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Abstract
Mixture model-based clustering has become an increasingly popular data analysis tech-
nique since its introduction over fifty years ago, and is now commonly utilized within a
family setting. Families of mixture models arise when the component parameters, usually
the component covariance (or scale) matrices, are decomposed and a number of constraints
are imposed. Within the family setting, model selection involves choosing the member of
the family, i.e., the appropriate covariance structure, in addition to the number of mixture
components. To date, the Bayesian information criterion (BIC) has proved most effective
for model selection, and the expectation-maximization (EM) algorithm is usually used for
parameter estimation. In fact, this EM-BIC rubric has virtually monopolized the literature
on families of mixture models. Deviating from this rubric, variational Bayes approxima-
tions are developed for parameter estimation and the deviance information criteria (DIC)
for model selection. The variational Bayes approach provides an alternate framework for
parameter estimation by constructing a tight lower bound on the complex marginal like-
lihood and maximizing this lower bound by minimizing the associated Kullback-Leibler
divergence. The framework introduced, which we refer to as VB-DIC, is applied to the most
commonly used family of Gaussian mixture models, and real and simulated data are used
to compared with the EM-BIC rubric.
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1 Introduction

Most early clustering algorithms were based on heuristic approaches and some such meth-
ods, including hierarchical agglomerative clustering and k-means clustering (MacQueen
1967; Hartigan and Wong 1979), are still widely used. The use of mixture models to account
for population heterogeneity has been very well established for over a century (e.g., Pear-
son 1894), but it was the 1960s before mixture models were used for clustering (Wolfe
1965; Hasselblad 1966; Day 1969). Because of the lack of suitable computing equipment, it
was much later before the use of mixture models (e.g., Banfield and Raftery 1993; Celeux
and Govaert 1995) and, more generally, probability models (e.g., Bock 1996, 1998a, b) for
clustering became commonplace. Since the turn of the century, the use of mixture models
for clustering has burgeoned into a popular subfield of cluster analysis and recent exam-
ples include Franczak et al. (2014), Vrbik and McNicholas (2014), Murray et al. (2014a, b),
Lee and McLachlan (2014), Lin et al. (2014), Subedi et al. (2015), Morris and McNicholas
(2016), O’Hagan et al. (2016), Dang et al. (2015), Lin et al. (2016), Lee and McLachlan
(2016), Dang et al. (2017), Cheam et al. (2017), Melnykov and Zhu (2018), Zhu and Mel-
nykov (2018), Gallaugher and McNicholas (2019b), Tortora et al. (2019), Biernacki and
Lourme (2019), Murray et al. (2019), Morris et al. (2019), and Punzo et al. (2020). The
reader may consult Bouveyron and Brunet-Saumard (2014) and McNicholas (2016b) for
relatively recent reviews of model-based clustering work.

A d-dimensional random vector Y is said to arise from a parametric finite mixture
distribution if, for all y ⊂ Y, we can write its density as

f (y | ϑ) =
G∑

g=1

ρgpg(y | θg),

where ρg > 0 such that
∑G

i=1 ρg = 1 are the mixing proportions, pg(y | θg) are component
densities, and ϑ = (ρ1, . . . , ρG, θ1, . . . , θG) is the vector of parameters. When the compo-
nent parameters θ1, . . . , θG are decomposed and constraints are imposed on the resulting
decompositions, the result is a family of mixture models. Typically, each component proba-
bility density is of the same type and, when they are Gaussian, the mixture density function
is

f (y | ϑ) =
G∑

g=1

ρgφd(y | μg,�g),

where φd(y | μg,�g) is the d-dimensional Gaussian density with mean μg and covariance
�g , and the likelihood is

L(ϑ | y1, . . . , yn) =
n∏

i=1

G∑

g=1

ρgφd(yi | μg,�g),

where ϑ denotes the model parameters. In Gaussian families, it is usually the component
covariance matrices �1, . . . ,�G that are decomposed (see Section 2).

The expectation-maximization (EM) algorithm (Dempster et al. 1977) is often used for
mixture model parameter estimation but its efficacy is questionable. As discussed by Tit-
terington et al. (1985) and others, the nature of the mixture likelihood surface leaves the
EM algorithm open to failure. Although this weakness can be mitigated by using multiple
re-starts, there is no way to completely overcome it. Besides its heavy reliance on start-
ing values, convergence of the EM algorithm can be very slow. When families of mixture
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models are used, the EM algorithm approach must be employed in conjunction with a model
selection criterion to select the member of the family and, in many cases, the number of
components. There are many model selection criteria to choose from, such as the Bayesian
information criterion (BIC; Schwarz 1978), the integrated completed likelihood (ICL; Bier-
nacki et al. 2000), and the Akaike information criterion (AIC; Akaike 1974). All of these
model selection criteria have some merit and various shortcomings, but the BIC remains
by far the most popular (McNicholas 2016a, Chp. 2). There has been interest in the use
of Bayesian approaches to mixture model parameter estimation, via Markov chain Monte
Carlo (MCMC) methods (e.g., Diebolt and Robert 1994; Richardson and Green 1997; Bens-
mail et al. 1997; Stephens 1997, 2000; Casella et al. 2002); however, difficulties have
been encountered with, inter alia, computational overhead and convergence (see Celeux
et al. 2000; Jasra et al. 2005). Variational Bayes approximations present an alternative to
MCMC algorithms for mixture model parameter estimation and are gaining popularity due
to their fast and deterministic nature (see Jordan et al. 1999; Corduneanu and Bishop 2001;
Ueda and Ghahramani 2002; McGrory and Titterington 2007, 2009; McGrory et al. 2009;
Subedi and McNicholas 2014).

