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Abstract
Both regression modeling and clustering methodologies have been extensively studied as
separate techniques. There has been some activity in using regression-based algorithms to
partition a data set into clusters for classical data; we propose one such algorithm to cluster
interval-valued data. The new algorithm is based on the k-means algorithm of MacQueen
(1967) and the dynamical partitioning method of Diday and Simon (1976), with the par-
titioning criteria being based on establishing regression models for each sub-cluster. This
also depends on distance measures between the underlying regression models for each
sub-cluster. Several types of simulated data sets are generated for several different data
structures. The proposed k-regressions algorithm consistently out-performs the k-means
algorithm. Elbow plots are used to identify the total number of clusters K in the partition.
The new method is also applied to real data.

Keywords Clusters · k-means algorithm · k-regressions algorithm · Hausdorff distance ·
City-block distance · Center distance · Simulation methods · Real-data application

1 Introduction

In this article, we adapt the basic dynamical partitioning technique of Diday (1971a, b) and
Diday and Simon (1976) for partitioning n observations into K clusters, to develop appro-
priate algorithms based on regression criteria for interval-valued observations. Interval data
are examples of symbolic data first introduced by Diday (1987). Diday’s (1971b) dynamical
partitioning technique extends the k-means method of MacQueen (1967) for classical data,
with several authors (e.g., Chavent et al., 2002) developing k-means methods for selected
classes of symbolic data. There are a few papers in the literature which use regression ideas
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as a basis for the partitioning criteria in the k-means approach for classical data, starting
with the initial development in Charles (1977). We introduce regression based methods to
the k-means technique for interval data.

We start in Section 2 with some background literature to the k-means method, and
its application to regression methodology. Then, in Section 3, the proposed algorithm for
regression-based clustering for interval observations is described. Simulation studies are
presented in Section 4; these are used to simulate different sets of data structures. Appli-
cations to real data in Section 5 nicely verify the integrity of the proposed algorithm.
Advantages and disadvantages are also discussed. Some concluding remarks are found in
Section 6.

2 Background

Cluster analysis is a common statistical tool that divides a population (of size n, say) into
different sub-populations such that the observations within the same sub-population are as
homogeneous as possible while observations from different sub-populations are as non-
homogeneous as possible. The fundamental and most well-known clustering method for the
partitioning process is the k-means algorithm originally proposed by MacQueen (1967). For
a fixed K , the k-means algorithm requires initial clusters to start the process. This initial-
ization could be K seeds or K clusters; a detailed discussion can be found in Anderberg
(1973) and Cormack (1971). Then, the algorithm partitions the n observations into K clus-
ters based on the rules under which an observation belongs to a cluster with the nearest
mean. A summary of the k-means algorithm and its extensions could be found in Jain et al.
(1999), Bock (2007, 2008) and Jain (2010).

Similar to k-means clustering, the cluster-wise linear regression method tries to recover
the data structure where the observations are clustered using multiple linear regression mod-
els. Cluster-wise linear regression partitions the n observations into K subsets where each
observation belongs to its nearest linear regression model. For classical data, the cluster-
wise linear regression method is one of the most developed clustering methods in statistics.
Analogously with the k-means algorithm, Späth (1979, 1981, 1982) partitioned the data into
K subsets and fitted K linear regressions such that the total sum of squares of the errors is
locally minimized. DeSarbo and Cron (1988) utilized a maximum likelihood methodology
using a mixture of conditional normal distributions to choose the appropriate partition that
maximizes the likelihood function, which resulted in a fuzzy cluster-wise linear regression
method. The assumptions for ordinary linear regression modeling apply to the cluster-wise
linear regression. Wedel and Kistemaker (1989) proposed another maximum likelihood
methodology by which a particular observation can belong to only one cluster. Later, Tib-
shirani et al. (2001) and Shao and Wu (2005) explored methods of determining the number
of clusters for a cluster-wise linear regression clustering approach. Zhang (2003) introduced
k-harmonic means clustering for the cluster-wise linear regression method, which is less
sensitive to the choice of initialization. Rao et al. (2007) and Qian and Wu (2011) extended
Späth’s (1982) method to one that is more robust by applying M-estimation to the linear
regression modeling. Bougeard et al. (2017, 2018) used blocks in a partial least squares
setting. A good review can be found in Brusco et al. (2008).

Our concern is with interval-valued observations. Intervals are examples of symbolic
data, which can be defined broadly as hypercubes or Cartesian products of distributions in
p-dimensional space R

p , in contrast to classical data which are points in R
p . While many
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observations are naturally symbolic (e.g., species measurements, temperatures recorded as
daily minimum and maximum values), most symbolic data today arise as a result of aggre-
gating the large data sets accumulated by the modern computer, into more manageable
forms for analyses. How any particular aggregation proceeds will depend on the scientific
questions underlying the investigation at hand. A key feature of such data is that they con-
tain internal variation. For example, suppose an aggregation produced a range of individual
values across an interval [10, 20], say. By using a summary statistic such as the midpoint
(here 15) for subsequent analyses results in a loss of critical information, since, e.g., this
interval cannot be distinguished from a second interval [14, 16] which has the same mid-
point as the first. An extensive coverage of the types of symbolic data and their fundamental
properties can be found in Bock and Diday (2000), Billard and Diday (2003, 2006), Diday
and Noirhomme-Fraiture (2008), Noirhomme-Fraiture and Brito (2011), and Diday (2016),
with non-technical introductions in Billard (2011, 2014).

It is important to remember that although observations are aggregated into intervals, each
aggregated observation within an interval remains as being from some underlying distri-
bution, e.g., normal distribution. Thus, descriptive statistics calculated from these intervals
are still point estimates. It is assumed however that those normally distributed (say) obser-
vations are uniformly spread across the interval or sub-intervals for histogram-valued data,
analogous with the calculations of histograms (or sample means, etc.) of “group” data in
elementary statistics courses. Thus, Bertrand and Goupil (2000) obtained the sample mean
as a point value (see Eq. 3). Likewise, for interval-valued observations, a sample variance
has a point value, as does each sample regression parameter value, based on n observations
(see, e.g., Eq. 9, and Eq. 6, respectively).

