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Abstract
Families of mixtures of multivariate power exponential (MPE) distributions have already
been introduced and shown to be competitive for cluster analysis in comparison to other
mixtures of elliptical distributions, including mixtures of Gaussian distributions. A family of
mixtures of multivariate skewed power exponential distributions is proposed that combines
the flexibility of the MPE distribution with the ability to model skewness. These mixtures
are more robust to variations from normality and can account for skewness, varying tail
weight, and peakedness of data. A generalized expectation-maximization approach, which
combines minorization-maximization and optimization based on accelerated line search
algorithms on the Stiefel manifold, is used for parameter estimation. These mixtures are
implemented both in the unsupervised and semi-supervised classification frameworks. Both
simulated and real data are used for illustration and comparison to other mixture families.

Keywords Generalized expectation-maximization algorithm · Mixture models ·
Model-based classification · Model-based clustering · Multivariate skewed power
exponential distribution

1 Introduction

Mixture modeling has been firmly established in the literature as a useful method for finding
homogeneous groups within heterogeneous data. Using mixture models for cluster analy-
sis has a long history (Hasselblad, 1966; Day, 1969) dating at least to Wolfe (1965), who
used a Gaussian mixture model for clustering. When using mixture models for clustering,
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which is known as model-based clustering, mixture models are used to partition data points
to learn group memberships, or labels, of observations with unknown labels. If some obser-
vations are a priori labeled, a semi-supervised analogue of model-based clustering is used
and this is known as model-based classification. Extensive details on model-based cluster-
ing and classification are given by McNicholas (2016a) and recent reviews are provided by
Bouveyron and Brunet-Saumard (2014) and McNicholas (2016b).

A G-component finite mixture model assumes that a random vector X has density of the
form

f (x|ϑ) =
G∑

g=1

πgfg(x|θg),

where g = 1, . . . , G, πg > 0 are the mixing proportions with
∑G

g=1πg = 1, and fg(·)
are the component densities. The Gaussian mixture model (see, e.g., Banfield and Raftery,
1993; Celeux and Govaert, 1995; Tipping and Bishop 1999; McNicholas andMurphy, 2008)
remains popular due to its mathematical tractability. However, it is inflexible in the presence
of cluster skewness and different levels of cluster kurtosis, and has been known to result
in an overestimate of the number of clusters and poor density estimation for known clus-
ters (see Franczak et al., 2014; Dang et al., 2015, for examples). Therefore, it has become
popular to consider mixtures of more flexible distributions for clustering to deal with such
scenarios.

Mixture models that can deal with varying cluster tail-weight, skewness and/or concen-
tration, and kurtosis are increasingly becoming common. A small selection of such models
include mixtures using power transformations (Zhu et al., 2022), mixtures of multivariate t-
distributions (Peel &McLachlan, 2000; Andrews &McNicholas, 2012), mixtures of normal
inverse Gaussian distributions (Karlis & Santourian, 2009; Subedi & McNicholas, 2014;
O’Hagan et al., 2016), mixtures of skew-t distributions (Lin, 2010; Murray et al., 2014;
Vrbik & McNicholas, 2014; Lee & McLachlan, 2014; 2016), mixtures of shifted asym-
metric Laplace distributions (Morris & McNicholas, 2013; Franczak et al., 2014), mixtures
of multivariate power exponential distributions (Dang et al., 2015), mixtures of variance-
gamma distributions (McNicholas et al., 2017), and mixtures of generalized hyperbolic
distributions and variations thereof (Browne & McNicholas, 2015; Murray et al., 2017).

Two common approaches to introducing skewness are by means of a normal variance-
mean mixture model and via hidden truncation using an elliptical distribution and a skewing
function. The former assumes that a random vector X can be written in the form

X = μ + Wα + √
WV,

where μ and α are location and skewness vectors, respectively, V ∼ N (0,�), W ⊥ V,
and W > 0 is a positive random variable with density h(w|�). Depending on the distribu-
tion of W , different skewed distributions can be derived, e.g., the generalized hyperbolic,
skew-t , variance-gamma, and normal inverse Gaussian distributions. The hidden truncation
approach makes use of a combination of an elliptical distribution and a skewing func-
tion. For example, a random vector X follows a multivariate skew-normal distribution with
skewness α if its density can be written as follows:

f (x) = 2φp(x|μ, �)�(α′x),
where φp(·) is the density of the p-dimensional normal distribution and �(·) denotes the
cumulative distribution function of the standard normal distribution (Azzalini & Valle, 1996).

The multivariate power exponential (MPE) distribution (Gómez et al., 1998) has been
used in many different applications (e.g., Lindsey, Cho & Bui, and Verdoolaege et al. 1999,
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2005, and 2008) and was recently used in the mixture model context by Dang et al. (2015).
Depending on the shape parameter β, either a leptokurtic or platykurtic distribution can be
obtained. Specifically, if β ∈ (0, 1) then the distribution is leptokurtic, which is character-
ized by a thinner peak and heavy tails compared to the Gaussian distribution. If β > 1, a
platykurtic distribution is obtained, which is characterized by a flatter peak and thin tails
compared to the Gaussian distribution. Other distributions can also be obtained for spe-
cific values of the shape parameter, for example, for β = 0.5, the distribution is a Laplace
(double-exponential) distribution and, for β = 1, it is a Gaussian distribution. Furthermore,
when β → ∞, the MPE becomes a multivariate uniform distribution.

Dang et al. (2015) derived a family of mixtures of MPE distributions but those mixtures
could only account for elliptical clusters. Previously, skew power exponential distributions
have been discussed in the univariate case with constrained β (Azzalini, 1986; DiCic-
cio & Monti, 2004; da Silva Ferreira et al., 2011) or in the multivariate case as scale
mixture of skew-normal with constrained β (Branco & Dey, 2001). Herein, we present
mixtures based on a novel multivariate skewed power exponential (MSPE) distribution. As
compared to earlier proposals, this distribution is more suitable for clustering and classifi-
cation purposes and can be used for a wide range of β (heavy, Gaussian, and light tails).
Using an eigen-decomposition of the component scale distributions (à la Celeux & Govaert,
1995), we construct a family of 16 MSPE mixture models for use in both clustering and
semi-supervised classification. These models can account for varying tail weight (heavy,
Gaussian, or light), peakedness (thinner or thicker than Gaussian), and skewness of mixture
components.

