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Abstract
Amodel-based clustering method based on Gaussian Cox process is proposed to address the
problem of clustering of count process data. The model allows for nonparametric estimation
of intensity functions of Poisson processes, while simultaneous clustering count process
observations. A logistic Gaussian process transformation is imposed on the intensity func-
tions to enforce smoothness. Maximum likelihood parameter estimation is carried out via
the EM algorithm, while model selection is addressed using a cross-validated likelihood
approach. The proposed model and methodology are applied to two datasets.

Keywords Count process · Clustering · Gaussian process · Gaussian Cox process ·
Mixture models

1 Introduction

Model-based clustering techniques (Fraley and Raftery 2002; Bouveyron and Brunet-
Saumard 2014; McNicholas 2016; Bouveyron et al. 2019) have been widely used in
many applications where sample observations consist of multivariate data taking values in
Euclidean space. In this approach, it is often assumed that the observations arise from a
finite mixture distribution that is a mixture of two or more components, where each com-
ponent is a probability density function and each component has an associated probability.
Recently, clustering techniques for functional data (Abraham et al. 2003; Giacofci et al.
2013; Jacques and Preda 2014) have been proposed where each observation is a stochastic
process taking values in an infinite dimensional space.

In some applications, one observes a collection of count processes as data, where each
count process consists of event times observed over a fixed time interval. Some examples
include the occurrence of natural disasters in various locations, observed times of failure of
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multiple electronic components, and temporal sequence of action potentials generated by
neurons. Compared with clustering finite dimensional observations and functional obser-
vations, clustering techniques for count process data are underdeveloped. In this paper, we
propose a mixture Poisson processes model for count process data observed in a fixed time
interval [0, T ), where each mixture component g is a non-homogeneous Poisson process
governed by an intensity function λg(t), t ∈ [0, T ).

The proposed model is an extension of the Poisson mixture model proposed in Côme and
Latifa (2014), which was used to analyze the Paris bike-sharing system. In Côme and Latifa
(2014), event time points for bikes arriving and departing from each station are obtained,
and the observations are aggregated at 1-h intervals to produce the counts. A generative
model based on Poisson mixtures was proposed and an EM algorithm was used to esti-
mate the intensities and clustering of bike stations. Our approach incorporates a Gaussian
process prior on the intensity functions {λg(t)}Gg=1, where G is the number of clusters or
intensity functions. The Gaussian process prior can enhance the smoothness of the resulting
intensity estimates. We adopt the EM algorithm to cluster the count processes and estimate
the cluster-specific intensity functions. Standard errors of the estimated intensity functions
are estimated using a jackknife approach, and a cross-validated likelihood approach (Smyth
2000) is used to perform model selection.

The rest of this article is organized as follows. In Section 2, we briefly review the defini-
tions of Poisson processes and Gaussian processes, and the relevant literature on Gaussian
process modulated Poisson processes. Section 3 presents the mixture of Poisson processes
model and develops an EM algorithm for intensity function estimation and clustering; stan-
dard error estimates for the estimated intensity functions and model selection are also
considered. Two datasets are analyzed in Section 5 by the proposed methodology. The paper
concludes in Section 6 with a discussion of the proposed modeling approach.

2 Preliminaries

Definitions of Poisson processes and Gaussian processes are stated in this section in order
to motivate our proposed model.

2.1 Poisson Process

Non-homogeneous Poisson process (NHPP) is a popular model for count process data. A
temporal NHPP defined on an interval [0, T ) ⊂ R is associated with a non-negative and
locally integrable intensity function λ(t) for t ∈ [0, T ). That is, for any bounded region
B ⊂ [0, T ), the volume �(B) = ∫

B
λ(s)ds is finite. Furthermore, let N(B) be the number

of events in B, we have:

1. N(B) follows a Poisson distribution with rate �(B).
2. Given N(B), the location of events within B are i.i.d. with density λ(t)/�(B).

2.2 Gaussian Process

A random scalar function g(s) : S → R is said to have a Gaussian process prior, if for any
finite collection of points {sn}Nn=1 ∈ S, the function values {g(sn)}Nn follow a multivariate
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Gaussian distribution. The Gaussian process prior can be defined by a mean function m(·) :
S → R and a covariance function k(·, ·) : S × S → R; the mean and covariance functions
further depend on hyperparameters φ.

The idea of Gaussian process modeling is to place a prior directly on the space of func-
tions without parameterizing the random function. A Gaussian process approach provides
a convenient way to incorporate dependence structure for points in the space S where the
dependence between two points is typically determined by their distance and orientation.
Rasmussen and Williams (2006) contains a detailed review of theory and applications of
Gaussian process.

One attractive feature of Gaussian processes is the variety of covariance functions one
can choose from, which leads to different level of smoothness of the underlying random
function to be modeled. Therefore, prior knowledge and specifications about the shape of
the underlying function can be incorporated by selecting different covariance functions.
Gaussian process modeling has been successfully applied to regression (Williams and Ras-
mussen 1996), classification (Kim and Ghahramani 2006), density estimation (Murray et al.
2009), and point process modeling (Adams et al. 2009) problems.

2.3 Gaussian Cox Process

The combination of a Poisson process and a Gaussian process prior is known as a Gaus-
sian Cox process. It provides an attractive modeling framework to infer the underlying
intensity function since one only needs to specify the form of the Gaussian process mean
and covariance functions. This approach has been adopted in various applications, includ-
ing neuroscience (Cunningham et al. 2008), finance (Basu and Dassios 2002), and forestry
(Heikkinen and Arjas 1999).