Extensions of the k-means algorithm of MacQueen (1967) and the adaptive k-means
algorithm of Diday and Simon (1976) to symbolic data are based on the traditional k-means
criteria involving distances between observations and the centers as the representation of the
obtained clusters; some use a median measure rather than the means. Thus, e.g., for interval-
valued data, de Carvalho et al. (2006) consider an L2 distance; Chavent et al. (2002) use
Hausdorff distances; de Souza and de Carvalho (2004), de Souza et al. (2004), and de Car-
valho and Lechevallier (2009) apply city-block distances; de Carvalho et al. (2004a, b) use
Chebychev distances; and de Carvalho and Lechevallier (2009) apply an adaptive k-means
method. Also, for histogram data, Verde and Irpino (2007), Irpino et al. (2006) and Košmelj
and Billard (2012) consider Mallows’ distance for histogram observations; and Korenjak-
Černe et al. (2011) and Batagelj et al. (2015) extend the k-means leaders approach to discrete
distributions.

3 Regression-Based k-Means for Interval Data

3.1 RegressionModel

Suppose we have n observations in a data set with response variable Y and p predictor
variables X = (X1, ..., Xp). All the response and predictor variables are interval-valued
random variables. Let Xij , i = 1, ..., n, j = 1, ..., p, be the ith realization for the j th
predictor variable Xj , denoted by Xij = [xija, xijb] with xija, xijb ∈ R and xija ≤ xijb.
Similarly, let Yi be the ith realization for the response variable Y , denoted by Yi = [yia, yib]
with yia ≤ yib, i = 1, . . . , n. Then, the multiple linear regression model is

Y = β0 + β1X1 + · · · + βpXp = X′β∗ + ε, (1)
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where β∗ = (β0, β1, . . . , βp)′ is the set of regression coefficients of the p + 1 variables
X′ = (1, X1, . . . , Xp), and ε is the error interval vector. In Eq. 1 given the data, Y is an
n × 1 vector and X′ is a (p + 1) × n matrix. Equivalently, Eq. 1 may be written as

Y − Ȳ = (X − X̄)′β + ε, (2)

where β = (β1, . . . , βp)′, X = (X1, . . . , Xp) and where X̄ = (X̄1, . . . , X̄p) and Ȳ are the
sample means defined, respectively, by

X̄j = 1

2n

n∑

i=1

(xija + xijb), j = 1, . . . , p, Ȳ = 1

2n

n∑

i=1

(yia + yib). (3)

See any of the many elementary texts on regression for properties of the model (e.g.,
Johnson and Wichern, 2007; Draper & Smith, 1966); see also Xu (2010) for interval
observations.

From Eq. 2, the error sum of squares can be written as

S =
n∑

i=1

[Yi − Ȳ − (Xi1 − X̄i)β1 − · · · − (Xip − X̄p)βp]2, (4)

for given observations i = 1, . . . , n. Then differentiating the right-hand-side of Eq. 4 with
respect to βj , j = 1, . . . , p, we have

∂S

∂βj

= 2
n∑

i=1

[Yi − Ȳ − (Xi1 − X̄i)β1 − · · · − (Xip − X̄p)βp](Xij − X̄j ), (5)

and setting the derivatives to zero and βj = β̂j , we can solve the set of p equations in Eq. 5
to obtain the least squares estimators of βj . In matrix terms, this becomes

(β̂1, . . . , β̂p) = ((X − X̄)
′
(X − X̄))−1(X − X̄)′(Y − Ȳ ),

β̂0 = Ȳ − (β̂1X̄1 + · · · + β̂pX̄p), (6)

where the estimator β̂0 pertains from Eq. 1.
To obtain the values of the elements in these matrices, let us re-write

(X − X̄)
′

(X − X̄)

=
⎛

⎜⎝

∑n
i=1(Xi1 − X̄1)

2 · · · ∑n
i=1(Xi1 − X̄1)(Xip − X̄p)

...
. . .

...∑n
i=1(Xip − X̄p)(Xi1 − X̄1) · · · ∑n

i=1(Xip − X̄p)2

⎞

⎟⎠

p×p

=
(

n∑

i=1

(Xij − X̄j )(Xij ′ − X̄j ′ )

)

p×p

= (
n × Cov(Xj ,Xj ′ )

)
p×p

j, j ′ = 1, . . . , p, (7)

and

(X − X̄)
′
(Y − Ȳ ) =

(
n∑

i=1

(Xij − X̄j )(Yi − Ȳ )

)

p×1

= (
n × Cov(Xj , Y )

)
p×1 j = 1, . . . , p. (8)
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Thus, it is clear that these matrix elements are simply n times the sample covariances
between two variables. The question now is to find expressions for these elements for given
data; i.e., we need to estimate the elements of the p × p matrix (X − X̄)

′
(X − X̄) ≡ Mxx

(say); and likewise for the elements of the p × 1 matrix Mxy ≡ (X − X̄)
′
(Y − Ȳ ).

Consider first the diagonal elements Mxx(j, j) = nCov(Xj ,Xj ) ≡ nVar(Xj ) ≡ SSXj
,

say. Bertrand and Goupil (2000) showed that for given interval observations, this sum of
squares is estimated by

SSXj
= (1/3)

n∑

i=1

[x2
ija + xijaxijb + x2

ijb] − nX̄2
j , X̄j = (1/2n)

n∑

i=1

(xija + xijb); (9)

this can be re-written as

SSXj
= (1/3)

n∑

i=1

[(xija − X̄j )
2 + (xija − X̄j )(xijb − X̄j ) + (xijb − X̄j )

2]. (10)

When there is only one observation, i.e., when n = 1, Eq. 10 becomes

SSXj
(n = 1) = (1/3)[(xija − X̄ij )

2 + (xija − X̄ij )(xijb − X̄ij ) + (xijb − X̄ij )
2],

X̄ij = (1/2)(xija + xijb), (11)

where the single i subscript in Eq. 11 is retained. From this, we see that SSXj
(n = 1) �= 0

unless xija = xijb, i.e., unless the observation Xij is a classical point observation. That is,
SSXj

(n = 1) represents the internal variation for this interval Xij observation. Summing
over all i = 1, . . . , n observations, we obtain the Within variation, WithinSSXj

, as

WithinSSXj
=(1/3)

n∑
i=1

[(xija−X̄ij )
2+(xija−X̄ij )(xijb−X̄ij )+(xijb−X̄ij )

2]. (12)

Re-arranging, we can show that Eq. 12 can be written as

WithinSSXj
=

n∑

i=1

[(xijb − xija)
2/12]. (13)

If we look at the variation between observations, viz., BetweenSSXj
, we have

BetweenSSXj
=

n∑

i=1

[(xija + xijb)/2 − X̄j ]2. (14)

From Eqs. 13 and 14, it is easy to show that

SSXj
≡ TotalSSXj

= WithinSSXj
+ BetweenSSXj

= Mxx(j, j) (15)

as given in Eq. 10. It is noted that the expressions on the right-hand-side of Eqs. 13 and
14 are conditional on an assumption that the aggregated values within an interval are uni-
formly spread across the interval. (As an aside, although this is a so-far universally accepted
assumption, different assumptions about the internal interval spread would change the
formulae of these two expressions).