2 Background

Using the parametrization given by Gómez et al. (1998), a random vector X follows a p-
dimensional power exponential distribution if the density is

f (x|μ,�, β) = p�
(p
2

)

πp/2�
(
1 + p

2β

)
21+

p
2β

|�|− 1
2 exp

{
−1

2
δ(x)β

}
, (1)

where μ is the location parameter, � is a scale matrix, β determines the kurtosis, and

δ(x) : = δ (x|μ, �) = (x − μ)′ �−1 (x − μ) .

In a similar manner to Azzalini and Valle (1996), Lin et al. (2014) derived the multi-
variate skew t-normal distribution by using an elliptical multivariate t-distribution and the
cumulative distribution function of the standard normal distribution as the skewing function.

Herein, the skewness function is still the N(0, 1) cumulative distribution function while
the elliptical distribution is now the MPE distribution. Specifically, a random vector X
follows a p-dimensional skew power exponential distribution if the density is of the form

f (x|μ,�, β, ψ) = 2 g(x|μ, �, β) �(ψ ′�−1/2(x − μ)), (2)

= 2p�
(p
2

)

πp/2�
(
1 + p

2β

)
21+

p
2β

|�|− 1
2 exp

{
−1

2
δ(x)β

}
�

(
ψ ′�−1/2(x − μ)

)

with location vector μ, scale matrix �, shape parameter β, and skewness vector ψ . Some
special cases of this distribution include the skew-normal distribution (β = 1), a variant of
a skew Laplace distribution (β = 0.5), the power exponential distribution (ψ = 0), and
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Fig. 1 Contours of the multivariate skew power exponential distribution for different values of the shape
and skewness parameters with μ = (0, 0)′ and an identity scale matrix. The middle panel, with β = 1, is a
multivariate skew-normal distribution

a generalization of the multivariate uniform distribution (β → ∞, ψ = 0). Examples of
contours of the MSPE distribution are given in Fig. 1.

3 Mixtures of MSPE Distributions

3.1 Inference

An iterative procedure is used for parameter estimation; specifically, a generalized
expectation-maximization (GEM) algorithm (Dempster et al., 1977) with conditional max-
imization steps. The expectation-maximization (EM) algorithm (Dempster et al., 1977) is
an iterative procedure in which the conditional expected value of the complete-data log-
likelihood is maximized on each iteration to yield parameter updates. As opposed to the
EM algorithm, the conditional maximization steps increase, rather than maximize, the con-
ditional expected value of the complete-data log-likelihood in each iteration of a GEM
algorithm. Consider a random sample x1, . . . , xn from a p-dimensional MSPE mixture
distribution from a population with G subgroups. If we define

zig =
{
1 if xi is from groupg,

0 otherwise,

then the complete-data log-likelihood can be written as follows:

Lc(�) =
n∑

i=1

G∑

g=1

zig log

[
2πg

p�
(p
2

)

�
(
1 + p

2βg

)
2
1+ p

2βg πp/2
|�g|− 1

2

× exp

{
−δig(xi )

βg

2

}
�

(
ψ ′

g�
−1/2
g (xi − μg)

) ]
.

For parsimony, an eigen-decomposition is commonly imposed on component scale
matrices using the re-parameterization �g = λg�g	g�

′
g , where 	g is a diagonal matrix

with entries proportional to the eigenvalues of �g (with |	g| = 1), λg is the associated con-
stant of proportionality, and �g is a p ×p orthogonal matrix of the eigenvectors of �g with
entries ordered according to the eigenvalues (Banfield & Raftery, 1993; Celeux & Gov-
aert, 1995). A subset of eight models was considered in Dang et al. (2015) including the
most parsimonious (EII) and the fully unconstrained (VVV) models, along with a possible
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Table 1 Nomenclature, scale matrix structure, and the number of free scale parameters for the eigen-
decomposed family of models

Model λg 	g �g �g Free parameters

EII Equal Spherical − λI 1

VII Variable Spherical − λgI G

EEI Equal Equal Axis-aligned λ	 p

VVI Variable Variable Axis-aligned λg	g Gp

EEE Equal Equal Equal λ�	�′ p (p + 1) /2

EEV Equal Equal Variable λ�g	�′
g Gp(p + 1)/2 − (G − 1)p

VVE Variable Variable Equal λg�	g�′ p(p + 1)/2 + (G − 1)p

VVV Variable Variable Variable λg�g	g�′
g Gp (p + 1) /2

constraint on βg , for their family of mixture models using elliptical power exponential dis-
tributions (Table 1). Herein, we consider the same eight models to form a family of mixtures
of skewed power exponential distributions.