3 Model andMethodology

3.1 Mixture of Poisson Processes

We assume that there are G normalized intensity functions λ = {λg}Gg=1, where λg :
[0, T ) → R

+,
∫ T

0 λg(s)ds = 1, and we let τg be the probability that a point process has
intensity function λg , for g = 1, 2, . . . , G. We employ the logistic density transform to the
intensity functions {λg}Gg=1:

λg(t) = exp(fg(t))
∫ T

0 exp(fg(s))ds
. (1)

Logistic Gaussian process priors have been proposed for Bayesian nonparametric density
estimation where theoretical properties have been investigated (Leonard 1978; Lenk 1988,
1991; Tokdar and Ghosh 2007).

A zero-mean Gaussian process prior GP(0, k(s, s′)) is assigned to the random functions
f = {fg}Gg=1, where k(s, s′) is the covariance function. The covariance function defines
the nearness or similarity of input points, and it is a basic assumption that input points
that are close are likely to have similar values of intensity. It is common to assume that
the covariance function is stationary, that is, it is a function of the x − x′. In this paper,
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we assume the one-dimensional squared-exponential covariance function, which has the
following form:

k(s, s′) = σ 2 exp

[

− 1

2l2
(s − s′)2

]

, (2)

for two input points s and s′. The hyperparameters φ = (l, σ ) determine the properties of the
covariance function. In particular, l determines the smoothness of the covariance function,
and as l increases, the covariance between two input points increases. The incorporation
of a Gaussian process prior increases the amount of smoothness in the estimated intensity
functions.

Assuming that the intensity function is a transformation of random realization from a
Gaussian process provides a convenient way to specify prior beliefs about the intensity func-
tion without choosing a particular functional form. Unfortunately, the likelihood involves an
integral of an infinite-dimensional random function which is computationally intractable.
Various inference methods for Gaussian process have been proposed including Markov
Chain Monte Carlo (MCMC) (Adams et al. 2009) and variational Bayesian approach (Lloyd
et al. 2015).

To make inference more tractable, we further discretize the interval [0, T ) into m

equal length sub-intervals, and let {tk}mk=1 be the mid-points of the sub-intervals [T (k −
1)/m, T k/m), k = 1, · · · ,m. We assume that the random functions {fg}Gg=1; hence, the

intensity functions {λg}Gg=1 are piecewise constant on each interval. Hence, we have for any
t ∈ [0, T ):

fg(t) =
m∑

k=1

fg(tk)I {t ∈ [T (k − 1)/m, T k/m)} ,

where I (·) is the indicator function. To simplify the notation, for each g = 1, · · · ,G, we let
fg = (fg,k)

m
k=1 denote the vector of function evaluations at the m mid-points {tk}mk=1; that

is, fg,k = fg(tk) for k = 1, · · · ,m. The Gaussian process prior (1) results in a Gaussian
distribution for fg :

p(fg|{tk}mk=1, θ) = N(fg|0,K) (3)

where K is an m × m covariance matrix that depends on the mid-points {tk}mk=1.
We note that when the length scale parameter l → 0 in the squared exponential covari-

ance function (2), the covariance matrix K converges to σ 2Im, and the prior distribution for
fg tends to:

p(fg|{tk}mk=1, θ) = N(fg|0, σ 2Im), (4)

where Im is the m × m identity matrix. In this limiting case, each fg,k has a normal prior
with variance σ 2, but fg,k and fg,k′ are independent for k �= k′.

This discretization leads to efficient inference of intensity functions since the resulting
computation is independent of the size of data. In contrast, the cost of each MCMC step in
Adams et al. (2009) scales cubically in the size of data.

After the discretization, for any t ∈ [0, T ), the intensity function evaluated at t can be
expressed as:

λg(t) = exp(fg(t))

1
m

∑m
k=1 exp(fg(tk))

= exp(fg(t))

1
m

∑m
k=1 exp(fg,k)

. (5)
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To take into account the variation in overall intensities between individual count process
data, we introduce scaling factors α = {αi}Ni=1 so that the count process i with associated
normalized intensity λg has overall intensity αiλg .

The choice of hyperparameters φ represents the prior belief of smoothness of the inten-
sity function. We adopt a cross-validated likelihood approach along with a grid search
(Section 3.5) to determine φ. The number of sub-intervals m for the discretization could
also be determined using the cross-validated likelihood approach, although doing so would
significantly increase the model search space and computational time. A practical approach
is to start with a small number of sub-intervals m, and gradually increase m until the desired
level of resolution is obtained. The effect of choosing different m on the estimated intensity
functions and classification accuracy of the count process observations will be examined in
Section 4.

It is possible to simulate N count processes from the model where each count process i

consists of a vector of event times {xi,j }ni

j=1 and ni is the number of events. We first obtain

G random functions {fg}Gg=1 evaluated at the m mid-points by drawing G random variables
from the multivariate Gaussian distribution given in (3). The logistic transformation (5)
allows us to obtain the G intensity functions {λg}Gg=1. We then draw from a multinomial

distribution zi ∼ M(1, {τg}Gg=1) to determine the intensity function λg from which the
observations of count process i are simulated. We then obtain the overall intensity function
αiλzi

associated with the count process i. Various techniques for non-homogeneous process
simulation can then be applied to draw observations {xi,j }ni

j=1 in time interval [0, T ). The
generative process of the model is summarized in Algorithm 1.

