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Abstract
Classifier performance assessment (CPA) is a challenging task for pattern recognition. In
recent years, various CPA metrics have been developed to help assess the performance of
classifiers. Although the classification accuracy (CA), which is the most popular metric in
pattern recognition area, works well if the classes have equal number of samples, it fails to
evaluate the recognition performance of each class when the classes have different
number of samples. To overcome this problem, researchers have developed various
metrics including sensitivity, specificity, area under curve, Jaccard index, Kappa, and F-
measure except CA. Giving many evaluation metrics for assessing the performance of
classifiers make large tables possible. Additionally, when comparing classifiers with each
other, while a classifier might be more successful on a metric, it may have poor
performance for the other metrics. Hence, such kinds of situations make it difficult to
track results and compare classifiers. This study proposes a stable and profound knowl-
edge criterion that allows the performance of a classifier to be evaluated with only a single
metric called as polygon area metric (PAM). Thus, classifier performance can be easily
evaluated without the need for several metrics. The stability and validity of the proposed
metric were tested with the k-nearest neighbor, support vector machines, and linear
discriminant analysis classifiers on a total of 7 different datasets, five of which were
artificial. The results indicate that the proposed PAM method is simple but effective for
evaluating classifier performance.
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1 Introduction

Pattern recognition and machine/deep learning have recently become active research
areas due to their applications in a wide range of fields, including biomedical, smart
device, and human-machine interface applications (Chu et al. 2011; Framinan et al.
2019). The success of such approaches strongly relates to the performance of the
classifier, which can be assessed by various metrics. Classification accuracy (CA) is
the most popular metric in pattern recognition. It works well if the classes have equal
number of samples, but fails to evaluate the recognition performance of each class when
the classes have different number of samples (Fawcett 2006). To overcome the limitation
of the CA, researchers have developed other metrics including sensitivity (SE), specific-
ity (SP), area under curve (AUC), Jaccard index (JI), kappa (K), and F-measure (FM)
except CA. On the other hand, studies generally compare classifier performance via
numerous metrics to determine the most suitable classifiers for specific problems.
However, when comparing classifiers with each other, while a classifier might be more
successful on a metric, it may have poor performance for the other metrics. Such kind of
situation makes it difficult to determine the most successful classifier. For example,
Aydemir and Kayikcioglu (2013) assessed the performances of five widely used classi-
fication algorithms in terms of four different metrics, including CA, SE, SP, and K, for
low-dimensional feature vectors. They tested the classifiers using two real-world
datasets, and the results of the metrics were given with a very large table. Comparing
the performance of the classifiers at such a table is a challenging task. To do it easy, they
calculated the average values of the performance metrics. However, they dramatically
concluded that different classifiers achieved the best performance on different metrics.
For instance, in a dataset they used, while support vector machines (SVM) obtained the
best results on CA and K, k-nearest neighbor (k-NN) and naive Bayes achieved the best
performance in terms of SE and SP, respectively. In another classifier-based study, Dixon
and Brereton (2009) used six synthetic two-class datasets which consisted of an equal
number of samples to compare five different classifiers. They only used the CA metric to
evaluate the performances of classifiers. In another approach, Kim et al. (2017) aimed to
develop machine learning models with strong prediction power and interpretability for
the diagnosis of glaucoma based on retinal nerve fiber layer thickness and visual field.
The dataset was recorded from patients who underwent optical coherence tomography.
They tested four machine learning algorithms in terms of CA, SE, SP AUC, and
likelihood ratio metrics. In order to determine the most suitable classifier of their
proposed model, they required to assess the metrics with each other in detail, which
might take some time. As a result, they concluded that random forest and SVM
classifiers provided better performance than k-NN.

Existing performance measures have the relative advantage of being independent of class
costs and prior probabilities. The aim of a classifier is to minimize the false-positive and false-
negative rates or, similarly, to maximize the true-negative and true-positive rates. Unfortunate-
ly, there is a trade-off between false-negative rate and false-positive rate in most real-world
applications and, similarly, between true-negative rate and true-positive rate. However, poly-
gon area graphs can be used for analysis by showing six different metrics for a classifier with a
single scalar.

In this study, we propose a novel, stable, and profound measure, called as polygon area
metric (PAM), for evaluating the performance of a classifier using only a single scalar. It uses
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the six existing metrics including CA, SE, SP, AUC, JI, and FM to generate a polygon, then
calculates its area for PAM. The stability and validity of the PAM were tested with k-NN,
SVM, and linear discriminant analysis (LDA) classifiers on a total of 7 different datasets, five
of which were artificial.