After initialization (Section 3.2), the algorithm proceeds as follows.
E-Step: In the E-step, the group membership estimates ẑig are updated using

ẑig : = E�̂[Zig|xi] =
π̂gf

(
xi |μ̂g, �̂g, β̂g, ψ̂g

)

∑G
j=1π̂j f

(
xi |μ̂j , �̂j , β̂j , ψ̂j

) ,

for i = 1, . . . , n and g = 1, . . . , G.
M-Step: The update for πg is π̂g = ng/n, where ng = ∑n

i=1ẑig . However, the updates for
μg, �g, βg , and ψg are not available in closed form. For estimating βg , either a Newton-
Raphson method or a root finding algorithm may be used and is identical to the estimate
in Dang et al. (2015). In our implemented code, we constrain βg to be less than 20 for
numerical stability. Let

Q : = E�[Lc(�|x)].
Then, a Newton-Raphson update is used for the location parameter μ̂g with the following:

∂Q
∂μg

= β̂g

n∑

i=1

ẑigδig(xi )
β̂g−1�̂

−1
g (xi − μ̂g) −

n∑

i=1

ẑig

φ(ψ ′
g�

−1/2
g (xi − μ̂g))

�(ψ ′
g�

−1/2
g (xi − μ̂g))

�
−1/2
g ψg, (3)

∂2Q
∂μgμ′

g

= β̂g

n∑

i=1

ẑig

[
−δig(xi )

β̂g−1�̂
−1
g − 2(β̂g − 1)δig(xi )

β̂g−2�̂
−1
g (xi − μ̂g)(xi − μ̂g)′�̂−1

g

]

−
n∑

i=1

ẑigψ ′
g�

−1/2
g (xi − μ̂g)

φ(ψ ′
g�

−1/2
g (xi − μ̂g))

�(ψ ′
g�

−1/2
g (xi − μ̂g))

�̂
−1
g ψgψ ′

g�̂
−1
g

−
n∑

i=1

ẑig

[
φ(ψ ′

g�
−1/2
g (xi − μ̂g))

�(ψ ′
g�

−1/2
g (xi − μ̂g))

]2

�̂
−1
g ψgψ ′

g�̂
−1
g ,

where δig(xi ) : = (
xi − μ̂g

)′
�̂

−1
g

(
xi − μ̂g

)
.

149



Journal of Classification (2023) 40:145–167

For estimating the skewness parameterψ , the density is first re-parameterized as follows:

f (x|μ,�, β, ψ) = 2 g(x|μ, �, β) �(ψ ′�−1/2(x − μ))

= 2 g(x|μ, �, β) �(η′(x − μ)),

where η = �−1/2ψ . A quadratic lower-bound principle (Böhning & Lindsay, 1988;
Hunter & Lange, 2004) on the relevant part of the complete-data log-likelihood using the
re-parameterized density uses the following property to construct a quadratic minorizer:

log(�(s)) ≥ log(�(s0)) + φ(s0)

�(s0)
(s − s0) + 1

2
(−1)(s − s0)

2,

where −1 is the lower bound of the second derivative in the Taylor series around s0. Then,
an estimate for ηg yields

ηg =
[

n∑

i=1

ẑig(xi − μ̂g)(xi − μ̂g)
′
]−1 [

n∑

i=1

ẑig

φ(η′
g0(xi − μ̂g))

�(η′
g0(xi − μ̂g))

(xi − μ̂g)

+
n∑

i=1

ẑig(xi − μ̂g)(xi − μ̂g)
′ηg0

]

and we can back-transform to obtain ψg = �
1/2
g ηg .

For the scale matrices �g , the estimation makes use of minorization-maximization
algorithms (Hunter & Lange, 2000; 2004) by exploiting the concavity of the functions con-
taining �g (or parts of its decomposition) and accelerated line search algorithms on the
Stiefel manifold (Absil et al., 2009; Browne & McNicholas, 2014), with different updates
depending on whether the latest estimate for βg is less than 1 or is greater than or equal
to 1. For more details, see Dang et al. (2015). Combining the constraints of the eigen-
decomposition in Table 1, with constraining βg to be equal or different between groups,
results in a family of 16 models. For example, a VVIE model represents a VVI scale
structure (as in Table 1) and the shape parameter constrained to be equal between groups
(βg = β).

3.2 Initialization

It is well known that the performance of the EM algorithm depends heavily on the starting
values. The following strategy is adopted. The group memberships are initialized using
a combination of emEM approach (Biernacki et al., 2003), k-means algorithm (Hartigan
& Wong, 1979), and random soft starts. Specifically, the most superior run (highest log-
likelihood) from 10 different k-means-based short EM runs is chosen for a long EM run.
This process is repeated with random soft starts. The fits of the two long EM runs are
compared based on a model selection criterion (see Section 3.3) to choose a best model.
Once these initial memberships are set, the μg and �g are initialized using a constrained
model. The kurtosis parameters βg are initialized to 0.5, and the skewness is initialized as a
zero vector.

3.3 Convergence, Model Selection, and Performance Assessment

Following Lindsay (1995) and McNicholas et al. (2010), the iterative GEM algorithm is
stopped based on the Aitken’s acceleration (Aitken 1926). Specifically, an asymptotic esti-
mate of the log-likelihood at iteration k + 1 is compared with the current log-likelihood
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value and considered converged when the difference is less than some positive ε. We use
ε = 0.005 for the analyses herein.

In a general clustering scenario, the number of groups is generally not known a priori
and the covariance model is not known. Therefore, a model selection criterion is required.
The most common criterion for model selection is the Bayesian information criterion (BIC;
Schwarz 1978). The BIC can be written as follows:

BIC = 2l(ϑ̂) − m log n, (4)

where m is the number of free parameters, n is the sample size, and l(ϑ̂) is the maximized
log-likelihood. When written as in Eq. 4, a greater BIC represents a superior model fit. The
integrated complete likelihood (ICL; Biernacki et al. 2000) was also considered for model
selection; however, in initial testing, the ICL did not consistently outperform the BIC in
simulations and thus, for the remainder of this manuscript, we use only the BIC.

To evaluate classification performance, we use the adjusted Rand index (ARI; Hubert
and Arabie 1985). The ARI compares two different partitions; specifically, in our case, the
estimated classification and the (known) true classifications. The ARI takes a value of 1
when there is perfect classification and has expected value 0 under random classification
(see Steinley (2004) for extensive details on the ARI).