The off-diagonal elements Mxx(j, j
′) are obtained analogously, by using the sum of

products (SP). Thus, we have the Within SP between the random variables Xj and Xj ′ ,
WithinSPXj ,Xj ′ , as

WithinSPXj ,Xj ′ =
n∑

i=1

[(xijb − xija)(xij ′b − xij ′a)/12] (16)
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and the Between SP between Xj and Xj ′ , BetweenSPXj ,Xj ′ , as

BetweenSPXj ,Xj ′ =
n∑

i=1

[(xija + xijb)/2 − X̄j ][(xij ′a + xij ′b)/2 − X̄j ′ ]. (17)

Hence, adding Eqs. 16 and 17 and rearranging gives, for j, j ′ = 1, . . . , p,

Mxx(j, j
′) = TotalSP = WithinSP + BetweenSP,

Mxx(j, j
′) = 1

6

n∑

i=1

[2(xija − X̄j )(xij ′a − X̄j ′) + (xija − X̄j )(xij ′b − X̄j ′)

+(xij ′a − X̄j ′)(xijb − X̄j ) + 2(xijb − X̄j )(xij ′b − X̄j ′)]. (18)

When j = j ′, Eq. 18 simplifies to Eq. 10. For the special case that the observations are
classical point values (with, e.g., a ≡ [a, a]), these derivations reduce to those for classical
data, as they should. The elements of Mxy are obtained similarly. Hence, the least squares
estimators for β∗ are found by substituting the elements of Mxx and Mxy into Eq. 6.

In the sequel, regression model fits will use the estimators obtained from Eqs. 1–18, and
will be referred to as the symbolic variation methodology.

Earlier methods developed for fitting regression models to interval-valued data include
the center method of Billard and Diday (2000), whereby a model is fitted to the midpoints
of the intervals. Although their method used the range of the predictor variables to find the
prediction intervals, the calculation of the model parameters is based on the interval mid-
points only, and so omits important information contained in the internal variations of the
intervals. In an attempt to redress that problem, in a series of papers, de Carvalho and his
colleagues (e.g., Lima Neto et al., 2004; de Carvalho et al., 2004a, b; Lima Neto et al.,
2005; Lima Neto & de Carvalho, 2008) transformed the original interval-valued variables
into point-valued center and half-range variables; then, a classical regression analysis was
conducted on each of the center values and half-range values separately. Also, use of the
center-range variables is equivalent to using the interval end-points. We note that all these
methods use some form of classical surrogates on one/two single point values of the inter-
val, rather than using the entire interval as in the symbolic variation method. It is easy to
show that the variations (SS/SP) on the centers equate to the between variations of the sym-
bolic variation methodology but that the variations on the ranges do not equate to the Within
variations of the symbolic variation method. Thus, in their various ways, these methods are
not fully utilizing all the variations in the data correctly. There are moreover other statistical
issues here; e.g., the assumption that the center and range are independent entities is unsus-
tainable. However, while each of these previous methods advanced the subject at the time,
each has its limitations.

3.2 Partitioning Criteria

Our concern is with partitioning our data set into a fixed number K clusters where the
observations within each cluster are identified by a specific regression model. Assume that
the response variable Y has K different linear relationships with the predictor variables X.
Let (Xk, Yk), k = 1, ...,K , be the set of observations that follows the kth regression model
(i.e., belongs to the kth cluster Ck). Then,

Yk = X′
kβk + εk, k = 1, ...,K, (19)
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where βk is the set of linear coefficients of the predictor variables for the kth regression
model, and εk is the error vector.

Let nk , k = 1, ...,K , be the number of observations in the kth cluster with
∑K

k=1 nk = n.
We assume the following:

A1 The number of observations nk satisfies p < nk ≤ n, k = 1, ...,K , where p is the
number of predictor variables, and n is the total number of observations in the whole
data set. It can be shown that nk = n only if K = 1.

A2 The individual errors in a particular cluster k are drawn independently from a normal
distribution with mean 0 and variance σ 2

k , N(0, σ 2
k ), and after aggregation (along the

lines of Eq. 33 e.g.) become intervals. The error intervals εk are independent from εk′ ,
k �= k′, for k, k′ = 1, ...,K .

The first assumption (A1) avoids the situation with nk < p such that there is no linear
regression solution for the kth cluster; the second assumption (A2) reduces the computa-
tional complexity of the problem. Our goal is to find an optimal partition P ∗ = (C∗

1 , ..., C∗
K)

that minimizes the overall residuals of the regression models given the number of clusters
K .

Given a partition P = (C1, ..., CK), we can fit a linear regression model for each cluster
as in Eq. 19. Denote the coefficient estimator of βk by β̂k for k = 1, ...,K . Then, the
regression residuals for the kth cluster are defined as, for i ∈ Ck ,

rki = d(Yi, Ŷi ), (20)

where d(Yi, Ŷi ) is the distance between the observation Yi and its predicted value Ŷi . Since
Ŷi = X′

i β̂k , Eq. 20 can be rewritten as rki = d(Yi,X
′
i β̂k). The predictive interval Ŷi using

the symbolic variation method is, for i ∈ Ck ,

Ŷi = [Ŷia, Ŷib] = [min
X∈XX′

i β̂k, max
X∈X

X′
i β̂k], (21)

where X = {X = (xj ) : xja ≤ xj ≤ xjb, j = 1, ..., p}; see Xu (2010). Our goal is to find
an optimal partition that minimizes the sum of squared residuals (SSR) given K , viz.,

SSR = arg min
P ; β̂k

K∑

k=1

∑

i∈Ck

r2
ki =

K∑

k=1

nk∑

i=1

r2
ki . (22)

Since rki in Eq. 22 is defined as the distance between two intervals, Yi and Ŷi , different
definitions of the distance between these two intervals will affect the clustering results of our
k-regressions algorithm. For illustrative concreteness, we consider three different distance
definitions between two interval variables, specifically, center distance, Hausdorff distance
and city-block distance; other distances could be used.

