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Abstract
Multi-class imbalanced data learning faces many challenges. Its complex structural char-
acteristics cause severe intra-class imbalance or overgeneralization in most solution strate-
gies. This negatively affects data learning. This paper proposes a clustering-based oversam-
pling algorithm (COM) to handle multi-class imbalance learning. In order to avoid the loss 
of important information, COM clusters the minority class based on the structural charac-
teristics of the instances, among which rare instances and outliers are carefully portrayed 
through assigning a sampling weight to each of the clusters. Clusters with high densities 
are given low weights, and then, oversampling is performed within clusters to avoid over-
generalization. COM avoids intra-class imbalance effectively because low-density clusters 
are more likely than high-density ones to be selected to synthesize instances. Our study 
used the UCI and KEEL imbalanced datasets to demonstrate the effectiveness and stability 
of the proposed method.

Keywords  Multi-class imbalance learning · Clustering · Intra-class imbalance · Minority 
class

1  Introduction

Multi-class imbalance problems occur in many real-world applications, such as medical 
research, information retrieval, oil reservoir identification, and credit rating models, where 
certain classes known as minority classes possess far fewer instances than other classes 
known as majority classes. Learning with multi-class imbalanced data is more complicated 
as the complex structural features composed of multiple majority and minority classes are 
highly susceptible to class overlapping and overgeneralization (Wang et  al., 2012). The 
learning algorithms that work well for two-class imbalanced data may fail in multi-class 
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imbalance scenarios (Zhou et  al., 2006; Hartono et  al., 2021). Thus, there is a pressing 
need to research effective learning methods for multi-class imbalanced datasets.

In imbalanced data learning, oversampling methods have received extensive atten-
tion as oversampling a minority class is better than undersampling the majority class, 
especially for datasets with a high imbalance rate (IR) (García et al., 2012). However, 
when addressing multi-class imbalanced classification tasks, many oversampling meth-
ods may face new challenges. For one thing, increasingly more studies have shown that 
the distribution of the minority classes significantly affects classification (Rekha et al., 
2021; Saez et al., 2015; Wang et al., 2022). If the instances of a minority class are scat-
tered, and even some may be in a region of the majority class, it will exacerbate intra-
class imbalance or sample overgeneralization due to the blindness of minority class 
instance selection (Shaikh et al., 2019). On the other hand, multi-class imbalanced data-
sets might have multiple minority classes. Certain minority classes instances are easily 
to be ignored and misclassified by the algorithm as the result of skew distribution with 
the majority classes.

Currently, most existing resampling methods for handling multi-class imbalanced data 
implement informed resampling strategies based on the local neighborhood characteris-
tics of minority instances to ascertain the difficulty of their identification. However, it is 
easy to distort class information and reduce the prediction effect due to multiple majority 
classes or minority classes. Therefore, in order to strengthen the identification of minority 
instances and improve the efficiency of multi-class imbalance learning, from the perspec-
tive of distribution characteristics of the minority classes, this paper proposes a clustering-
based oversampling algorithm (COM) for multi-class imbalance problems. COM spatially 
clusters the minority instances by identifying soft core instances, designs weights based 
on the distribution of clusters to sample them, and conducts differentiated oversampling 
within the selected clusters for minority instances. This means that COM focuses on the 
overall distribution of minority instances, and at the same time, it considers the intra-class 
imbalance and overgeneralization in oversampling. The contributions of this study are 
summarized as follows:

1.	 Density clustering based on the structural characteristics of the instances is applied to 
multi-class imbalance learning, which can learn the sample information of the minority 
class well

2.	 COM effectively avoids the overgeneralization of samples and solves the problem of 
intra-class imbalance in imbalanced data learning, which greatly improves the efficiency 
of multi-class imbalance learning.

3.	 The effectiveness of the COM algorithm is verified via experiments that COM is supe-
rior to other methods in its average classification ability between any two classes.

2 � Related Works

Considering that our focus is multi-class imbalanced learning on data structure character-
istics, we provide a short review of the learning techniques on the data level in multi-class 
imbalance scenarios.
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For multi-class imbalanced data with complex structures, intra-class imbalance 
and overgeneralization that often result from oversampling are the main factors con-
tributing to the difficulty of learning. Unreasonable oversampling methods are likely 
to yield noisy samples or overlapping of classes, which can negatively impact the 
recognition of the minority class. The usual method is class decomposition, which 
converts the multi-class imbalance problem into several two-class imbalance prob-
lems. Methods of two-class imbalance learning, e.g., OAO and OAA (Dong et  al., 
2022; Kang et al., 2015; Li et al., 2020), are now effective in dealing with the origi-
nal multi-class problem. Wu et al. (2010) studied multi-class imbalance learning via 
clustering and decomposing the majority class. The majority class is clustered by the 
k-means algorithm and decomposed into clusters of equal numbers. Then, each cluster 
is combined with the minority class instances to form many two-class imbalanced 
datasets, and then, random oversampling is used to solve the imbalance. Unfortu-
nately, such techniques often result in the loss of class information. The classification 
effect may decline because the sample information of all classes is not used in train-
ing the classifier.