3.2 Consistency of PenalizedMLE Under Mixture of Poisson Processes

The incorporation of a Gaussian process prior can be understood as a roughness penalty
on the intensity functions, where intensity functions that are less smooth receive a larger
penalty. The penalized maximum likelihood approach (MLE) is commonly adopted in mix-
ture modelling (Ciuperca et al. 2003; Fraley and Raftery 2007; Chen et al. 2008). For finite
normal mixtures, the penalized MLE approach is used to tackle the likelihood degeneracy
problem (Fraley and Raftery 2007; Chen et al. 2008) where penalties are imposed on the
variances of mixture components. In our case, the Gaussian process prior penalty ensures
that the resulting estimated intensity functions are smooth.
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The study of consistency properties of the MLE of finite mixture models has attracted
significant research interests (Cheng and Liu 2001; Chen et al. 2016; Chen 2017). In this
section, we derive the consistency property of the penalized MLE of mixture of Poisson
processes model. We let x = {xi}Ni=1 be the observed event times of N count processes,
where xi = {xi,j }ni

j=1 are the event times of process i. We can alternatively represent xi as

yi = (yi,1, . . . , yi,m)T where yi,k denotes the number of events in the kth interval for the ith
count process. These two representations are equivalent when m is assumed to be fixed. Let
F = {f ∈ R

m} be the parameter space of each mixture component. The penalized density
of yi is given by:

h(yi; αi, PF ) =
G∑

g=1

τgh(yi;αi, fg), (6)

where

h(yi; αi, fg) =
(

exp(−αi)

m∏

k=1

(αiλ
(g)
k )yi,k

yi,k!

)

p(fg) (7)

is the penalized density for the gth mixture component, and PF is the mixing distribution.
To suppress notation, we write P for PF when no confusion arises. We define P to be the
space which consists of all mixing distributions, and for two mixing distributions P1 and P2
in P, we define the distance D(·, ·)

D(P1, P2) =
∫

F
|P1(f) − P2(f)| exp(−|f|)df

where | · | is the Euclidean norm on R
m. We say that P → P0 if D(P, P0) → 0. Suppose

P ∗ ∈ P is the true mixing distribution and P̂ is an estimator, then P̂ is strongly consistent
when D(P̂ , P ∗) → 0 almost surely.

A necessary condition for the consistency of P̂ is the identifiability of the mixture model.
The following proposition on identifiability is a direct consequence of Theorem 4.2 of Sap-
atinas (1995) where the identifiability of arbitrary multivariate power-series mixtures is
proved.

Proposition 3.1 The mixture model defined in Eqs. 6 and 7 is identifiable. That is,
let H(yi; αi, P ) be the cumulative distribution function of h(yi; αi, P ). If for any αi ,
H(yi; αi, P ) = H(yi; αi, P

∗) for all yi , then D(P, P ∗) = 0.

In particular, the mixture model (6) can be formulated in the form of Equation 4.1 of
Sapatinas (1995), and since a multivariate Poisson mixture model has infinite divisible
univariate marginals, the mixture model (6) is identifiable by Theorem 4.2 of Sapatinas
(1995).

Consistency of MLE is established in the following result where the proof is deferred to
Appendix A.

Proposition 3.2 Let P̂ be the MLE of mixture of Poisson processes model, then P̂ is strongly
consistent.
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3.3 EM Algorithm

Given observed event times of N count processes, we want to group the count procesess
into G clusters while simultaneously estimating the intensity functions of the G Poisson
process. As we are unable to observe the true cluster assignment for each count process, we
adopt the EM algorithm (Dempster et al. 1977) for maximum likelihood estimation.

Let f = (f1, · · · , fG)T be the vector of multivariate Gaussian random variable with dis-
tribution defined in Eq. 3, the (penalized) likelihood function for the observations with G

clusters can be written as:

L(θ; x) =
n∏

i=1

⎡

⎣
G∑

g=1

τg exp(−αi)

ni∏

j=1

λg(xi,j )

⎤

⎦

⎡

⎣
G∏

g=1

p(fg)

⎤

⎦ (8)

where p(fg) is given in Eq. 3, and θ = (α, τ, f) are the model parameters. In non-Bayesian
setting, the Gaussian process prior imposed on random functions {fg}Gg=1 can be understood

as penalty terms. The maximum penalized likelihood estimates of {fg}Gg=1 are equivalent to
maximum a posterior estimates under the Bayesian framework.

We let z = {zi}ni=1 be the latent assignment of observations (count processes) to clusters,
where zi = (zi1, zi2, · · · , ziG)T and

zig =
{
1 if count process i has intensity function αiλg

0 otherwise
.

By introducing the latent variables z, we can write the complete data likelihood function
as:

L(θ; x, z) =
n∏

i=1

G∏

g=1

⎡

⎣τg exp(−αi)

ni∏

j=1

(αiλg(xi,j ))

⎤

⎦

zig
⎡

⎣
G∏

g=1

p(fg)

⎤

⎦ (9)

Taking the logarithm of Eq. 9 gives the complete data log-likelihood function:

logL(θ; x, z) =
n∑

i=1

G∑

g=1

zig

⎡

⎣log(τg) − αi +
ni∑

j=1

{
log(αi) + log(λg(xij ))

}
⎤

⎦

+
G∑

g=1

log(p(fg)) (10)

During the E-step, we need to compute the probability of cluster assignment for each
count process π̂

g
i ≡ E(Zig|xi, θ̂

(t)) conditional on current parameter estimates θ̂ (t) =
(α̂(t), τ̂ (t), f̂(t)). We have:

π̂
g
i = p{Zig = 1|xi, θ̂

(t)}

= τ̂
(t)
g exp(−α̂

(t)
i )

∏ni

j=1(α̂
(t)
i λ̂

(t)
g (xi,j ))

∑G
h=1 τ̂

(t)
h exp(−α̂

(t)
i )

∏ni

j=1(α̂
(t)
i λ̂

(t)
h (xi,j ))

(11)
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During the M-step, we need to maximize the conditional expectation of the complete
data log-likelihood given in Eq. 9, E

Z|x,θ̂ (t) (logL(θ; x, Z)) with respect to the conditional

distribution of Z given the model parameters θ̂ (t). The updates for α = {αi}Ni=1 and τ =
{τ }Gg=1 can be derived analytically and are given below.

