, as well as the current temperature, 7. During the
carly stages of the algorithm, a rather high probability of accepting an
inferior solution is desirable (Heragu and Alfa 1992; Wilhelm and Ward
1987). Heragu and Alfa (1992) used an arbitrary initial temperature of
999.0. However, for test problems with large objective values, this value
does not allow for a very high probability of accepting many of the inferior
solutions. We concluded that it was best to determine the initial temperature
using problem-specific information. Therefore, for the initial random
permutation, we computed AZS(k’[) Vk=1,.,n1; 1 =k1,..,n. We
subsequently set T, =’Lmin(AZS<"v’>n)l. Thus the value of 7; was set equal to
the value corresponding’to the most detrimental pairwise interchange of
objects in the initial random permutation. For 4 = 1, the probability of
accepting an interchange associated with this observed worst case would be
e' ~ 37. As noted above, the temperature is gradually reduced by the
cooling factor, , prior to initiating the next iteration of the outer loop. The
relatively large value of TR enabled us to use a slower cooling process and
hence our value of » = .95 is slightly larger than the value of .9 which has
been used in previous studies (Heragu and Alfa 1992; Wilhelm and Ward
1987).

Step 4 ensures the proper updating of the permutation associated with
the largest corresponding objective function (5) value identified by the SA
algorithm. If the improved incumbent permutation (y') yields a better
objective function value than the best permutation (y*), then the incumbent
permutation is stored as the best permutation identified thus far in the SA
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algorithm. The final permutations associated with the 20 replications of the
SA algorithm are subsequently passed to an algorithm designed to minimize

2).
2.5 A Hybrid Method Integrating LOPI and SA (LOPI-SA)

Hybrid solution procedures for the QAP have become increasingly
popular in recent years (Chiang and Chiang 1998; Gambardella, Taillard,
and Dorigo 1999; Heragu and Alfa, 1992). We developed a hybrid method
(LOPI-SA) that uses both LOPI and SA to generate solutions to QAP. We
used 20 replications of this LOPI-SA algorithm in our implementation. Like
the LOPI and SA algorithms, the initial random permutation for each
replication serves as the incumbent sequence, V', to initiate the LOPI-SA
algorithm. The initial permutation is passed to the LOPI algorithm (as
described in Section 2.3). Upon termination of the LOPI algorithm, the
incumbent sequence is passed to the SA algorithm (as described in Section
2.4) to see if it can be further improved. The SA algorithm is applied as
described in Section 2.4, except that three parameter settings are modified.
First, we determined that running the LOPI method prior to SA might
provide some additional information that could be used to set the initial
temperature. Therefore, in the LOPI-SA algorithm, we set T, equal to the
absolute value of the worst (smallest) value of (6) observed across the entire
execution of LOPL. The second change was that the number of temperature
reductions was set at 7R = 100 to provide a more equitable CPU time
comparison between SA and LOPI-SA. Accordingly, the third change
involved the reduction of » from .95 to .9. The parameter settings of TR =
100 and r = .9 are the same as those used by Heragu and Alfa (1992) in their
hybrid SA algorithm.

Upon completion of the SA algorithm, a final combinatorial polishing
step is implemented. As suggested by De Soete, Hubert, and Arabie (1988),
the best permutation, y®, is passed to a LOPI routine, which ensures that the
final permutation is locally-optimal with respect to all pairwise interchanges.
The final permutations associated with the 20 replications of the LOPI-SA
algorithm are subsequently passed to an algorithm designed to minimize (2).

2.6 Benchmarking the QAP Solution Methods
In Sections 3 and 4 of this paper, we investigate the efficacy of using

QAP solution methods to provide good starting permutations for least-
squares unidimensional scaling algorithms.  However, prior to this
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investigation, we wanted to ensure that our proposed methods were actually
capable of providing good solutions to the QAP. The LOPI, SA, and LOPI-
SA algorithms were written in Fortran Powerstation 1.0 and implemented on
a 400 MHz Pentium II PC in a Windows 98 environment. We tested the
methods on two of the most popular sets of test problems from the QAP
literature.  Each of these test problems was originally posed as a
minimization problem. Because our methods were designed to maximize
(5), we simply pre-multiplied the proximity matrices by —1 to convert them
to maximization problems. The first set of problems were the n = 15, n = 20,
and n = 30 problems from Nugent, Vollman, and Ruml (1968), whereas the
second set of problems were originally developed by Skorin-Kapov (1990)
and range in size from n = 42 to n = 90. These test problems, and a variety
of others, can be obtained from QAPLIB — A Quadratic Assignment
Problem Library (Burkard, Karisch, and Rendl, 1997) — which is maintained
on websites at the Technical University Graz in Austria and the Technical
University of Denmark. We obtained the problems from the Graz website at
<www.opt.math.tu-graz.ac.at>. In addition to the problem data sets, the
website also contains the best-known objective-function values that we used
as a benchmark.

