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Abstract 
Incomplete data sets with different data types are difficult to handle, but regularly to be 
found in practical clustering tasks. Therefore in this paper, two procedures for clustering 
mixed-type data with missing values are derived and analyzed in a simulation study with 
respect to the factors of partition, prototypes, imputed values, and cluster assignment. Both 
approaches are based on the k-prototypes algorithm (an extension of k-means), which is one 
of the most common clustering methods for mixed-type data (i.e., numerical and categori-
cal variables). For k-means clustering of incomplete data, the k-POD algorithm recently 
has been proposed, which imputes the missings with values of the associated cluster center. 
We derive an adaptation of the latter and additionally present a cluster aggregation strategy 
after multiple imputation. It turns out that even a simplified and time-saving variant of the 
presented method can compete with multiple imputation and subsequent pooling.

Keywords  Clustering · Imputation · Mixed-type data · Missing values

1  Introduction

Cluster analysis is a technique for discovering structural similarity in data, with the particu-
lar goal of identifying unknown groups in the data (Hennig et al., 2015). One of the most 
popular and widely used cluster techniques is the k-means algorithm, which has experi-
enced further developments in the past (for more information, see, e.g., Jain, 2010). Since 
it has become the standard in practice to cluster mixed-type data, various approaches were 
presented in the past (Ahmad & Khan, 2019) and numerous articles have been published 
on applications in a variety of disciplines (see, for example, van ’t Veer et al., 2002; Hennig 
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& Liao, 2013; Yin et al., 2021). For this data, consisting of numerical and categorical vari-
ables, one of the most popular approaches for clustering based on k-means is the k-proto-
types algorithm proposed by Huang (1998).

In practice it is quite common to work with incomplete data. However, handling these 
missing values is usually not trivial. The simplest and most straightforward way to deal 
with missing values regardless of the examination method is complete case analysis, i.e., to 
delete all incomplete observations (Little & Rubin, 2019). The following aspects are to be 
considered: The partly known information of the incomplete observations is not included 
in the analysis result and the results might be biased. Furthermore, in the cluster analysis 
no cluster assignment can be provided to the deleted observations. In 2004, Wagstaff inves-
tigated whether cluster analysis can be performed for all observations without imputation. 
However, the majority of approaches for dealing with missing values in cluster analysis is 
based on (multiple) imputation and cluster aggregation (Basagaña et al., 2013; Audigier & 
Niang, 2020). In addition to the imputation of the values (Imbert & Vialaneix, 2018; Little 
& Rubin, 2019), the aggregation method of the partitions is of particular importance and 
different approaches were examined, for example, in Gionis et al. (2005).

While dealing with missing data is standard practice when applying the k-means 
algorithm to purely numeric data, handling incomplete mixed-type data is often chal-
lenging. Some approaches on imputing missing values in the application of k-proto-
types have been developed, but are not satisfying with respect to imputation and/or 
taking the mixed-type structure into account (e.g., imputation in Dinh et  al.,  2021, 
is sequentially performed based only on the similarity of the categorical values). 
Recently, for standard k-means clustering of incomplete numerical data, the k-POD 
algorithm has been proposed by Chi et  al. (2016). During the clustering task, the 
missing entries are estimated from the corresponding entries of the relevant cluster 
centroid. The adaptation of this procedure to cluster analysis of mixed-type data is 
derived in this paper. Additionally, a cluster aggregation strategy after multiple impu-
tation based on Gionis et  al. (2005) is adapted for mixed-type data. These different 
approaches are analyzed comparatively in a simulation study.

The rest of the paper is organized as follows: First, the theory of handling missing val-
ues and the adaptation of the k-POD idea is explained (Section 2) as well as the usage of 
multiple imputation of chained equations and pooling of the cluster results for imputation 
(Section  3). In Section  4, a simulation study on synthetic data is conducted and shows 
the potential of the examined methods with respect to the criteria of partition quality, the 
specified prototypes, the imputed values, and also the cluster assignment. All aspects will 
be evaluated in comparison to the original complete data, made possible by artificially 
added missing values in the data.

2 � Applying k‑Prototypes Algorithm to Achieve Partition 
and Imputation of Missing Values

In the following, the adaptation of k-POD for numerical data (Chi et  al., 2016) to 
k-prototypes for mixed-type data is outlined. Before going into more detail about the 
method for mixed-type data, basic notations for representing the data and the k-proto-
types algorithm are presented. Subsequently in Section 2.2, the minimization problem 
of the cluster algorithm for mixed-type data and its solution are shown in Theorem 1. 
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Finally, variations of imputation using the k-prototypes algorithm are differentiated in 
Section 2.3.

2.1 � Notation

Let X ∈ �
n×m denote a matrix of n observations of m variables of mixed type, with

where ∧ denotes a logical and, so there is xi1,… , xil numerical data and xi(l+1),… , xim cat-
egorical data without loss of generality (w.l.o.g.), where Aj describes a domain of values of 
variable j.

After applying the k-prototypes cluster algorithm to the data, the k cluster prototypes 
will be denoted by C ∈ �

k×m , where cq ∈ �
1×m with q ∈ {1,… , k} denotes the prototype 

of cluster q. In the k-prototypes algorithm, the distances between mixed-type objects 
result from the sum of the Euclidean distance for the numerical features and the so-
called Simple Matching indicator function

 for the categorical features. It is defined as

with Xa,Xb ∈ �
1×m and weighting factor 𝜆 > 0  (for more details, see Huang, 1998). The 

k-prototypes algorithm minimizes the sum of the distances between the clustered objects 
and their respective cluster prototypes

The notation Ki(C,W) denotes the associated prototype of the cluster of Xi and is 
defined as

 where wiq is an element of the partition matrix W ∈ H . For example, wi3 = 1 denotes that 
object i is assigned to cluster 3, and therefore wiq = 0∀q ≠ 3 due to the fact that object i can 
only be assigned to exactly one cluster (since this is not fuzzy clustering, obviously). The 
partition matrix W is element of the set H, which is defined as

In the paper at hand, the notation for the representation of observed and missing data is 
based on a set 𝛺 ⊆ {1,… , n} × {1,… ,m} . The indices of the observed data are stored in 
Ω and the projection PΩ(Xi) contains only the known data without the unobserved values:

𝕄
n×m ∶=

{

[Xi]i=1,…,n = [(xi1,… , xil, xi(l+1),… , xim)]i=1,…,n ∣

xij ∈ ℝ ∀j ∈ {1,… , l} ∧ xij ∈ Aj ∀j ∈ {l + 1,… ,m}
}

,

�(xaj, xbj) =

{

0, xaj = xbj

1, xaj ≠ xbj

(1)dMT (Xa,Xb) =

l
∑

j=1

(xaj − xbj)
2 + �

m
∑

j=l+1

�(xaj, xbj)

(2)
n
∑

i=1

dMT (Xi,Ki(C,W)).