With the use of a computationally convenient approximating density in place of a more
complex “true” posterior density, the variational algorithm overcomes the hurdles of MCMC
sampling. For observed data y, the joint conditional distribution of parameters θ and missing
data z is approximated by using another computationally convenient distribution q(θ, z).
This distribution q(θ, z) is obtained by minimizing the Kullback-Leibler (KL) divergence
between the true and the approximating densities, where

KL(q(θ, z) | p(θ, z | y)) =
∫

�

∑

z

q(θ, z) log

{
q(θ , z)

p(θ , z | y)

}
dθ .

The approximating density is restricted to have a factorized form for computational con-
venience, so that q(θ, z) = qθ (θ)qz(z). Upon choosing a conjugate prior, the appropriate
hyper-parameters of the approximating density qθ (θ) can be obtained by solving a set of
coupled non-linear equations.

The variational Bayes algorithm is initialized with more components than expected. As
the algorithm iterates, if two components have similar parameters then one component dom-
inates the other causing the dominated component’s weighting to be zero. If a component’s
weight becomes sufficiently small, less than or equal to two observations in our analyses,
the component is removed from consideration. Therefore, the variational Bayes approach
allows for simultaneous parameter estimation and selection of the number of components.

2 Methodology

2.1 Introducing Parsimony

If d-dimensional data y1, . . . , yn arise from a finite mixture of Gaussian distributions, then
the log-likelihood is

log p(y1, . . . , yn | θ) =
n∑

i=1

log

⎡

⎣
G∑

g=1

ρg

|�−1
g |

2π
d
2

exp

{
1

2
(yi − μg)

′�−1
g (yi − μg)

}⎤

⎦ .

The number of parameters in the component covariance matrices of is Gd(d + 1)/2, which
is quadratic in d . When dealing with real data, the number of free parameters to be estimated
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can very easily exceed the sample size n by an order of magnitude. Hence, the introduc-
tion of parsimony through the imposition of additional structure on the covariance matrices
is desirable. Banfield and Raftery (1993) exploited geometrical constraints on the covari-
ance matrices of a mixture of Gaussian distributions using the eigen-decomposition of the
covariance matrices, such that �g = λgDgAgD′

g , where Dg is the orthogonal matrix of
eigenvectors and Ag is a diagonal matrix proportional to the eigenvalues of �g , such that
|Ag| = 1, and λg is the associated constant of proportionality. This decomposition has an
advantage in terms of its interpretation, i.e., the parameter λg controls the cluster volume,
Ag controls the cluster shape, and Dg controls the cluster orientation. This allows for impo-
sition of several constraints on the covariance matrix that have geometrical interpretation
giving rise to a family of 14 models known as Gaussian Parsimonious clustering models
(GPCM; Celeux and Govaert 1995) (see Table 1).

The mclust package (Scrucca et al. 2016) for R (R Core Team 2018) implements
12 of these 14 GPCM models in an EM framework, with the MM framework of Browne
and McNicholas (2014) used for the other two models (EVE and VVE). Bensmail et al.
(1997) used Gibbs sampling to carry out Bayesian inference for eight of the GPCM mod-
els. Bayesian regularization of some of the GPCM models has been considered by Fraley
and Raftery (2007). After assigning a highly dispersed conjugate prior, they replace the
maximum likelihood estimator of the group membership obtained using the EM algo-
rithm by a maximum a posteriori probability (MAP) estimator. Note that MAP(ẑig) = 1
if g = arg maxh(ẑih) and MAP(ẑig) = 0 otherwise, where ẑig denotes the a posteriori
expected value of Zig and

zig =
{

1 if xi belongs to component g, and
0 otherwise.

A modified BIC using the maximum a posteriori probability is then used for model
selection. Herein, we implement 12 of those 14 GPCM models using variational Bayes
approximations—conjugate priors are not available for the EVE and VVE models.

Table 1 Nomenclature,
interpretation, and covariance
structure for each member of the
GPCM family

Model Volume Shape Orientation �g

EII Equal Spherical λI

VII Variable Spherical λgI

EEI Equal Equal Axis-aligned λA

VEI Variable Equal Axis-aligned λgA

EVI Equal Variable Axis-aligned λAg

VVI Variable Variable Axis-aligned λgAg

EEE Equal Equal Equal λDAD′

VEE Variable Equal Equal λgDAD′

EVE Equal Variable Equal λDAgD′

EEV Equal Equal Variable λDgAD′
g

VVE Variable Variable Equal λgDAgD′

VEV Variable Equal Variable λgDgAD′
g

EVV Equal Variable Variable λDgAgD′
g

VVV Variable Variable Variable λgDgAgD′
g
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2.2 Priors and Approximating Densities

As suggested by McGrory and Titterington (2007), the Dirichlet distribution is used as the
conjugate prior for the mixing proportion, such that

p(ρ) = Dir(ρ; α
(0)
1 , . . . , α

(0)
G ),

where ρ = (ρ1, . . . , ρG) are the mixing proportions and α
(0)
1 , . . . , α

(0)
G are the hyperparam-

eters. Conditional on the precision matrix Tg , independent normal distributions were used
as the conjugate priors for the means such that

p(μ1, . . . ,μG | T1, . . . , TG) =
G∏

g=1

φd(μg; m(0)
g , (β(0)

g Tg)
−1),

where {m(0)
g , β

(0)
g }Gg=1 are the hyper-parameters.