α̂i = ni (12)

τ̂g =
∑n

i=1 π̂
g
i

n
(13)

The update formula for scaling factor αi does not depend on π̂
g
i ; hence, it only needs to be

computed once.
The optimization of the conditional expected complete data log-likelihood with respect to

{fg}Gg=1 does not result in explicit update rule for {fg}Gg=1. As a result, we employ Newton’s

method to obtain estimates for {fg}Gg=1. The EM algorithm is summarized in Algorithm 2,
and its full derivation is given in Appendix B. With the discretization of the time domain,
the computational complexity of the proposed algorithm is independent of the number of
events in each count process observations. Since both the grid centers and hyperparameters
are fixed, the inverse of the covariance matrix can be pre-computed.
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3.4 Uncertainty Estimates of Intensity Function

It is often desirable to obtain standard errors and construct confidence intervals for the
model parameters (α, τ, λ). The primary interest is on the intensity functions λ = {λg}Gg=1;
we propose the jackknife technique to achieve this (e.g., O’Hagan et al. (2019)).

For each intensity function λg for g = 1, 2, . . . , G and i = 1, 2, . . . , N , we obtain

the estimates λ̂
(i)
g for using the EM algorithm with the ith count process removed from

the data. To solve the label switching problem that typically occurs in mixture modeling,
we then re-order the estimates {λ̂(i)

g }Gg=1 for i = 1, · · · , N so that the squared distance
∑G

g=1
∑m

k=1(λ̂g(tk) − λ̂
(i)
g (tk))

2 is minimized.
For g = 1, · · · , G, and for k = 1, · · · ,m, we let

λ̄g(tk) = 1

N

N∑

i=1

λ̂(i)
g (tk)

be the estimator of intensity function g at time tk based on all sub-samples. The estimated
variance of the intensity function estimator using jackknife technique is given below.

Varjack(λ̂g(tk)) = N − 1

N

N∑

i=1

(λ̂(i)
g (tk) − λ̄g(tk))

2 (14)

for g = 1, · · · , G and k = 1, · · · ,m. As a result, the confidence interval for each estimated
intensity function λ̂g is given by:

(

λ̂g(tk) − c

√
Varjack(λ̂g(tk)), λ̂g(tk) + c

√
Varjack(λ̂g(tk))

)

for k = 1, · · · , m and for c is chosen depending on the desired confidence level, and is
usually set to 2 in practice. The lower bound of the confidence interval is set to 0 if it is a
negative number.

While the jackknife method can be computationally expensive, it can be performed
completely in parallel. For much larger N , the jackknife method may be replaced by the
leave-k-out cross validation to reduce computational burden where k is some small integer.

3.5 Model Selection

Wewant to determine the number of Poisson processes in the mixture modelG as well as the
hyperparameters φ for the Gaussian process prior. The application of standard information
criteria in performing model selection is problematic due to the difficulty in defining the
dimension of the model or the number of parameters.

Smyth (2000) proposed using cross-validated likelihood approach to choose the num-
ber of components in a mixture model. In this paper, we extend this method along with
grid search to determine both the number of Poisson processes G and the hyperparame-
ters φ. Consider the general case of choosing the optimal model Mk from a set of models
{M1,M2, . . . ,Mkmax } where kmax is the total number of models considered. Let θ(k) be
the parameters corresponding to the modelMk , and let l(θ (k); D) denote its log-likelihood
model with parameters θ(k) evaluated on dataset D. Assuming dataset D is observed, and
for a fixed model Mk , the method works by repetitively partitioning the data set into
two sets, one of which is to train the model Mk and obtain estimates of parameters θ̂ (k)
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by maximizing the log-likelihood and the other is for testing the model by evaluating its
log-likelihood.

Assuming that the data D is partitioned into J sets, {S1, S2, . . . , SJ }. For j th partition,
let D \ Sj be the dataset used for training the model and let:

θ̂ (k)(D \ Sj ) := argmax
θ(k)

l(θ (k); D \ Sj )

be the estimated parameters. We then evaluate the log-likelihood of the test set Sj with the
estimated parameters θ̂ (k)(D\Sj ) to obtain l(θ̂ (k)(D\Sj ); Sj ). The cross-validated estimate
of the test log-likelihood is defined as:

lcvk = 1

J

J∑

j=1

l(θ̂ (k)(D \ Sj ); Sj ) (15)

In the case of mixture of Poisson processes model, Mk represents a model with G(k) Pois-
son processes and hyperparameters φ(k). We determine the number of Poisson processes
G and the hyperparameters φ by choosing the model Mk with the highest value of cross-
validated likelihood lcvk . The choice of J for the cross validation has attracted much research
interests (Kohavi 1995; Bengio and Grandvalet 2004; Zhang and Yang 2015). Experimental
results in the literature shows that moderate values of J tend to reduce the variance of the
test log-likelihood (Kohavi 1995). Performing cross validation with several random splits
also helps reduce the variance. However, a too large J relative to the size of data results in
only a low number of sample combinations, thus limiting the number of iterations that are
different.

3.6 Clusters Versus Mixture Components

Baudry et al. (2010) argued the difference between clusters and mixture components and
proposed a method based on entropy criterion to check if mixture components are modeling
distinct clusters. Let π̂

g
i be the estimated a posterior probability of count process i belongs

to cluster g, the entropy of a particular mixture model with G components is given by:

Ent(G) = −
G∑

g=1

N∑

i=1

π̂
g
i log(π̂g

i )

A greedy algorithm is then used to combine the mixture components where at each stage, the
two mixture components to be merged are chosen so as to minimize the resulting entropy.
The decrease in the entropy at each step of the procedure may help guide the choice of the
number of clusters.