K(C,W) ∶= [Ki(C,W)]i=1,…,n = [Ki(C,W) = cq ∣ wiq = 1]i=1,…,n ∈ �
n×m,

H =
{

W ∈ ℝ
n×k ∣ W�

�
= �

�
∧ wiq ∈ {0, 1} ∀i ∈ {1,… , n}, q ∈ {1,… , k}

}

.
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Assuming that the value xij is not known, then (i, j) ∉ Ω  holds. Depending on the 
nature of the variable j, it implies [PΩ(Xi)]j = 0  (variable j is numeric and therefore 
w.l.o.g. j ∈ {1,… , l} ) or [PΩ(Xi)]j =

��NA�� (variable j is categorical and therefore w.l.o.g. 
j ∈ {l + 1,… ,m} ) for the missing value. On the other hand, projection P�C (Xi) (with ΩC 
the complementary set of Ω) can be used to denote the true but unknown values of the 
missing data of observation i.

2.2 � Minimization Problem of Cluster Algorithm with Missing Values

As shown previously in (2), the k-prototypes algorithm minimizes the distances between 
the fully observed data and the prototypes of the partition. This paper investigates the 
approach in the case of incomplete data. Then the clustering problem is modified to the 
minimization of the distances between the observed data values and the associated pro-
totypes, denoted as dMT(PΩ(X1),PΩ(Ki(C,W))) . This leads to the minimization problem 
of the function

for the partition, defined by cluster prototypes C and partition matrix W.
The remainder of the section aims to derive the minimization of distances between 

mixed-type data with missing values and prototypes of associated clusters. The proof of 
the solution of this minimization problem of clustering with missing values applies the 
majorization-minimization algorithm (MM algorithm; Lange, 2013). Briefly summarized, 
it says that if a function f(u) is to be minimized, a function g(u|u(t)) with the following prop-
erties must be identified:

The MM algorithm iterates u(t+1) ∶= argminug(u|u
(t)) and it holds

Finally, it can be concluded for t → ∞ : min
u

f (u) = f (u(t+1)).
In the following, the solution to minimize the distances between incomplete mixed-type 

data and cluster prototypes during the clustering task is presented.

Theorem 1  The minimum of the distances between incomplete data and prototypes of a 
clustering grouping this mixed-type data with missing values

[P�(Xi)]j =

⎧

⎪

⎨

⎪

⎩

xij, (i, j) ∈ �,

0, (i, j) ∉ � ∧ j ∈ {1,… , l},
��NA��

, (i, j) ∉ � ∧ j ∈ {l + 1,… ,m}.

f (C,W) =
n
∑

i=1

dMT(P�(Xi),P�(Ki(C,W)))

(3)i) g(u|u(t)) majorizes f (u)(⇒ f (u) ≤ g(u|u(t)) ∀u) and

(4)ii) g(u|u(t)) is anchored at u(t)(⇒ f (u(t)) = g(u(t)|u(t))).

f (u(t+1)) ≤ g(u(t+1)|u(t)) ≤ g(u(t)|u(t)) = f (u(t)).

f (C,W) =

n
∑

i=1

dMT(P�(Xi),P�(Ki(C,W)))
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 can be found at f(C(t+ 1),W(t+ 1)) for t → ∞ , where

and X̃ ∶=
[

[P𝛺(Xi)]j ∀(i, j) ∈ 𝛺 ∧ [P𝛺C (Ki(C
(t),W (t)))]j ∀(i, j) ∉ 𝛺

]

 , so that X̃ denotes the 
data, where the missing values are imputed by the respective prototype values.

The solution (C(t+ 1),W(t+ 1)) is obtained by the k-prototypes algorithm applied to X̃.

Proof  The function f (C,W) =
∑n

i=1
dMT

�

P�(Xi),P�(Ki(C,W))
�

 is to be minimized. The 
majorization function g for the application of the MM algorithm is

and both conditions (3) and (4) of the MM algorithm are fulfilled:

i)	 Since 
∑n

i=1
dMT

�

P�C (Ki(C,W)),P�C (Ki(C
(t),W (t)))

�

 is the sum of distances 
for all (C,W), where each summand is greater than or equal to zero, (3) with 
f (C,W) ≤ g(C,W|C(t),W (t)) is given and g majorizes f.

ii)	 Furthermore, (4) is valid and g is anchored with

Therefore, the minimum of f for t → ∞ can be found at f (C(t+1),W (t+1)) with

It follows that

where X̃ ∶=
[

[P𝛺(Xi)]j ∀(i, j) ∈ 𝛺 ∧ [P𝛺C (Ki(C
(t),W (t)))]j ∀(i, j) ∉ 𝛺

]

 . 
   The mathematical transformation for (6) is presented separately in the Appendix, for 
numerical values see Appendix A.1 and for categorical values see Appendix A.2.

�

C(t+1),W (t+1)
�

∶= argmin
C,W

n
∑

i=1

dMT

�

X̃i,Ki(C,W)
�

(5)g(C,W|C(t),W (t)) = f (C,W) +

n
∑

i=1

dMT

(

P�C (Ki(C,W)),P�C (Ki(C
(t),W (t)))

)

,

f (C(t),W (t)) = f (C(t),W (t)) + 0 = g(C(t),W (t)
|C(t),W (t)).

(

C(t+1),W (t+1)
)

∶= argmin
C,W

g(C,W|C(t),W (t)).

