Journal of Classification 17:175-184 (2000)
DOL: 10.1007/5003570000016

Special Section on Reticulate Evolution

How to Account for Reticulation Events in Phylogenetic Analysis:
A Comparison of Distance-Based Methods

Frangois-Joseph Lapointe

Université de Montréal
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1. Introduction

The basic graph-theoretic model used in phylogenetic analysis is that
of a tree. Sometimes, trees are rooted to represent ancestor-descendent
relationships among their nodes, and sometimes, their branches are weighted
to represent the amount of evolutionary change along those branches. Two
different types of weighted trees are commonly used to depict evolutionary
relationships among species. Dendrograms are used to represent rooted
weighted trees in which all terminal nodes are equidistant from the root,
whereas additive trees are used to represent unrooted weighted trees;
additive trees can also be rooted by selecting one of the nodes to form the
root of the tree. The distinction is important in evolutionary biology because
dendrograms represent trees that satisfy the molecular clock hypothesis
stating that all lineages evolved at the same rate (Figure la). This
assumption is not always made for additive trees (Figure 1d). For the
purpose of the present paper, it suffices to say that dendrograms satisfy the
well-known ultrametric inequality (Hartigan 1967) and that additive trees
satisfy the more general four-point condition (Buneman 1974); a more
detailed presentation of dendrograms and additive trees is found in Lapointe
and Legendre (1991). '

A tree is not always a suitable graphical representation of the
evolutionary relationships among species. In fact, it is not uncommon for
species to exchange genetic material laterally instead of vertically (along the
branches of the tree). These so-called reticulation events violate the
branching evolutionary model by introducing cycles in a graph and causing
conflicting signals in the data. Other representations must be used to depict
such evolutionary phenomena, which cannot adequately be represented in
the form of trees. Four such reficulistic techniques are described below and
are applied to the same data set for comparison.

2. Pyramids

Pyramids, introduced by Diday and Bertrand (1986), are a
generalization of the hierarchical clustering framework. Whereas a
dendrogram can be defined as a nested set of nonoverlapping clusters
(Figure 1a), pyramids represent a set of clusters that may overlap without
necessarily being nested (Figure 1b). For any given pair of clusters C and D
in a dendrogram H that have a nonempty intersection, either C is contained
in D, or D is contained in C. In Figure 1la, for example, the cluster {Pan
paniscus, Pan troglodytes} is contained in the cluster {Homo sapiens, Pan
paniscus, Pan troglodytes} of H. In the case of a pyramidal graph P, the
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intersection of two clusters C and D that have a nonempty intersection is
always a cluster of P. In Figure 1b, for example, the intersection of the
clusters {Pan paniscus, Pan troglodytes} and {Homo sapiens, Pan
troglodytes} is the singleton {Pan troglodytes} of P.

A dissimilarity matrix D is said to be pyramidal iff D is also a
Robinsonian matrix (Table 1c, upper triangular). This property means that,
for any triplet i, j, k, from an ordered set of species, the dissimilarity value
d;; must be larger than or equal to the maximum of dj; and dj;. Interestingly,
an ultrametric matrix U can always be permuted to form a Robinsonian
matrix, so that a dendrogram actually represents a special type of pyramids
with at most n—1 different clusters. Just like dendrograms, pyramids can be
obtained by agglomerative algorithms. In Figure 1b, the pyramidal
representation of the dissimilarities presented in Table 1a was obtained from
the equivalent of the complete linkage algorithm: two clusters are joined at a
given height if they satisfy the clustering rule and have not been aggregated
twice before; in the case of dendrograms, two clusters are joined if they
satisfy the clustering rule and have not been aggregated once before. By
allowing species to be included in overlapping clusters, pyramids can thus
be used to depict reticulation events in a set of species that can be ordered in
a Robinsonian matrix. A program to compute pyramids is available at the
following WWWeb address: <http://genome.genetique.uvsq.fr/ Pyramids/>.