To improve the identification of minority classes, Lin et  al. (2013) proposed a 
memetic algorithm to optimize a radial basis neural network. Next, a dynamic oversam-
pling algorithm uses the SMOTE method to oversample the class with the lowest clas-
sification accuracy. Different instances have been given different sampling probabilities 
based on the multi-layer perceptron classifier (Fernandez et al., 2011). During the train-
ing process, a higher sampling probability is given to the minority class to improve the 
classification accuracy of the minority class instances. The ensemble learning method 
can also solve multi-class imbalance problems (Krawczyk et al., 2020; Liu et al., 2021). 
This method generally employs the boosting algorithm, which converts the imbalanced 
dataset into imbalanced subsets, then implements resampling to train the overall model. 
Some studies combine the ensemble algorithm with a feature selection algorithm (Guo 
et  al., 2016; Hartono et  al., 2021) to solve the problem of overlapping classification 
boundaries, thus improving the identification of minority class instances. Experiments 
have shown that this learning technique improves classification but is not independent 
of specific classifiers.

Abdi and Hashemi (2015) recently proposed an oversampling method based on 
Mahalanobis distance to solve multi-class imbalance problems. Since the synthesized 
instance is located on the contour line of the ellipse, the synthesized and the original 
instances are guaranteed to have the same distance from the class center. However, this 
method focuses on the instances in the concentrated area of the minority class. It does 
not consider the boundary instances or the small separation items in the minority class 
sufficiently. Generative direction (Tang et al., 2017) is becoming an increasingly popu-
lar method to avoid the randomness of synthesized instances. For each minority class 
instance, it selects k-nearest sample points of the same class, so the instance has k dif-
ferent generation directions. According to the generation weights of different directions, 
directions are selected to introduce the same number of synthesized samples. However, 
this method only divides the minority class into outstanding instances and trapped 
instances (Zhu et al., 2017), which cannot fully reflect the structural characteristics of 
the minority class.

For multi-class imbalance learning, although a great deal of research works has been 
done, there are certain aspects that could be even better. Based on the above analysis, 
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the current research strategies are not based on the consideration of the overall distribu-
tion of multi-class imbalanced data and thus either may cause the loss of class informa-
tion or exacerbate the imbalance problem affecting the identification of minority class 
instances.

3 � COM: A Clustering‑Based Oversampling Algorithm for Multi‑class 
Imbalance Problems

In imbalance learning, one of the main factors causing learning difficulties is the com-
plex distribution characteristics of the dataset. As shown in Fig. 1a, the minority class 
L1 has a serious intra-class imbalance problem, in which the instances are divided into 
four categories: safe instances, boundary instances, rare instances, and outliers (Napi-
erala et al., 2016). Since there are relatively few instances in the minority class, the dis-
tribution of the minority class cannot be fully expressed; for example, the outlier is most 
likely a rare valid instance that cannot be represented by other instances, so it cannot be 
simply deleted, otherwise it will lead to the loss of information.

To reflect the structural characteristic of minority classes as completely as possible, 
COM handles the multi-class imbalanced data based on the clustering structure of the 
minority class. We can observe from Fig. 1b that the density of each cluster is different, 
and the difficulty of learning the instances in each cluster is also different. If we ran-
domly synthesize the minority class instances, it may aggravate the intra-class imbal-
ance, so we should appropriately increase the synthesis of the instances in low-density 
clusters to improve the recognition of such instances.

In addition, in the process of synthesizing the minority class instances, if the syn-
thesis instances are inserted between various clusters, it will inevitably aggravate the 
overgeneralization of samples and affect the efficiency of imbalance learning. Therefore, 
in this study, different oversampling was carried out in cluster to achieve the purpose of 
alleviating the intra-class imbalance while avoiding overgeneralization.

Based on the above analysis, the key research ideas of COM can be described as follows:

1.	 Minority class instances are clustered using density clustering based on the distribution 
characteristics of the minority class

: Majority class

: Minority class L1

: Minority class L2

safe instances

rare instances

high-density cluster 

(a) Instance division of the minority class (b) Clusters of different densities

Fig. 1   A multi-class imbalanced data
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2.	 Sampling weights are assigned to each cluster according to the number of instances in 
the cluster and the distance between the instances. A high weight is assigned to a cluster 
with low density, and the oversampling probability of the instances in this cluster will 
be high, otherwise the opposite.

3.	 Various oversampling techniques can be performed in different clusters according to 
each cluster’s structural characteristics.

3.1 � Density Clustering for the Minority Class

Research shows that the primary factor affecting classification lies in the occurrence of 
difficult samples in the dataset. Thus, one effective way to solve imbalanced learning is 
by analyzing the structural characteristics of imbalanced datasets, especially the instance 
structure characteristics of the minority class.

Set D =
{(

x
1

, y
1

)
⋯ ,

(
xi, yi

)
,⋯

(
xn, yn

)}
 as a multi-class imbalanced dataset with sam-

ple size n. xi = (xi1, xi2,⋯ , xid) is an instance of dimension d. The class label variable for 
instance xi is yi. Set the class L in the dataset as the minority class and the set constituted 
by the L class instances as SL.