4 Analyses

4.1 Overview

The performance of the MSPE mixture models is compared with mixture model implemen-
tations based on the MPE distribution (Dang et al., 2015), as well as implementations from
the mixture package (Pocuca et al., 2022) of the generalized hyperbolic distribution
(ghpcm) and the Gaussian distribution (gpcm). We chose these mixtures for comparison
as Gaussian mixtures remain widely used and the generalized hyperbolic distribution has
special cases that include some parameterizations of inverse Gaussian, variance-gamma,
skew-t (note there are formulations of the skew-t distribution that cannot be obtained from
the generalized hyperbolic), multivariate normal-inverse Gaussian, and asymmetric Laplace
distribution. Using these comparators, we obtain comparisons to mixtures based on purely
elliptical (Gaussian), elliptical with flexible kurtosis modeling (MPE), and skewed (gener-
alized hyperbolic) distributions. For a fair comparison, we restrict the models in the other
implementations to those in Table 1. In addition, we use BIC as the model selection crite-
rion, we run G = 1, . . . , 4 for all simulations and real data analyses, and we use the same
starting soft memberships for all comparator models. Data from the MSPE distribution is
simulated using a Metropolis-Hastings rule.

4.2 Simulations

4.2.1 Simulation 1: Heavy and Light-Tailed Skewed Clusters

A three-component mixture is simulated with 500 observations in total. Group sample sizes
are sampled from a multinomial distribution with mixing proportions (0.35, 0.25, 0.4)′. The
first component is simulated from a heavy-tailed three-dimensional MSPE distribution with
μ1 = (3, 3, 0)′, β1 = 0.85, and ψ1 = (−5,−10, 0)′. The second component is simulated
with μ2 = (3, 6, 0)′, β2 = 0.9, and ψ2 = (15, 10, 0)′. The third component is simulated
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Fig. 2 An example scatterplot matrix of the three-component mixture of simulation 1

with light tails with μ3 = (4, 2, 0)′, β3 = 2, and ψ3 = ψ2. Lastly, the scale matrices were
common to all three components with diag (	g) = (4, 3, 1)′ and

�g =
⎛

⎝
0.36 0.48 −0.80

− 0.80 0.60 0.0
0.48 0.64 0.6

⎞

⎠ ,

for g = 1, 2, 3. The simulated components are not well separated (an example scatterplot
matrix is given in Fig. 2). All four mixture implementations are run on 100 such datasets
for G = 1, . . . , 4.

For the MSPE family, a three-component (four-component) model is selected by the BIC
98 (2) times. For the MPE family, the BIC selects a three-component (four-component)
model 87 (13) times. When the four-component models are selected, typically, this is
because the model chosen has split up the heavy-tailed cluster into two separate compo-
nents. The exception is that for two chosen four-component MPE solutions, the light-tailed
cluster was split into two separate components. For the gpcm family, the BIC selects a
three-component (four-component) model 99 (1) times. On the other hand, for the ghpcm
algorithm, one-component, two-component, and three-component models are selected 3, 46,
and 51 times, respectively. This under-fitting—the heavy-tailed and light-tailed components
are merged—may be due to the use of the BIC.

The ARI values for the selected MSPE models range from 0.71 to 0.91, with a median
(mean) ARI value of 0.83 (0.83). The selected MPE models yield ARI values ranging
between 0.67 and 0.91, with a median (mean) value of 0.80 (0.79). The selected gpcm
models yield ARI values ranging between 0.71 and 0.91, with a median (mean) value of
0.80 (0.80). Similarly, the ghpcm algorithm yields ARI values ranging between 0 and 0.82,
with a median (mean) value of 0.41 (0.47). For the MSPE models, an EEEV model was
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selected 68 out of the 100 times, with a less parsimonious model selected the other times.
To demonstrate parameter recovery, a similar simulation setup was carried out and findings
are provided in in the Appendix.

4.2.2 Simulation 2: Heavy-Tailed and Gaussian Skewed Clusters

A three-component mixture is simulated with 500 observations in total. Group sample sizes
are sampled from a multinomial distribution with mixing proportions (0.3, 0.45, 0.25)′. The
first component is simulated from a three-dimensional skewed normal distribution (i.e.,
β1 = 1) withμ1 = (0, 1, 2)′ andψ1 = (3, 5, 10)′. The second component is simulated from
a heavy-tailed three-dimensional MSPE distribution with μ2 = (0, 4, 2)′, β2 = 0.8, and
ψ2 = (−3, 5,−5)′. The third component is simulated with μ3 = (−2,−3, 0)′, β3 = 0.9,
and ψ3 = (5, 10,−5)′. Lastly, the scale matrices are

�1 =
⎛

⎝
1.00 0.50 0.40
0.50 1.50 0.35
0.40 0.35 1.20

⎞

⎠ and �2 = �3 =
⎛

⎝
1.00 0.30 0.20
0.30 1.50 0.30
0.20 0.30 1.20

⎞

⎠ .

Again, the simulated components are not well separated and all four mixture implementa-
tions are run on 100 such datasets for G = 1, . . . , 4.

For the MSPE family, a three-component (four-component) model is selected by the
BIC 95 (5) times. For the MPE mixture, the BIC selected a three-component (four-
component) model 99 (1) times. Interestingly, for the ghpcm mixtures, the BIC selects a
three-component model all 100 times. On the other hand, for the gpcm family, the BIC
selects a three-component (four-component) model 94 (6) times. In all cases when the four-
component models are selected, this is because the model chosen has split up one of the
heavy-tailed clusters into two components.

The ARI values for the selected MSPE models range from 0.74 to 0.98, with a median
(mean) ARI value of 0.94 (0.93). The selected MPE models yield ARI values ranging
between 0.72 and 0.96, with a median (mean) value of 0.90 (0.89). Similarly, the ghpcm
algorithm yields ARI values ranging between 0.70 and 0.94, with a median (mean) value of
0.86 (0.85). The selected gpcm models yield ARI values ranging between 0.68 and 0.95,
with a median (mean) value of 0.90 (0.88). For the MSPE models, an EEEV model is
selected 76 out of 100 times.