(6)

g(C,W�C(t),W(t)) = f (C,W) +
n
∑

i=1

dMT

�

P𝛺C (Ki(C,W)),P𝛺C (Ki(C
(t),W(t)))

�

=
n
∑

i=1

dMT

�

P𝛺(Xi),P𝛺(Ki(C,W))
�

+
n
∑

i=1

dMT

�

P𝛺C (Ki(C,W)),P𝛺C (Ki(C
(t),W(t)))

�

=
n
∑

i=1

l
∑

j=1

�

[P𝛺(Xi)]j − [P𝛺(Ki(C,W))]j
�2

+
�

[P𝛺C (Ki(C,W))]j − [P𝛺C (Ki(C
(t),W(t)))]j

�2

+𝜆
n
∑

i=1

m
∑

j=l+1

𝛿
�

[P𝛺(Xi)]j, [P𝛺(Ki(C,W))]j
�

+ 𝛿
�

[P𝛺C (Ki(C,W))]j, [P𝛺C (Ki(C
(t),W(t)))]j

�

=
n
∑

i=1

l
∑

j=1

�

[X̃i]j − [Ki(C,W)]j
�2

+ 𝜆
n
∑

i=1

m
∑

j=l+1

𝛿
�

[X̃i]j, [Ki(C,W)]j
�

=
n
∑

i=1

dMT

�

X̃i,Ki(C,W)
�

,
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The function g(C,W|C(t),W(t)) will be minimized with an application of the k-prototypes 
algorithm on the observed data filled with the prototype values X̃ . With the resulting parti-
tion and associated cluster prototypes, f (C,W) =

∑n

i=1
dMT

�

P�(Xi),P�(Ki(C,W))
�

 is mini-
mized and therefore the solution of the clustering problem for incomplete mixed-type data 
is obtained.                                                                                                                            □                  

In the Theorem 1 proved above, it is shown that by applying the k-prototypes algorithm, 
the minimization problem of the distances between the incomplete data and the prototypes 
of the partition can be solved. The implementation of the imputation used for this purpose 
is presented in the following.

2.3 � Variations of Imputation with k‑Prototypes Clustering

In the subsequent simulation study, three different variations of handling the missing val-
ues based on the approach presented above are investigated. The distinctions of the imputa-
tions based on the values of the prototypes are pointed out in the following:

i)	 Internal all steps imputation
	   Within the k-prototypes algorithm, the missing values are imputed with the current 

prototype value after each assignment of new prototypes. This means that in each itera-
tion, the closest prototype is determined for each observation (possibly with missing 
values) and the observation is assigned to this cluster. Then the prototypes are recal-
culated based on the observations in the respective cluster. The updated values of the 
prototypes are used to replace the missing values or the former imputations and with 
the new imputations the iteration starts over again. Finally, these iterations run until no 
further improvement of the partition can be observed or the number of iteration steps 
exceeds a predefined limit.

ii)	 Repeated external imputation
	   As the name of the strategy implies, the imputation of the missing values by the values 

of the prototypes is performed after the entire application of the k-prototypes algorithm 
has terminated. Then, the cluster algorithm is run again with the imputed values and the 
(former) missing values of the data are updated with the new determined prototypes. 
This continues until there is no change in the imputed values or a predefined limit of 
iteration steps is reached.

iii)	 Fast one step imputation
	   The last variation examined is a fast alternative to variant ii). The k-prototypes algo-

rithm is applied only once, ignoring the missing values when determining the distances. 
Afterwards, the missing values are imputed with the corresponding values of the proto-
types. The comparison in the simulation study between this variant and variant ii) will 
show whether the clearly higher computational costs of the latter one are justified by a 
distinctly better outcome.

The results of the analysis conducted in the simulation study with respect to different 
aspects are presented in Section 4.
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3 � Multiple Imputation and Pooling of k‑Prototypes Cluster Results

Currently, one of the most popular approaches to handle missing values is multiple imputa-
tion. Another strategy for handling missing values using multiple imputation is therefore 
proposed in order to compare the quality of the adapted k-POD algorithm with common 
existing methods. Particular attention is paid to the way of cluster aggregation after the 
application of multiple imputation and cluster analysis in Section 3.2. First, a brief over-
view of multiple imputation for mixed-type data is provided.

3.1 � Multiple Imputation by Chained Equations

The basic idea of multiple imputation is that the uncertainty resulting from the lack of 
knowledge of the missing values is expressed by multiple imputed values. With this strat-
egy, nimp data sets will be obtained with the same known values and (usually different) 
imputed values for the missing values. Thereby, a univariate imputation model is speci-
fied for each incomplete variable (in the following denoted by Y), which leads to the name 
multiple imputation by chained equations. The imputation result is based on the other vari-
ables, named X = {[Xj]j=1,…,r} . The specification is based on the scale of the variable with 
missing values.

The most common and straightforward imputation method for numerical data is the so-
called predictive mean matching (Little, 1988). For each of the nimp data sets this algorithm 
repeats the following steps:

i)	 Estimate a regression model for Y based only on the observed values PΩ(X).
ii)	 Randomly draw from the posterior predictive distribution of the estimated regression 

parameter vector 𝛽  and produce a new set of coefficients β⋆.
iii)	 Calculate predicted values for observed and missing Y. Thereby 𝛽  is used to predict the 

known values [PΩ(Y )]i and β⋆ is used to predict the missing ones [P�C (Y)]i.
iv)	 For each prediction for a missing value [P�C (Y)]i find a small set (typically 3, 5 or 10, see 

van Buuren, 2018) of the closest predicted values (based on 𝛽  ) for the observed values.
v)	 Randomly decide on one of the elements in the set and impute it with its corresponding 

observed value.

This ensures that only values observed in the domain of the variable are imputed. As 
summarized in van Buuren & Groothuis-Oudshoorn (2011): “Its main virtues are that 
imputations are restricted to the observed values and that it can preserve non-linear rela-
tions even if the structural part of the imputation model is wrong. It is a good overall 
imputation method.”

For binary categorical data, a popular imputation method is based on logistic regres-
sion, which was pointed out by Rubin (1987), consisting of the following steps:

i)	 First, estimate for the observed values a logistic regression model for PΩ(Y ) and obtain 
estimated 𝛽  and the corresponding covariance matrix V by iteratively reweighted least 
squares (van Buuren, 2018).

ii)	 Draw a new parameter set 𝛽⋆ ∼ N(𝛽,V).
iii)	 For each missing value [P�C (Y)]i predict logit−1(Xi𝛽

⋆) and randomly draw a number 
ui ∼ U(0, 1).

iv)	 If ui > logit−1(Xi𝛽
∗) then impute [P�C (Y)]i = 0 , otherwise [P�C (Y)]i = 1.