4 Simulation

We evaluate the performance of the proposed model and the EM algorithm developed in
Section 3 using simulation studies. For each combination of the number of sub-intervals
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Table 1 L2 distance between estimated and true intensity functions and classification accuracy of the EM
algorithm under various parameter settings

m σ l L2 distance Classification accuracy

20 1 0 0.101 1

20 1 0.005 0.077 1

20 1 0.01 0.083 1

20 1 0.02 0.082 1

20 2 0 0.275 0.920

20 2 0.005 0.219 0.926

20 2 0.01 0.177 0.945

20 2 0.02 0.202 0.938

20 5 0 0.384 0.786

20 5 0.005 0.332 0.859

20 5 0.01 0.376 0.830

20 5 0.02 0.421 0.819

40 1 0 0.182 1

40 1 0.005 0.153 1

40 1 0.01 0.136 1

40 1 0.02 0.163 1

40 2 0 0.321 0.923

40 2 0.005 0.206 0.968

40 2 0.01 0.283 0.947

40 2 0.02 0.295 0.920

40 5 0 0.628 0.802

40 5 0.005 0.408 0.869

40 5 0.01 0.517 0.840

40 5 0.02 0.581 0.802

m and the hyperparameters (σ, l) specified in Table 1, we simulate 100 count process
observations according to a mixture of three point processes with intensity functions:

λ1(s) = 10B(s; 2, 2)
λ2(s) = 10B(s; 3, 10)

λ3(s) = 10B(s; 0.5, 0.5)
where B(.; a, b) denotes the density function of the Beta distribution with parameters a

and b. The mixing proportion and the scaling factors are set as τ = (1/3, 1/3, 1/3) and
α = (50, . . . , 50), respectively. The EM algorithm is then applied to estimate the intensity
functions and to obtain clustering structure. The procedure described above is repeated 500
times in order to obtain an estimate of the L2 distance between the estimated and true
intensity functions and its classification accuracy.

The entries in Table 1 with length scale parameter l = 0 correspond to the limiting
case described in Section 3.1 where different points in the time domain are assumed to be
independent. We see from Table 1 that imposing covariance structure on the points improves
model fit as well as classification accuracy. As the true intensity functions are relatively
smooth, the accuracies in estimation and classification are similar withm = 20 andm = 40.
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The true intensity functions, the average of the estimated intensity functions resulting
from 500 replications, and the estimated 95% confidence interval are shown in Fig. 1.
We can see that the intensity functions can be consistently recovered. A higher level of
uncertainty is observed at locations where the true intensity function has large gradient.

The experiments were performed using a 12-core Intel i7-8700 computer with a clock
speed of 3.2 GHz. The average computing times for running a single EM algorithm are
1.26 s for m = 20, and 2.74 s for m = 40.

5 Examples

5.1 Washington Bike-Sharing Scheme Data

We apply the mixture of Poisson processes model to analyze the Washington bike-sharing
scheme data.1 Information including start date and time, end date and time, start station and
end station of a trip are publicly available. For each station in the bike-sharing scheme, we
consider the end time of a trip as an event. We fit the model to the data over the period of 18
March 2016 through 24 March 2016 with 362 active stations and a total of 62,234 events.

We partition the time interval into 84 sub-intervals, which corresponds to the aggregation
of events for each 2-h interval. We find choosing 84 sub-intervals ensures a good trade-off
between resolution of details and fluctuation of the intensity functions. To determine the
number of clusters K and hyperparameters φ = (l, σ ) for the covariance function, we apply
the cross-validated log-likelihood approach described in Section 3.5. In particular, various
combination of values were chosen for K , l and σ and the cross-validated log-likelihood
is estimated for each of the combinations. The four-cluster model consistently scores the
highest for various combinations of hyperparameters l and σ .

The results obtained from fitting a four-cluster model with hyperparameters l = 0.01 and
σ = 1 are presented here. Each bike station is plotted on the map in Fig. 2 where its color
represents the maximum a posteriori cluster membership. The estimated intensity functions
along with the estimated 95% confidence interval are given in Fig. 3. The confidence inter-
vals are esimated using the jackknife approach as described in Section 3.4. We summarize
the four estimated intensity functions using a text descriptor (Table 2).

It can be seen from Fig. 3 that the overall level of activities tends to be substantially
higher on weekdays compared with weekends. The estimated intensity function for cluster
3 has two peaks on each working day which implies that these stations are popular desti-
nations both in the morning and afternoon. We observe that the bike stations in cluster 4
tend to be concentrated in the central area of Washington, and the corresponding estimated
intensity function has a strong peak in the morning. It is very likely that these stations are
located near business districts and riders arrive at work in the morning. On the other hand,
cluster 1 has most stations located further from the city center, and the corresponding esti-
mated intensity function has a strong peak in the afternoon. Hence, it is plausible that riders
arrive home from work in the afternoon.

Figure 2 shows some spatial effect in the clustering of bike stations whereby stations that
are close in distance tend to be in the same cluster. A potential extension of the model to
take into account the spatial effect is to allow the cluster assignment probabilities depending
on covariates of count processes.

1Historical data available at https://www.capitalbikeshare.com/
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Fig. 1 Estimated intensity functions. Blue: true intensity functions. Black solid: mean estimated inten-
sity functions. Black dot: estimated 95% confidence intervals. Top: number of sub-intervals = 20. Bottom:
number of sub-intervals = 40

The predicted versus actual number of events and the quantile–quantile plot of the stan-
dardized residuals for each bike station at various time intervals are shown in Figs. 4 and 5.
We see that the proposed model provides an adequate fit to the data although the observed
quantiles tend to slightly deviate from the theoretical ones at the tails.