4.2.3 Simulation 3: Two Light-Tailed Elliptical Clusters

A simulation from Dang et al. (2015) is replicated, where a two-component EIIV model
is simulated with 450 observations with the sample sizes for each group sampled from a
binomial distribution with success probability 0.45. Both components had identity scale
matrices and zero skewness. The first component is simulated from a two-dimensional MPE
distribution with μ1 = (0, 0)′ and β1 = 2 while the second component is simulated using
μ2 = (2, 0)′ and β2 = 5. Again, the simulated components are not well separated. All four
algorithms are run on 100 such datasets. For the MSPE andMPE families, a two-component
model is selected by the BIC for 100 and 99 datasets, respectively. The dataset where a three-
component model is selected for the MPE models involves a cluster of four observations
that are tightly clustered with tiny eigenvalues. On the other hand, for the gpcm family,
the BIC selects a two-, three-, and four-component model 80, 12, and 8 times, respectively.
Similarly, for the ghpcm algorithm, one-, two-, and three-component models are selected
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Table 2 Performance comparison of four mixture model families on simulations

Simulation 1 Simulation 2 Simulation 3

MSPE Frequencies 3 (98); 4 (2) 3 (95); 4 (5) 2 (100)

ARI 0.83 (0.81, 0.86) 0.94 (0.93, 0.95) 0.88 (0.85, 0.90)

MPE Frequencies 3 (87); 4 (13) 3 (99); 4 (1) 2 (99); 3 (1)

ARI 0.80 (0.76, 0.83) 0.90 (0.88, 0.91) 0.88 (0.86, 0.90)

ghpcm Frequencies 1 (3); 2 (46); 3 (51) 3 (100) 1 (1); 2 (95); 3 (4)

ARI 0.41 (0.30, 0.66) 0.86 (0.82, 0.88) 0.81 (0.79, 0.85)

gpcm Frequencies 3 (99); 4 (1) 3 (94); 4 (6) 2 (80); 3 (12); 4 (8)

ARI 0.80 (0.77, 0.82) 0.90 (0.87, 0.91) 0.85 (0.77, 0.89)

For each simulation and implementation, a frequency table of number of groups of the best selected model
according to the BIC is provided. Median ARI is provided as well as the first and third quartiles for ARI
across 100 datasets in each simulation in parentheses as table entries. The ARI for the comparator(s) with
superior performance is bolded

1, 95, and 4 times, respectively. Here, more components are being fitted to deal with the
light-tailed nature of the data.

For theMPE family (which was used to simulate the data), the ARI values for the selected
models range from 0.81 to 0.95, with a median (mean) ARI value of 0.88 (0.88). The MSPE
family performed similarly, as expected—the MPE is a special case of the MSPE family—
with the ARI values for the selected models ranging from 0.81 to 0.94, with a median (mean)
ARI value of 0.88 (0.88). The selected gpcm models yield ARI values ranging between
0.35 and 0.96, with a median (mean) value of 0.85 (0.80). Similarly, the ghpcm algorithm
yields ARI values ranging between 0 and 0.91, with a median (mean) value of 0.81 (0.80).
For the MSPE and MPE models, an EIIV model was selected 89 and 95 times out of 100,
respectively. Because the ranges of ARI can be more reflective of one poor or great fit,
the median, first and third quartile of the ARIs for the selected models are summarized in
Table 2 for all simulations.

4.3 Dataset Descriptions

For assessment of performance on real data, we considered the following “benchmark”
datasets, i.e., datasets often used for comparison of clustering algorithms, of various sizes
and dimensionalities available through various R packages:

• Body Dataset: The body data from the gclus package (Hurley, 2012) has 24
measurements on body dimension, age, etc., for 507 individuals (247 men and 260
women).

• Coffee Dataset: The coffee dataset (Streuli, 1973), obtained from the pgmm pack-
age (McNicholas et al., 2022), has 12 chemical measurements on two types of coffee
(arabica and robusta).

• Female Voles Dataset: The fvoles dataset (Flury, 2012) has measurements on six
size variables and age of 86 female voles from two different species (californicus and
ochrogaster).
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• Olive Dataset: The olive dataset (Forina & Tiscornia, 1982), obtained from the
pgmm package, has percentage composition of eight fatty acids of olive oils from three
regions of Italy.

• Penguins Dataset: The penguins dataset (Horst et al., 2020) has measurements
on bill length, bill depth, flipper length, and body mass of 342 penguins from three
different species (Adélie, Chinstrap, and Gentoo).

• Wine Dataset: The thirteen variable wine dataset, obtained from (Hurley, 2012), has
13 different measurements of chemical aspects of 178 Italian wines from three different
types of wine.

Several other datasets were also considered, on which performance of the different
algorithms is summarized in the Appendix.

4.4 Unsupervised Classification

Unsupervised classification is performed on (scaled) datasets mentioned above using the
same comparison distributions as on the simulated data. The ARI and the number of groups
chosen by the BIC are shown in Table 3 along with the classification tables in Table 4.

In the case of the body dataset, heavy-tailed components with some skewness are fit
with the best selected MSPE model (an EEEV model). For the other three comparators,
the BIC selected a four-component model, with the fewest misclassifications for the MPE
model. The coffee dataset is a small dataset (n = 43), on which the selected MSPEmodel
(heavy-tailed) had perfect classification. The other three comparators overfit the number of
components, with MPE and gpcm obtaining the same classification and the ghpcm model
fitting two small clusters containing six and seven observations, respectively. In the case
of the fvoles dataset, skewed yet light-tailed clusters are fit. However, the gpcm model
performed equally well here while the ghpcm model misclassified two more observations
in comparison. On the other hand, the selected MPE model fit three components (with
one component containing only six observations). In the case of the olive data, the BIC
selected a similarly performing, four-component, solution for all four comparators (G =
3) with olive oils from Southern Italy split into two components. The MSPE model fit
heavy-tailed components. On the penguins data, the two skewed mixtures MSPE and
ghpcm performed best, fitting the “correct” number of components. The MSPE model fit
heavy (with some skewness) clusters. The selected models from the MPE and gpcm split
different species into two different components with the best fit gpcm model having the
largest number of misclassifications of all the comparators. On the other hand, in the case of
the wine data, the MSPE mixture fit heavy-tailed components with five misclassifications.
The BIC selected a four-component solution for the other three comparators.