This paper is organized as follows. Section 2 provides a description of the datasets. In
Section 3, the performance evaluation metrics including CA, SE, SP, JI, AUC, and FM are
introduced. After this section, the proposed polygon area metric is described. In Section 5, the
results are presented. Multi-label polygon area metric is described in Section 6. Finally, in the
last section, the paper concludes with a discussion of the results.

2 Description of Datasets

To approve the validity of the PAM, we used five artificially generated and two real-world
datasets, which are described in the following subsections.

2.1 Artificially Generated Datasets

We utilized artificially generated data in two dimensions in order to illustrate graphically the
selection of feature vectors. The distributions class 1 and class 2 samples were inspired by
Dixon and Brereton (2009) and they are shown in Fig. 1. In this figure, plus points stand for
samples of class 1 and circle points stand for the samples of class 2. The mean, variance, and
number of samples (NoS) of each class are given in Table 1. It is worthwhile mentioning that
we randomly selected half of the samples as training set and the rest of them as test set.

Fig. 1 The distributions of the datasets
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2.2 Real-world Datasets

2.2.1 Breast Cancer Dataset

The Wisconsin Breast Cancer Database (WBCD) dataset from the UCI Machine Learn-
ing Repository has been used as real-world dataset. It contains 569 samples taken from
needle aspirates from human breast cancer tissue, of which 357 cases belong to benign
class (class 1) and the remaining 212 of which are malignant (class 2) cases. Each sample
has 32 features, the first two of which correspond to a unique identification number and
diagnostic state (ID, diagnosis (benign/malignant), followed by 30 real-valued input
features). The remaining 30 attributes are used for classification (William et al. 1995).

2.2.2 Electrocorticogram-Based Brain-Computer Interface Dataset

The second real-world dataset was an electrocorticogram (ECoG)-based brain-computer
interface (BCI) dataset. The original name of this dataset was the BCI Competition 2005
Dataset I, which was taken from an epilepsy subject on two different days with about
1 week of delay. In both sessions, the subject was asked to imagine of either the left
small finger (class 1) or the tongue movement (class 2). The dataset consists of 278
training trials (139 trials for finger movements, 139 trials for tongue movements),
performed during the first session and 100 test trials (50 trials for finger movements,
50 trials for tongue movements), performed from the second session. Each trial’s
duration was 3 s. Electrical brain activity was recorded by an 8 × 8 ECoG platinum
electrode grid (totally from 64 points) placed on the contralateral (right) motor cortex
(Lal et al. 2005). The purpose was to categorize the trials in the test set as finger or
tongue movement imagery.

The features were extracted from only channel 12 and channel 39 by wavelet
transform. After a variance normalization process was implemented to all the trials, we
calculated the wavelet transform coefficients (WTCs) of the related channels. For the
feature vector, we calculated the averages for channel 12 (feature 1) and the standard
deviations for channel 39 (feature 2) of the absolute values of the WTCs. It is worth
mentioning that the Morlet was used as mother wavelet function. The scale of the Morlet
function was set to integer values between 1 and 90 with a step size of 3, as proposed in
(Aydemir and Kayikcioglu 2011). The extracted features are shown in Fig. 2.

Table 1 Distribution parameters of each dataset

Dataset Class 1 Class 2

x-axis y-axis NoS x-axis y-axis NoS

Mean Variance Mean Variance Mean Variance Mean Variance

Dataset1 − 2 16 3 36 1000 8 36 6 36 1000
Dataset2 − 4 16 4 36 1000 8 36 6 36 600
Dataset3 0 64 0 0.25 1000 2 0.25 2 64 600
Dataset4 0 64 0 4 1000 4 64 4 1 600
Dataset5 0 16 1 16 1000 3 1 4 1 600
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3 Performance Evaluation Metrics

One of the most informative ways to assess performance of classifiers is based on confusion
matrix analysis (Ohsaki et al. 2017). Table 2 shows a confusion matrix for a two-class problem
with class labels negative and positive.