The results for our QAP solution methods are reported in Table 1,
along with the best-known objective-function values and the best solution
obtained by Heragu and Alfa’s (1992) SA implementation. Direct
comparisons of CPU times for the best-known solutions (or for Heragu and
Alfa’s (1992) methods) are not possible because of differences in hardware
and software platforms. However, many of the best-known solutions were
obtained using computationally intensive parallel implementations of tabu
search (Taillard 1991), which require considerable storage and CPU time.
The results for the LOPI (400 replications) method were, not surprisingly,
rather unimpressive. Although LOPI is very efficient for small problems, its
computation time grew rapidly for the larger Skorin-Kapov problems, and its
solution quality was consistently inferior to SA and LOPI-SA. These latter
two methods (both of which used 20 replications) performed very well.
Both SA and LOPI-SA identified the optimal (or best-known) solution for
each of the Nugent, Vollman, and Ruml (1968) test problems. LOPI-SA
obtained better solutions than Heragu and Alfa (1992) for 6 of the 7 Skorin-
Kapov test problems. SA yielded better solutions than those reported by
Heragu and Alfa (1992) for each of the seven test problems, and provided
the best known solution for the test problems with n = 42 and 1 = 56. SA
obtained better solutions than LOPI-SA for 5 of the 7 Skorin-Kapov test
problems. The departure from the best-known solutions was quite small for
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both SA and LOPI-SA, even for the largest test problems. For LOPI-SA, the
largest deviation from a best-known solution (approximately .24%) occurred
for the n = 72 test problem. The total CPU times for both methods were
quite reasonable, with LOPI-SA having a sizable advantage for most
problems. It is widely known that there is an inherent tradeoff between
solution quality and computational effort associated with local-search
methods for QAP and related combinatorial-optimization problems (Brusco
1999; De Soete, Hubert, and Arabie 1988; Groenen 1993; Johnson, Aragon,
McGeoch, and Schevon 1989, 1991; Laursen 1993). Although we observed
improvement for SA and LOPI-SA when increasing the number of
replications from 20 to 100, we believed that the results for 20 replications
were of sufficient quality to ensure that these methods would supply good
initial permutations for least-squares unidimensional scaling algorithms in a
reasonable amount of time.

3. Computational Study

The primary objective of the computational study was to investigate
the utility of the three QAP solution methods for providing initial
permutations for least-squares unidimensional scaling algorithms. Of
particular interest were the benefits of better initial permutations for large
symmetric proximity matrices. Using only 20, 50, or even 100 randomly
generated initial permutations for problems with n = 50 or » = 100 might not
enable convergence to good solutions for (1) — (4). Although the number of
random starting sequences could be increased, the large number of possible
pairwise interchanges, block rotations, and insertions (in conjunction with
the necessary coordinate re-estimation) makes such a strategy
computationally infeasible. In this section, we present the details of a
computational study designed to evaluate the ability of the LOPI, SA, and
LOPI-SA algorithms to provide good starting solutions for an algorithm
designed for large problems associated with objective function 2. A
secondary objective of this study, which builds on the findings in Section
2.6, pertains to a comparative evaluation of these methods regarding their
relative solutions to (5). This information might be useful to quantitative
psychologists who make use of the QAP for some of its other applications in
combinatorial data analysis, such as those described by Hubert (1987,
Chapter 4).
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3.1 Heuristic Procedure for Least-Squares (2) Problem

Heuristic procedures for solving (2) are often comparable to those for
solving (5), except that coordinate re-estimation is required for the former.
De Soete, Hubert, and Arabie (1988), Heiser (1989), and Groenen (1993,
Chapter 4) have proposed and tested LOPI algorithms for searching
permutations for (2). Recently, Hubert and Arabie (1994) proposed that
LOPI can be augmented by order reversals of object blocks in the sequence,
as well as the insertion of object blocks between any two other objects in the
sequence. Hubert, Arabie, and Meulman (1997) subsequently implemented
a pairwise interchange / object-block reversal / object insertion method
within the context of (3) and (4). Brusco (1999) subsequently found that an
integrated pairwise interchange, object-block reversal, and single-object
insertion strategy (hereafter referred to as PIRI for pairwise interchange /
reversal / insertion) was also quite effective for (2). Briefly, our
implementation of the PIRI algorithm investigates neighborhood changes in
an incumbent permutation by examining all pairwise interchanges, followed
by block reversals for all blocks of size b, 4 < b < n-1, and finally all single-
object insertions. Each time a permutation is modified via one of these
operations, the formulae in (2) are called upon for any necessary coordinate
re-estimation. The PIRI procedure terminates when none of the operations
results in any improvement in (2).