Note that, for the body and wine datasets, the findings above differ from those previ-
ously reported in Dang et al. (2015) for the MPE mixtures; this is likely due to different
starting values. For example, in Dang et al. (2015), a solution was obtained using MPE mix-
tures which fit three components and misclassified only one observation; however, here the
selected MPE mixture based on the BIC was a four-component model, likely due to differ-
ent starting values (one of the MPE mixture fits also only had one misclassification; this
was the third best model according to the BIC). Note that in the semi-supervised case as
well (Table 5), the MSPE mixtures perform the best followed by the MPE mixtures. The
estimates of the βg parameters from the MSPE fit indicate heavy tails while ghpcm overfits
the number of components.
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It is interesting to note that while the BIC is used to select one model from a family of
models within a family, there is no guarantee that this model, whether within a family or
between families, provides the most superior clustering performance.

4.5 Semi-supervised Classification

Using the same datasets as in the unsupervised classification case, semi-supervised classi-
fication is now considered. Following McNicholas (2010), the (observed) likelihood in the
model-based classification framework can be written

L(ϑ | x1, . . . , xn) =
k∏

i=1

G∏

g=1

[πgf (xi |θg)]zig

n∏

j=k+1

G∑

h=1

[πhf (xj |θh)],

where the first k observations have known component memberships (i.e., labels), f (xi |θg)

is the gth component density, and πg and zig have the usual interpretations.
For each dataset previously considered, we take 25 labelled/unlabelled splits with 25%

supervision. In Table 5, we display the median ARI values along with the first and third
quartiles over the 25 splits. Generally, and as one would expect, performance in the semi-
supervised scenarios was found to be better than in the fully unsupervised scenarios. In the
case of the wine data, as mentioned in Section 4.4, the MSPE mixtures clearly exhibit the
best performance (perfect classification), followed by the MPE mixtures. On the fvoles,
olive, and penguins datasets, all comparators performed similarly. For the penguins
dataset, the highest ARI was achieved by the two power exponential based mixtures (only
one misclassification based on 25% supervision). On the other hand, on the coffee
dataset, all models performed well although gpcm and ghpcm had some runs with poor
fits. On the body dataset, the two power exponential-based mixtures performed best, with
the highest ARI achieved with three misclassifications overall (75% unlabelled), followed
by gpcm.

5 Discussion

A multivariate skewed power exponential distribution is introduced that is well suited
for density estimation purposes for a wide range of data with non-Gaussian clusters.
The family of 16 MSPE mixtures presented herein allow for robust mixture models for
model-based clustering on skewed as well as symmetric components. These models can
model components with varying levels of peakedness and tail-weight (light, heavy, Gaus-
sian) simultaneously with skewness. As a result, these models are well suited to model
heterogeneous data with non-Gaussian components.

In addition to these properties, special cases of the MSPE distribution include the
skew-normal distribution among others. The performance of such mixtures for clus-
tering is investigated on a wide range of simulated scenarios—on heavy-tailed, light-
tailed, Gaussian, and skewed components, and combinations thereof—and on real data
of varying dimensionalities and sizes commonly used for illustrating clustering and
classification. At present, model selection is performed using the BIC and, although
this performs well in most cases, it is by no means perfect and alternative crite-
ria could be considered in more detail. Standard errors of parameter estimates were
not considered herein; this could be implemented via the standard information-based
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method to obtain the asymptotic covariance matrix of the estimates or via bootstrapping
(Basford et al., 1997; Lin et al., 2014).

Through simulations, we showed scenarios where such skewed mixtures are compar-
ative to or better than widely used elliptical mixture models (mixtures of Gaussians) or
skewed mixture models gaining increasing attention (mixtures of generalized hyperbolic
distributions). When looking at real datasets, we compared in the context of both unsuper-
vised classification (i.e., clustering) and semi-supervised classification. On these, the MSPE
model performed just as well or better on most of the investigated datasets compared to
three other mixture model families/algorithms. The analysis on the real datasets in the unsu-
pervised case displayed some possible weaknesses, which may be related to initializations
or the choice of BIC as the model selection criterion. Performance improved substantially
for some of the datasets when a small level of supervision was introduced.

There are numerous areas of possible future work. One such area would be to consider a
mixture of factor analyzers with the MSPE distribution for high-dimensional data. A matrix
variate extension, in a similar manner to Gallaugher and McNicholas (2018), might also be
interesting for modeling three-way data.

Appendix. Supporting Information

Parameter Recovery

A three-component mixture is simulated with 500 observations in total. Group sample sizes
are sampled from a multinomial distribution with mixing proportions (0.2, 0.34, 0.46)′. The
first component is simulated from a heavy-tailed three-dimensional MSPE distribution with
μ1 = (12, 14, 0)′, β1 = 0.85, and ψ1 = (−5,−10, 0)′. The second component is simulated
with μ2 = (−3,−10, 0)′, β2 = 0.9, and ψ2 = (15, 10, 0)′. The third component is simu-
lated with light tails with μ3 = (3, 1, 0)′, β3 = 2, and ψ3 = ψ2. Lastly, the scale matrices

Table 6 Parameter recovery of cluster-specific means and covariance matrices (rounded to two decimals)