We apply the method proposed by Baudry et al. (2010) and presented in Section 3.6
to check if there are multiple components modeling a cluster. Both the plots of entropy
versus the number of mixture components and entropy versus cumulative count of merged
observations (Fig. 6) show that the reduction in entropy is insignificant at each merging
step. Hence, it appears that the four mixture components are modeling four distinct clusters.

5.2 Reality Mining Data

The Reality Mining Dataset was collected in 2004 (Eagle and Pentland 2006). The goal
of this experiment was to explore the capabilities of the smart phones that enabled social
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Fig. 2 A map of the bike stations colored by maximum a posteriori cluster membership. Blue: cluster 1.
Green: cluster 2. Red: cluster 3. Black: cluster 4

scientists to investigate human interactions. In particular, 75 students or faculty in the MIT
Media Laboratory and 25 students at the MIT Slogan business school were the subjects of
the experiment where the times of phone calls and SMS messages between subjects were
recorded. For each subject in the study, we treat the time when an outgoing call was made
as an event time.

Tomitigate the effect of subjects dropping out of study,we focus on the core of 86 peoplewho
havemade outgoing calls during the pe.riod between 24 September 2004 and 8 January 2005.2

2Data obtained from http://sociograph.blogspot.ie/2011/04/communication-networks-part-2-mit.html
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Fig. 3 Estimated intensity functions and confidence intervals for the bike-sharing dataset, where the x-axis
shows the days of the week (start from 12 am for each day) and the y-axis shows the intensities

We partition the time interval into 106 sub-intervals which represents an aggregation of
events to 1-day intervals. As in the case of bike-sharing scheme dataset, we determine the
number of clusters K and hyperparameters φ = (l, σ ) by applying the cross-validated log-
likelihood method with grid search. The five-cluster model is selected by the method and
the results from fitting a five-cluster model with hyperparameters l = 0.01 and σ = 1 are
shown in Fig. 7.

A text descriptor is provided in Table 3 to summarize the five estimated intensity func-
tions. The five intensity functions reveal contrasting behavior of the participants where
participants in cluster 1 tend to be consistently active while participants in cluster 5 make
very few outgoing calls from early November. We observe that participants in cluster 3

Table 2 Descriptions of the estimated intensity functions for the Washington bike-sharing dataset

Color Cluster name Description

Blue Sharp peak in the afternoon Low level of activities in the morning

with a sharp peak in the afternoon

Green No peak Increasing level of activities,

without sharp peak

Red Two Peaks One peak in the morning,

and another in the afternoon

Black Early Peak One sharp peak in the morning
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Fig. 4 Top two rows: predicted
versus actual number of events
for each bike station in every
10th sub-interval. Bottom two
rows: quantile–quantile plots of
standardised residuals for each
bike station in every 10th
sub-interval

tend to make increasing number of phone calls as time passes while the reverse is true for
participants in cluster 4.

The predicted versus actual number of events and the quantile-quantile plot of the stan-
dardized residuals for each bike station at various time intervals are shown in Figs. 8 and 9.
Both the plots of entropy versus number of components and entropy versus cumulative
count of merged observations (Fig. 10) show that the reduction in entropy is insignificant at
each merging step.

6 Discussion

In this paper, we have proposed a general framework to model and cluster count processes
data for which penalized likelihood estimation using the EM algorithm is practical to imple-
ment. The approach has a number of advantages over existing methods in clustering point
processes data. First, the incorporation of a Gaussian process prior enhances smoothness of
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Fig. 5 Bottom two rows:
quantile–quantile plots of
standardised residuals for each
bike station in every 10th
sub-interval

the estimated intensity functions. The discretizations of the time domain and Gaussian pro-
cesses lead to a computationally efficient inference algorithm. Furthermore, the jackknife
method provides a sound framework to estimate the uncertainties in intensity functions,
while the selection of hyperparameters and number of clusters is performed using a cross-
validated log-likelihood approach. We have applied the proposed method to two real-world
datasets and obtained interesting and interpretable results.

The proposed modeling framework can be generalized and extended. The length of each
sub-interval is assumed to be equal under the current framework. Allowing the length of the
sub-intervals to vary would be more appropriate when the underlying intensity has varying
levels of smoothness. When covariates of count process observations are available, they may
be incorporated in the cluster assignment probabilities. Furthermore, the development of an
efficient Markov Chain Monte Carlo algorithm for the developed model is also of interest.
In applications such as natural disaster modeling, it is reasonable to assume that the arrival
of an event affects future arrivals for some period of time. In such scenarios, alternative
point processes such as Hawkes process may be more appropriate.
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Fig. 6 Entropy plots for the bike-sharing data. Top: entropy versus number of components. Bottom: entropy
versus cumulative count of merged observations

Fig. 7 Estimated intensity functions and confidence intervals for the Reality Mining dataset
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Table 3 Descriptions of the estimated intensity functions for the Reality Mining data set

No. Cluster name Description

1 Stable Level of activities very stable

Rising and declining Level of activities rising and declining

3 Rising and stable Level of activities gradually increasing,

and remain stable from October

4 Stable and declining Level of activities remain stable until December,

and die off during Christmas

5 Die off Activities die off at early November

Appendix A: Consistency of PenalizedMLE

Sufficient conditions for P̂ to be strongly consistent are given in Kiefer and Wolfowitz
(1956) and are stated below.

• (C1) Identifiability: Let H(yi;αi, P ) be the cumulative distribution function of
h(yi; αi, P ). If for any αi , H(yi; αi, P ) = H(yi; αi, P

∗) for all yi , then D(P, P ∗) =
0.