The center distance between two p-dimensional interval observations Z1 = (Z11, . . . ,

Z1p) and Z2 = (Z21, . . . , Z2p) with Zij = [zija, zijb], i = 1, 2, j = 1, . . . , p, is defined as

dC(Z1,Z2) =
p∑

j=1

|zc
1j − zc

2j |, (23)

where zc
ij = (zija + zijb)/2, is the midpoint of the interval Zij , i = 1, 2, j = 1, . . . , p. The

Hausdorff (1937) distance is defined as

dH (Z1,Z2) =
p∑

j=1

max{|z1ja − z2ja |, |z1jb − z2jb|}. (24)
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The city-block distance is defined as

dCB(Z1,Z2) =
p∑

j=1

[|z1ja − z2ja | + |z1jb − z2jb|]. (25)

We observe that there are effectively two optimizations occurring in this process. The
first is designed to minimize the sum of squared residuals when fitting the regression model
within each cluster (i.e., minimize the regression sum of squared errors

∑nk

i=1 ε2
i for each

kth cluster regression, k = 1, . . . , K). This is not the same as minimizing
∑n

i=1 ε2
i over

all observations ignoring the clusters. The second optimization is to minimize the sum of
the squared distances rki = d(Yi, Ŷi ) where the predicted value Ŷi is determined by the
regression equation for the kth cluster. We also note that the explained variation in the data
is due to a mix of explained variation from the regression fits within clusters and that due to
heterogeneity across clusters. For the classical data setting, Brusco et al. (2008) has a nice
example illustrating how sometimes the explained variation can be dominated by the within
cluster variations, and sometimes by the cluster heterogeneity.

3.3 Partitioning Algorithm

The k-regressions algorithm for each of the three distance definitions of Eqs. 23–25 is
the same, except that the distance d(Yi,X

′
i β̂k) used in the allocation step (iii) changes

appropriately. Analogously with the algorithm in Späth (1979), we propose a k-regressions
cluster-wise algorithm for interval-valued data as follows:

(i) Initialization: Choose a partition P (0) = (C
(0)
1 , ..., C(0)

K ) randomly from all the pos-
sible partitions, or partition the whole data set to K clusters based on some prior
knowledge.

(ii) Representation: For k = 1, ...,K , fit regressions Yk = X′
kβk + ε to the observations

in the kth cluster for partition P (l) = (C
(l)
1 , ..., C(l)

K ) where l = 0, 1, . . . , denotes the
lth iteration.

(iii) Allocation: For observation Yi , i = 1, ..., n, calculate its distance to its prediction Ŷi

obtained by its kth regression line, d(Yi,X
′
i β̂k), k = 1, ...,K , and allocate the obser-

vation to its closest line. The updated partition is now P (l+1) = (C
(l+1)
1 , ..., C(l+1)

K ).
(iv) Stop: Repeat (ii) and (iii) until the improvement of SSR in Eq. 22 is smaller than a pre-

determined criterion, or the number of iterations reaches a predetermined maximum
number.

For the representation step, we apply the symbolic variance method to fit the linear regres-
sion model. For the allocation step, the observations are allocated such that, for k =
1, ...,K ,

Ck = {(X, Y )|d(Y,X′β̂k) ≤ d(Y,X′β̂k′), ∀k �= k′}. (26)

Given a data set, the algorithm cannot guarantee a global minimum of SSR. Thus, we
repeatedly implement the steps (i)–(iv) a number of times with different initializations and
select the solution which has the lowest value of SSR. The selected partition can be further
iterated until SSR cannot be reduced anymore. An expanded description is available in Liu
(2016).
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3.4 Number of Clusters

The k-regressions clustering algorithm is used to implement the cluster-wise regression
method given that K is known. However, if we do not have prior knowledge about K , a
bad guess of K can mislead the results. Xu (2010) gave a symbolic R-square (R2) of the
symbolic variation method for the linear regression of interval-valued data as

R2 = Var(Ŷ )

Var(Y )
, (27)

where Ŷ is the predicted value of the response variable Y , and Var(·) is the symbolic vari-
ance calculated from Eq. 9. Using the symbolic R2, we propose the following methods to
determine the number of clusters K .

Given a predetermined maximum number of clusters Kmax , for each K = 1, . . . , Kmax ,
calculate the R2 for each cluster k = 1, . . . , K , denoted by R2(K)

k . For the whole data set,
the weighted average R2 for the n observations given K is defined as

R2(K) =
K∑

k=1

w
(K)
k R2(K)

k , (28)

where w
(K)
k = nk/n is the weight of the R2 for the kth cluster, and nk = |Ck| is the number

of observations in the kth cluster. From the plot of (1 − R2(K)
) versus K , the elbow point is

the optimal number of clusters K∗.
Determining the optimal number of clusters K by looking for the elbow point can be

subjective, especially when the elbow point is not obvious. Analogously with the adjusted
R2 for the linear regression model, we propose an adjusted R2 to determine the optimal
K for the k-regressions algorithm. We know that R2 for ordinary least squares regression
models corresponds to the proportion of variation explained by the model; i.e., R2 can be
defined as

R2 = 1 − SSres/SStot = SSreg/SStot, (29)

where SStot = ∑
i (Yi − Ȳ )2 is the total sum of squares, SSreg = ∑

i (Ŷi − Ȳ )2 is the sum of
squares of the regression, SSres = ∑

i (Yi − Ŷi )
2 is the sum of squares of the residuals, and

Ȳ = ∑
i Yi/n is the sample mean of Y . The R2 in Eq. 29 can be rewritten as

R2 = 1 − Varres/Vartot, (30)

where Varres = SSreg/n and Vartot = SStot/n. The Varres and Vartot terms are both biased
estimators of the residual variation and the population variation, respectively. The adjusted
R2 term adjusts these two variance estimators to be unbiased estimators, so that the adjusted
R2 is defined as

R̄2 = 1 − SSres/dfε
SStot/dft

, (31)

where dfε = n − p − 1 is the degree of freedom of the residuals, and dft = n − 1 is the
degree of freedom of the population variation. The adjusted R2 adjusts the R2 in Eq. 29 so
that it does not always increase.

The k-regressions algorithm fits K regressions on the whole data set, so that the total
number of parameters is Kp. For each K = 1, . . . , Kmax , analogously with the idea of an
adjusted R2 for ordinary least squares regression, we define the adjusted weighted R2 for
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the k-regressions clustering as

R̄2(K) = R2(K) − (1 − R2(K)
)

Kp
n−Kp−1

≡ R2(K) − Q(K),
(32)

where Q(K) = (1 − R2(K)
)Kp/(n − Kp − 1) is the penalty term.