Parameter Average generated Average estimated Mean squared error

Mean1 (11.46, 12.14,−0.06)′ (11.45, 12.08,−0.03)′ (0, 0.02, 0.01)′

Mean2 (−1.96,−8.99, 0.27)′ (−1.96,−8.97, 0.22)′ (0, 0.01, 0.01)′

Mean3 (3.50, 1.47, 0.14)′ (3.55, 1.51, 0.14)′ (0, 0.00, 0.00)′

Covariance1

⎡

⎢⎣
3.35 −1.67 2.21

−1.67 3.69 −0.98

2.21 −0.98 4.87

⎤

⎥⎦

⎡

⎢⎣
3.90 −2.41 2.76

−2.41 5.00 −1.59

2.76 −1.59 6.90

⎤

⎥⎦

⎡

⎢⎣
0.47 0.75 0.47

0.75 2.10 0.52

0.47 0.52 4.62

⎤

⎥⎦

Covariance2

⎡

⎢⎣
1.86 −1.52 1.54

−1.52 4.92 −0.90

1.54 −0.90 3.99

⎤

⎥⎦

⎡

⎢⎣
2.31 −2.22 2.06

−2.22 6.40 −1.35

2.06 −1.35 5.46

⎤

⎥⎦

⎡

⎢⎣
0.25 0.62 0.35

0.62 2.62 0.33

0.35 0.33 2.38

⎤

⎥⎦

Covariance3

⎡

⎢⎣
0.42 −0.36 0.35

−0.36 1.11 −0.21

0.35 −0.21 0.91

⎤

⎥⎦

⎡

⎢⎣
0.48 −0.36 0.38

−0.36 1.19 −0.22

0.38 −0.22 0.97

⎤

⎥⎦

⎡

⎢⎣
0 0.00 0.00

0 0.01 0.00

0 0.00 0.01

⎤

⎥⎦
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were common to all three components with diag (	g) = (4, 3, 1)′ and

�g =
⎛

⎝
0.36 0.48 −0.80

−0.80 0.60 0.0
0.48 0.64 0.6

⎞

⎠ ,

for g = 1, 2, 3. The simulated components were well separated to show parameter recovery.
MSPE was run on 100 such datasets and perfect classification obtained on this well sep-
arated data each time. Note that there is an identifiability issue with individual parameter
estimates (different combinations of individual parameter estimates yield the same fit) and
closed form equations for overall mean and variance are not available. Hence, we demon-
strate parameter recovery of overall cluster-specific mean and covariances in Table 6 by
comparing estimates from data simulated (via a Metropolis-Hastings rule) using individ-
ual parameter estimates from the GEM fit. Clearly, the estimates are overall close to the
generated values.

Performance on Additional Datasets

In addition to those considered in the main body of the manuscript, we also considered the
following data available through various R packages:

WineDataset The expanded twenty seven variable wine dataset, obtained from pgmm, has
27 different measurements of chemical aspects of 178 Italian wines (three types of wine).

Iris Dataset The iris dataset (included with R) consists of 150 observations, 50 each of
3 different species of iris. There are four different variables that were measured, namely the
petal length and width and the sepal length and width.

Swiss Banknote Dataset The Swiss banknote dataset, obtained from MixGHD (Tortora
et al., 2018) looked at 6 different measurements from 100 genuine and 100 counterfeit
banknotes. The measurements were length, length of the diagonal, width of the right and
left edges, and the top and bottom margin widths.

Crabs Dataset The crabs dataset, obtained from MASS (Venables & Ripley, 2002), con-
tains 200 observations with 5 different variables that measure characteristics of crabs. There
were 100 males and 100 females, and two different species of crabs, orange, and blue. This
creates four different groups of crabs based on gender/species combinations.

Bankruptcy Dataset The bankruptcy dataset, obtained from MixGHD, looked at the
ratio of retained earnings to total assets, and the ratio of earnings before interests and taxes
to total assets of 33 financially sound and 33 bankrupt American firms.

Yeast Dataset A subset of the yeast dataset from Nakai and Kanehisa (1991, 1992)
sourced through the MixSAL package (Franczak et al., 2018) is also used. There are mea-
surements on three variables: McGeoch’s method for signal sequence recognition, the score
of the ALOMmembrane spanning region prediction program, and the score of discriminant
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Table 7 Performance comparison of four mixture model families on real data for the unsupervised scenarios

Data MSPE MPE ghpcm gpcm

Banknote (n=200, p=6,G=2) 0.86 (3; −2681) 0.68 (4; −2651) 0.98 (2; −2700) 0.68 (4; −2652)

Bankruptcy (n=66, p=2,G=2) 0.56 (4; −235) 0.53 (3; −228) 0 (3; −236) 0.58 (3; −263)

Crabs (n = 200, p = 5,G = 4) 0.67 (3; 72) 0.86 (4; 92) 0.69 (3; 93) 0.61 (3; 63)

Diabetes (n=145, p=3,G=3) 0.44 (2; −479) 0.66 (3; −487) 0.4 (2; −465) 0.66 (3; −483)

Iris (n = 150, p = 4,G = 3) 0.57 (2; −799) 0.92 (3; −795) 0.7 (4; −582) 0.57 (2; −791)

Wine (n = 178, p = 27,G = 3) 0.83 (3; −12179) 0.83 (3; −11982) 0.81 (4; −8665) 1 (3; −11897)

Yeast (n = 626, p = 3,G = 2) 0.49 (3; −5042) 0.4 (4; −5028) −0.04(2;−4863) 0.4 (4; −5053)

Sample size, dimensionality, and the number of known groups (i.e., classes) are in parentheses following
each dataset name. For each implementation, the ARI and the number of selected components as well as the
BIC are provided in parentheses

analysis of the amino acid content of vacuolar and extracellular proteins along with the pos-
sible two cellular localization sites, CYT (cytosolic or cytoskeletal) and ME3 (membrane
protein, no N-terminal signal) for the proteins.

Diabetes Dataset The diabetes dataset, obtained from mclust (Fraley et al., 2012),
considered 145 non-obese adult patients with different types of diabetes classified as nor-
mal, overt, and chemical. There were three measurements, the area under the plasma glucose
curve, the area under the plasma insulin curve, and the steady-state plasma glucose.