Fig. 8 Top two rows: predicted versus actual number of events for each participant in every 10th sub-interval
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• (C2) Continuity: The component parameter space F is a closed set. For all yi , αi and
any given P0,

lim
P→P0

h(yi; αi, P ) = h(yi; αi, P0).

• (C3) Finite Kullback–Leibler Information: For any P �= P ∗, there exists an ε > 0 such
that

E∗[log(h(Yi; αi, Bε(P ))/h(Yi; αi, P
∗))]+ < ∞,

where Bε(P ) is the open ball of radius ε > 0 centered at P with respect to the metric
D, and

h(Yi; αi, Bε(P )) = sup
P̃∈Bε(P )

h(Yi; αi, P̃ ).

• (C4) Compactness: The definition of the mixture density h(yi; αi, P ) in P can be
continuously extended to a compact space P.

Identifiability of the mixture model is established in Proposition 3.1. In the case
of mixture of Poisson processes, the component parameter space F is clearly closed.

Fig. 9 Bottom two rows: quantile–quantile plots of standardized residuals for each participant in every 10th
sub-interval
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Fig. 10 Entropy plots for Reality Mining data. Top: entropy versus number of components. Bottom: entropy
versus cumulative count of merged observations

To compactify the space of mixing distributions P , we notice that the distance between any
two mixing distributions is bounded above by:

∫

F
exp(−|f|)df < ∞.

We can extend P to P by including all sub-distributions ρP for any ρ ∈ [0, 1) as in Chen
(2017).

We now show the continuity of h(yi;αi, P ) on P. Recall that D(Pm, P ) → 0 if and only
if Pm → P in distribution if only if

∫
u(f)dPm(f) → ∫

u(f)dP0(f) for all bounded and
continuous function u(·).

For any given f0 ∈ F and αi > 0, we clearly have limf→f0 h(yi; αi, f) = h(yi;αi, f0),
and lim|f|→∞ h(yi; αi, f) = 0. Hence, h(yi; αi, f) is continuous and bounded onF . Suppose
that Pm → P0 ∈ P in distribution, we have that:

h(yi; αi, Pm) =
∫

h(yi; αi, f)dPm(f) →
∫

h(yi;αi, f)dP0(f) = h(yi; αi, P0)

which shows that h(yi;αi, P ) is continuous in P.
To prove finite Kullback–Leibler information, we need the extra sufficient condition that

all scaling factors {αi}i are bounded above, that is, αi < α(M) < ∞ almost surely ∀i. Let
f0 be a support point of P ∗. There must be a positive constant δ such that:

h(yi;αi, P
∗) ≥ δ

(

exp(−αi)

m∏

k=1

(αiλk)
yk

yk!

)

p(f0).

uniformly for all αi < α(M). Therefore, we have that:

E∗(log h(yi; αi, P
∗))≥

m∑

k=1

log(αiλk)E
∗(Yi,k)−

m∑

k=1

E∗(log Yi,k!)−αi + log(δ)+logp(f0).
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Since αi < α(M) almost surely, both E∗(Yi,k) and E∗(log(Yi,k!)) are finite for all
k. Hence, E∗(logh(yi; αi, P

∗)) > −∞. Since h(yi; αi, P
∗) is bounded from above,

E∗(log h(yi; αi, P
∗)) < ∞. Therefore, E∗| log h(yi; αi, P

∗)| < ∞.
Since h(Yi;αi, Bε(P )) < c < ∞ for any P , ε and αi ,

E∗[log(h(Yi; αi, Bε(P ))/h(Yi; αi, P
∗))]+ < log(c) − E∗(log h(Yi; αi, P

∗)) < ∞.

Therefore, we have shown that the four conditions above are satisfied and the penalized
MLE under mixture of Poisson process is strongly consistent.

Appendix B: Derivation of EM Algorithm

Recall the complete data log-likelihood defined in Eq. 10. The E-step requires the com-
putation of the expected value of the complete data log-likelihood function with respect
to the conditional distribution of Z given x and current estimates of parameters θ̂ (t). This
conditional expression can be expressed as:

E
Z|x,θ̂ (t) (logL(θ; x,Z)) =

n∑

i=1

G∑

g=1

π̂
g
i

⎡

⎣log(τg) − αi +
ni∑

j=1

log(αi) + log(λg(xij ))

⎤

⎦

+
G∑

g=1

log(p(fg)) (16)

The M-step finds the parameters θ that maximize the expression above. It is straightforward
to show (by differentiation) that the values of α and τ that maximize the expression above
are given by Eqs. 12 and 13 respectively.

To optimize Eq. 16 with respect to fg , we write fg = (fg,1, · · · , fg,m)T and retain terms
that involve fg for g = 1, · · · ,G to obtain:

Q ≡
n∑

i=1

π̂
g
i

ni∑

j=1

log(λg(xij )) + log(p(fg))

=
n∑

i=1

π
g
i

ni∑

j=1

log

[
exp(fg(xi,j ))∑m

k=1 exp(fg,k)

]

− 1

2
fTg K−1fg + const

=
n∑

i=1

π̂
g
i

ni∑

j=1

fg(xi,j ) −
n∑

i=1

π̂
g
i ni log

[
m∑

k=1

exp(fg,k)

]

− 1

2
fTg K−1fg + const

= bT fg −
n∑

i=1

π̂
g
i ni log

[
m∑

k=1

exp(fg,k)

]

− 1

2
fTg K−1fg + const

where b = (b1, · · · , bm)T with yk defined below.