3. Weak Hierarchies

Weak hierarchies have been proposed by Bandelt and Dress (1989)
to fit dendrograms with a few additional nonnested clusters (i.e.,
reticulations). In short, the method proceeds by creating weak clusters of
species, as opposed to the so-called strong clusters found in dendrograms.
From a similarity matrix S, a weak cluster C is formed if any two species i
and j that belong to C are more similar to each other than any other species k
outside of C is similar to at least one of i and j (Bandelt and Dress 1989);
that is, s; must be larger than the minimum of s and sy for every species k
which is not a member of C (for strong clusters, s; must be larger than the
maximum of s and sg). Using a set-theoretic point of view, a weak
hierarchy W is obtained if the intersection of any three (strong or weak)
clusters C, D, and E of W is equal to one of the binary intersections C N D,
C N E, or D N E. For example, one can check that the similarity s;; between
Homo sapiens and Pan troglodytes in S (where s; = 1 — dy; Table 1a) 1s
larger than the lesser of the similarities s; and s;; between any other species
k and either H. sapiens or P. troglodytes; as a consequence, the pair {Homo
sapiens, Pan troglodytes} represents a weak cluster of W. Then, because
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Figure 1. Different representations of the dissimilarity matrix of Table la. (a) A complete
linkage dendrogram with clustering levels. The distance between two species is given by the
height of the lowest cluster that includes these species. The corresponding ultrametric
distances are presented in Table 1b (upper triangular). (b) Complete linkage pyramids with
clustering levels. The distance between two species is given by the height of the lowest cluster
that includes these species. The corresponding (Robinsonian) pyramidal distances are
presented in Table ¢ (upper triangular). (c) A weak hierarchy (caption continues on next page)
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the intersection of the clusters {H. sapiens, P. paniscus, P. troglodytes, G.
gorilla}, {H. sapiens, P. paniscus, P. troglodytes} and {H. sapiens, P.
troglodytes} in the weak hierarchy derived from Table la is equal to at least
one of the three binary intersections, these four species form a weak
hierarchy (see Figure 1c).

A weak hierarchy is an extension of a dendrogram and represents all
weak and strong clusters. Consequently, any dendrogram is a weak
hierarchy, whereas pyramids are nothing but weak hierarchies with the
additional property that a linear order of the species can be defined such that
every cluster is an interval relative to that order. Using the clusters of a
weak hierarchy, one can compose a similarity matrix additively (Table Ic,
lower triangular; where dj; = 1 — s;;) by attaching a weight to each cluster
and letting the similarity of a pair of species i and j be the sum of the
weights of all the clusters (weak or strong) containing the pair {i, j}; see the
algorithm in Bandelt and Dress (1989). Furthermore, given the weighted
weak hierarchy, one can reconstruct all of its clusters as well as their
respective weights from the associated similarity matrix. A complete linkage
type of algorithm has been developed by Bandelt and Dress (1989) to
approximate a similarity matrix S by a weak hierarchy (see Figure 1¢). A
computer program to compute weak hierarchies can be obtained by writing
to Professor H.-J. Bandelt: Mathematisches Seminar, Umver51tat Hamburg,
Bundesstrasse 55, D-20146 Hamburg, Germany.

4. Splitsgraph

As in the case of dendrograms, reticulations are not allowed in
additive trees (see Figure 1d). To produce unrooted phylogenies in which

Figure 1 (continued) obtained by a complete linkage-type method applied to the matrix
presented in Table Ia, with corresponding weights attached to the clusters. The similarity
between two species is computed as the sum of the weights of all the clusters that include
these species. The corresponding distances are presented in Table 1c (Iower triangular), where
d;=1-sy. (d) An additive tree, with edge lengths, obtained by a least-squares algorithm. The
distance between two species is computed as the sum of the edge lengths along the path
connecting these species. The corresponding path-length distances are presented in Table 1b
(lower triangular). (e) A splitsgraph representation with edge lengths; all parallel edges have
equal lengths. The distance between two species is computed as the shortest path-length
distance between these species over all possible paths. The corresponding path-length
distances are presented in Table 1d (upper triangular). (f) A reticulogram, with edge lengths,
obtained by adding reticulations onto the additive tree presented in Figure 1d. The distance
between two species is computed as the shortest path-length distance between these species
over all possible paths. The corresponding path-length distances are presented in Table 1d
(lower triangular). For clarity, edge lengths in the figure are not represented proportional to
their actual lengths.
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Table 1