9Journal of Classification (2023) 40:2–24	

1 3

These steps are performed repeatedly nimp times to obtain the nimp data sets of multiple imputation.
After multiple imputation, these different nimp data sets can be clustered by applying the 

k-prototypes algorithm. Finally these nimp not necessarily equal partitions have to be aggre-
gated to determine one partition for the data set with missing values.

3.2 � Pooling of Partitions

The aim is the aggregation of the nimp partitions to obtain exactly one partition for the data set 
with missing values. Since every imputed mixed-type data set is clustered by the k-prototypes 
algorithm, every object in the data set has nimp (possibly different) cluster assignments 
S
i
= (s

i1,… , s
inimp

) , where sil ∈ {1,… , k} and i ∈ {1,… , n} . Additionally, it is conceivable 
that the clusters in the different imputed data sets can be labeled differently. Pooling the cluster 
results of the multiple imputed data sets finds a clustering that matches as much as possible 
with the nimp given partitions.

Similar to bagged clustering (Leisch, 1999), Gionis et al. (2005) have shown several approaches 
of which the agglomerative algorithm is adapted in the following. As a standard bottom-up algo-
rithm, every object Si is placed into a singleton cluster Gi at first. By adapting the hierarchical clus-
tering method with average linkage (Contreras & Murtagh, 2015), the pair of clusters (Gi,Gj) with 
the smallest average distance dAL between the associated objects is linked together, where

Therefore, the distance between two objects in the presented use case of this paper is 
defined as the proportion of different cluster assignments

In summary, it can be stated that (singleton) clusters are merged together if the average dis-
tance between objects of the nimp partitions are sufficiently similar. That is, clusters are merged 
if the average distance of the closest pair of clusters is less than 0.5. Otherwise (e.g., there 
is no pair of clusters with average distance smaller than 0.5) the linkage of clusters cannot 
improve the partition and the algorithm stops.

Since estimating the number of clusters k is beyond the scope of our simulation study, the 
cluster partitioning for the data set with the missing values is obtained by cutting the resulting 
tree into the desired group size (i.e., the desired number of clusters in the presented use case). 
For additional information on the selection of a suitable number of clusters for mixed-type 
data see Aschenbruck & Szepannek (2020).

4 � Simulation Study

To evaluate the previously presented approaches for clustering mixed-type data with miss-
ing values and imputation, a simulation study is conducted. Similar to Jimeno et al. (2021), 
several data settings, hereinafter referred to as scenarios, were investigated. In order to 
compare the various approaches to cluster mixed-type data with missing values, the con-
sidered simulation settings are outlined in the following.

dAL(Gi,Gj) =
1

||Gi|| × ||Gj||

∑

Sa∈Gi,Sb∈Gj

dpool(Sa, Sb).

dpool(Sa, Sb) =
1

nimp

nimp
∑

l=1

�(Sal, Sbl), where � =

{

0, Sal = Sbl,

1, Sal ≠ Sbl.
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4.1 � Data Simulation

Simulating different data scenarios, the five features number of clusters, clusters of equal size, 
number of variables, ratio of factor variables to numerical variables, and overlap between 
cluster groups are varied in parameter values. In Table 1, these features and their correspond-
ing parameter values for the simulation are listed. Additionally, the color coding for Fig. 1 
and the short identification name used among others in Figs. 1 and 3 is presented in the table. 
Since a full factorial design is used, there are 3 × 2 × 2 × 3 × 3 = 108 different scenarios in 
the conducted simulation study. The selection of the considered features follows the charac-
teristics of the simulation study of Dangl & Leisch (2020) and is extended with respect to the 
ratio of the variable types (Jimeno et al., 2021).

The clusters are defined by the structure of the feature settings. Each variable can be 
either active or inactive. For the numerical variables, active means drawing values from the 
normal distribution X1 ∼ N(�1, 1) , where μ1 is a randomly determined value, and inactive 
means drawing from X0 ∼ N(�0, 1) with �0 = 2q1− v

2

− �1 , where qα is the α-quantile of 
N(μ1,1) and v ∈ {0.05, 0.1} . This results in an overlap of v for each of the two normal dis-
tributions. If there is an overlap of v = 0, the inactive variable is drawn from N(μ1 − 10,1). 
On the other hand, every factor variable has two levels l0 and l1. The probability for draw-
ing l0 for an active variable in a cluster is v ∈ {0, 0.05, 0.1} and 1 − v for level l1. For an 
inactive variable, the probability for l0 is (1 − v) and v for l1.

4.2 � Generating Different Types of Missing Values

According to Little & Rubin (2019), there are generally three different mechanisms that 
underly missing data and whose impact is analyzed in our simulation study. First, there 
are missing values that are neither conditioned on the value of the missing variable, nor 
on the other observed variables in the data set. These missing values are called miss-
ing completely at random (MCAR). In contrast, the so-called missing at random (MAR) 
mechanism means, that the missings depend only on the observed variables. If the mech-
anism causing missing data is neither MCAR nor MAR, it is called MNAR (missing not 
at random), i.e., the occurrence of a missing value depends also on the underlying value 
itself (Carpenter & Kenward, 2012).

Table 1   Features and associated feature specifications used to generate the data for the simulation study as 
well as the color coding (light gray, gray and brown) of the individual feature settings for the figures

Feature Feature specification Short notation

Color coding

Number of clusters 2 4 8 nC

Clusters of equal size TRUE FALSE symm

Number of variables 4 8 nV

Ratio of factor to numerical variables 0.25 0.5 0.75 fac_prop

Overlap between cluster groups 0 0.05 0.1 overlap
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The features settings used in the simulation study to generate missing values are 
given in Table 2. In addition to the feature type of missing values, the parameter perc_
miss gives the percentage of observations with at least one missing value. In summary, 
when generating the missing values, each observation is first assigned to a possible 

Table 2   Features and associated feature specifications used to generate the missing values for the simula-
tion study as well as the color coding (light gray, gray, brown and dark gray) of the individual feature set-
tings for the figures