Fraley and Raftery (2007) assigned priors on the parameters for the covariance matrix
and its components in a Bayesian regularization application. However, we assign priors on
the precision matrix with the hyperparameters given in Table 2. Note that it was not possible
to put a suitable (i.e., determinant one) prior on the matrix Ag for the models EVI and
VVI or on A for models VEV and VEI; accordingly, we instead put a prior on cgA−1

g or

cA−1, respectively, where cg or c is a positive constant. Using the expected value of cgA−1
g

(or cA−1), the expected value of A−1
g (or A−1) is determined to satisfy the constraint that

Table 2 The precision parameter upon which a prior is placed, as well as the corresponding prior distribution
and hyperparameters, for 12 of the 14 members of the GPCM family

Model �g Precision parameter for prior Prior and hyperparameters

EII λId λ−1 Gamma (a(0), b(0))

VII λgId λ−1
g Gamma (a

(0)
g , b

(0)
g )

EEI λA kth diagonal element of (λA)−1 Gamma (a
(0)
k , b

(0)
k )

VEI λgA λ−1
g Gamma (a

(0)
g , b

(0)
g )

kth diagonal elements of cA−1 Gamma (al
(0)
k , be

(0)
k )

EVI λAg λ−1 Gamma (a(0), b(0))

kth diagonal elements of cgA−1
g Gamma (al

(0)
gk , be

(0)
gk )

VVI λgAg λ−1
g Gamma (a

(0)
g , b

(0)
g )

kth diagonal elements of cgA−1
g Gamma (al

(0)
gk , be

(0)
gk )

EEE λDAD′ T = (λDAD′)−1 Wishart (v(0),�(0)−1)

VEE λgDAD′ λ−1
g Gamma (a

(0)
g , b

(0)
g )

T = (DAD′)−1 Wishart (v(0),�(0))

EEV λDgAD′
g kth diagonal elements of (λA)−1 Gamma (a

(0)
k , b

(0)
k )

Dg Bingham matrix (A(0)
g , B(0)

g )

VEV λgDgAD′
g λ−1

g Gamma (a
(0)
g , b

(0)
g )

kth diagonal element of cA−1 Gamma (al
(0)
k , be

(0)
k )

Dg Bingham matrix (A(0)
g , B(0)

g )

EVV λDgAgD′
g λ−1 Gamma (a(0), b(0))

Tg = (DgAgD′
g)−1 Wishart (v

(0)
g ,�

(0)
g )

VVV λgDgAgD′
g Tg = (λgDgAgD′

g)−1 Wishart (v
(0)
g ,�

(0)−1
g )
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the determinant is 1. Because Dg is an orthogonal matrix of eigenvectors, the Bingham
matrix distribution is used as the conjugate prior for Dg . The Bingham distribution, first
introduced by Bingham (1974), is a probability distribution on a set of orthonormal vectors
{u : u′u = 1} and has antipodal symmetry thus making it ideal for random axes.

The Bingham matrix distribution (Gupta and Nagar 2000) is the matrix analogue, on the
Steifel manifold, of the Bingham distribution and has been used in multivariate analysis and
matrix decomposition methods (Hoff 2009). The density of the Bingham matrix distribution, as
defined by Gupta and Nagar (2000), is

p(D) = b(A, B) exp(tr{BDAD′})[dD],
for D ∈ O(n, d), where O(n, d) is the Stiefel manifold of n×d matrices, [dD] is the unit invari-
ant measure on O(n, d), and A and B are symmetric and diagonal matrices, respectively. Samples
from the Bingham matrix distribution can be obtained using the Gibbs sampling algorithm
implemented in the R package rstiefel (Hoff 2012).

The approximating densities that minimize the KL divergence are as follows. For the mixing
proportions, qρ(ρ) = Dir(ρ; α1, . . . , αG), where αg = α

(0)
g + ∑n

i=1 ẑig . For the mean,

qμ(μ | T1, . . . , TG) =
G∏

g=1

φd(μg; mg, (βgTg)−1),

where βg = β
(0)
g + ∑n

i=1 ẑig and

mg = 1

βg

(
β(0)

g m(0)
g +

n∑

i=1

ẑigyi

)
.

The probability that the ith observation belongs to a group g is then given by

ẑig = ϕig∑G
j=1 ϕij

,

where

ϕig = 1
∑G

g=1 ϕij

exp

(
E[log ρg] + 1

2
E[log |Tg|] − 1

2
tr

{
E[Tg](yi − E[μg])

×(yi − E[μg])′ + 1

βg

Id

})
,

E[log(ρg)] = �(α̂g) − �

⎛

⎝
G∑

g=1

α̂g

⎞

⎠ ,

E[μg] = mg , and �(·) is the digamma function. The values of E[Tg] and E[log |Tg |] vary
depending on the model (see Table 6, Appendix A for details). The posterior distribution of the
parameters λ−1

g and Ag are gamma distributions and, therefore, the expected value of E[λ−1
g ],

E[log |λ−1
g |], E[Ag], and E[log |Ag |] all have a closed form. The posterior distribution for

DgAgD′
g is a Wishart distribution and so there is a closed form solution for E[DgAgD′

g] and
E[log |DgAgD′

g |]. The posterior distribution of the parameter Dg is a Bingham matrix distri-
bution (see Appendix C for details) and, hence, Monte Carlo integration was used to find the
expected values of E[Tg] and E[log |Tg |]. The estimated model parameters maximize the lower
bound of the marginal log-likelihood.
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2.3 Convergence

The posterior log-likelihood of the observed data obtained using the posterior expected values of
the parameters is

log p(y1, . . . , yn | θ̃) =
n∑

i=1

log

⎡

⎣
G∑

g=1

ρ̃g |T̃g |
2πd/2

exp

{
1

2
(yi − μ̃g)′T̃g(yi − μ̃g)

}⎤

⎦ ,

where μ̃g = mg and

ρ̃g = αg∑G
j=1 αj

.