Definition 1  (Zhu et al., 2017): Soft core instance. For any xi ∈ SL , if the proportion of 
L class instances in its k-nearest neighbors set is not less than rTh, then xi is a soft-core 
instance of class L.

Definition 2  (Zhu et al., 2017): gL
k
 -neighborhood. For any soft-core instance of class L, xi, 

its gL
k
-neighborhood is defined as an instance set:

where Nk and RNk denote k-nearest and reverse k-nearest neighbor sets, respectively.
The gL

k
-neighborhood satisfies reflexivity and symmetry: for any two soft core instances 

xi and xj, if xj ∈ gL
k
(xi) , then xi ∈ gL

k
(xj).

To better characterize rare instances in the minority, this paper defines soft core 
instances as follows.

Definition 3  :Soft core instance. For any , if the number of L class instances in its k-near-
est neighbors set is not less than 1, then xi is a soft-core instance of class L.

The clustering in this part mainly includes two steps: First, a soft-core instance set Ω of 
the minority class is constructed. For any xi ∈ SL , if xi meets Definition 3, it is added to set 
Ω and given its gL

k
-neighborhood. Second, density clustering is performed on the minority 

class. The clustering process defines the cluster by determining its gL
k
-neighborhood of the 

instances in set Ω For the specific implementation of clustering, you can refer to the defini-
tion of a cluster function in reference (Zhu et al., 2017).

Let the clustering result be C = {C1,⋯ ,Ci,⋯ ,Cm} . Ci represents the ith cluster, and 
the cluster label of instance xi is denoted xi.c. The clustering process in the COM oversam-
pling method is then implemented as follows.

gL
k

(
xi
)
=
{
xi
}
∪
{
xj ∈ xi.Nk|xj ∈ SL

}
∪
{
xj ∈ xi.RNk|xj is a soft core instance of class L

}
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Algorithm 1   Clustering algorithm based on the structural characteristics

…

3.2 � Acquiring the Sampling Weights for the Clusters

Sampling weights are assigned to the instance clusters formed by clustering to overcome the 
intra-class imbalance of the minority class. For a cluster with sparse instances of the minority 
class, the instances in the cluster are often difficult to learn. A higher weight is assigned to these 
clusters to increase the probability of instance synthesis and improve the degree of recognition 
of such instances. Conversely, a low weight is usually assigned to a cluster with a high density 
of minority class instances because learning instances in the cluster are often safe. Therefore, 
the weight of the cluster will depend on the density of the minority class samples in the cluster. 
Cluster weighting consists of measuring and converting cluster density into sampling weight.

3.2.1 � Density of Clusters
The cluster density is usually related to the distance between its instances and is high if the 
distance between instances is relatively small. However, if the distance is large, the cluster 
density is low. To measure the cluster density, the following formula is usually used to cal-
culate the average distance between instances:

(1)avg(dCi
) =

2

|Ci|(|Ci| − 1)

∑

1≤i<j≤|Ci|
dist(xi, xj)
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Of these, Ci is the ith cluster, |Ci| represents the number of instances in the cluster, and 
dist (xi, xj) is the Euclidean distance between instances in the cluster.

The cluster density is also related to the data dimension d. Using the average distance 
between instances, the cluster density is defined as follows:

The outliers in the minority class are often labeled separately after clustering, usu-
ally far away from the instances forming clusters or even located in the regions of other 
classes. Outliers often affect the classification effect. Imbalanced datasets have fewer 
minority instances, which is insufficient for representing the distribution of the minority 
class. The outliers are likely to be rare instances that are not fully represented. Espe-
cially in datasets with high IR, deleting outliers directly will likely cause the loss of 
important information.

To ensure the integrity of the minority class information, this paper regards each outlier 
separately as a cluster composed of the instance. Then, giving sampling weight to it and 
increasing the proportion of such instances helps the classifier to learn more useful informa-
tion. Here, the distance between the outlier and its nearest instance is the average distance of 
instances within the cluster. Then, formula (2) is used to calculate the cluster density of this 
kind of cluster.

3.2.2 � Sampling Weight

To overcome the influence of intra-class imbalance on classification, the selection weight 
of each cluster is defined as exp(−density(Ci)) . For low-density clusters, there is a greater 
probability of being drawn to generate synthetic instances of the minority class. Con-
versely, a small probability is given to high-density clusters because these instances are 
located in safe areas of the minority class and are not difficult to classify. In the process 
of imbalance learning, the influence of imbalance between classes is considered based on 
the distribution of the minority class instances, alleviating the influence of the intra-class 
imbalance of the minority class on the classification effect.

Converting each cluster’s selection weights into a probability distribution is necessary. 
The sum of the selection weights of all clusters is used to standardize the selection weights 
of each cluster. That is, the sampling weights of each cluster can be obtained as follows:

3.3 � Generating Synthetic Instances

For a cluster extracted according to the sampling probability, the interpolation method is 
used to oversample the minority instances in the cluster. Set xi and xj as any two instances; 
then, a new instance is interpolated between the two instances xs = xi + r (xj − xi), where r is 
any random number in the interval [0,1].

(2)density
(
Ci

)
=

||Ci
||

[
avg

(
dCi

)]d .