3.2 Test Problems and Computational Procedures

Twenty test problems from Brusco’s (1999) recent study were used to
complete the experimental analysis. These large unidimensional scaling
problems consist of 100 x 100 symmetric proximity matrices. The
proximities were integer values on the interval [0, 100] and were generated
based on a uniform distribution.  These problems, which contain
considerable error, are recognized as particularly difficult because heuristic
procedures tend to display a “uniqueness” property with respect to
replications of their implementation for such problems. In other words, if 50
replications of a heuristic are applied to such problems, the best solution
identified is typically associated with only one (unique) replicate.

Like the LOPI, SA, and LOPI-SA methods, the PIRI algorithm was
written in Fortran Powerstation 1.0 and implemented on a 400 MHz Pentium
I1 PC in a Windows 98 environment. Solutions to the QAP (5) for each of
the 20 test problems were obtained using the LOPI, SA and LOPI-SA
methods. The objective function (5) values, total CPU time, and 20



212 M.J. Brusco and S. Stahl

permutations generated by each of the three methods for each of these test
problems were subsequently stored. Next, for each of the test problems, the
20 permutations corresponding to each of the three QAP solution methods
were submitted as initial permutations to the PIRI algorithm. The objective
function values for (2) and total CPU time for PIRI were subsequently
collected.

3.3 Computational Results for QAP (5) Solutions

The best objective function values (5) and total CPU times for
permutations generated by each of the three methods for the 20 test problems
are compared in Table 2. The strengths and weaknesses of the three
methods—LOPI, SA, and LOPI-SA—are clear from these results. SA and
LOPI-SA consistently found better objective function values (5) than LOPL
The objective function values associated with SA were slightly better on
average than those produced by LOPI-SA. On average, SA produced an
objective function value that was ~ .0006% larger than that of LOPI-SA.
Furthermore, SA was better for 25% of the problems; LOPI-SA was better
for 20% of the problems; SA and LOPI-SA had the same objective function
value for 55% of the problems.

LOPI performed somewhat better than SA according to CPU time,
requiring less for all of the test problems. On average, SA required
approximately 18% more CPU time than LOPL. LOPI-SA consistently
required less CPU time than both LOPI and SA. The average CPU time for
LOPI-SA was 384.68s (25%) less than the corresponding average for LOPL
LOPI-SA provided an even larger computational savings relative to SA,
requiring an average of 654.27s (36%) less CPU time.

For these large (n = 100) QAPs, it is easy to examine the trade-off
between computing time and solution quality for the three solution methods.
Compared to the other two methods, LOPI sacrificed solution quality for (5).
It also required significantly more computational effort than LOPI-SA.
When compared to SA, LOPI-SA required significantly less computational
effort without sacrificing a significant decrease in the final objective
function value (5).

3.4 Computational Results for Least-Squares (2) Solutions
Table 3 provides the objective function values (2) obtained via the

application of PIRI when using initial permutations generated by LOPI, SA,
and LOPI-SA. Also included in Table 3 are two sets of objective function
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Table 2. Performance comparison of LOPIL, SA, and LOPI-SA with respect to their best
objective values for (5) and total CPU time.