The expected precision matrix T̃g varies according to the model. Convergence of the algo-
rithm for these models is determined using a modified Aitken acceleration criterion. The Aitken
acceleration (Aitken 1926) is given by

a(m) = l(m+1) − l(m)

l(m) − l(m−1)
,

where l(m) is the value of the posterior log-likelihood at iteration m. Convergence can be
considered to have been achieved when∣∣∣l(m+1)∞ − l(m)∞

∣∣∣ < ε,

where l
(m+1)∞ is an asymptotic estimate of the log-likelihood given by

l(m+1)∞ = l(m) + 1

(1 − a(m))
(l(m+1) − l(m−1))

(Böhning et al. 1994).
The VEV and EEV models utilize Gibbs sampling and Monte Carlo integration to find both

the expected value of the parameter Tg and the expectations of functions of Tg . As the Gibbs
sampling chain approaches the stationary posterior distribution, the posterior log-likelihood
oscillates rather than monotonically increasing at every new iteration. Hence, an alternate con-
vergence criteria was used for these models. When the relative change in the parameter estimates
from successive iterations is small, convergence is assumed. Hence, for the VEV and EEV
models, the algorithm is stopped when

max
i

{∣∣ψ(m+1)
i − ψ

(m)
i

∣∣
∣∣ψ(m)

i

∣∣ + δ1

}
< δ2, (1)

where δ1 and δ2 are predetermined constants, ψ
(m)
i is the estimate of the ith parameter on the

mth iteration, and i indexes over every parameter in the model—note that, for matrix- or vector-
valued parameters, ψ(m)

i corresponds to an individual element so that i indexes over all parameter
elements and the comparison in (1) is element-wise. In the analyses herein, we use δ1 = 0.001
and δ2 = 0.05 for three consecutive iterations. A detailed discussion of the convergence of Monte
Carlo EM algorithm is provided in Neath et al. (2013).

2.4 Model Selection

Despite the benefits of simultaneously obtaining parameter estimates along with the number of
components, a model selection criterion is needed to determine the covariance structure. For the
selection of the model with the best fit, the deviance information criterion (DIC; Spiegelhalter
et al. 2002) is used as suggested by McGrory and Titterington (2007). The DIC is given by

DIC = −2 log p(y1, . . . , yn | θ̃) + 2pD,
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where

2pD ≈ −2
∫

qθ (θ) log

{
qθ (θ)

p(θ)

}
dθ + 2 log

{
qθ (θ̃)

p(θ̃)

}

and log p(y1, . . . , yn | θ̃) is the posterior log-likelihood of the data.
Hereafter, the variational Bayes approach that uses the variational Bayes algorithms intro-

duced herein together with the DIC to select the model (i.e., covariance structure) will be referred
to as the VB-DIC approach.

2.5 Performance Assessment

The adjusted Rand index (ARI; Hubert and Arabie 1985) is used to assess the performance of the
clustering techniques applied in Section 3. The Rand index (Rand 1971) is based on the pairwise
agreement between two partitions, e.g., predicted and true classifications. The ARI corrects the
Rand index to account for agreement by chance: a value of 1 indicates perfect agreement, the
expected value under random class assignment is 0, and negative values indicate a classification
that is worse than would be expected by guessing.

3 Results

3.1 Simulation Study 1

The VB-DIC approach is run on 50 simulated two-dimensional Gaussian data sets with three
components and known mean and covariance structures �g = λgId (VII, see Table 3 for λg

values). For each dataset, we use five random starts for each of 12 members of the GPCM family,
and we set the maximum number of components to ten each time. For each dataset, the model
with the smallest DIC is selected as the final model. A G = 3 component model is selected on 46
out of 50 occasions with an ARI of 1 each time while a G = 4 component model was selected,
with an average ARI of 0.96 and a standard deviation of 0.044, on the other four occasions.

A VII model is selected on 47 out of 50 occasions, with VEE and VVV models selected twice
and once, respectively. When VEE and VVV are selected, the average difference between the
DIC values of the model selected and VII is 1.553 with a standard deviation of 1.984 (the range
of the difference is 0.470–3.049). This shows that, although the model selected was different
than VII in four cases, the chosen model has similar DIC value to the VII model in each case. In
all, there are 43 cases where a G = 3 component VII model is selected and the true and average
estimated values (with standard deviations) for μg and λg in these cases are given in Table 3—in
all cases, the estimates are very close to the true values.

Table 3 Summary of the average and standard errors of the estimated parameters from the cases where a
G = 3 component VII model is selected in Simulation Study 1

μ̂g λ̂g

g ng μg Mean Standard Error λg Mean Standard Error

1 250 (−7,−7)′ (−6.985,−6.990)′ (0.081, 0.097)′ 2.2 2.199 0.042

2 100 (−2, 2)′ (−1.999, 1.985)′ (0.073, 0.066)′ 0.5 0.489 0.101

3 150 (8, 0)′ (7.980, 0.031)′ (0.090, 0.090)′ 1.2 1.220 0.130
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One advantage of using a variational Bayes approach is that, at every iteration, the hyper-
parameters of the variational posterior are updated to further minimize the Kullback-Leibler
divergence between the approximate variational posterior density and the true posterior den-
sity. Hence, 95% credible intervals can be created using the variational posterior distribution for
all the component means μg and the component precision parameter 1/σ 2

g for each run (see
Fig. 1). A Bayesian credible interval provides an interval within which the unobserved param-
eter value falls with a certain probability. Similar to Wang et al. (2005), we also evaluated the
frequentist coverage probability of the intervals, i.e., the number of times the true value of the
parameter is contained within the credible interval. Across the nine parameters, the mean cov-
erage probability was 0.927 (range 0.860–0.976), which is slightly lower than 0.95. Blei et al.
(2017) point out that variational inference tends to underestimate the variance of the posterior
density.

For completeness, the EM algorithm together with the BIC to select the model (i.e., covariance
structure and G)—referred to as the EM-BIC framework hereafter—was also applied to these
data using the mclust package for R. In all 50 cases, a G = 3 component VII model is chosen
and gives perfect classification results for all 50 datasets.