The adjusted weighted R2 in Eq. 32 penalizes the R2(K)
of Eq. 28 by the factor Q(K)

when the number of clusters increases. Since we fit K different linear regression models to
the whole data set, the number of parameters is K(p + 1) for the cluster-wise regression
methodology.

From Eq. 32, R̄2(K)
is always smaller than R2(K)

. The R̄2(K)
increases only if the increase

of K improves R2(K)
more than the penalized term Q(K). Usually when K increases, R̄2(K)

increases and reaches a maximum at a certain value of K , and decreases afterwards. The
value of K that maximizes R̄2(K)

, or equivalently minimizes 1−R̄2(K)
, is the optimal number

of clusters K∗. We compare the two methods of determining the optimal K by simulation
results in the next section.

4 Simulation Study

We describe how our interval-valued observations are simulated in Section 4.1. Then, in
Section 4.2, we compare the k-regressions clustering with the traditional k-means method.
How the new algorithm performs is studied in Section 4.3 for several different data set
structures.

4.1 Methodology

In practice, most interval data sets arise from aggregating classical data. From this per-
spective, we propose the following simulation method. The intervals of X are simulated
where the interval midpoints X(c) come from a multivariate normal distribution, and the
interval ranges X(r) are from exponential distributions. The intervals of Xj , j = 1, ..., p,

are given by Xj = [X(c)
j − 0.5X

(r)
j , X

(c)
j + 0.5X

(r)
j ]. The spread of observations within

these intervals is assumed to be uniform. For a particular observation i, to obtain the inter-
val Yi , we randomly draw m values from the uniform distribution U(xija, xijb) for each
j = 1, ..., p, denoted by xij1, ..., xijm. The m is a predetermined number. Then, the interval
Yi = [yia, yib] is determined by

yia = min
l∈{1,...,m}{β0 + β1xi1l + ... + βpxipl + εil},

yib = max
l∈{1,...,m}{β0 + β1xi1l + ... + βpxipl + εil}, (33)

where εil
iid∼ N(0, σ 2) for i = 1, ..., n, and l = 1, ...,m. This method is practically reason-

able. For example, traffic on a particular intersection is recorded multiple times everyday;
the minimum and maximum values are recorded as the traffic interval for a day.

A more general case for this method is to assume the number m follows a certain dis-
tribution f (m; λ), say, such as a geometric distribution or a negative binomial distribution.
For each observation i, the m’s are the same for all the predictors Xj , j = 1, ..., p, but the

m’s are different for different observations. We have mi
iid∼ f (m; λ) for i = 1, ..., n. The

interval Yi , i = 1, ..., n, is now given by Eq. 33 but with m replaced by mi . By allowing a
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random value for m, this simulation method fits more general scenarios. For instance, the
daily price for a particular stock is an interval where the lower bound is the minimum price
while the upper bound is the maximum price. The prices for the stock are recorded on a
transaction base for every trading day, but the number of transactions on each day is not
fixed. Instead, it is a random number that follows a certain distribution.

A problem for this simulation method is that it cannot guarantee that the obtained inter-
vals Yi , i = 1, ..., n, internally have the aggregated observations uniformly spread across
the interval. However, it can be verified that the observations within an interval Yi obtained
in this way are uniformly distributed for a relatively large m, say, m ≥ 3000; see Xu (2010).
The advantage is that this method is close to how interval data sets are collected in practice.

4.2 Comparison of the k-Regressions and k-Means Algorithms

The k-means algorithm is designed for spherical data structures. When each of the clusters
in a data set is not spherical, the algorithm can fail. For example, if the variables are highly
correlated within a cluster and the clusters overlap, it is difficult for the k-means algorithm
to recover such clusters. In this section, we give two examples (with m small and large,
respectively) where the k-means algorithm fails to recover the true clusters while in contrast
the k-regressions algorithm succeeds. The k-means clustering method for interval-valued
data is based on the algorithms in Chavent et al. (2002) and de Souza and de Carvalho
(2004). In each case, we implement the k-means clustering method based on each of the
city-block distance and the Hausdorff distance. For the k-regressions clustering method,
we use the center distance for demonstration purposes. Like the k-means algorithm, the
k- regressions algorithm does not guarantee a proper convergence given a random start
partition. Therefore, multiple initial partitions are needed; the one with minimum SSR (see
Eq. 22) is deemed to be the convergence result for the k-regressions algorithm. We call an
initial partition that converges to the minimum SSR as being a good initial partition.
Data I

Our first data set (I) is composed of three clusters that follow the equations:

(1) Y = 142 + 5X + ε1, (2) Y = 53 − 3X + ε2, (3) Y = −43 + 0.6X + ε3, (34)

respectively, where ε1 ∼ N(0, 152), ε2 ∼ N(0, 122), and ε3 ∼ N(0, 72). We apply the
simulation method described in Section 4.1 and set m = 25. The observations of these three
regression models are simulated separately with 200 observations for each, and then the
three data sets are stacked into one data set.

Figure 1a shows the three true clusters with the three linear of Eq. 34, respectively.
Figure 1b shows the clustering results based on the k-means algorithm when the city-block
distance was used, while Fig. 1c gives the k-means clustering results using the Hausdorff
distance for the data. From Fig. 1b and c, we see that both these k-means algorithms clus-
ter at the intersection areas between the three clusters in Eq. 34, which are clearly not the
correct clusters.

Figure 1d, e, and f show the clustering process of the k-regressions algorithm with a
good initial partition. Figure 1d shows the first (initialization) iteration of the k-regressions
algorithm, while Fig. 1e shows the third iteration where the algorithm starts to converge to
the true linear regression models in Eq. 34. Figure 1f shows the tenth or final iteration of
the k-regressions algorithm where the algorithm converges to the three true linear regres-
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Fig. 1 Comparison between clustering results of k-means algorithm and k-regressions algorithm for Data I

sion models in Eq. 34. The three linear regression models obtained by the k-regressions
algorithm are, respectively,

(1) Y = 138.80 + 4.94X, (2) Y = 54.13 − 3.18X, (3) Y = −41.7 + 0.65X. (35)

These coefficients are close to the true coefficients in Eq. 34. In addition, by comparing the
true data set in Fig. 1a and the k-regressions clustering results in Fig. 1f, it is safe to say that
the k-regressions algorithm recovers the three true clusters for Data I in Eq. 34. A further
investigation shows that all the misclassification observations are from the intersection areas
between the three clusters.
Data II

Our second data set (II) contains three clusters. We set m = 3000 in Eq. 33. One hun-
dred observations for each regression model are simulated and then all the observations are
stacked into one data set. The three linear regression models between the two variables are
as follows:

(1) Y = 150.5 + 4.5X + ε1, (2) Y = 53 − 3X + ε2, (3) Y = −53 + 0.5X + ε3, (36)

respectively, where ε1 ∼ N(0, 152), ε2 ∼ N(0, 122), and ε3 ∼ N(0, 72).
The simulated Data II with a total of 300 observations and 3 clusters is visualized in

Fig. 2a where the three true regression lines are also plotted. Figure 2b and c give the
clustering results by the k-means algorithm with the city-block distance and the Hausdorff
distance. We can see clearly that the k-means algorithm with both the city-block distance
and the Hausdorff distance fails to recover the correct clusters.