Best Objective Function (5) Value* Total CPU Seconds**

LOPI SA LOPI-SA LOPI SA LOPI-SA
Problem 1 8924067 8934182 8934182 1480.29 1724.22 1101.48
Problem 2 8924433 8936327 8936327 1491.61 1864.33 1091.98
Problem 3 9018404 9022971 9022687 154423 1867.52 1107.79
Problem 4 8972048 8986618 8986618 1438.56 1733.78 1303.16
Problem 5 8971893 8978456 8978645 1573.95 1740.42 1098.79
Problem 6 8996100 9014224 9014224 1475.30 1753.88 1101.69
Problem 7 9020872 9035250 9035250 1498.92 1801.77 1162.11
Problem 8 8852019 8856892 8856897 1516.22 1887.74 110548
Problem 9 8966753 8974226 8974308 1570.87 1802.71 1231.87
Problem 10 9003692 9013357 9013357 £536.00 1681.82 1168.81
Problem 11 8950765 8958114 8958436 1541.86 1952.16 1096.53
Problem 12 9025513 9034017 9034017 1468.87 2030.60 1154.04
Problem 13 8997919 9008308 9008308 1465.63 1673.03 114421
Problem 14 8896101 8910442 8910373 1631.24 1673.36 1095.87
Problem 15 8894847 8911652 8911652 1467.12 1850.22 1160.03
Problem 16 9098562 9106250 9106250 1475.30 1733.72 1144.87
Problem 17 8998297 9001146 9000153 1481.78 1946.83 1153.05
Problem 18 8938877 8947099 8946974 1601.81 1855.88 1227 .81
Problem 19 8916382 8923737 8923737 1636.50 1666.77 1200.39
Problem 20 8934406 8945833 8945584 1754.98 1801.94 1107.51
Mean 8965098 8974955 8974899 1532.55 1802.14 1147.87
# of times best 0 16 15

*The best (largest) objective function value (5) obtained across 80 replications for LOPI and 20

replications for SA and LOPI-SA.
**The total CPU time (across all replications) on a 400MHz Pentium II PC.

values (2) from Brusco’s (1999) recent study. The first set of results,
Random, were obtained by applying 20 replications of PIRI to randomly-
generated initial permutations.
obtained via 20 replications of the morph-based local-search heuristic
developed by Brusco (1999).

The results in Table 3 illuminate the importance of supplying
promising permutations to least-squares unidimensional scaling algorithms.
It i1s clear that supplying a better initial permutation generally results in a
better least-squares objective-function value (2). Supplying PIRI with initial

The second set of results, MBLSH, were
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permutations from either SA or LOPI-SA always enabled a better objective
function value (2) to be found relative to instances where the initial
permutations were provided by Random or LOPIL. It is also encouraging to
observe that both SA and LOPI-SA provided a better solution than MBLLSH
for each of the 20 test problems. Thus, we have established new
benchmarks for the complete set of problems from Brusco’s (1999) study.
The average objective function value (2) associated with the SA initial
permutations was .0018% larger than the corresponding average for the
LOPI-SA permutations. Furthermore, comparing the results for SA and
LOPI-SA, the initial permutations from SA yielded better least-squares
objective function values (2) for 30% of the problems; LOPI-SA initial
permutations were better for 15% of the problems; and their permutations
resulted in the same least-squares objective function value for 55% of the
problems.

Table 3 reports the total CPU time for Random, MBLSH, LOPI, SA,
and LOPI-SA. The total CPU times for the Random and MBLSH
procedures, which were obtained from Brusco’s (1999) study, are directly
comparable to the other methods because they were obtained on the same
hardware and software platform. The reported solution times for LOPI, SA,
and LOPI-SA are the sum of two components: (a) the time to solve the
QAP’s (from Table 2), and (b) the time resulting from the application of
PIRI to the initial permutations.

Our results indicate that the CPU time used to obtain improved initial
permutations using SA or LOPI-SA is more than offset by the savings in
CPU time for the PIRI algorithm, which has less improvement to make on
the initial sequences. This conclusion is supported by the fact that the total
CPU time consumed when using either SA or LOPI-SA was always less than
the total CPU times when the initial permutations were supplied by either
Random or LOPI. The MBLSH and SA results are comparable in terms of
CPU time, whereas LOPI-SA always required less CPU time than either
MBLSH or SA.

The experimental results in Table 3 are important because they
suggest that initial permutations with better objective values for (5) tend to
yield better objective function values for (2) upon completion of the PIRI
algorithm. Recalling that LOPI generated consistently inferior objective
function values for (5), we notice that the least-squares objective function
values for (2) obtained after LOPI passed its 20 permutations to PIRI were
also consistently inferior to the least-squares objective function values based
on initial permutations from SA and LOPI-SA. SA, which provided slightly
better objective function values for (5) relative to LOPI-SA, also provided
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initial permutations that yielded slightly better least-squares objective
function values for (2). These findings confirm our supposition that PIRI
solution quality improves when the initial sequences are based on good
solutions to (5), relative to circumstances where the initial sequences are
based on inferior solutions to (5). Because initial permutations associated
with better solutions to (5) also paid off from a computational standpoint due
to faster convergence of the PIRI algorithm, we believe it is prudent to spend
a sufficient amount of computational effort to obtain good QAP solutions as
initial permutations.

