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Abstract
The paper discusses a new approach for incorporating hard constraints into the K-means
algorithm for semi-supervised clustering. An analytic modification of the objective function
of K-means is proposed that has not been previously considered in the literature.
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1 Introduction

The field of cluster analysis comprises many diverse methods that locate groups of similar
observations in a dataset. Clustering is usually understood as the grouping of data without
any additional considerations or restrictions. We are going to adopt the view taken by the
authors that refer to this kind of clustering as unsupervised. At the same time, the methods
that are implemented in the presence of restrictions on the proposed solution or any addi-
tional supplementary information are called semi-supervised (Hennig et al. 2015; Yu et al.
2015; Liu and Fu 2015).

The development of methodology for grouping data under constraints goes back to
DeSarbo andMahajan (1984) who developed an algorithm for the formation of clusters with
pre-determined sizes and used it to analyze the information on Forbes 500 corporations.
With the advances in machine learning theory and expansion of computing capabilities, a
variety of restrictions implemented in semi-supervised clustering were explored. One sce-
nario that enjoys much attention in the literature occurs when the classification of a part
of the dataset is known and may be used to determine the classification of the rest of the
data (Basu et al. 2002; Barbier et al. 2012; Gu and Lu 2012). A more general framework
is to consider blocks of points for which the classification may not be necessarily known,
but the points are required to be joined together or separated in the clustering solution.
When the points are joined together, such a constraint is called a positive or “must-link”
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constraint, while when the points are separated, the constraint is called negative or “cannot-
link” (Basu et al. 2008; Śmieja and Wiercioch 2017; Ruiz et al. 2010). In addition, a variety
of approaches may be taken regarding the strictness of such membership rules. If a con-
straint must be satisfied in the solution, it is called hard, while if such a constraint can be
avoided (usually, at a penalty), it is called soft (Hennig et al. 2015).

A substantial effort has been made to accommodate various semi-supervised scenarios
as a part of K-means, one of the most popular clustering algorithms (Basu et al. 2004;
Wang et al. 2011; Dinler and Tural 2016). The existing modifications of the K-means algo-
rithm oriented towards hard constraints usually take one of the following approaches. One
strategy is to place the conditions consistent with the constraints on the inclusion of points
in classes and check the set of restrictions during the assignment of each subsequent point
(Wagstaff et al. 2001; Gu and Lu 2012). This methodology can lead to vastly different
solutions depending on the order in which the points are assigned to classes as the con-
straints that come into play at any given time depend on the points that have already been
accommodated and assigned to a class.

Some modifications of the K-means algorithm assume that the labels are known for a
part of the dataset and use this information to initialize the means as well as recompute
them during subsequent iterations while selecting the labels only for the portion of the
dataset that has not been classified yet. Two variations of this methodology are referred to
as “seeded” K-means algorithm and “constrained” K-means algorithm (Basu et al. 2002).
The seeded version uses the provided data with known labeling to initialize the cluster
centers at the first iteration. After this, the training data are set aside and the K-means
algorithm runs essentially unchanged. The constrained method actively uses the labeled data
at each iteration by taking it into account while recomputing the cluster centers. Both of
these approaches have been shown to exceed the performance of the method suggested by
(Wagstaff et al. 2001). Although the described methods have clear benefits, the algorithms
relying on the partial labeling of the data cannot accommodate the scenario where hard
constraints join or disconnect certain data points but do not insist on their membership in a
particular class. In addition, when the overlap between clusters is substantial, complications
of different nature may arise due to the split that occurs in the process of class formation
when a part of the dataset is classified instantly, before the classification process has begun.
This may lead to unintended misclassifications of large portions of data. We will further
discuss this issue in Section 3.

Other suggested adjustments to the semi-supervised K-means algorithm involve labeling
of a subset of data by user in multiple stages (Fatehi et al. 2014), inclusion of the information
on constraints at the level of classes rather than individual data points (Liu and Fu 2015),
and use of adaptive distance measures that learn from the training set (Bilenko and Mooney
2003).

Despite the active research, there are no rigorous theoretically sound approaches to semi-
supervised K-means. All methods that have been proposed in literature represent ad hoc
empirical algorithms that appeal to intuition but lack methodological rigor. While some of
them rely on a labeled set of training data (Basu et al. 2002), the majority of such methods
add an external check for possible constraint violations to the coreK-means algorithm (Ruiz
et al. 2010; Zhigang et al. 2013; Covões et al. 2013). In these circumstances, the algorithm
often fails to converge and some authors decide not to pursue all the constraints strictly,
but instead resort to minimizing the number of violated constraints (Covões et al. 2013;
Davidson and Ravi 2005).
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In this paper, we propose a formal modification of K-means that incorporates hard posi-
tive and negative constraints directly into the algorithm. While the suggested methodology
shares the same goals as the procedures of Basu et al. (2002) or Wagstaff et al. (2001), our
approach merges the restrictions completely with the K-means algorithm by modifying its
objective function and making the constraints a part of the fabric of the algorithm, which
was not done in the past.

We start by describing the methodology of the proposed approach in Section 2. The
experimental justification is provided in Section 3 and the discussion of the results
concludes the paper in Section 4.

2 Methodology

In this section, we will make a formal statement of our method and show the modifications
that occur to the K-means algorithm in the presence of hard constraints.

2.1 Problem Statement and Notation

First, we are going to consider the classical unconstrained K-means algorithm. Suppose
that a dataset consists of n independent p-dimensional observations y1, y2, . . . , yn. Also,
suppose that the number of clusters K is pre-determined. Then, the goal of the K-means
algorithm is to find the partition of the given dataset that would minimize the amount of
variation within the clusters given by

S =
K∑

k=1

n∑

i=1

‖yi − μk‖2I (zi = k),

where μk is the mean of the kth cluster, I (·) is the indicator function, and zi denotes the
membership of the ith observation.