(3)
weight

�
Ci

�
=

exp
�
−density

�
Ci

��

m∑
i=1

exp
�
−density

�
Ci

�� .
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Any two instances in a high-density cluster can be chosen in oversampling, and a new 
instance is synthesized by the above interpolation method. For a cluster formed by an 
outlier in the minority class, interpolation is performed between the outlier and its nearest 
instance to avoid overfitting problems. Since the nearest neighbor instance of an outlier 
must belong to other classes, r is set as a random number in the interval [0,1/2] dur-
ing interpolation to ensure that the synthetic instance is as close to the minority class 
instances as possible.

The specific implementation process of the COM oversampling algorithm is as follows.

Algorithm 2   Clustering-based oversampling algorithm for multi-class imbalance learning 
(COM)
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4 � Experimental Study

4.1 � Setup

4.1.1 � Experimental Data

The multi-class imbalanced datasets selected for the experiment were from the UCI and KEEL 
databases. Some datasets with very few classes (e.g., the original E. coli dataset) had only two 
samples labeled 2 and 3. Few classes are combined with adjacent classes to ensure the classi-
fication effect. Specific data characteristics and distribution information are shown in Table 1.

The feature description of the data in Table 1 includes the sample size (S), number of features 
(F), number of classes (C), class distribution, and imbalance rate of the dataset. The class distri-
bution represents the number of instances in each class, the bold font indicates that the class is a 
minority class, and the corresponding imbalance rate is reflected in the column IRi of the minor-
ity class. The IR column is the overall imbalance rate of the multi-class imbalanced dataset.

4.1.2 � IR of Multi‑class Imbalance Learning

There is no standard definition for the IR of multi-class imbalanced datasets, and dif-
ferent studies give the IR of datasets according to their own research requirements. The 
definition of the average IR (Zhu et al., 2019) of the dataset we used in our study was.

Where IRi is the imbalance rate of class Li in the dataset, and nq and ni are the num-
bers of instances in classes Lq and Li, respectively. The fewer the instances a class con-
tains, the higher the IR for that class is. If each class has the same number of instances, 
then the imbalance rate of each class is

where IR is approximately 1 if the number of classes is large enough.

IR =
1

l

l�

i=1

IRi, IRi =

∑
q≠inq

l × ni
,

IRi =
l − 1

l
,

Table 1   Description of characteristics of datasets

Data S F C Class distribution IRi IR

Balance 625 4 3 288/288/49 3.92 1.57
Cleveland 297 13 5 160/54/35/35/13 4.37 1.69
Dermatology 358 34 6 111/60/71/48/48/20 2.82 1.14
Ecoli 336 7 5 143/77/39/25/52 1.53/2.49 6.79
Glass 214 9 6 70/76/17/13/9/29 1.93/2.58/3.80 1.67
Newthyroid 215 5 3 150/35/30 1.71/2.06 1.31
Winequality-red 1599 11 6 10/53/681/638/199/18 26.48/4.86/14.63 7.94
Pageblocks 548 10 4 492/33/11/12 3.90/12.20/11.17 6.83
Vowel5 990 13 5 180/90/360/270/90 2.0/2.0 1.16
Zoo 101 16 7 41/20/5/13/4/8/10 2.74/3.46/1.66 1.56
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According to the literature, the threshold of IR is set at 1.5. Classes with an imbalance 
rate higher than 1.5 are minority classes, while the remaining are majority classes. In this 
study, only minority classes with an imbalance rate higher than 1.5 were oversampled. For 
simplicity, the target number of instances for each minority class is set as the average sam-
ple size of all majority classes.

4.1.3 � Base Classifier and Compared Algorithms

To verify the superiority of the COM learning method in classifying multi-class imbal-
anced data, our study chose several learning methods—random oversampling (ROS), 
SMOTE (Chawla et  al., 2002), Borderline-SMOTE (B-SM) (Han et  al., 2005), and 
ADASYN (He et al., 2008)—and compared their balance effect on the multi-class imbal-
anced data. The number of nearest neighbors for each of them was optimally selected 
among 1, 3, 5, and 7.

For a reasonable evaluation of the data-balancing effect of the compared methods, the 
study selected decision tree (DT), k-nearest neighbor (KNN), and multi-layer perceptrons 
(MLP) with a single hidden layer as the classifiers. According to the classification effects 
of classifiers with different evaluation criteria, several resampling methods were compared, 
and the Euclidean distance was used to measure the distance between instances.

In our experiments, fivefold cross-validation was applied to evaluate the performance of 
the algorithms; that is, in each stage, 80% of the data were used for training, and 20% were 
used for testing, and it was ensured that both the training and test sets contained samples of 
each class. The average value of five tests was used to evaluate the classifier’s performance.

4.2 � Experimental Results and Analyses

Since total accuracy is not appropriate for multi-class imbalanced data, the micro-F1, 
MG, and MAUC values were used to compare the performance of the classifiers. The 
micro-F1 value is denoted as F1 for simplicity. The results in Table 2 are the average 
values and average rankings of each resampling method for every combination of the 
datasets, three evaluation metrics, and three classifiers. In addition, we included the per-
formance of the classifiers when oversampling was not used, so they were ranked from 1 
to 6. The three evaluation metrics showed that the larger the value, the better the classifi-
cation. The resampling methods were sorted according to the classification effect. There-
fore, if the average ranking is smaller, the classification effect of the resampling method 
is better. Conversely, the effect is worse. The bold font in the table indicates the resam-
pling method with the best effect.