Feature Feature specification Short notation

Color coding

Type of missing values MCAR​ MAR MNAR missing_type

Incomplete data (%) 0.05 0.1 0.2 0.4 perc_miss
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Fig. 1   The upper main plot shows the percentage deviation of the optimum value for the mean value of 
each scenario over the N = 50 iterations for all four evaluation criteria. The settings of the parameters of 
each scenario are displayed in the lower plot with the color coding presented in Table 1 (Section 4.1) and 
Table 2 (Section 4.2)
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pattern of missing values, that indicates which variable(s) should contain (a) missing 
value(s). For each scenario and based on the number of variables, up to ��2∕3  differ-
ent patterns are generated randomly. Afterwards, the specified proportion of incomplete 
data perc_miss is generated for each data block per pattern. For the missing mech-
anism MCAR, the observations which will not remain complete, are determined ran-
domly. On the other hand, for the missing mechanisms MAR and MNAR the probabil-
ity for amputing values depends on the observed values: For MAR, the variables which 
remain complete determine the missingness probability, and for the MNAR mechanism, 
the values of the variable to be amputed affects the chance to be deleted (van Buuren, 
2018). With these two additional study parameters the full factorial experimental design 
increases to 108 × 3 × 4 = 1296 scenarios.

4.3 � Evaluation Aspects

Before the evaluation aspects are explained in more detail, a note on the procedure in 
general is given: Since the simulation study is performed on artificially generated data 
sets with n observations, where also the missing values are simulated, the real values of 
the missing values are known. In the following, the complete data (before the genera-
tion of the missing values) will be referred to as original data. Following this notation, 
first the original data is clustered using the k-prototypes algorithm. In this way, the so-
called original prototypes and original cluster assignments are obtained and defined as 
reference values.

To evaluate the efficiency and the goodness of the different strategies for imputing and 
clustering mixed-type data with missing values, four different criteria on different aspects 
are considered.

i)	 within-cluster distances of the partition
	   This evaluation aspect analyzes the aim of the k-prototypes algorithm to minimize the 

within-cluster distances. To accomplish the latter, the sum of the distances between the n 
observations of the original data set and the associated prototype based on the cluster analysis 
of the incomplete data is examined and thus the goodness of the partition can be evaluated.

ii)	 determined prototypes
	   This aspect evaluates the quality of the determined prototypes. For this purpose, the 

distance between the prototypes based on clustering the incomplete data and the original 
prototypes is determined. Since these clusters are not necessarily labeled identically, the 
minimum distance of all permutations of the distances is considered in each case.

iii)	 imputed values for missings
	   To determine the quality of the imputed values, the distance between the original data 

and the data with imputed values is evaluated.
iv)	 cluster assignments of the clustered objects
	   Finally, the adjusted Rand Index (Hubert & Arabie, 1985) is determined to the original 

cluster assignments of the original data and the resulting partition based on the analysis 
of the incomplete data with missing values.

The distance determination for all evaluation aspects is realized with the distance measure 
shown in (1) in Section 2.1.
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4.4 � Execution of the Simulation Study

The simulation study is conducted using the open source software R (R Core Team, 2020). 
The underlying R code is available at GitHub1. For each of the 1296 predefined scenar-
ios, an original data set is generated and clustered with the k-prototypes algorithm using 
the validation_kproto function (Aschenbruck & Szepannek, 2020) of the R pack-
age clustMixType (Szepannek, 2018; Szepannek & Aschenbruck, 2021). The resulting 
so-called original cluster prototypes and cluster assignments are used in the following for 
benchmarking as described in Section 4.3. Afterwards the missing values are generated as 
described in Section 4.2 with the function ampute of the R package mice (van Buuren & 
Groothuis-Oudshoorn, 2021).

For conducting cluster analysis and imputation on the incomplete data, the following 
four presented methods are compared. The first three named variants are based on the 
approach derived in Section 2 and differences between those are presented in more detail in 
Section 2.3. The last approach is based on Section 3.

i)	 kproto(…, na.rm = "imp.internal")
	   The function kproto from the R package clustMixType is executed, and within the 

algorithm the missing values are imputed with the current prototypes after each assign-
ment of new prototypes.

ii)	 kproto_imp.external(…)
	   In this variation, the function kproto is executed as well, but the missing values 

are ignored during the execution of the cluster algorithm. After a partition is found, the 
(former) missing values are imputed with the values of the corresponding prototypes. 
Afterwards, the kproto function is executed again on the imputed data set, as long as 
the imputed values are changing (the maximum number of iterations with an imputation 
after each execution is 100).

iii)	 kproto(…, na.rm = "imp.onestep")
	   Again, the function kproto is applied ignoring the missing values during the execu-

tion of the cluster algorithm, but here it is applied only once (meaning the just presented 
strategy ii) is stopped after the first step). So finally, after determining the partition, the 
missing values are imputed with the values of the corresponding cluster prototypes.

iv)	 kproto_mi.pool(…)
	   In this approach, multiple imputation is used to create nimp = 5 data sets by executing R 

function mice of R package mice (van Buuren & Groothuis-Oudshoorn, 2021). Hereof, 
internally the functions mice.impute.pmm (set size of 5 closest as recommended by 
van Buuren 2018) and mice.impute.logreg (van Buuren & Groothuis-Oudshoorn, 
2011; White et al., 2010) are used for imputation depending on the variable type. The 
resulting nimp data sets are clustered by using the kproto function. Afterwards, the results 
are pooled as described in Section 3.2 using the R function hclust. Finally, the missing 
values are imputed with the values of the prototypes of the pooled partition.

In order to reduce the influence of the randomness by generating the artificial data, 
N = 50 repetitions are performed for each scenario. Additionally, it is well known that both 
algorithms, k-prototypes and k-means, are based on the random selection of initial clus-
ter centers or prototypes, respectively. For the k-means algorithm, the optimization of the 

1  https://​github.​com/​rabea-a/​JClas​sif_​Imput​ation​Clust​erMix​edType.

https://github.com/rabea-a/JClassif_ImputationClusterMixedType
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initialization has already been in the focus of some research publications (see, e.g., Peña 
et al., 1999; Fränti & Sieranoja, 2019). The transfer of these (or similar) strategies to the 
k-prototypes algorithm for mixed-type data is not the scope of this article, but nevertheless, 
it is an interesting field for future research. Therefore, the influence of the randomly gener-
ated initial prototypes in the conducted simulation study is minimized using the built-in 
repetition of the R function kproto by setting the parameter nstart=3.