bk =
n∑

i=1

π̂
g
i

ni∑

j=1

I (xij ∈ [sk−1, sk))

where [sk−1, sk) is the kth interval of the m equally spaced intervals of [0, T ).
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For g = 1, · · · ,G, we now optimize Q with respect to fg , and as analytical expression
does not exist, we use Newton’s method. For each g, the Jacobian Jg(Q) ofQ can be written
as:

Jg(Q) = y − ug

n∑

i=1

π̂
g
i ni − 1

2
fTg (K−1 + K−T )

where ug = (ug,1, · · · , ug,m)T with

ug,l = exp(fg,l)∑m
k=1 exp(fg,k)

for l = 1, · · · ,m. The Hessian Hg(Q) can be written as:

Hg(Q) = −(diag(ug) − uguT
g )

n∑

i=1

π
g
i ni − 1

2
(K−1 + K−T )
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a case study with the Vélib’ system of Paris, ACM Transactions on Intelligent Systems and Technology
(TIST) - Special Section on Urban Computing, 5.

Cunningham, J.P., Shenoy, K.V., Sahani, M. (2008). Fast Gaussian process methods for point process inten-
sity estimation. In Proceedings of the 25th international conference on machine learning (pp. 192–199).

Dempster, A.P., Laird, N.M., Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM
algorithm. J. Roy. Statist. Soc. Ser. B, 39, 1–38. with discussion.

Eagle, N., & Pentland, A. (2006). Reality mining: sensing complex social systems. Pers Ubiquitous Comput.,
10, 255–268.

Fraley, C., & Raftery, A.E. (2002). Model-based clustering, discriminant analysis, and density estimation. J.
Amer. Statist. Assoc., 97, 611–631.

Fraley, C., & Raftery, A.E. (2007). Bayesian regularization for normal mixture estimation and model-based
clustering. Journal of Classification, 24, 155–181.

210 Journal of Classification  (2021) 38:188–211



Giacofci, M., Lambert-Lacroix, S., Marot, G., Picard, F. (2013). Wavelet-based clustering for mixed-effects
functional models in high dimension. Biometrics, 69, 31–40.

Heikkinen, J., & Arjas, E. (1999). Modeling a Poisson forest in variable elevations: a nonparametric Bayesian
approach. Biometrics, 55, 738–745.

Jacques, J., & Preda, C. (2014). Model-based clustering for multivariate functional data.Comput Statist. Data
Anal., 71, 92–106.

Kiefer, J., & Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in the presence of
infinitely many incidental parameters. Ann. Math. Statist., 27, 887–906.

Kim, H., & Ghahramani, Z. (2006). Bayesian Gaussian process classification with the EM-EP algorithm.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 1948–1959.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In:
Proceedings of the 14th international joint conference on artificial intelligence - vol. 2, San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., IJCAI’95, pp. 1137–1143.

Lenk, P.J. (1988). The logistic normal distribution for Bayesian, nonparametric, predictive densities. J. Amer.
Statist. Assoc., 83, 509–516.

Lenk, P.J. (1991). Towards a practicable Bayesian nonparametric density estimator. Biometrika, 78, 531–543.
Leonard, T. (1978). Density estimation, stochastic processes and prior information. J. Roy. Statist. Soc. Ser.

B, 40, 113–146. with discussion.
Lloyd, C., Gunter, T., Osborne, M.A., Roberts, S.J. (2015). Variational inference for Gaussian process modu-

lated Poisson processes. In Proceedings of the 32nd international conference on international conference
on machine learning -, (Vol. 37 pp. 1814–1822).

McNicholas, P.D. (2016). Mixture model-based classification. Boca Raton: CRC Press.
Murray, I., MacKay, D., Adams, R.P. (2009). The Gaussian process density sampler. In Koller, D., Schuur-

mans, D., Bengio, Y., Bottou, L. (Eds.) Advances in neural information processing systems 21 (pp. 9–16):
Curran Associates, Inc.

O’Hagan, A., Murphy, T.B., Scrucca, L., Gormley, I.C. (2019). Investigation of parameter uncertainty in
clustering using a Gaussian mixture model via jackknife, bootstrap and weighted likelihood bootstrap.
Comput Stat., 34, 1779–1813.

Rasmussen, C.E., & Williams, C.K.I. (2006). Gaussian processes for machine learning, adaptive computa-
tion and machine learning. MIT Press: Cambridge.

Sapatinas, T. (1995). Identifiability of mixtures of power-series distributions and related characterizations.
Ann. Inst. Statist. Math., 47, 447–459.

Smyth, P. (2000). Model selection for probabilistic clustering using cross-validated likelihood. Stat Comp.,
10, 63–72.

Tokdar, S.T., & Ghosh, J.K. (2007). Posterior consistency of logistic Gaussian process priors in density
estimation. J. Statist. Plann. Inference, 137, 34–42.

Williams, C.K.I., & Rasmussen, C.E. (1996). Gaussian processes for regression. In Advances in neural
information processing systems 8 (pp. 514–520). Cambridge: MIT Press.

Zhang, Y., & Yang, Y. (2015). Cross-validation for selecting a model selection procedure. J. Econom., 187,
95–112.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

211Journal of Classification  (2021) 38:188–211


	Model-based Clustering of Count Processes
	Abstract
	Introduction
	Preliminaries
	Poisson Process
	Gaussian Process
	Gaussian Cox Process

	Model and Methodology
	Mixture of Poisson Processes
	Consistency of Penalized MLE Under Mixture of Poisson Processes
	EM Algorithm
	Uncertainty Estimates of Intensity Function
	Model Selection
	Clusters Versus Mixture Components

	Simulation
	Examples
	Washington Bike-Sharing Scheme Data
	Reality Mining Data

	Discussion
	Appendix A A: Consistency of Penalized MLE
	Appendix B: Derivation of EM Algorithm
	References