4.2.1 � Average Value

It can be seen from the average values in Table 2 that the COM oversampling method has 
the best effect when DT is used for classification—its average value for each evaluation 
metric is the highest, indicating that its data balancing is significantly better than that of 
other resampling methods. When the KNN and MLP classifiers are used, the COM over-
sampling method shows obvious advantages in two of three evaluation metrics. Its average 
F1 and MAUC values are the highest.



Journal of Classification	

Ta
bl

e 
2  

A
ve

ra
ge

 p
er

fo
rm

an
ce

 re
su

lts
 o

f t
he

 o
ve

rs
am

pl
in

g 
m

et
ho

ds
 a

cr
os

s t
he

 d
at

as
et

s

C
la

ss
ifi

er
M

et
ric

N
on

e
CO

M
RO

S
SM

O
TE

A
D

A
SY

N
B

-S
M

D
T

F1
0.

80
6 ±

 0.
16

1
0.

80
9 ±

 0.
16

4
0.

79
6 ±

 0.
15

9
0.

79
3 ±

 0.
16

4
0.

79
4 ±

 0.
16

7
0.

79
0 ±

 0.
16

4
R

an
ki

ng
2.

50
2.

00
3.

60
4.

0
3.

60
4.

60
M

G
0.

49
9 ±

 0.
35

2
0.

54
6 ±

 0.
31

9
0.

49
9 ±

 0.
33

3
0.

52
5 ±

 0.
31

3
0.

48
8 ±

 0.
36

3
0.

53
9 ±

 0.
35

8
R

an
ki

ng
3.

70
2.

30
3.

80
2.

90
3.

50
3.

40
M

A
U

C
​

0.
87

7 ±
 0.

09
8

0.
87

9 ±
 0.

10
1

0.
87

0 ±
 0.

09
6

0.
86

9 ±
 0.

10
1

0.
86

9 ±
 0.

10
1

0.
86

6 ±
 0.

10
1

R
an

ki
ng

2.
5

1.
8

4
4

3.
6

4.
5

N
on

e
CO

M
RO

S
SM

O
TE

A
D

A
SY

N
B

-S
M

K
N

N
F1

0.
73

4 ±
 0.

17
6

0.
76

7 ±
 0.

18
7

0.
75

3 ±
 0.

22
6

0.
74

2 ±
 0.

23
9

0.
73

0 ±
 0.

23
5

0.
74

8 ±
 0.

21
4

R
an

ki
ng

2.
6

2.
5

3.
2

3.
5

4.
3

4.
3

M
G

0.
35

1 ±
 0.

41
7

0.
50

8 ±
 0.

32
6

0.
51

2 ±
 0.

 3
67

0.
56

3 ±
 0 

0.
35

7
0.

50
0 ±

 0.
38

5
0.

56
8 ±

 0.
3 −

 20
R

an
ki

ng
5.

1
3.

7
2.

6
2.

5
3.

2
2.

7
M

A
U

C
​

0.
91

8 ±
 0.

08
9

0.
91

8 ±
 0.

09
6

0.
89

9 ±
 0.

11
5

0.
89

2 ±
 0.

13
0

0.
89

2 ±
 0.

12
6

0.
89

5 ±
 0.

12
0

R
an

ki
ng

2.
1

1.
7

3.
2

4.
1

4.
9

3.
8

N
on

e
CO

M
RO

S
SM

O
TE

A
D

A
SY

N
B

-S
M

M
LP

F1
0.

77
7 ±

 0.
19

7
0.

80
3 ±

 0.
18

7
0.

80
0 ±

 0.
21

1
0.

79
3 ±

 0.
21

8
0.

76
7 ±

 0.
21

8
0.

78
2 ±

 0.
21

7
R

an
ki

ng
3.

1
3.

4
2.

4
3.

1
4

4.
2

M
G

0.
29

7 ±
 0.

41
6

0.
62

9 ±
 0.

34
9

0.
62

4 ±
 0.

38
8

0 
0.

6 
33

 ±
 0.

37
4

0.
60

5 ±
 0.

38
5

0.
63

1 ±
 0.

34
1

R
an

ki
ng

4.
9

2.
2

2.
6

2.
8

3.
3

3
M

A
U

C
​

0.
91

9 ±
 0.

08
5

0.
94

6 ±
 0.

05
7

0.
93

8 ±
 0.

07
2

0.
93

6 ±
 0.

07
3

0.
92

3 ±
 0.

08
1

0.
93

7 ±
 0.

07
4

R
an

ki
ng

2.
8

1.
8

2.
6

3.
5

4.
1

3.
6

N
on

e
CO

M
RO

S
SM

O
TE

A
D

A
SY

N
B

-S
M

Th
e 

to
ta

l a
ve

ra
ge

F1
0.

77
2 ±

 0.
01

2
0.

79
3 ±

 0.
01

8
0.