3.2 Simulation Study 2

We ran another simulation study with 50 different three-component, three-dimensional Gaussian
distributions with known mean and covariance structure �g = � = λDAD′. Again, five different
runs with different random starts are used and the maximum number of components is set to ten.
In 41 out of 50 datasets, a three-component model is selected by the VB-DIC approach. Out of
these 41 cases, an EEE model is selected 39 times and an EEV model is selected twice. These 41
cases give an average ARI of 1.000 (sd 0.001). When an EEV model is selected, the difference in
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Fig. 1 95% credible intervals for the component means μg (top two rows) and the component precision
parameter 1/σ 2 (bottom row) for the 43 runs where a G = 3 component VII model is selected in Simulation
Study 1, where vertical lines denote the values of the parameters used to generate the data
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DIC between the EEV and EEE models is 3.256 and 8.095, respectively, indicating that these two
models were close in their fits. Four- and five-component models were selected for 8 and 1 of
the datasets, respectively, with an average ARI of 0.923 (sd 0.097). The true and estimated mean
parameters using VB-DIC for the EEE model are given in Table 4, and the true and estimated
covariance parameters using VB-DIC for the EEE model are:

� =
⎡

⎣
0.50 0.35 0.25
0.35 1.00 0.45
0.25 0.45 1.20

⎤

⎦ , �̂ =
⎡

⎣
0.494 (sd 0.049) 0.346 (sd 0.044) 0.235 (sd 0.046)

0.346 (sd 0.044) 0.995 (sd 0.076) 0.445 (sd 0.069)

0.235 (sd 0.046) 0.445 (sd 0.069) 1.204 (sd 0.099)

⎤

⎦ .

The EM-BIC framework, via mclust, was also used for these data. An EEE model was
chosen for all 50 datasets with an average ARI of 1.0 (sd 0.001).

3.3 Clustering of Benchmark Datasets

To demonstrate the performance of the VB-DIC approach, we applied our algorithm on several
benchmark datasets and compared its performance with the widely used EM-BIC framework via
the mclust package.

Crabs Data The Leptograpsus crab data set, publicly available in the package MASS (Venables
and Ripley 2002) for R, consists of biological measurements on 100 crabs from two different
species (orange and blue) with 50 males and 50 females of each species. The biological measure-
ments (in millimeters) include frontal lobe size, rear width, carapace length, carapace width, and
body depth. Although this data set has been analyzed quite often in the literature, using several
different clustering approaches, the correlation among the variables makes it difficult to cluster
(Fig. 2). Due to this known issue with the data set, we perform an initial step of processing using
principal component analysis to convert these correlated variables into principal components
(Fig. 2). Finally, the VB-DIC approach was run on these uncorrelated principal components with
a maximum of G = 10 components.

SRBCT Data The SRBCT dataset, available in the R package plsgenomics (Boulesteix et al.
2018), is a gene expression data from the microarray experiments of small round blue cell tumors
(SRBCT) of childhood cancer. It contains measurements on 2,308 genes from 83 samples com-
prising of 29 cases of Ewing sarcoma (EWS), 11 cases of Burkitt lymphoma (BL), 18 cases of
neuroblastoma (NB), and 25 cases of rhabdomyosarcoma (RMS). Note that our proposed varia-
tional Bayes algorithm is not designed for high-dimensional, low sample size (i.e., large p, small
N ) problems. Dang et al. (2015) performed a differential expression analysis on the gene expres-
sion data using an ANOVA across the known groups and selected the top ten genes, ranked using
the obtained p-values, to represent a potential set of measurements that contain information on
group identification. Hence, we preprocessed the SRBCT dataset in a similar manner to Dang
et al. (2015) and implemented the VB-DIC approach with a maximum of G = 10 components.

Table 4 Summary of the average and standard errors of the estimated parameters from 39 out of the 50 three-
dimensional simulated datasets where an EEE model was selected along the true parameters used to generate
the data

μ̂g

g ng μg Mean Standard Error

1 150 (−2,−2,−2)′ (−2.007,−2.025,−2.002)′ (0.077, 0.103, 0.119)′

2 100 (4, 0, 0)′ (4.002, 0.013, 0.017)′ (0.051, 0.068, 0.076)′

3 75 (−5, 0, 2)′ (−5.005,−0.009, 1.976)′ (0.087, 0.117, 0.108)′
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Fig. 2 Scatter plot matrix showing the relationships among the variables in the Leptograpsus crabs dataset
(left) and showing the relationships among the uncorrelated principal components (right), where the
colors/symbols represent the different groups

Iris Data The Iris data set available in the R datasets package contains measurements in cen-
timeters of the variables sepal length, sepal width, petal length, and petal width of 50 flowers
from each of the three species of Iris: Iris setosa, Iris versicolor, and Iris virginica.

Diabetes Data The diabetes dataset available in the R package mclust contains measure-
ments on three variables on 145 non-obese adult patients classified into three groups (Normal,
Overt and Chemical):

• glucose: Area under plasma glucose curve after a three hour oral glucose tolerance
test.

• insulin: Area under plasma insulin curve after a three hour oral glucose tolerance test.
• sspg: Steady state plasma glucose.

Banknote Data The banknote dataset, available in the R package mclust, contains six mea-
surements of 100 genuine and 100 counterfeit old Swiss 1000-franc bank notes. Measurements
are available for the following variables:

• Length: Length of the bill in mm.
• Left: Width of left edge in mm.
• Right: Width of right edge in mm.
• Bottom: Bottom margin width in mm.
• Top: Top margin width in mm.
• Diagonal: Length of diagonal in mm.