Unsupervised Classification Unsupervised classification, i.e., clustering, is performed on
the (scaled) datasets mentioned above using the same comparison distributions as on the
simulated data. The ARI and the number of groups chosen by the BIC are shown in Table 7.

The banknote data is interesting in that while the two elliptical mixtures, MPE and
Gaussian mixture models, split the counterfeit and genuine banknotes into four different
groups with the same classification overall (Table 8), the selected MSPE model fits three
components splitting the counterfeit banknotes into a larger and a smaller component, while
the ghpcm model splits the observations into two groups only. We see that, for the crabs,
the MPE distribution exhibits the best performance (with eight “blue males” being misclas-
sified into a different component) while the other three methods choose three components;
however, the clusters found are a little different (Table 8). For example, the MSPE model
perfectly separates one species of crab from the other; however, for the “blue” species, it
does not differentiate between the sexes. For the second species, there are only four mis-
classifications for differentiating the sexes. The ghpcmmodel has a similar fit to the MSPE
model (species separated nicely but not sexes), but with two fewer misclassifications. The
gpcm had a poorer fit compared to known labels, clustering sex better than species. The
bankruptcy data shows some interesting results. The ghpcm model fits three clusters
to the data, with two small clusters of two and three observations, respectively, with poor
performance compared to known labels (Table 8). The other three comparators performed
somewhat similarly with MSPE fitting four components (including one with eight tightly
clustered points). For the diabetes data, the two selected skewed mixtures under-fit the
number of components (seem to combine the normal and chemical classes but able to dif-
ferentiate from the overt class) as compared to the elliptical mixtures, which fare better and
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similarly. Moreover, the estimates of skewness were not trivial, and both groups had heav-
ier tails in the MSPE fit. On the other hand, for the MPE fit, the tails were approximately
Gaussian (common βg ≈ 1). For the yeast dataset, apart from the ghpcm mixtures, the
other three mixtures overfit the number of components; however, the ghpcm mixture clus-
tering was not meaningful compared to known labels. For the iris data, only the MPE
mixtures’ selected model had three components. While for the expanded 27-dimensional
wine dataset, the gpcmmixtures perform best with perfect classification. Interestingly, the
gpcmmixtures have poorer performance relatively in the semi-supervised fits on these data.
Note that this phenomenon, whereby cluster analysis can obtain better results compared to
using semi-supervised classification, has been noted before, e.g., by Vrbik and McNicholas
(2015) and Gallaugher and McNicholas (2019).

The relative performance of the MPE versus MSPE mixtures in Table 9 suggests that
there are cases in which using these skewed mixtures might not be ideal and could be a
possible subject of future work.

Semi-supervised Classification For each dataset, we take 25 labelled/unlabelled splits with
25% supervision. In Table 9, we display the median ARI values along with the first and third
quartiles over the 25 splits. For the most part, as found in the main text of this manuscript,
performance in the semi-supervised scenarios was better than in the fully unsupervised
scenarios. Performance across the four comparators was also quite comparable with few
exceptions. For the yeast data, both in the unsupervised and semi-supervised context, the
MSPE mixtures performed the best. Similarly, for the diabetes data, the MSPE mixtures
perform the best, with gpcm mixtures having the most inferior classification performance.
On the 27 dimensional wine data, the MPE mixtures performed well with MSPE mix-
tures having more variability in ARI across the runs. For the iris dataset, the MPE and
ghpcm models showed the best overall performance while, for the banknote dataset,
all algorithms exhibit similar performance. For the bankruptcy data, the gpcm algorithm
performed the poorest while, for crabs, the gpcm algorithm performed the best along
with ghpcm and MPE mixtures which had similar performance. For the crabs dataset,
although the MSPE models had poorer classification compared to the other three mixtures,
the performance was still close to the other mixture distributions.

A reviewer noted that using mixtures of canonical fundamental skew t (CFUST) distribu-
tions (Lee & McLachlan, 2016), one can obtain an ARI close to 1 with there being only one

Table 9 Median ARI values along with first and third quartiles in parentheses for the four different models
for each dataset for the semi-supervised runs

Data MSPE MPE ghpcm gpcm

Banknote (n=200, p=6,G=2) 0.97 (0.97, 0.97) 0.97 (0.97, 1) 0.97 (0.97, 0.97) 0.97 (0.97, 0.97)

Bankruptcy (n=66, p=2,G=2) 0.77 (0.63, 0.84) 0.77 (0.7, 0.84) 0.77 (0.7, 0.77) 0.51 (0.4, 0.77)

Crabs (n = 200, p = 5,G = 4) 0.8 (0.78, 0.83) 0.85 (0.83, 0.87) 0.85 (0.82, 0.86) 0.86 (0.83, 0.88)

Diabetes (n=145, p=3,G=3) 0.74 (0.7, 0.79) 0.73 (0.68, 0.79) 0.73 (0.7, 0.79) 0.68 (0.67, 0.73)

Iris (n = 150, p = 4,G = 3) 0.9 (0.89, 0.92) 0.92 (0.9, 0.93) 0.92 (0.9, 0.95) 0.9 (0.87, 0.93)

Wine (n = 178, p = 27,G = 3) 0.91 (0.87, 0.95) 0.95 (0.95, 0.96) 0.93 (0, 0.95) 0.49 (0.44, 0.62)

Yeast (n = 626, p = 3,G = 2) 0.84 (0.83, 0.86) 0.78 (0.75, 0.81) 0.74 (0.71, 0.76) 0.81 (0.78, 0.83)

Size, dimensionality, and the number of known groups (i.e., classes) are in parentheses following each dataset
name.
The ARI for the comparator(s) with superior performance is bolded
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misclassification. However, we were unable to obtain this solution from CFUST; perhaps
due to different initialization. For the semi-supervised runs, this solution could be obtained
for all four comparator distributions (for the best out of 25 runs).
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