The evaluation criteria presented in Section  4.3 are implemented as functions named 
eval_within_dist(origin, kpres) (evaluation of the within-cluster distances 
of the partition), eval_protos(protos, protos_origin, lambda, k_opt) 
(determined prototypes) and eval_iv(origin, x_iv, lambda) (imputed values 
for missings). For evaluation of cluster assignments of the clustered objects, the function 

Pseudo-Code 1   Simulation study.
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adj.rand.index of R package fossil (Vavrek, 2011) is used. The implementation of 
the simulation study is shown in Pseudo-Code 1 to summarize the workflow.

4.5 � Results of the Simulation Study

An overview of the values obtained in the simulation study is given in Fig. 1. The mean 
value was calculated for each evaluation aspect over the N = 50 iterations and for each exam-
ined imputation/clustering method and for each scenario. In the upper main plot the percent-
age deviation from the best observed mean value for each data set is shown for the four 
evaluation aspects within-cluster distances, cluster centers, imputed values and adjusted 
Rand index. Below, the parameters of the data set are illustrated with the colors light gray, 
gray, brown and dark gray: missing_type (MNAR, MAR, MCAR), perc_miss (0.05, 
0.1, 0.2, 0.4), overlap (0, 0.05, 0.1), fac_prop (0.25, 0.5, 0.75), symm (true, false), 
nC (2, 4, 8) and nV (4, 8) (cf. Sections 4.1 and 4.2 for details and in particular Tables 1 
and  2 for color coding). Particularly strong fluctuations can be seen in the evaluation of 
the cluster prototypes. Even apart from some clear outliers, some mean values are more 
than 1000% larger than the best observed evaluation value. It is obvious that the methods 
handle the different scenarios differently well. The results indicate that the multiple imputa-
tion approach (mi.pool, pink) is worse at dealing with a larger number of variables (nV=8, 
level 2, dark gray). It also turns out that the imp.onestep (light blue) performs worse with a 
smaller number of missing values (perc_miss=0.05, level 1, light gray) than with more 
missing values. Therefore, it makes sense to also investigate the influence of the different 
data set parameters on the imputation and clustering quality. Because of the huge amount of 
data, it is hard to identify every difference between the four approaches in Fig. 1. In the fol-
lowing, the four methods are directly compared by ranks, first without considering the data 
set parameters (Fig. 2). The reason for considering the ranks is to avoid a biased comparison 
due to the variability between the different scenarios and iterations.

Therefore, for each evaluation aspect (within-cluster distances, prototypes, imputed val-
ues and cluster assignment) ranks between the four methods were computed and the percent-
ages over all iterations and data sets were determined. The best method (as defined for the 
different aspects in Section 4.3) for handling missing values in a clustering task is rated with 
rank 1. The average rank is assigned if the values are equal. The figure is based on all results 
for the 50 iterations for all of the 1296 data/missing scenarios. Due to a better readability, 
only areas larger than 10% were labeled. It is easy to identify, that method imp.internal is 
the worst compared to the other three methods. It also can be stated that the results based on 
mi.pool are most often ranked best for all aspects studied apart from computation time. The 
methods imp.external and imp.onestep have similarly rated results regarding the four evalu-
ation criteria. Remarkably, both methods have less often the worst results among the evalu-
ated criteria within-cluster distances, cluster prototypes and imputed values, whereas the 
approach based on multiple imputation is more often the worst of all methods. Only in the 
evaluation of cluster assignments with the adjusted Rand index, the mi.pool method seems 
to have a slight advantage. In conclusion, that means, mi.pool is more unstable in the rank-
ing of the observed results, which seems to make sense, as additional randomness is intro-
duced by this imputation strategy. Considering the evaluation over the computation time, it 
can be stated that imp.onestep is by far the best. Given that very similarly rated results are 
obtained as with imp.external, imp.onestep should be preferred.

If computation time is not a limiting factor, it would be interesting to know which 
method should be preferred in which situation. For analyzing the effects of individual data 
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scenarios on the goodness of the applied methods, logistic regression models were fitted 
(Agresti, 2007). The aim is to get an idea of the impact of the different data scenario param-
eters on the conductivity of the different methods. The target variable Bi ∈ {0, 1} denotes 
whether a method is the (not necessarily sole) best (1) or not (0), such that

where ai displays the data scenario parameters as binary dummy variables. The follow-
ing reference categories are used for the analyzed variables: nV=4, nC=2, symm=FALSE, 
perc_miss=0.05, overlap=0, fac_prop=0.5, missing_type=MCAR​. Fig-
ure 3 shows the exponentiated coefficients exp(�) of the logistic regressions for each evalu-
ation aspect in a separate plot and each method is displayed with an unique color. A value 
greater than 1 means an increase in the odds, which corresponds to an increasing probabil-
ity that the examined method on a data set with this feature setting is better with respect to 
the reference category of this feature. A value of less than 1 indicates the opposite, namely 
that the method for this parameter value is worse than for the reference value. Since coef-
ficients with values equal to 1 or with the value of 1 in the associated confidence interval 
represent no change to the reference category and are therefore negligible, these coeffi-
cients are shown transparent in Fig. 3.

Roughly speaking, similar results for the coefficients can be seen for the four dif-
ferent evaluation criteria. Surprisingly, the different missing value mechanisms do 
not play a crucial role for the choice of a preferable strategy, no matter for which 
evaluation aspect. The proportion of categorical variables is also rather negligible in 
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Fig. 2   Presentation of the percentage of ranks for the four different aspects of evaluation and the observed 
runtime based on every data/missing scenario and all N = 50 iterations of the simulation study
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comparison to other data set parameters. For the other influencing variables namely 
number of variables, number of clusters, equal cluster sizes, proportion of missing val-
ues as well as overlap of clusters, however, an effect seems to be noticeable. When 
having a closer look at the evaluation of the within-cluster distances, it is remarkable 
that for a bigger overlap and more missing values the methods imp.internal (purple) 
and mi.pool (pink) perform worse than the reference category, whereas the results of 
the methods imp.external (darkblue) and imp.onestep (light blue) are not influenced 
by these variables or even slightly better than the reference category. Also the increas-
ing number of missing values and overlapping decreases the rating for evaluation the 
imputed values and the cluster prototypes for the methods imp.onestep, imp.internal 
and imp.external. The strongest differences can be seen in the variables number of 
variables and symmetry. For the evaluation aspects within-cluster distance, imputed 
values and cluster prototypes, it can be seen that, e.g., a higher number of variables 
worsens the results for the methods imp.external and mi.pool and improves the results 
for the methods imp.internal and imp.onestep. The opposite is true for the evaluation 
by adjusted Rand index. The increase of the number of clusters leads to a worse result 
for each evaluation criteria for each examined method.