A summary of the performance of the VB-DIC approach and the EM-BIC approach is given
in Table 5, where the ARI of the approach that gives the best performance is in italics. For three
out of five benchmark datasets, our VB-DIC approach outperforms the EM-BIC framework as
implemented via mclust. For one of the five datasets, our VB-DIC approach gives the same
ARI as the EM-BC framework and, in the other one of the five datasets, the EM-BIC framework
yields a slightly larger ARI compared to our VB-DIC approach.
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Table 5 Summary of the
performance of VB-DIC
approach on the benchmark
datasets along with the
performance using the EM-BIC
framework

VB-DIC EM-BIC

Dataset Classes G ARI G ARI

Banknote 2 3 0.842 3 0.842

Crabs 4 5 0.788 6 0.600

Diabetes 3 4 0.645 3 0.664

Iris 3 3 0.732 2 0.568

SRBCT 4 4 0.760 4 0.736

4 Discussion

A variational Bayes approach for parameter estimation for the well-known GPCM family has
been proposed. As stated before, an advantage of using a variational Bayes algorithm is that,
because the hyperparameters of the approximating posterior densities are updated at every iter-
ation, we are indeed updating the approximating variational posterior density of a parameter as
opposed to the point estimate of a parameter as in an EM framework. This essentially leads to
a natural framework to extract interval estimates (i.e., credible intervals) for every run similar
to a fully Bayesian approach but without the need to create a confidence interval via bootstrap-
ping like in an EM framework. We also preserve the monotonicity property of the log-likelihood
function, like an EM algorithm, which is lost in a fully Bayesian MCMC based-approach. Addi-
tionally, the variational Bayes approach allows for simultaneously obtaining parameter estimates
and the number of components. However, a model selection criterion still needs to be utilized
while selecting the covariance structure. Herein, we used the DIC for the selection of the covari-
ance structure and so the resulting variational Bayes approach was called the VB-DIC approach.
As can be seen from the simulation studies, the correct covariance structure is often selected
using the DIC. That said, it may well be the case that another criterion is more suitable for select-
ing the model (i.e., the covariance structure). Notably, starting values play a different role for
variational Bayes than for the EM algorithm—because the former gradually reduces G as the
algorithm iterates, the “starting values” for all but the initial G are not the values used to actually
start the algorithm. Accordingly, direct comparison of the VB-DIC and EM-BIC approaches is
not entirely straightforward.

In the simulation studies, the parameters estimated using variational Bayes approximations
were very close to the true parameters (when the correct model was chosen), and excellent clas-
sification was obtained using the model selected by DIC. In many of the simulated and real
analyses, the performance of the VB-DIC approach was very similar or the same as the EM-BIC
approach. This is not surprising. As noted by McLachlan and Krishnan (2008) and Gelman et al.
(2013), the EM algorithm can be thought of as a special case of variational Bayes in which the
parameters are partitioned into two parts, φ and γ , and the approximating distribution of φ is
required to be a point mass and the approximating distribution of γ is unconstrained conditional
on the last update of φ. Across all the simulations, EM-BIC framework outperformed the VB-
DIC approach; however, the VB-DIC approach outperformed the EM-BIC framework on three
of the five benchmark real datasets considered.

In summary, we have explored a Bayesian alternative for parameter estimation for the most
widely used family of Gaussian mixture models, i.e., the GPCM family. The use of variational
Bayes in conjunction with the DIC for a family of mixture models is a novel idea and lends itself
nicely to further research. Moreover, the DIC provides an alternative model selection criterion to
the almost ubiquitous BIC. There are several possible avenues for further research, one of which
is extension to the semi-supervised (e.g., McNicholas 2010) or, more generally, fractionally
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supervised paradigm (see Vrbik and McNicholas 2015; Gallaugher and McNicholas 2019b).
Another avenue is extension to other families of Gaussian mixture models (e.g., the PGMM fam-
ily of McNicholas and Murphy 2008, 2010) and to non-Gaussian families of mixture models
(e.g., Vrbik and McNicholas 2014; Lin et al. 2014). Further consideration is needed vis-à-vis the
approach used to selected the model (i.e., covariance structure) in the variational Bayes approach,
e.g., one could conduct a detailed comparison of VB-DIC and, inter alia, VB-BIC. Finally, an
analogous variational Bayes approach could be taken to parameter estimation for mixtures of
matrix variate distributions (see, e.g., Viroli 2011; Gallaugher and McNicholas 2018a, b, 2019a).
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Appendix A: Posterior distributions for the parameters
of eigen-decomposed covariance matrix

Table 6 Posterior distributions of the precision parameters as well as their corresponding parameters for 12
of the members of the GPCM family

Model Posterior distributions Parameters

EII Gamma (a, b) a = a(0) + d
∑G

g=1
∑n

i=1 ẑig = a(0) + dn

b = b(0) + ∑G
g=1(

∑n
i=1 ẑigy′

iyi + β
(0)
g m(0)T

g m(0) − βgm′
gm)

VII Gamma (ag, bg) ag = a
(0)
g + d

∑n
i=1 ẑig

bg = b
(0)
g + ∑n

i=1 ẑigy′
iyi + β

(0)
g m(0)T

g m(0) − βgm′
gm

EEI Gamma (ak, bk) ak = a
(0)
k + ∑G

g=1
∑n

i=1 ẑig = a
(0)
k + n

bk = b
(0)
k + ∑G

g=1
∑n

i=1(ẑigy2
ik + β

(0)
g m

(0)2
gk − βgm2

gk)

VEI Gamma (ag, bg) ag = a
(0)
g + d

∑n
i=1 ẑig

bg = b
(0)
g + ∑n

i=1 ẑigy′
iyi + β

(0)
g m(0)T

g m(0) − βgm′
gm

Gamma (alk, bek) alk = al
(0)
k + ∑G

g=1
∑n

i=1 ẑig = al
(0)
k + n

bek = be
(0)
k + ∑G

g=1
∑n

i=1(ẑigy2
ik + β

(0)
g m

(0)2
gk − βgm2

gk)