a: Initial dissimilarity matrix (modified from Bandelt and Dress 1989)

i 2 3 4 5 6 7
1. H. sapiens 0.0000 0.1900 0.1800 0.2400 0.3600 0.5200 0.7700
2. P. paniscus 0.1900 0.0000 0.0700 0.2300 0.3700 0.5600 0.8000
3. P. troglodytes 0.1800 0.0700 0.0000 0.2100 0.3700 0.5100 0.7700
4. G. gorilla 0.2400 0.2300 0.2100 0.0000 0.3800 0.5400 0.7500
5. P. pygmaeus 0.3600 0.3700 0.3700 0.3800 0.0000 0.5100 0.7600
6. H lar 0.5200 0.5600 0.5100 0.5400 0.5100 0.0000 0.7400

7. Cercopithecids ~ 0.7700 0.8000 0.7700 0.7500 0.7600 0.7400 0.0000

b: Distances corresponding to the dendrogram of Figure 1a (upper
triangular matrix) and the additive tree of Figure 1d (lower triangular)

1 2 3 4 5 6 7
1. H. sapiens 0.0000 0.1800 0.1800 0.2400 0.3800 0.5600 0.8000
2. P. paniscus 0.1960 0.0000 0.0700 0.2400 0.3800 0.5600 0.8000
3. P. troglodytes 0.1739 0.0701 0.0000 0.2400 0.3800 0.5600 0.8000
4. G. gorilla 0.2233 0.2393 0.2173 0.0000 0.3800 0.5600 0.8000
5. P. pygmaeus 0.3672 0.3832 0.3612 0.3683 0.0000 0.5600 0.8000
6. H lar 0.5287 0.5447 0.5227 0.5298 0.5140 0.0000 0.8000

7. Cercopithecids ~ 0.7707 0.7867 0.7647 0.7719 0.7560 0.7400 0.0000

c: Distances corresponding to the pyramids of Figure 1b (upper
triangular matrix!) and the weak hierarchy of Figure 1c (lower

triangular?)
1 2 3 4 5 6 7
1. H. sapiens 0.0000  0.1900  0.1800 02400 03800 05600  0.8000
2. P. paniscus 0.1900  0.0000 00700 02400 03800 05600  0.8000
3.P. troglodytes  0.1800  0.0700  0.0000 02400 03800 05600  0.8000
4.G. gorilla 02400 02300 02100  0.0000 03800 05600  0.8000
5.P.pygmaeus 03600 03700 03700 03800 00000 05100  0.8000
6. H lar 05600 05600  0.5600 05600 05600 00000  0.7400
7. Cercopithecids ~ 0.8000  0.8000  0.8000  0.8000  0.8000  0.7400  0.0000

1 The matrix is Robinsonian if the species are ordered as in the pyramids {2,3, 1,4, 5, 6, 7}.
2 The distances were obtained by subtracting the similarity values from one: dj; = 1 —sy.

d: Distances corresponding to the splitsgraph of Figure 1e (upper
triangular matrix) and the reticulogram of Figure 1 (lower triangular)

1 2 3 4 5 6 7
1. H. sapiens 0.0000 0.1700 0.1450 0.2050 0.3250 0.4500 0.7400
2. P. paniscus 0.1960 0.0000 0.0450 0.2050 0.3450 0.5100 0.7600
3. P. troglodytes 0.1739 0.0701 0.0000 0.1800 0.3200 0.4850 0.7350
4.G. gorilla 0.2233 0.2393 0.2173 0.0000 0.3500 0.5150 0.7350
5. P. pygmaeus 0.3672 0.3832 0.3612 0.3683 0.0000 0.4850 0.7350
6. H lar 0.5287 0.5447 0.5227 0.5298 0.5140 0.0000 0.7300