Figure 2d, e, and f show the progress of the k-regressions algorithm through nine itera-
tions onto the Data II with the good initial partition. Figure 2d is the plot of the three clusters
for the first iteration (initialization). Figure 2e shows the third iteration of the algorithm
where the three clusters are already close to the three true clusters. The ninth (final) itera-
tion is presented in Fig. 2f and shows clearly the convergence to the correct three clusters
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Fig. 2 Comparison between clustering results of k-means algorithm and k-regressions algorithm for Data II

by the algorithm. The estimated linear regression model by the symbolic variation method
for the three converged clusters are, respectively,

(1) Y = 151.13 + 4.49X, (2) Y = 54.93 − 2.95X, (3) Y = −53.74 + 0.54X. (37)

The estimated coefficients in Eq. 37 and the true coefficients in Eq. 36 are quite close. In
addition, by comparing the plot of the original three linear regression models in Fig. 2a
and the plot of the converged three clusters in Fig. 2f, it is observed that the k-regressions
algorithm successfully recovered the true structure of Data II. Both Data I and II are non-
spherical; the k-means algorithm failed to recover the true structure, whereas our method
succeeded.

In these simulated examples, we assume that the true number of clusters is known. To
decide the optimal number of clusters, we calculate the weighted R-squared, R2(K)

, for
K = 1, ..., 8, from Eq. 28. The elbow plot is the plot of 1 − R2(K)

versus the number of
clusters K . Figure 3a and b show the elbow plots for Data I from Eq. 34 and Data II from
Eq. 36, respectively. For both data sets, the elbow plots correctly show that the optimal
number of clusters is K = 3.

4.3 Performance of the k-Regressions Algorithm

4.3.1 Data Structures

In this section, we simulate data sets with different structures to investigate the performance
of the k-regressions algorithm. We first consider three data sets with p = 1. Data A and
Data B contain three clusters, while Data C contains four clusters.

Table 1 provides the parameter setup for the three data sets. In Table 1, n is the sample
size for each of the clusters; β0 and β1 are the coefficients of the linear relation for each
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Fig. 3 Determining the number of clusters K by an elbow plot

cluster. The values μx and σx are the two parameters of the normal distribution N(μx, σx)

from which the interval midpoints of the predictor variable X are drawn. The value λx is the
parameter of the exponential distribution exp(λx) from which the interval ranges of X are
drawn. The error terms εi are drawn from a normal distribution N(0, σε) where the values
of the parameter σ 2

ε are shown in the row “σε” in Table 1.
Thus, the true linear regression equations for the three clusters of Data A have the

structure:

(1) Y = 1.0 + 1.3X, (2) Y = 45 + 1.8X, (3) Y = 45 − 2.5X; (38)

those for Data B are as follows:

(1) Y = 142 + 5X, (2) Y = 33 − 3X, (3) Y = −73 + 0.6X; (39)

and those for Data C are as follows:

(1) Y = 2.0+0.8X, (2) Y = 1.0+2.3X, (3) Y = 3.0−1.8X, (4) Y = 1.0+4.3X. (40)

We can observe the data structures for Data A, B, and C, in Fig. 4a, b and c, respectively.
The regression lines in each plot are the recovered linear lines obtained by the k-regressions

Table 1 Parameter setup for the Data A, B, and C

Data A Data B Data C

Cluster 1 2 3 1 2 3 1 2 3 4

n 100 100 100 100 100 100 60 60 60 60

β0 1.0 45.0 45.0 142.0 33.0 −73.0 2.0 1.0 3.0 1.0

β1 1.3 1.8 −2.5 5.0 −3.0 0.6 0.8 2.3 −1.8 4.3

μx 4.0 0.0 8.0 −28.0 12.0 −10.0 4.0 3.0 4.0 3.0

σx 12.0 9.6 9.0 10.0 17.0 20.0 4.0 3.0 4.0 3.0

λx 1.5 1.3 1.2 1.0 0.9 1.0 10.0 12.0 10.0 12.0

με 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

σε 5.0 4.0 3.0 6.0 9.0 8.0 1.0 2.0 1.0 4.0
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Fig. 4 Data structure for the Data A (a), B (b), and C (c)

algorithm. We can see that different clusters overlap with each other for all three data sets.
Especially, for Data C, a large proportion of the four clusters is overlapping. In addition, for
a particular data set, each cluster is clustered around a linear regression line.

4.3.2 Application of the k -Regressions Algorithm

Consider first Data A. For this particular data set, we generate a random sample that follows
its structure as described in Table 1. Then, given the correct number of clusters K = 3, we
use the k-regressions algorithm to recover the data structure. We try a number of random
initial partitions. Based on these different initial partitions, the clustering result with smallest
sum of squared residuals of Eq. 22 is set to be the correct convergence for these samples. For
each simulation, we tried 50 different random initial partitions to recover its structure. This
whole process is one replication. Then, we implement 100 such replications using different
seeds to investigate the overall performance of the k-regressions algorithm.

For each distance, and each cluster, the mean and standard deviation (std) of the estimated
parameter values from these 100 replications are displayed in Table 2. For example, for the
center distance, the mean estimated coefficients of β0 and β1 for the cluster 1 are 0.93 and
1.32, respectively; the differences between the estimated values and the true values are small
relative to the true values. The standard deviation of the estimated β0 and β1 for cluster 1
are 0.17 and 0.01, respectively. Small standard deviations of the coefficients indicate we
have stable clustering results. Similar arguments pertain for the other two clusters and for
the other distances, though it is noted that the center distances give considerably better fits
when comparing the SSR residual values.