Cluster Prototypes Adjusted Rand Index

Within−Cluster Distances Imputed Values
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Fig. 3   Presentation of the exponentiated logistic regression coefficients for parameters of the data set fea-
tures for each evaluation aspect and each imputation/clustering method, where coefficients whose confi-
dence intervals contain 1 are displayed in transparent
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5 � Application to a Real‑world Problem

In order to provide an application of the adapted method, it is applied to the well-known 
mixed-type Titanic data set (Eaton & Haas, 1994), where the data is accessed from the 
OpenML platform (Vanschoren et al., 2013) by using the R package OpenML (Casalicchio 
et  al., 2017). The data to be clustered contain information on 1309 titanic passengers in 
seven features, which are displayed in Table 3 together with the mean value (for numeric 
features) or the levels with frequencies (for the categorical ones). The presented feature 
country summarizes the variable home.dest, which contains information on Cities of the 
home destination of the passengers. The aim of the cluster analysis is to identify interest-
ing structures, considering not only the 684 complete cases out of the total number of 1309 
available observations. Derived from the findings of the simulation study, we apply the one 
step imputation, whereby the number of clusters to be determined is validated with the Sil-
houette Index vsil (this choice is based on the results in Aschenbruck & Szepannek, 2020).

The application of the internal validation index determines an index-optimal number of 
clusters of two (vsil = 0.627). The partition resulting from the application of the k-proto-
types algorithm using one step imputation is shown in Fig. 4 and the respective prototypes 
in Table 4. The characteristics of the clusters are visualized by displaying one line per pas-
senger, whereby theses lines are jittered horizontally for a better visualization of the cat-
egorical features. In Cluster 1, it can be seen that a large proportion of passengers are men 
from the UK. Although most passengers in Cluster 1 boarded the Titanic in Southampton, 
there are also some boardings in Cherbourg and Queenstown. Mostly rather low prices 
were paid for tickets, which is reflected in the occupancy of the lowest passenger class pre-
dominantly. Although a certain proportion survives the sinking of the Titanic, three quar-
ters of the passengers from Cluster 1 die. In contrast, Cluster 2 represents almost exclu-
sively passengers from the USA, and two-thirds of them are female. Comparatively higher 
prices were paid by passengers grouped in Cluster 2 and consequently an almost exclusive 
accommodation in the upper passenger class can be observed. The majority of passengers 
who are grouped in this cluster survived the sinking of the Titanic.

Since the application to the real-world data set is done to present the usage of the 
derived imputation strategy, the focus in the following is not on further interpretation of 

Table 3   Descriptive overview on the Titanic data set

Feature Data type Missing values Mean Levels

country categorical 564 — UK USA other
(236) (299) (210)

sex categorical 0 — female male
(466) (843)

age numerical 263 29.881  —
embarked categorical 2 — S C Q

(914) (270) (123)
fare (in £) numerical 1 33.295  —
passenger class categorical 0 — lower middle upper

(709) (277) (323)
survived categorical 0 — no yes

(809) (500)
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the identified structures, but on the imputation results. However, it must be noted that nei-
ther missing values are known and therefore the evaluation of imputations is non-trivial, 
nor some kind of a true partition is given for this kind of data. Therefore, we will consider 
the obtained imputations by their plausibility. Since almost exclusively, the missing values 
occur in the categorical variable country and the numerical variable age, a closer look at 
these variables follows. As Table 3 shows, 564 missing values occur in the categorical fea-
ture country, which means that for only 57% of the passengers the home country is known. 
For 534 passengers of the Titanic, the home country was imputed as the UK and for 30 
persons as the USA. This is remarkable because the most often known home country is 
the USA and naive imputation strategies would therefore have used this specification in (at 
least) the majority of imputations. However, this is not plausible due to the location of the 
Titanic’s first stop on the maiden voyage in Southampton, UK. Furthermore, it should be 
kept in mind that ship voyages at that time were often used for the purpose of emigration 
(Jones, 1976), and in this context it is plausible that a large part of the passenger’s home 
country would not be imputed with the USA. The age is not known for 263 cases. Through 
the one step imputation, an age of 28.164 years was determined for 250 passengers and 
36.558 years for the other 13 passengers. The naive imputation of the mean value of the 
variable age for all missing ages would have resulted in a value of about 30 years. Espe-
cially for the passengers with higher priced tickets, the imputation of a higher age seems 
plausible. These passengers might not have embarked on the Titanic for reasons of emigra-
tion, but to experience the luxury and the idealistic value of the voyage. Therefore, these 
passengers are presumably already wealthier and thus more likely to be older.

In summary, it can be seen that an application to real-world data is possible without any 
problems. The resulting values for imputation and also the cluster structure seem plausible, 
although one cannot determine the correctness as usual in case of missing data. Addition-
ally, it should be emphasized that using the proposed method enables to process the data 
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of the one step imputation
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from all 1309 passengers and not only from the 684 complete cases. Beyond this gain of 
information for cluster determination, a cluster assignment for all given observations can be 
derived, i.e., for twice as many cases as without applying an appropriate imputation method.

6 � Discussion and Conclusion

The aim of this study was to investigate the handling of missing values in the cluster analysis 
of mixed-type data. The focus was on the k-prototypes algorithm, an extension of the widely 
known k-means algorithm. For handling missing values while clustering numerical and cate-
gorical data, it has been demonstrated, that it is possible to extend the k-POD imputation strat-
egy to mixed-type data and the k-prototypes algorithm. The following variants of this approach 
were examined: imputation over the values of the corresponding prototypes in each iteration 
step of the k-prototypes algorithm (internal imputation), repeated imputation only after execu-
tion of the k-prototypes algorithm (external imputation) and the associated fast variant with 
only one execution of the k-prototypes algorithm and subsequent imputation (one step imputa-
tion). Additionally, an approach based on multiple imputation and cluster aggregation with an 
agglomerative algorithm was presented (multiple imputation and pooling).