4. Improved Starting Sequences for other Least-Squares Measures

We have demonstrated that improved starting sequences can provide
considerable solution quality and CPU time benefits for least-squares
unidimensional scaling problems posed by (2). For other least-squares
criteria, such as (3) and (4), improved starting sequences might be even more
important because the coordinate re-estimation for such criteria requires
more sophisticated solution procedures. In this section, we provide some
insight as to the potential efficacy of QAP-based initial permutations for (3)
and (4) by comparing QAP-generated permutations to solutions obtained by
Hubert, Arabie, and Meulman (1997) for two previously published data sets.

Tables 4 and 5 present proximity measures from two well-studied
problems in quantitative psychology. The lower triangle of Table 4 provides
the dissimilarity measures among digits from Rothkopf’s (1957) Morse code
study. These measures are based on proportions associated with subject
judgment of pairs of symbols in different orders. Hubert and Schultz (1976)
and Hubert, Arabie, and Meulman (1997) have previously fit unidimensional
scaling models to these proximity data. The upper triangle of Table 4
contains pairwise distance between object locations for both the linear and
circular distance measures described in Section 2.1. The lower triangle of
Table 5 presents proximity (dissimilarity) data pertaining to a study of
judgments of complex tonal intervals (Levelt, van de Geer, and Plomp
1966). These data have been discussed and analyzed by Borg and Lingoes
(1979, 769-774) and Hubert, Arabie, and Meulman (1997). The dissimilarity
measures in Table 5 are identical to those reported by Hubert, Arabie, and
Meulman (1997) and were obtained by subtracting the similarity measures
originally reported by Levelt, van de Geer, and Plomp (1966) from 32. The
upper triangle of Table 5 contains the corresponding linear and circular
pairwise distance measures between object locations.
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Table 4. The Morse code dissimilarity measures from Hubert, Arabie, and Meulman (1997, p.
259), which are based on data from Rothkopf (1957), are contained in the lower diagonal of the
matrix, whereas the upper triangle contains di; = “p/q” where p (q) is Szczotka’s (1972) linear
(circular) distance between object locations k and /. When reading the lower triangle of the
matrix, the row and column headings correspond to the Morse code symbols. When reading the
upper triangle, the row and column headings correspond to locations on the continuum.

Symbol (Location) | oD [ 1@ [ 203 [3@ |4® [5@ ] 6D |78 | 8 [9010)
0 - (1) - vi | 22 |3 oas | osis | ed | 3| s2 | an
R—) 75 - vi |22 | a3 ] oas | 55 | el | 13| 82
20— (3) 169 | .82 - vr |22 | 33 | 44 | 55| 6 | 3
3 ses (4) 187 | 154 | 125 | - {2 | a3 | 44 | 55| 64
4 ense-(5) 176 | 185 | 147} 89 - 1 | 22 | 33 | 44 | 505
5 esses (6) 177 | 172 | 133 | 132 141 | - vr | 22 | 33 | 4
6 -sese (7) 159 | 151 | 166 | 1.53 | 164 | .70 - v o222 | 3
7 —eee (8) 126 | 150 | 157 | 174 { 1.81 | 156 | .70 - | 2n
8 o0 (9) 86 | 145 | 183 | 185 | 190 | 1.84 | 138 | .83 - 11

9 eeene (10) 95 | 163 | 181 { 186 | 190 | 164 | 170 | 1.22 | 41

4.1 Linear Unidimensional Scaling

The LOPI-SA algorithm was applied to both the Morse code and tonal
interval data under the assumption of Szczotka’s (1972) linear distance (this
is the same distance measure Hubert and Schultz (1976) used for this data
set). For the Morse code data from Rothkopf (1957), all twenty replications
of the algorithm yielded the same permutation: {5, 4, 3,6, 7,2, 8, 1, 9, 0}.
This same sequence was also obtained 48 out of 50 times by Hubert and
Schultz (1976) and for each of the 100 replications performed by Hubert,
Arabie, and Meulman (1997) using a solution algorithm for (3). For the
Levelt, van de Geer, and Plomp (1966) data, the LOPI-SA algorithm yielded
the permutation, {1, 2, 3,4, 5,6,7,8,9, 10, 11, 12, 15, 13, 14}, for each of
the 20 replications. This is very close to the permutation, {1, 2, 3,4, 5,6, 7,
8,9, 10, 11, 12, 13, 14, 15}, which was found by Hubert, Arabie, and
Meulman (1997) using the algorithm designed for (3). These results suggest
that an initial permutation based on a QAP solution (5) can be very close to
(if not the same as) the final permutation associated with the linear least-
squares unidimensional scaling solution for (3).