For each replication, we tried 50 different initial partitions when applying the k-
regressions algorithm to a particular simulation. The number of good initial partitions out
of 50, n∗, gives an idea about how difficult it is for the algorithm to converge to the cor-
rect cluster by a random initial partition. Out of the 100 replications, we can calculate the
mean and standard deviation of n∗, which is shown in the row “n∗ out of 50” in Table 2 for
the three distances. The SSR is also calculated for each replication. The mean and standard
deviation of the SSR out of the 100 replications are presented in the row “SSR”.

Table 3 presents the corresponding clustering results for Data B with 100 replications.
Table 3 can be interpreted in a similar way as Table 2 for Data A. Given K = 3, for all
the three distances, the differences between the true coefficients and the mean estimated
regression coefficients are all small relative to the coefficient scales. Again, small standard
deviations for all the estimated coefficients imply stable clustering results.
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Table 2 k-regressions clustering results for Data A

True Center City-block Hausdorff

Parameter Value Mean std Mean std Mean std

Cluster 1 β0 1.00 0.93 0.17 4.01 6.16 1.75 3.41

β1 1.30 1.32 0.01 1.25 0.55 1.33 0.36

Cluster 2 β0 45.00 45.00 0.13 44.96 3.42 44.59 2.91

β1 1.80 1.82 0.01 1.81 0.33 1.76 0.53

Cluster 3 β0 45.00 44.65 0.18 44.49 11.03 44.06 3.76

β1 −2.50 −2.46 0.01 −2.18 0.77 −2.42 0.26

n∗ out of 50 - - 30.75 8.74 24.73 11.16 30.03 9.55

SSR - - 325.69 20.23 2614.00 94.97 2675.46 56.05

The clustering results for Data C are presented in the Table 4. The interpretation of
Table 4 for Data C follows in a similar manner as for Table 2 for Data A and Table 3 for
Data B. Note that for Data C, a large proportion of the four clusters overlaps, which makes
it more difficult to converge to the correct clusters for the k-regressions algorithm. For each
replication, we tried 200 different initial partitions. The differences between the true coeffi-
cients and the mean estimated coefficients are small relative to the scales of the coefficients.
The standard deviations of the coefficients are small for all the estimated coefficients and
all the three distances. However, the intercept estimates for clusters 2, 3, and 4 are not as
accurate as for cluster 1. This is not surprising given that cluster 1 is more separated from
the other three clusters.

Now, let us use the same three data structures, Data A, B, and C, to investigate the
performance of determining the optimal number of clusters by the elbow method, and the
adjusted R2. For a particular data set, we generate a random sample based on its parameter
setup and implement the k-regressions algorithm for K = 1, . . . , 10. For each K , we try a
number of different initial partitions and select the results with smallest SSR as the correct
clustering results. The R2(K)

from Eq. 28 and R̄2(K)
from Eq. 32 are calculated for each

of K = 1, . . . , 10. The elbow plot is plotted as K versus 1 − R2(K)
. We also plot the K

versus R̄2(K)
where the maximum R̄2(K)

determines the optimal number of clusters. This

Table 3 k-regressions clustering results for Data B

True Center City-block Hausdorff

Parameter Value Mean std Mean std Mean std

Cluster 1 β0 142.00 141.30 2.09 140.77 1.89 141.75 2.01

β1 5.00 4.97 0.07 4.95 0.07 4.99 0.07

Cluster 2 β0 33.00 33.06 1.25 33.39 1.30 33.42 1.28

β1 −3.00 −2.99 0.06 −3.00 0.06 −2.99 0.06

Cluster 3 β0 −73.00 −72.93 0.98 −72.83 1.11 −72.64 1.14

β1 0.60 0.60 0.05 0.60 0.05 0.60 0.06

n∗ out of 50 - - 26.55 14.51 33.42 15.70 34.51 14.74

SSR - - 1757.41 85.17 4127.63 177.30 2689.33 90.65
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Table 4 k-regressions clustering results for Data C

True Center City-block Hausdorff

Parameter Value Mean std Mean std Mean std

Cluster 1 β0 2.00 2.06 0.38 3.55 1.76 3.86 2.98

β1 0.80 0.81 0.05 0.68 0.17 0.73 0.18

Cluster 2 β0 1.00 1.32 1.31 3.06 2.74 5.20 4.04

β1 2.30 2.36 0.22 2.28 0.50 1.97 0.73

Cluster 3 β0 3.00 2.90 0.32 3.12 0.34 3.02 0.39

β1 −1.80 −1.78 0.04 −1.81 0.05 −1.80 0.05

Cluster 4 β0 1.00 2.13 1.87 4.29 2.67 4.24 2.82

β1 4.30 4.27 0.35 4.04 0.46 4.05 0.48

n∗ out of 200 - - 43.95 45.77 14.73 28.70 24.77 33.35

SSR - - 296.25 20.52 777.90 44.84 521.13 27.75

whole process is for one replication, and we implement a total of 20 replications to test the
performance of the elbow method and the adjusted R2.

Figure 5a, b, and c are the elbow plots for (1 − R2(K)) against K for Data A, B, and C,
respectively, where the grey lines are the elbow plots for the 20 replications, and the blue
line is the average R2(K)

over the 20 replications. We can see that the elbow plots identify
the correct optimal number of clusters for all three data sets, K = 3 for Data A and B,
and K = 4 for C. It is relatively difficult to determine the optimal number of clusters for
Data C due to the overlapping of clusters; however, the elbow plots correctly determined the
number of clusters for all 20 replications nevertheless. Figure 5d, e, and f show the plots of

Fig. 5 Elbow plots by weighted R2 and adjusted R2 for Data A (a) and (d), Data B (b) and (e), and Data C

(c) and (f)
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R̄2(K)
for Data A, B, and C, respectively. For each of the three data structures, the optimal

number of clusters determined by the largest R̄2(K)
is mostly larger than the true number of

clusters for the 20 replications.
Generally, the elbow method is a stable and reliable method to determine the optimal

number of clusters. There could be cases where R2(K)
decreases gradually and consistently

so that an elbow point is hard to find. Usually such scenarios indicate that there does not
exist an optimal number of clusters to separate the data well and subjective judgment needs
to be involved for a decision. Fixing a reasonable cutoff for R2(K)

is a realistic option in
practice. The R̄2(K)

, adjusted R2, usually overestimates the optimal number of clusters and
so is not a good method to determine the optimal number of clusters.