Fig. 2 Feature vectors. a Training dataset. b Test dataset

Table 2 Confusion matrix for a two-class problem

Predicted label

Positive Negative

Actual label Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)
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In this table TP, TN, FP, and FN are respectively defined as the number of positive samples
correctly predicted, the number of negative samples correctly predicted, the number of positive
samples incorrectly predicted, and the number of negative samples incorrectly predicted. The
researchers calculate number of commonly used metrics from confusion matrix for evaluating
machine learning systems performance, including CA, SE, SP, AUC, JI, and FM (Shiferaw et al.
2019). The mathematical definitions are respectively given as follows:

CA ¼ TPþ TN

TPþ TNþ FPþ FN
ð1Þ

SE ¼ TP

TPþ FN
ð2Þ

SP ¼ TN

TNþ FP
ð3Þ

JI ¼ TP

TPþ FPþ FN
ð4Þ

F ¼ 2TP

2TPþ FPþ FN
ð5Þ

AUC ¼ ∫10 f xð Þdx ð6Þ
where f(x) is a receiver operating characteristic curve that the true-positive rate (SE) is plotted in
function of the false-positive rate (1-SP) for different cut-off points. It is worth mentioning that SE
refers to the ratio of correctly classified class 1 samples to the total population of class 1 samples, and
SP is the ratio of correctly classified class 2 samples to the total population of class 2 samples.

4 Polygon Area Metric

The PAM is calculated using the area of the polygon that CA, SE, SP,AUC, JI, and FMpoints create
in a regular hexagon, as illustrated in Fig. 3. It should be noted that the regular hexagon ismade up of
6 equilateral triangles and the length of each side is equal to 1. Hence, it can be said that |OA| = |
OB| = |OC| = |OD| = |OE| = |OF| = 1, while the area of the regular hexagon is equal to 2.59807. The
lengths of |OA|, |OB|, |OC|, |OD|, |OE|, and |OF| represent the values of CA, SE, SP, AUC, JI, and
FM, respectively. The PAM is calculated using the following formula:

PAM ¼ PA

2:59807
ð7Þ

where PA is the area of the polygon. It is worthwhile mentioning that in order to normalize the PAM
into the [0, 1] interval the PA value is divided by 2.59807.
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5 Results

The performance of the proposed metric can be demonstrated by comparing its results with
those of existing metrics. The comparison results of considered metrics were calculated for
seven different datasets, five of which were artificial and two of which were real-world
datasets. The obtained results for artificial and real-world datasets are tabulated in Tables 3
and 4, respectively. Additionally, the visual results are given in Figs. 4 and 5. As seen from the
tables, the existing metrics, including CA, SE, SP, AUC, JI, and FM, have different values for
each dataset and classifier. This may make it difficult to track the results, compare the
classifiers, and evaluate their individual performances. However, by considering the PAM, it

Fig. 3 The created polygon in a regular hexagon

Table 3 The results of artificial datasets

Dataset Classifier PAM CA SE SP AUC JI FM

Dataset1 SVM 0.69 0.85 0.89 0.80 0.85 0.74 0.85
k-NN 0.66 0.83 0.87 0.79 0.83 0.72 0.84
LDA 0.68 0.84 0.88 0.80 0.84 0.74 0.85

Dataset2 SVM 0.76 0.88 0.90 0.85 0.88 0.83 0.90
k-NN 0.75 0.88 0.92 0.81 0.87 0.83 0.91
LDA 0.76 0.88 0.91 0.84 0.87 0.83 0.91

Dataset3 SVM 0.92 0.96 0.98 0.94 0.96 0.94 0.97
k-NN 0.93 0.97 0.98 0.95 0.97 0.95 0.98
LDA 0.34 0.60 0.63 0.55 0.59 0.50 0.66

Dataset4 SVM 0.79 0.89 0.86 0.95 0.90 0.83 0.91
k-NN 0.77 0.88 0.88 0.88 0.88 0.82 0.90
LDA 0.79 0.89 0.83 0.98 0.91 0.82 0.90

Dataset5 SVM 0.85 0.92 0.90 0.97 0.93 0.88 0.94
k-NN 0.84 0.92 0.90 0.95 0.93 0.88 0.93
LDA 0.64 0.80 0.69 0.99 0.84 0.69 0.81
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Table 4 The results of real-world datasets

Dataset Classifier PAM CA SE SP AUC JI FM

WBCD SVM 0.96 0.98 1.00 0.95 0.98 0.97 0.99
k-NN 0.95 0.98 0.99 0.95 0.97 0.96 0.98
LDA 0.93 0.97 1.00 0.92 0.96 0.96 0.98

BCI SVM 0.82 0.92 0.88 0.96 0.92 0.85 0.92
k-NN 0.74 0.88 0.84 0.92 0.88 0.78 0.88
LDA 0.78 0.90 0.84 0.96 0.90 0.81 0.89

Fig. 4 Artificial dataset polygon area graphs
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is more efficient to assess the performance of the classifiers. Additionally, the visual graphs can
be examined for detailed evaluation.