4.2 Circular Unidimensional Scaling Demonstration

The LOPI-SA algorithm was also applied to both the Morse code and
tonal interval data under the assumption of Szczotka’s (1972) circular dis-
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tance. For the Morse code data from Rothkopf (1957), each of the 20
replications of the algorithm yielded the same permutation: {1, 2, 3, 4,5, 6,
7, 8,9, 0}. This is the same permutation found by Hubert and Schultz
(1976) in 46 out of 50 replications, as well as by Hubert, Arabie, and
Meulman (1997) using an algorithm for (4). For the Levelt, van de Geer,
and Plomp (1966) data, each of the 20 replications of the algorithm yielded
the sequence: {2, 1,3,4,5,6,7,9, 8,10, 11, 12, 15, 13, 14}. This is very
close to the permutation {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
identified by Hubert, Arabie, and Meulman (1997).

The fact that the LOPI-SA algorithm designed for (5) often found the
same, or nearly the same, sequence as algorithms designed for (3) and (4) is
very encouraging. If LOPI-SA is used to provide these sequences to
algorithms for (3) and (4), then convergence of those algorithms to high-
quality solutions within a reasonable amount of CPU time should be
achieved. The total CPU time (on a 400MHz Pentium II microcomputer)
required to run 20 replications of the LOPI-SA algorithm was less than 3
seconds for the Rothkopf (1957) data and less than 5 seconds for the Levelt,
van de Geer, and Plomp (1966) data.

5. Conclusions and Extensions

This paper has demonstrated that solutions to the quadratic assignment
problem can provide effective and efficient initial permutations for large
least-squares unidimensional scaling problems. Good solutions to a linear-
seriation QAP were provided by simulated annealing, as well as a hybrid
pairwise interchange / simulated annealing method, within a reasonable
amount of CPU time. However, the ease of computation for the QAP, and
the wealth of previous research into the methods for solving the QAP,
suggest that the development of algorithms incorporating other methods—
such as object-block rotations or object insertions—to solve the problem
would be interesting. Other methods such as tabu search and genetic
algorithms, as well as a variety of possible metaheuristic hybrids, might
provide even better QAP solutions.

The provision of initial permutations from SA and LOPI-SA to a
least-squares unidimensional-scaling algorithm for (2) resulted in rapid
convergence to high-quality solutions. Given the tradeoff that exists
between computational effort and solution quality for large problems, it
seems prudent to consider using simpler QAP-based seriation methods
(using criteria such as (5)) to get good starting points for least-squares
algorithms, which have a greater computational burden. This conclusion is
further strengthened by our findings for the two small data sets from the
literature. The fact that the QAP permutations were very comparable (if not
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identical) to those found by Hubert, Arabie, and Meulman (1997) for
generalized least-squares measures (3) and (4) encourages a reasonable
hypothesis that QAP solutions can be of service in providing good initial
permutations to methods for these measures. In light of the intuitive appeal
of these measures (Hubert, Arabie, and Meulman 1997), the utility of QAP-
based starting points for larger problem instances of (3) and (4) would be an
Interesting topic for future investigation.

There are at least two other important extensions of the research
presented herein. The first of these is associated with the implications of
better starting solutions for direct solution approaches to (1), such as
distance smoothing (Groenen, Heiser, and Meulman 1999; Pliner 1996).
These methods also require starting solutions as input, and QAP solutions
could be used in this regard. The key would be to parameterize the distance
smoothing algorithm so that, in its early stages, it would not discard too
much of the information from the starting solution. The second extension
concerns the use of QAP methods to provide starting solutions for
combinatorial approaches to multidimensional city-block scaling (Arabie
1991; Carroll and Arabie 1980, 1998; Heiser 1989; Hubert, Arabie, and
Hesson-McInnis 1992). For example, in the two-dimensional case with n =
100, one might consider a 10 x 10 square with rectangular-unit distance as
the measure of distance between pairs of blocks defining the square. Such a
problem is representative of the traditional facility layout problem in
business and engineering applications, and the QAP solution to such a
problem might provide at least some idea as to orderings of objects on each
dimension.
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