78
3 ±

 0.
02

2
0.

77
6 ±

 0.
02

4
0.

76
3 ±

 0.
02

6
0.

77
3 ±

 0.
01

8
R

an
ki

ng
2.

73
3

2.
63

3
3.

06
7

3.
53

3
3.

96
7

4.
36

7
M

G
0.

38
2 ±

 0.
10

4
0.

56
1 ±

 0.
06

3
0.

54
5 ±

 0.
06

8
0.

57
4 ±

 00
40

0.
53

 1
 ±

 0 
0.

06
4

0.
58

0 ±
 0.

04
7

R
an

ki
ng

4.
56

7
2.

73
3

3.
00

0
2.

73
3

3.
33

3
3.

03
3

M
A

U
C

​
0.

90
5 ±

 0.
02

4
0.

91
4 ±

 0.
03

3
0.

90
2 ±

 0.
03

4
0.

89
9 ±

 0.
03

4
0.

89
5 ±

 0.
02

7
0.

89
9 ±

 0.
03

6
R

an
ki

ng
2.

46
7

1.
76

7
3.

26
7

3.
86

7
4.

20
0

3.
96

7



	 Journal of Classification

4.2.2 � Mean Ranking

The ranking results in Table 2 show that the COM oversampling method outperforms all 
other methods for any evaluation metric when DT classifier is used. For the KNN and MLP 
classifiers, the COM oversampling method has the best results in two of three evaluation 
metrics, similar to the average value scenario. For the convenience of comparison, the total 
average of each resampling method for the three classifiers is also shown in Table 2, from 
which it can be seen that, compared with the other resampling methods with the MG evalu-
ation metric, the COM method does not show a decisive advantage, and its overall effect 
with SMOTE is similar. However, with the F1 and MAUC metrics, COM has an absolute 
advantage in value and ranking.

4.3 � Statistical Test of Experimental Results

4.3.1 � Friedman Test

To further verify the significant statistical difference in the ranking among resampling meth-
ods, the non-parametric statistical method, Friedman test, which mainly tests the overall dif-
ferences through the rank sum, was applied to the ordering of the resampling methods. The 
null hypothesis is that there is no significant difference in the average ranking of the resam-
pling methods. The results are shown in Table 3, showing that the null hypothesis is rejected 
per the three evaluation metrics for the DT and KNN classifiers. That is, the average ranking 
of various resampling methods is significantly different. When the MLP classifier is used, 
the Friedman test shows statistical insignificance for the F1 metric. In contrast, test results 
for the other two metrics show a significant difference in average ranking.

4.3.2 � Multiple Comparisons

Based on the statistical significance of the Friedman test results, the mean ranking of resa-
mpling methods was tested using multiple comparisons method. Since this research aimed 
to investigate the performance of the proposed COM oversampling method in solving intra-
class imbalance, only the COM method was used as the control in comparing methods. The 
comparison results are listed in Table 4. In multiple comparisons, the average ranking dif-
ference between methods was compared with the critical value determined by the number 
of methods and instances for different combinations of classifiers and evaluation metrics. 
The bold font in the table indicates that the results of multiple comparisons are statistically 
significant. That is, the COM oversampling method is superior to the compared methods.

Table 3   Results for Friedman’s 
test

“***,” “**,” and “*” in the table respectively indicate that the test 
results are statistically significant when the significance level is 0.01, 
0.05, and 0.1

DT KNN MLP

Metric �
2-value Metric �

2-value Metric �
2-value

F1 13.392** F1 9.478* F1 5.938
MG 9.414* MG 14.701** MG 12.974**
MAUC​ 14.637** MAUC​ 20.196*** MAUC​ 9.481*
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For the DT and KNN classifiers, Table 4 shows that the COM oversampling method is sta-
tistically significant for the F1 and MAUC evaluation metrics. In the experiment on the MLP 
classifier, the average F1 of the COM oversampling method is the highest. However, the per-
formance of the Friedman test results is not significant with the F1 evaluation metric, so only 
the other two metrics are used for multiple comparisons. The results show that the average 
ranking of the COM method is significantly better than other methods with the MAUC metric.

5 � Simulation Experiment of COM Stability

In multi-class imbalance learning, due to the diversity of the number of classes and IR, 
the complete virtual data is restrictive in reflecting the actual problem, while simulation 
experiments based on real datasets can better reflect the applicability of the algorithm.

The effectiveness of COM algorithm has been verified in the above research. Next, its 
stability will be further analyzed through the simulation experiment of noise interference 
to learning results. Since most of the noise in practice is Gaussian white noise, we add the 
Gaussian white noise to the multi-class imbalance data in Table 1 according to the signal-
to-noise ratio (SNR). Where the SNR indicates the ratio of signal power to noise power, 
and the smaller the SNR, the more noise in the data, otherwise the opposite.

In order to analyze the stability of COM algorithm, the experiment still use DT, KNN, 
and MLP classifiers to compare several resampling methods based on different evaluation 
criteria, where the experimental setup is similar to that in 4.1.3. The minority classes in 
the new datasets after the addition of noise were oversampled, and the experiments were 
conducted using a fivefold cross-validation method, where the average of the five trials was 
used to measure the classification effectiveness of the classifier.