7. Cercopithecids ~ 0.7707 0.7867 0.7647 0.7500 0.7560 0.7400 0.0000
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the species manifest reticulation, the splitsgraph method of Bandelt and
Dress (1992) can be used. This technique relies on split decomposition, a
procedure for decomposing distances canonically into a sum of simpler
metrics. For each quadruplet of species {i, j, &, [}, the algorithm looks at the
three possible tree topologies that may be used to split the four species in
two groups of two (i.e., ij/kl, ik/jl, and il/jk), with their corresponding sum of
distances (i.e., ij + kI, ik + jl, and il + jk). Instead of selecting the most
probable topology (i.e., the one with the smallest distance sum) as the
estimate of the relationships, Bandelt and Dress’s (1992) method excludes
the most improbable of the three topologies at each step. The global splits
(computed over all possible quadruplets) which never realize the most
improbable topologies are accepted and depicted as a “splitsgraph” (Dress,
Huson, and Moulton 1996).

In contrast to additive trees in which any edge splits the tree into two
connected subtrees, incompatible splits cannot always be depicted by a
single edge but will give rise to a series of parallel edges of equal lengths;
the length of these parallel edges represents the isolation index of a given
split. Therefore, a splitsgraph is a representation, composed of parallel-
ograms plus individual edges, providing a visual representation of the
support for contradictory patterns in the data (see Figure le). Unlike
additive trees, in which the path-length distance between two species i and j
is computed by adding the edge lengths along the path between these
species, path-lengths in a splitsgraph are the shortest lengths of all paths
from species i to j (also corresponding to the sum of all weighted splits
separating two species, Table 1d, upper triangular). For example, the path
length between Pan paniscus and Gorilla gorilla in Figure le is 0.2050,
instead of 0.2393 in the additive tree of Figure 1d. A splittability index can
be used to indicate the fit of the weighted system of splits, depicted as a
splitsgraph, to the original dissimilarities in D. A computer program to
compute splitsgraphs is available at the following WWWeb address:
<http://bibiserv.techfak.uni-bielefeld.de/splits/>.

5. Additive Tree with Reticulations

Recently, Makarenkov and Legendre (submitted) have proposed an
algorithm to add reticulations onto an additive tree so as to maximize the fit
between the data and a reticulogram, which is an evolutionary graph in
which the data may be related nonuniquely to a common ancestor
(Makarenkov and Legendre 2000). This graph is computed by gradually
improving the approximation of the dissimilarities as extra edges are added
to the graph. Contrary to the other methods, this technique uses an
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optimality criterion to determine the minimum number of reticulations
required to reach a maximum fit to the data; a least-squares loss function
computed as the sum of the squared differences between the original
dissimilarities in D and the path-length distances P on the reticulogram is
minimized. Because there is more than one way to compute the path lengths
between two species i and j, the minimum path-length distance over all
possible paths from i to j is recorded in P (see Table 1d, lower triangular).
For instance, the path-length distance between Gorilla gorilla and the
Cercopithecids in Figure 1f is the length of the reticulate edge connecting
these two species (0.7500) rather than the sum of the edge lengths along the
original and unique path found in the additive tree (0.7719 in Figure 1d).
Makarenkov and Legendre (submitted) described three stopping rules
to determine the number of reticulations to be added to an additive tree.
Criterion Q1 takes into account the value of the loss function as well as the
number of degrees of freedom of the reticulogram under construction; two
other criteria, Q2 and AIC, have also been proposed by those authors. A
statistical procedure could possibly be implemented to assess the
significance of individual reticulations, using the Q1 statistic, for a graph
bearing n edges compared to one with n—1 edges. A program to compute
additive trees and reticulograms is available at the WWWeb address
<http://www.fas.umontreal.ca/biol/legendre/>.