EVI Gamma (a, b) a = a(0) + d
∑G

g=1
∑n

i=1 ẑig = a(0) + dn

b = b(0) + ∑G
g=1

∑n
i=1 ẑigy′

iyi + β
(0)
g m(0)T

g m(0) − βgm′
gm

Gamma (algk, begk) algk = al
(0)
gk + ∑n

i=1 ẑig

begk = be
(0)
gk + ∑n

i=1 ẑigy2
ik + β

(0)
g m

(0)2
gk − βgm2

gk

VVI Gamma (ag, bg) ag = a
(0)
g + d

∑n
i=1 ẑig

bg = b
(0)
g + ∑n

i=1 ẑigy′
iyi + β

(0)
g m(0)T

g m(0) − βgm′
gm

Gamma (algk, begk) algk = al
(0)
gk + ∑n

i=1 ẑig

begk = be
(0)
gk + ∑n

i=1 ẑigy2
ik + β

(0)
g m

(0)2
gk − βgm2

gk

EEE Wishart (v,�−1) v = v(0) + ∑G
g=1

∑n
i=1 ẑig = v(0) + n

�−1 = �(0)−1 + ∑G
g=1(

∑n
i=1 ẑigy′

iyi + β
(0)
g m(0)T

g m(0) − βgm′
gm)

VEE Gamma (ag, bg) ag = a
(0)
g + d

∑n
i=1 ẑig

bg = b
(0)
g + ∑n

i=1 ẑigy′
iyi + β

(0)
g m(0)T

g m(0) − βgm′
gm

Wishart (v,�) v = v(0) + ∑G
g=1

∑n
i=1 ẑig = v(0) + n

� = �(0) + ∑G
g=1(

∑n
i=1 ẑigy′

iyi + β
(0)
g m(0)T

g m(0) − βgm′
gm)

EEV Gamma (ak, bk) ak = a
(0)
k + d

∑G
g=1

∑n
i=1 ẑig = a

(0)
k + dn

bk = b
(0)
k + ∑G

g=1(
∑n

i=1 ẑigy2
ik + β

(0)
g m2

gk − βgm2
gk)

Bingham matrix (Pg,Q) See mathematical details for the EEV model below.

101Journal of Classification (2021) 38:89–108



Table 6 (continued)

Model Posterior distributions Parameters

VEV Gamma (ag, bg) ag = a
(0)
g + d

∑n
i=1 ẑig

bg = b
(0)
g + ∑n

i=1 ẑigy′
iyi + β

(0)
g m(0)T

g m(0) − βgm′
gm

Gamma (alk, bek) alk = al
(0)
k + ∑G

g=1
∑n

i=1 ẑig = al
(0)
k + n

bek = be
(0)
k + ∑G

g=1(
∑n

i=1 ẑigy2
ik + β

(0)
g m

(0)2
gk − βgm2

gk)

Bingham matrix (Pg,Qg) See posterior for Dg in the VEV Model below.

EVV Gamma (a, b) a = a(0) + d
∑G

g=1
∑n

i=1 ẑig = a(0) + dn

b = b(0) + ∑G
g=1(

∑n
i=1 ẑigy′

iyi + β
(0)
g m(0)T

g m(0) − βgm′
gm)

Wishart (vg,�−1
g ) vg = v

(0)
g + ∑n

i=1 ẑig

�−1
g = �

(0)−1
g + ∑n

i=1 ẑigyiy′
i + β

(0)
g m(0)

g m(0)T
g − βgmgm′

g

VVV Wishart (vg,�−1
g ) vg = v

(0)
g + ∑n

i=1 ẑig

�−1
g = �

(0)−1
g + ∑n

i=1 ẑigyiy′
i + β

(0)
g m(0)

g m(0)T
g − βgmgm′

g

Appendix B: Posterior expected value of the precision parameters
of the eigen-decomposed covariance matrix

Table 7 Posterior expected value of the precision parameters of the eigen-decomposed covariance matrix for
12 of the members of the GPCM family

Model Parameters Expected values

EII λId E[(λ)−1] = a/b

E[log |(λ)−1|] = �(a/2) − log(b/2)

VII λgId E[(λg)−1] = ag/bg

E[log |(λg)−1|] = �(ag/2) − log(bg/2)

EEI λA E[(λA)−1
k,k] = ak/bk

E[log |(λA)−1
k,k |] = �(ak/2) − log(bk/2)

VEI λgA E[λ−1
g ] = ag/bg

E[log |λ−1
g |] = �(ag/2) − log(bg/2)

E[(cA−1)k,k] = (alk)/(bek)

E[log |(cA−1)k,k |] = �(alk/2) − log(bek/2)

EVI λAg E[λ−1] = a/b

E[log |λ−1|] = �(a/2) − log(b/2)

E[(cgA−1
g )k,k] = agk/bgk

E[log |(cgA−1
g )k,k |] = �(agk/2) − log(bgk/2)

VVI λgAg E[λ−1
g ] = ag/bg

E[log |λ−1
g |] = �(ag/2) − log(bg/2)

E[(cgA−1
g )k,k] = agk/bgk

E[log |(cgA−1
g )k,k |] = �(agk/2) − log(bgk/2)

EEE λDAD′
E[(λDAD′)−1] = v�−1

E[log |(λDAD′)−1|] = ∑d
k=1 �((v + 1 − k)/2) + d log(2) − log |�|

VEE λgDAD′
E[λ−1

g ] = ag/bg

E[log |λ−1
g |] = �(ag/2) − log(bg/2)

E[(DAD′)−1] = v�−1

E[log |(DAD′)−1|] = ∑d
k=1 �((v + 1 − k)/2) + d log(2) − log |�|
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Table 7 (continued)

Model Parameters Expected values

EEV λDgAD′
g E[(λA)k,k] = ak/bk

E[log |(λA)k,k |] = �(ak/2) − log(bk/2)