Since the smaller SNR represents the more serious noise in the data, in order to make a 
reasonable evaluation of the stability of COM algorithm, the SNR is taken to be 15 in the 
experiment. That is, ten virtual multi-class imbalanced datasets can be obtained by add-
ing Gaussian white noise with SNR of 15 to the data in Table 1. The experiments utilize 
oversampling algorithms to balance the virtual datasets and then compare the classification 
effectiveness of the three classifiers.

The experimental results are shown in Fig. 2. It can be seen that COM algorithm has 
obvious advantage when utilizing DT for classification, indicating that its data balancing 
effect is significantly better than other resampling methods, while in the case of KNN and 

Table 4   Results for multiple 
comparisons

Metric None ROS SMOTE ADASYN B-SM

DT
F1 0.5 1.6 2 1.6 2.6
MG 1.4 1.5 0.6 1.2 1.1
MAUC​ 0.7 2.2 2.2 1.8 2.7
KNN
F1 0.1 0.7 1.0 1.8 1.8
MG 1.4 1.1 1.2 0.5 1.0
MAUC​ 0.4 1.5 2.4 3.2 2.1
MLP
MG 2.7 0.4 0.6 1.1 0.8
MAUC​ 1.0 0.8 1.7 2.3 1.8
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MLP, the COM algorithm demonstrates a clear advantage with two evaluation criteria. The 
results of this experiment show that COM algorithm demonstrates relative stability in the 
experiment; i.e., the noise does not have a significant effect on its balancing effect. It is 
worth mentioning that, in terms of the evaluation criterion MAUC, the COM algorithm’s 
ability to categorize any two classes does not seem to be outstanding after adding noise. 
This is mainly due to the small setting of SNR in the experiment.

6 � Conclusions

This paper has proposed a COM oversampling algorithm, which focuses on solving the intra-
class imbalance and sample overgeneralization for multi-class imbalance problems. With our 
proposed method, the minority class instances are first locally clustered, and then, the sam-
pling weights of clusters are set according to the distribution and density of clusters. After 
this, the oversampling method was performed on the extracted clusters, making full use of 
the structural characteristics of the minority class instances. The effectiveness of COM was 
verified on multi-class imbalanced datasets through comparing to multiple oversampling 
methods. Experiment results demonstrate that COM can alleviate the influence of intra-class 
imbalance and overgeneralization significantly and can improve classifiers’ average classifi-
cation ability for any two types of instances in multi-class imbalance problems; our proposed 
method outperforms other compared methods in terms of F1, MAUC, and MG.

Although the training of COM is slightly more complex, it is effective in learning the 
distribution of minority class and synthesizing minority class instances. In future work, we 
will continue to explore imbalance learning methods based on data distribution and gener-
alize COM to deal with the multi-class imbalanced data with high dimensions. In addition, 
raising dimensions for imbalanced data to improve the learning performance is a feasible 
idea, and we will try to combine COM with raising dimension methods to obtain better 
performance for the multi-class imbalance learning.

Fig. 2   Average performance results of each oversampling method versus the virtual datasets



Journal of Classification	

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s00357-​024-​09491-1.

Funding  This work was supported by Shanxi Philosophy and Social Science Foundation, China (No. 
2022YJ075), and Social and Economic Statistics Foundation of Shanxi Province, China (No. KY[2022]274).

Data Availability  The data used in this study are available from the UCI machine learning repository (http://​
archi​ve.​ics.​uci.​edu/​ml/​index.​php) and the KEEL database repository (http://​www.​keel.​es/).

Declarations 

Conflict of Interest  The authors declare no competing interests.

References

Abdi, L., & Hashemi, S. (2015). To combat multi-class imbalanced problems by means of over-sampling 
techniques. Soft Computing, 19(12), 3369–3385.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-
sampling technique. Journal of Artificial Intelligence Research, 16(1), 341–378.

Dong, M., Liu, M., & Jing, C. (2022). One-against-all-based Hellinger distance decision tree for multiclass 
imbalanced learning. Front Inform Technol Electron Eng, 23, 278–290.

Fernandez-navarro, F., Hervásmartínez, C., & Gutiérrez, P. A. (2011). A dynamic over-sampling procedure 
based on sensitivity for multi-class problems. Pattern Recognition, 44(8), 1821–1833.

Guo, H., Li, Y., Li, Y., & Li, J. (2016). BPSO-Adaboost-KNN ensemble learning algorithm for multi-class 
imbalanced data classification. Engineering Applications of Artificial Intelligence, 49, 176–193.

García, V., Sánchez, J. S., & Mollineda, R. A. (2012). On the effectiveness of preprocessing methods when 
dealing with different levels of class imbalance. Knowledge-Based Systems, 25(1), 13–21.

H. He, Y. Bai, E. A. Garcia, and S. Li,  (2008) “ADASYN: Adaptive synthetic sampling approach for imbal-
anced learning,” 2008 IEEE International Joint Conference on Neural Networks, IEEE World Con-
gress on Computational Intelligence, pp. 1322–1328.