For the internal imputation it has been shown in the simulation study, that the imputation 
of the missing values within the k-prototypes algorithm is not preferable compared to the other 
examined strategies. Further, the approach of repeated external imputation showed almost the 
equally rated results as the remarkably faster one step imputation. This is observed for all four 
evaluation criteria concerning partition, prototypes, imputed values and cluster assignment, so 
there is no major benefit to use the time consuming external imputation. The approach based on 
multiple imputation and subsequent cluster aggregation more often achieves the best result, but 
in comparison to the external and one step imputation also more often the worst ones. Surpris-
ingly, even in the case of evaluation of the imputed values, the method with multiple imputation 
and pooling yields more frequently poorly evaluated results than the two strategies based on 
the imputation with prototype values obtained by the k-prototypes algorithm. Furthermore, this 
multiple imputation approach is, similar to the external imputation, not nearly as time-efficient 
as the one step imputation. Especially in the case of a larger number of variables and a higher 
proportion of missing values, the one step imputation is to be preferred. Furthermore, it could 
be determined, that the underlying missing mechanisms only have very little impact in the 
choice of a preferable strategy. In summary, the one step imputation developed throughout this 
paper is a straightforward and time-saving imputation method that can be applied reliably and 
with satisfactory results in a variety of scenarios. At last, it was shown that this method leads to 
meaningful results even in an application to real-world data, and that the imputation strategy is 
not merely a theoretically useful procedure which is reflected by plausible imputed values.

It must be noted that the elaborated findings are restricted to the examined cluster structure. 
The approach of multiple imputation with subsequent cluster aggregation can be applied to 

Table 4   Prototypes of two clusters resulting from the application of the k-prototypes algorithm with the 
usage of the one step imputation

Country Sex Age Embarked Fare (in £) Passenger class Survived

Cluster 1 UK male 28.164 S 17.043 lower no
Cluster 2 USA female 36.558 C 110.690 upper yes
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any cluster structures and algorithms and is therefore much more versatile. In future work, it 
would be interesting to investigate how cluster stability differs among the different approaches 
(Hennig, 2007). An extension of the investigation to further real-world data is also desirable. 
However, it is important to focus on the problem of the non-trivial evaluation, which generally 
dominates the analysis of data with missing values.

Appendix: Proofs of Theorems

A.1 Proof of Theorem 1 for Numerical Values

In the following, the abbreviated notation Ki(C
(t),W (t)) = K

(t)

i
 is used for clarity. For all 

numerical values i ∈ {1,… , n}, j ∈ {1,… , l} is:

a) [X̃i]j = [P𝛺(Xi)]j + [P𝛺C (Ki(C
(t),W (t)))]j = [P𝛺(Xi)]j + [P𝛺C (K

(t)

i
)]j,

b) [Ki(C,W)]j = [P�(Ki(C,W))]j + [P�C (Ki(C,W))]j = [P�(Ki)]j + [P�C (Ki)]j,
c) [P�(Bi)]j[P�C (Ci)]j = 0 with Bi,Ci ∈ �

1×m.

Showing the equality of the formula above for numerical values:

A.2 Proof of Theorem 1 for Categorical Values

In the following, the abbreviated notation Ki(C
(t),W (t)) = K

(t)

i
 is used for clarity. For all cat-

egorical values i ∈ {1,… , n}, j ∈ {l + 1,… ,m} is:

n
∑

i=1

l
∑

j=1

�

[X̃i]j − [Ki(C,W)]j
�2 a),b)

=
n
∑

i=1

l
∑

j=1

�

[P𝛺(Xi)]j + [P𝛺C (K
(t)

i
)]j − [P𝛺(Ki)]j − [P𝛺C (Ki)]j

�2

=
n
∑

i=1

l
∑

j=1

[P𝛺(Xi)]
2

j
+ [P𝛺C (K

(t)

i
)]2
j
+ [P𝛺(Ki)]

2

j
+ [P𝛺C (Ki)]

2

j

+ 2[P𝛺(Xi)]j[P𝛺C (K
(t)

i
)]j − 2[P𝛺(Xi)]j[P𝛺(Ki)]j

− 2[P𝛺(Xi)]j[P𝛺C (Ki)]j − 2[P𝛺C (K
(t)

i
)]j[P𝛺(Ki)]j

− 2[P𝛺C (K
(t)

i
)]j[P𝛺C (Ki)]j + 2[P𝛺(Ki)]j[P𝛺C (Ki)]j

c)
=

n
∑

i=1

l
∑

j=1

[P𝛺(Xi)]
2

j
+ [P𝛺C (K

(t)

i
)]2
j
+ [P𝛺(Ki)]

2

j
+ [P𝛺C (Ki)]

2

j

− 2[P𝛺(Xi)]j[P𝛺(Ki)]j − 2[P𝛺C (K
(t)

i
)]j[P𝛺C (Ki)]j

=
n
∑

i=1

l
∑

j=1

[P𝛺(Xi)]
2

j
− 2[P𝛺(Xi)]j[P𝛺(Ki)]j + [P𝛺(Ki)]

2

j

+ [P𝛺C (Ki)]
2

j
− 2[P𝛺C (K

(t)

i
)]j[P𝛺C (Ki)]j + [P𝛺C (K

(t)

i
)]2
j

=
n
∑

i=1

l
∑

j=1

�

[P𝛺(Xi)]j − [P𝛺(Ki)]j
�2

+
�

[P𝛺C (Ki)]j − [P𝛺C (K
(t)

i
)]j

�2

=
n
∑

i=1

l
∑

j=1

�

[P𝛺(Xi)]j − [P𝛺(Ki(C,W))]j
�2

+
�

[P𝛺C (Ki(C,W))]j − [P𝛺C (Ki(C
(t),W(t)))]j

�2
.
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d) X̃ ∶=
[

[P𝛺(Xi)]j ∀(i, j) ∈ 𝛺 ∧ [P𝛺C (Ki(C
(t),W (t)))]j ∀(i, j) ∉ 𝛺

]

,
e) K(C,W) ∶=

[

[P�(Ki(C,W))]j ∀(i, j) ∈ � ∧ [P�C (Ki(C,W)]j ∀(i, j) ∉ �
]

,
f) δ(,,NA”,,,NA”) = 0.

Showing the equality of the formula above for categorical values:
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