6. Discussion

To produce reticulograms, it is difficult to select a single best method
among the four described in this paper. Pyramids allow for overlapping
clusters and can perfectly fit a dissimilarity matrix if there exists a
permutation order of the species such that the dissimilarities are
Robinsonian. In the case of weak hierarchies, an optimal collection of
weighted weak clusters is sought to reconstruct a similarity measure that
approximates the original similarities. Both methods should therefore be
able to fit the dis/similarities better than a dendrogram without reticulations.
When reticulograms based on extended additive trees are sought, the
splitsgraph method, which detects incompatible splits in the data, can be
used to obtain a graphical representation of a dissimilarity matrix. Allowing
cycles in a graph produces in turn a better fit of the model to the data. One
can also use the method proposed by Makarenkov and Legendre (2000)
which seeks to improve the representation of a dissimilarity matrix by
adding reticulations to a previously estimated additive tree.

In the example used throughout this paper, a cophenetic correlation of
0.99749 was obtained between the ultrametric matrix (Table 1b, upper
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triangular) and the input dissimilarity matrix (Table la), indicating a good
fit of the data by a dendrogram. A slightly larger correlation of 0.99897 was
found between the input data and the path-length distances associated with
the additive tree (Table 1b, lower triangular). As expected, the correlations
for all reticulistic methods were even larger. For the pyramidal distances
(Table 1lc, upper triangular) and the distances associated with the weak
hierarchy (Table lc, lower triangular), the correlations were respectively
0.99769 and 0.99754. Similarly, correlations of 0.99914 and 0.99922 were
obtained for the splitsgraph (Table 1d, upper triangular) and the additive
tree with one extra edge (Table 1d, lower triangular).

Interestingly, the various methods produced somewhat different
results; the biological meaning of these representations is of great
importance. Whereas overlap is only allowed among contiguous clusters of
species in pyramids, weak hierarchies can be used to represent reticulations
between distant species or clusters (see Bandelt and Dress 1989). Similarly,
the extra edges fitted on a tree when using the Makarenkov and Legendre
algorithm tend to join distant species, as shown by the various examples
presented by these authors (Makarenkov and Legendre 2000, and
submitted). In such cases, reticulations may simply represent
incompatibilities in the data resulting from convergent evolution. Another
option, allowing the detection of a larger number of incompatibilities, is the
splitsgraph. However, since they create a series of multiple parallel edges,
splitsgraphs may quickly be saturated with extra vertices and edges, making
it difficult to display them as planar graphs (Dress, Huson, and Moulton
1996).

7. Conclusion

This paper presented four different but somewhat related approaches
to account for reticulation events in phylogenetic analysis. This list is not
exhaustive; other techniques are currently available and being developed to
produce reticulograms from gene frequencies (Xu 2000), binary data
(Smouse 1998), or multistate characters using median graphs (Bandelt,
Forster, and Rohl 1999). There are also clustering methods that can produce
overlapping clusters. It is worth mentioning that the split decomposition
method (Bandelt and Dress 1992) can be applied in other contexts than with
distance data. To produce a splitsgraph all one needs is a phylogenetic
method (parsimony or maximum likelihood) to decide, for each quadruplet,
which of the three topologies is the most inappropriate. Likewise, an
evolutionary parsimony criterion could be used to modify the Makarenkov
and Legendre approach. Instead of searching for a reticulogram minimizing
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a least-squares criterion, extra edges could be added to parsimonious trees
obtained from standard algorithms so as to minimize the number of
character-state changes on those trees. Whichever approach is selected, one
should be aware that in spite of interesting mathematical properties, the
different reticulistic methods will not necessarily produce biologically
meaningful results. Model-based techniques should be developed to serve
that purpose. On the other hand, simulation studies are badly needed to
evaluate the relative performances of the extant competing methods. In
addition, more comparative studies are required to determine the success
rate of the different algorithms to recover known phylogenies that include
species of reticulate origins like hybrids or allopolyploids (e.g., McDade
1997).
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