H. Hartono, E. Ongko, “Combining hybrid approach redefinition-multiclass imbalance (HAR-MI) and 
hybrid sampling in handling multi-class imbalance and overlapping,” JOIV: International Journal on 
Informatics Visualization, vol. 5, no. 1, pp. 22–26, 2021.

Hartono, H., Ongko, E., & Risyani, Y. (2021). Combining feature selection and hybrid approach redefinition 
in handling class imbalance and overlapping for multi-class imbalanced. Indonesian Journal of Elec-
trical Engineering and Computer Science, 21(3), 1513–1522.

Han, H., Wang, W., & Mao, B. (2005). Borderline-SMOTE: A new over-sampling method in imbalanced 
data sets learning. Lecture Notes in Computer Science, 3644(5), 878–887.

Kang, S., Cho, S., & Kang, P. (2015). Constructing a multi-class classifier using one-against-one approach 
with different binary classifiers. Neurocomputing, 149, 677–682.

Krawczyk, B., Koziarski, M., & Wozniak, M. (2020). Radial-based oversampling for multiclass imbalanced 
data classification. IEEE Transactions on Neural Networks and Learning Systems, 31(8), 2818–2831.

Liu, M., Dong, M., & Jing, C. (2021). A modified real-value negative selection detector-based oversampling 
approach for multiclass imbalance problems. Information Sciences, 556, 160–176.

Li, Q., Song, Y., Zhang, J., & Sheng, V. S. (2020). Multiclass imbalanced learning with one-versus-one 
decomposition and spectral clustering. Expert Systems with Application, 147, 1–14.

Lin, M., Tang, K., & Yao, X. (2013). Dynamic sampling approach to training neural networks for multiclass 
imbalance classification. IEEE Transactions on Neural Networks & Learning Systems, 24(4), 647–660.

Napierala, K., & Stefanowski, J. (2016). Types of minority class examples and their influence on learning 
classifiers from imbalanced data. Journal of Intelligent Information Systems, 46(3), 563–597.

Rekha, G., & Eddy, V. (2021). DDCO - Diversified data characteristic-based oversampling for imbalance 
classification problems. Journal of Information Science and Engineering, 37(5), 1011–1023.

S. Shaikh, C. Liu, M. Rasheed, and S. Rizwan, “Wide research on software defect model with overgenerali-
zation problems,” International Conference on Computing, Mathematics and Engineering Technolo-
gies (iCoMET), pp.1–6, 2019.

Saez, J., Luengo, J., & Stefanowski, J. (2015). Addressing the noisy and borderline examples problem in 
classification with imbalanced datasets via a class noise filtering method-based re-sampling technique. 
Information Sciences, 291, 184–203.

https://doi.org/10.1007/s00357-024-09491-1
https://doi.org/10.1007/s00357-024-09491-1
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://www.keel.es/


	 Journal of Classification

Tang, B., & He, H. B. (2017). GIR-based ensemble sampling approaches for imbalanced learning. Pattern 
Recognition, 71, 306–319.

Wu, J., Xiong, H., & Chen, J. (2010). COG: Local decomposition for rare class analysis. Data Mining and 
Knowledge Discovery, 20(2), 191–220.

S. Wang, X. Yao, “Multiclass imbalance problems: Analysis and potential solutions,” IEEE Trans. Syst, 
Man Cybern. B, Cybern, vol. 42, no. 4, pp. 1119–1130, 2012.

Wang, Q., Zhou, Y., Cao, Z., & Zhang, W. (2022). M2SPL: Generative multiview features with adap-
tive meta-self-paced sampling for class-imbalance learning. Expert Systems with Applications, 189, 
115999.

Zhou, Z. H., & Liu, X. Y. (2006). Training cost-sensitive neural networks with methods addressing the class 
imbalance problem. IEEE Transactions on Knowledge & Data Engineering, 18(1), 63–77.

Zhu, T., Lin, Y., & Liu, Y. (2017). Synthetic minority oversampling technique for multiclass imbalance 
problems. Pattern Recognition, 72, 327–340.

Zhu, T., Lin, Y., Liu, Y., Zhang, W., & Zhang, J. (2019). Minority oversampling for imbalanced ordinal 
regression. Knowledge-Based Systems, 166, 140–155.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable 
law.


	Clustering-Based Oversampling Algorithm for Multi-class Imbalance Learning
	Abstract
	1 Introduction
	2 Related Works
	3 COM: A Clustering-Based Oversampling Algorithm for Multi-class Imbalance Problems
	3.1 Density Clustering for the Minority Class
	3.2 Acquiring the Sampling Weights for the Clusters
	3.2.1 Density of Clusters
	3.2.2 Sampling Weight

	3.3 Generating Synthetic Instances

	4 Experimental Study
	4.1 Setup
	4.1.1 Experimental Data
	4.1.2 IR of Multi-class Imbalance Learning
	4.1.3 Base Classifier and Compared Algorithms

	4.2 Experimental Results and Analyses
	4.2.1 Average Value
	4.2.2 Mean Ranking

	4.3 Statistical Test of Experimental Results
	4.3.1 Friedman Test
	4.3.2 Multiple Comparisons


	5 Simulation Experiment of COM Stability
	6 Conclusions
	References