In addition to the artificially generated and the real-world datasets, we also calculated PAM
for the conditions where all samples predicted randomly, completely correct (the best condi-
tion), completely incorrect (the worst condition), as class 1 (all C1) and as class 2 (all C2).
These results are given in Table 5. Because the number divided by zero is undefined, we
obtained Not-A-Number (NaN) for the worst and all C2 conditions of FM. Hence, we could
not calculate PAM value for those conditions. On the other hand, for the best condition, we
obtained 1.00 for all metrics. Additionally, the table shows that the PAM value individually has
a potential to assess the classification performance for the random and All C1 conditions. As a
result, it can be said that PAM is a very powerful metric for assessing the performance of a
classifier.

The computational time for calculating the PAM for 1000 test samples was measured as
8.2 ms. All runtime experiments were conducted on a desktop PC with an Intel Core i7 CPU at
1.73 GHz with 4 GB of RAM.

Fig. 5 Real-world dataset polygon area graphs

Table 5 The results of specific conditions

Condition Number of samples PAM CA SE SP AUC JI FM

Class 1 Class 2

Random 100 100 0.22 0.50 0.50 0.50 0.50 0.33 0.50
400 100 0.26 0.50 0.50 0.50 0.50 0.44 0.62

The best 100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00
400 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

The worst 100 100 NaN 0.00 0.00 0.00 0.00 0.00 NaN
400 100 NaN 0.00 0.00 0.00 0.00 0.00 NaN

All C1 100 100 0.24 0.50 1.00 0.00 0.50 0.50 0.67
400 100 0.44 0.80 1.00 0.00 0.50 0.80 0.89

All C2 100 100 NaN 0.50 0.00 1.00 0.50 0.00 NaN
400 100 NaN 0.20 0.00 1.00 0.50 0.00 NaN
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6 Multi-label Polygon Area Metric

Although the PAM is mostly suitable for binary classification problems, it could be extended
to multi-label (PAMML) classification approaches. To do this, it is necessary to carry out
pairwise binary comparison (one class versus all other classes). While reference class is
assigned as the positive, all other classes are assigned as the negative class. Therefore, for
given K classes, K different PAM(ki) (i = 1, 2, … K) values are calculated, one for each
reference class. In order to be more sensitive to the performance for individual classes, each
PAM(ki) is multiplied by a weight w(ki), which is calculated for every class such that

∑
K

i¼1
w kið Þ ¼ 1. Then, the multiplication results are summed as shown in Eq. 8:

PAMML ¼ ∑
k∈K

PAM kið Þ � w kið Þ ð8Þ

Note that the weight is obtained as follows:

w kið Þ ¼ N kið Þ
M Kð Þ ð9Þ

where N(ki) is the number of observations of class (ki) and M(K) is the total number of
observations of all classes. It should be mentioned that the higher the value of w(ki)for an
individual class, the greater is the effect of observations from that class on the PAMML.

7 Conclusion

In this paper, we have introduced an objective PAM for easily assessing the performance of
classifiers. The performance of the proposed metric was validated by comparing its results
with state-of-the-art metrics against the same set of benchmark datasets. The results indicated
that although the PAM is a single value, it includes more information from CA, SE, SP, AUC,
JI, and FM metrics. The simple and effective nature of PAM makes it promising for the
evaluation of the performance of classifiers in pattern recognition and machine/deep learning
applications. In conclusion, the proposed PAM can be able to evaluate the performance of a
classifier with or without the use of existing metrics.

There are two main limitations of PAM, which should be addressed. Firstly, PAM produces
the NaN value when any of the considered metrics (CA, SE, SP, AUC, JI, and FM) is equal to
NaN. Moreover, it is not known which of the metric has NaN value. But it is worth mentioning
that this is clearly revealed by polygon area graph. Secondly, unlike confusion matrix, it does
not provide information about exact values of TP, TN, FP, and FN, which could be important
to figure out the lack of pattern recognition model. Although it has a few drawbacks, I believe
that the PAM contribute to pattern recognition and machine/deep learning community for
better classifier evaluation.
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