E[(λDgAD′
g)−1|(λA)−1] via Monte Carlo integration

VEV λgDgAD′
g E[λ−1

g ] = ag/bg

E[log |λ−1
g |] = �(ag/2) − log(bg/2)

E[(cA−1)k,k] = (alk)/(bek)

E[log |(A−1)k,k |] = �(alk/2) − log(bek/2)

E[(λ−1
g DgAD′

g)−1|(λgA)−1] via Monte Carlo integration

EVV λDgAgD′
g E[λ] = a/b

E[log λ] = �(a/2) − log(b/2)

E[(DgAgD′
g)−1] = v�−1

g

E[log |(DgAgD′
g)−1|] = ∑d

k=1 �((vg + 1 − k)/2) + d log(2) − log |�g |
VVV λgDgAgD′

g E[(DgAgD′
g)−1] = v�−1

g

E[log |(DgAgD′
g)−1|] = ∑d

k=1 �((vg + 1 − k)/2) + d log(2) − log |�g |

Appendix C: Mathematical details for the EEV and VEV Models

C.1 EEV Model

The mixing proportions were assigned a Dirichlet prior distribution, such that

qρ(ρ) = Dir(ρ; α
(0)
1 , . . . , α

(0)
G ).

For the mean, a Gaussian distribution conditional on the covariance matrix was used, such
that

qμ(μ | λ, A, D1, . . . , DG) =
G∏

g=1

φd(μg; m(0)
g , (β(0)−1

g λDgAD′
g)).

For the parameters of the covariance matrix, the following priors were used: the kth diagonal
elements of (λA)−1 were assigned a Gamma (a

(0)
k , b

(0)
k ) distribution and Dg was assigned a

matrix von Mises-Fisher (C(0)
g ) distribution. By setting τ = (λA)−1, its prior can be written

pτ (τ ) ∝
K∏

k=1

τ

a
(0)
k
2 −1

k exp

{
−b

(0)
k

2
τk

}
,

where τk is the kth diagonal element of τ = (λA)−1.
The matrix D has a density as defined by Gupta and Nagar (2000):

p(D) = b(Q(0), P(0)
g ) exp(tr{Q(0)DP(0)

g D′})[dD],
for D ∈ O(d, d), where O(d, d) is the Stiefel manifold of d × d matrices, [dD] is the
unit invariant measure on O(d, d), and A(0) and B(0)

g are symmetric and diagonal matrices,
respectively.
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The joint distribution of μ1, . . . ,μG, τ , and D is

p(μ1, . . . , μG, τ , D) ∝
G∏

g=1

|β(0)
g τ | 1

2 exp

{−(μg − m(0)
g )β

(0)
g D′

gτDg(μg − m(0)
g )′

2

}

× exp
{

tr(Q(0)DP(0)
g D′)

} K∏

k=1

τ

a
(0)
k
2 −1

k exp

{
−b

(0)
k

2
τk

}
.

The likelihood of the data can be written

L(μ1,. . ., μG, τ , D | y1,. . ., yn)∝
n∏

i=1

G∏

g=1

|τ |ẑig/2 exp

{
− ẑig

2
(yi −μg)D

′
gτDg(yi −μg)

′
}

.

Therefore, the joint posterior distribution of μ, τ , and D can be written

p(μ1, . . . ,μG, τ ,D | y1, . . . , yn)∝p(μ1, . . . , μG, τ , D)L(μ1, . . . , μG, τ , D |y1, . . . , yn).

Thus, the posterior distribution of mean becomes

qμ(μ1, . . . ,μG | τ , D1, . . . , DG) =
G∏

g=1

φd(μg; mg, (βgD′
gτDg)

−1),

where βg = β
(0)
g + ∑n

i=1 ẑig and

mg = 1

βg

(
β(0)

g m(0)
g +

n∑

i=1

ẑigyi

)
.

The posterior distribution for the kth diagonal element of τ = (λA)−1 is

qτ (τk) = Gamma(ak, bk)

where ak = a
(0)
k + d

∑G
g=1

∑n
i=1 ẑig = a

(0)
k + dn and

bk = b
(0)
k +

G∑

g=1

(
n∑

i=1

ẑigy
2
ik + β(0)

g m2
gk − βgm

2
gk

)
.

We have

q(Dg|y;μg, τ ) ∝ exp

{
tr

(
−1

2
(μg − m(0)

g )β(0)
g D′

gτDg(μg − m(0)
g )′

)}

× exp

{
tr

(
−1

2

n∑

i=1

zig(y − μg)D
′
gτDg(y − μg)

′ + Q(0)
g DgP(0)

g D′
g

)}
,

which has the functional form of a Bingham matrix distribution, i.e., the form

exp
{

tr(QgDgPgD′
g)

}
,

where Qg = Q(0)
g + τ and

Pg = P(0)
g − 1

2

[
n∑

i=1

zig(y − μg)(y − μg)
′ + (μg − m(0)

g )β(0)
g (μg − m(0)

g )′
]

.
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C.2 VEV Model

Similarly, the posterior distribution of Dg for the VEV model has the form

q(Dg|y;μg, τ g)∝exp

{
tr

(
−1

2
(μg − m(0)

g )β(0)
g D′

gτ gDg(μg − m(0)
g )′

)}

× exp

{
tr

(
−1

2

n∑

i=1

ẑig(y −μg)D
′
gτ gDg(y− μg)

′ + Q(0)
g DgP(0)

g D′
g

)}
,

which has the functional form of a Bingham matrix distribution, i.e., the form

exp
{

tr(QgDgPgD′
g)

}
,

where Qg = Q(0)
g + τ g and

Pg = −1

2

[
n∑

i=1

ẑig(y − μg)(y − μg)
′ + (μg − m(0)

g )β(0)
g (μg − m(0)

g )′
]

.
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