4.3.3 p > 1

Consider now three simulated data sets D, E, F , with p=3, 5, 5, respectively. The parameter
setups are given in Table 5; tables and figures are shown in the Supplementary Materials S1.
The sample size for each cluster in Data D is 200, while the sample size for each cluster
in Data E and in Data F is 300 observations. As before, there are 100 replications for each
case. The estimated parameter values for each of the three distances, are given in Tables 6,
7 and 8, for Data D, E, and F , respectively. The respective elbow plots are shown in Fig. 10
with a and d showing the weighted 1 − R2(K) plot and the adjusted R̄2(K) plot for Data
D, Fig. 10b and e for Data E, and Fig. 10c and f for Data F , respectively. As for the
p = 1 cases, these estimated results compare well with the true values; and the fits are good
as determined by the SSR values and the elbow plots, again corroborating the merits and
usefulness of the proposed k-regressions algorithm. Tables 6–8 also show the time (in secs)
to run the 100 replications. From these, we see there is very little difference between these
times as p increases; rather, if anything, any time differences are due to different distance
measures used, though the standard deviations are large relative to the respective sample
means.

5 Real Data Application

The methodology introduced herein is applied to the faces data set of Leroy et al. (1996).
The predictor variable is X = length between the outer corners of the eyes, i.e., eye-span,
and the response variable is Y = length between the inner corners of the eyes, i.e., the length
of the bridge of the nose. There are n = 27 interval-valued observations (see Table 9 in
Supplementary Materials S2). The resulting K = 3 clusters, obtained from the k-regressions
algorithm, are shown in Fig. 6. The maximum number of clusters was set at K = 5. We see
from the elbow plot in Fig. 7 that the optimal number is the K = 3 of Fig. 6. The respective
regression equations are as follows:

Cluster 1 (black): Y = −87.52 + 0.91X + ε, (41)

Cluster 2 (red): Y = −143.19 + 1.20X + ε, (42)

Cluster 3 (green): Y = −80.17 + 0.89X + ε. (43)

For all three clusters, the length between the two outer corners of the eyes (X) is positively
correlated with the length between the two inner corners of the eyes (Y). However, the
relationship between the two lengths is a bit different for different clusters.
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Fig. 6 Three k-regressions clusters for the faces data

The clusters consist of C1 = {7, 8, 9, 19, 20, 21, 25, 26, 27} faces, C2 = {4, 5, 6, 10, 11,

12, 13, 14, 15} faces, and C3 = {1, 2, 3, 16, 17, 18, 22, 23, 24} faces, respectively. As it
so happens, these faces are in fact three observations from each of nine individuals. The
algorithm (naturally unaware of this fact) correctly always puts the measurements for the
same individual into the same cluster, thus enhancing the credibility of the algorithm.

Fig. 7 Elbow plots faces data set clustering
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Fig. 8 Three k-regressions clusters for the cars data

A second data set is the cars data set discussed in de Carvalho et al. 2010. There are
n = 33 cars. The k-regressions algorithm is applied where the response variable is Y =
price and the regression variable is X = engine capacity (data are in Table 10 in S2). The k-
regressions algorithm gave the K = 3 clusters as shown in Fig. 8. The respective regression

Fig. 9 Elbow plots cars data set clustering
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equations (where the data are standardized) are as follows:

Cluster 1 (red): Y = −44.53 + 78.05X + ε, (44)

Cluster 2 (green): Y = −66.78 + 58.98X + ε, (45)

Cluster 3 (blue): Y = −68.24 + 73.00X + ε. (46)

The elbow plot is shown in Fig. 9 suggesting that the optimal K = 3. The clusters con-
sist of C1 = {11, 15, 16, 22} cars, C2 = {1, 2, 3, 6, 7, 8, 9, 10, 12, 13, 14, 18, 20, 21, 26,

29, 30, 31, 32, 33} cars, and C3 = {3, 4, 16, 18, 22, 23, 24, 26, 27} cars.
These cars data were also analysed by de Carvalho et al. 2010 using the same variables.

Importantly, they also obtained three clusters. However, it is difficult to make any further
comparison, as they apply separate classical regressions to each of the interval centers and
half-ranges point values and so (apart from the deficiencies discussed in Section 3.1) it is
not possible to produce cluster-regression fits along the lines of Eqs. 44–46 above.

6 Conclusion

The use of a regression-based approach to partition a data set into its relevant clusters,
as originally introduced by Charles (1977), exists for classical data. For interval data, we
have introduced a k-regressions algorithm to partition a set of interval-valued observations
into its underlying clusters. The algorithm was tested on a wide variety of simulated data
sets and two real application sets of interval data. It worked well. The new k-regressions
algorithm demonstrably excelled when compared with the well-known k-means algorithm
methodology for partitioning.

Supplementary Information The online version contains supplementary material available at (10.1007/
s00357-021-09394-5).
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Paris, Dauphine.

Chavent, M., Lechevallier, Y., Jajuga, K., Sokolowski, A., & Bock, H.-H. (2002). Dynamical clustering
of interval data: Optimization of an adequacy criterion based on Hausdorff distance. In Classification,
clustering, and data analysis (pp. 53–60). Berlin: Springer.

Cormack, R. M. (1971). A review of classification. Journal of the Royal Statistical Society A, 134, 321–367.
de Carvalho, F. A. T., Lima Neto, E. A., & Tenorio, C.P. (2004a). A new method to fit a linear regression

model for interval-valued data. In Lecture notes in computer science, KI2004 advances in artificial
intelligence (pp. 295–306). Springer.

de Carvalho, F. A. T., de Souza, R. M. C. R., & Silva, F.C.D. (2004b). A clustering method for symbolic
interval-type data using adaptive Chebyshev distances. In A. L. C. Bazzan, & S. Labidi (Eds.) LNAI
3171 (pp. 266-275). Berlin: Springer.

de Carvalho, F. A. T., Brito, M. P., & Bock, H.-H. (2006). Dynamic clustering for interval data based on l2
distance. Computational Statistics, 21, 231–250.

de Carvalho, F. A. T., & Lechevallier, Y. (2009). Partitional clustering algorithms for symbolic interval data
based on single adaptive distances. Pattern Recognition, 42, 1223–1236.

de Carvalho, F. A. T., Saporta, G., & Queiroz, D.N. (2010). A clusterwise center and range regression model
for interval-valued data. In Y. Lechevallier, & G. Saporta (Eds.) Proceedings in computational statistics
COMPSTAT 2010 (pp. 461–468). Berlin: Springer.

DeSarbo, W. S., & Cron, W. L. (1988). A maximum likelihood methodology for clusterwise linear regression.
Journal of Classification, 5, 249–282.

de Souza, R. M. C. R., & de Carvalho, F. A. T. (2004). Clustering of interval data based on city-block
distances. Pattern Recognition Letters, 25, 353–365.
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