Initially, the algorithm is started with a collection of centers μ̂k that can be obtained
randomly or by means of some specialized initialization techniques. Then, the method itera-
tively goes through two steps, where on step 1, the clusters are formed by means of assigning
each observation to the cluster with the nearest center and during step 2, the new estimated

cluster means μ̂k are re-calculated according to the rule μ̂k =
∑n

i=1 I (zi=k)yi∑n
i=1 I (zi=k)

. This pro-

cess continues until convergence when no changes occur to the partition anymore or until it
becomes clear that the convergence will not occur.

Let us now suppose that certain positive and negative restrictions have been placed on the
inclusion of points in clusters. The positive constraints specify which points must belong
to the same cluster in the final solution. Effectively, positive constraints define the dis-
joint blocks of points with the sets of indices Bb, b = 1, 2, . . . , B such that

⋃B
b=1 Bb =

{1, 2, . . . , n}. Here, B is the total number of blocks defined. For any two distinct points yi

and yj , {i, j ∈ Bb} ⇒ {zi = zj }. In a trivial case, when no positive constraints are defined,
each point can be viewed as a singleton block with B = n.

Contrary to the positive restrictions, negative constraints appear when certain points yi

and yj cannot be in the same cluster. It should be noted that such a restriction would involve
not only yi and yj , but the whole blocks associated with these points, i.e., b(i) = argb{I (i ∈
Bb) = 1} and b(j) = argb{I (j ∈ Bb) = 1}. Thus, in the presence of a negative restriction,
{r ∈ Bb(i), q ∈ Bb(j)} ⇒ {zr �= zq}.
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The accommodation of either of these constraints is not straightforward in the K-means
model as it requires the modification of the objective function and a mechanism that would
account for more complicated structures. We will address this issue using the connection
between the K-means algorithm and a modified expectation-maximization (EM) algorithm
(Dempster et al. 1977), but first we proceed to give the relevant background on mixture
models.

2.2 K-means Algorithm in a Constrained Setting

The Gaussian mixture model is given by f (y; θ) = ∑K
k=1 τkφ(y;μk, �k), where

φ(·; μk, �k) denotes a multivariate Gaussian density with mean vector μk and covariance
matrix �k . τk ∈ (0, 1], k = 1, 2, . . . , K are mixing proportions bound by the constraint∑

k τk = 1. The parameters of this mixture are most often estimated with the use of the
EM algorithm which consists of two iteratively repeated steps: expectation and maximiza-
tion (McLachlan and Peel 2000). During the expectation step, or E-step, the conditional
expected value of the complete data log-likelihood is computed, which in the case of a
Gaussian mixture model amounts to finding the posterior probabilities

πik = τkφ(yi; μk,�k)∑K
k′=1 τk′φ(yi;μk′ ,�k′)

that observation i originated from the kth component of the mixture. At the maximization
step, or M-step, parameters τk,μk, and �k are estimated by maximizing the conditional
expectation of the complete data log-likelihood.

A modification of this method called classification EM (CEM) algorithm uses an addi-
tional classification step performed right after the E-step where each observation obtains a
hard assignment to a particular cluster based on the highest posterior probability πik that
was observed. Thus, zi = argmaxkπik . Subsequently, at the M-step, πik are replaced by
I (zi = k). This process makes the algorithm closer in spirit to the K-means method, where
each data point is also unequivocally assigned to a particular cluster. In fact, it has been
shown by Celeux and Govaert (1993) that the use ofK-means algorithm with Euclidean dis-
tances is equivalent to implementing a CEM algorithm on a Gaussian mixture model with
equal spherical covariance matrices as well as identical mixing proportions. Then, due to
the restrictions on the model, τk = 1

K
and �k = σ 2I for all k = 1, 2, . . . , K , where I is the

identity matrix and σ 2 is a common variance parameter. The modification of the K-means
method that would accommodate positive or negative constraints will occur at the classifi-
cation stage when the assignment zi = argmaxkπik is carried out. The classification rules
implemented by means of zi will be determined by particular configurations of constraints
in each case. We now proceed to obtain the expressions for πik in several configurations of
constraints.

2.3 K-means Algorithmwith Positive Constraints

Consider B blocks determined by positive constraints. It should be noted that for the set
of indices Bb associated with block b, πik = πjk, ∀i, j ∈ Bb; therefore, we can define
πbk ≡ πik, i ∈ Bb. It was shown by Melnykov et al. (2016) that

πbk = τ
|Bb|
k

∏
j∈Bb

φ(yj ;μk, �k)
∑K

k′=1 τ
|Bb|
k′

∏
j∈Bb

φ(yj ; μk′ , �k′)
.
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Consequently, we can write the rule for the assignment of block b to cluster k as
πbk ≥ πbk′ , k′ = 1, 2, . . . , K , which after taking logarithms and some straightforward
manipulations becomes

∑

j∈Bb

(yj − μk)
′�−1

k (yj − μk) <
∑

j∈Bb

(yj − μk′)′�−1
k′ (yj − μk′) + |Bb|

[
log

τ 2k |�k′ |
τ 2
k′ |�k|

]
,

where |Bb| = ∑n
j=1 I (j ∈ Bb). |�k| and |�k′ | denote the determinants of �k and �k′ ,

respectively.
Since the assignments will now apply to whole blocks of points at once, we can define

zb ≡ zi, i ∈ Bb. Taking into account the sphericity of covariance matrices and restrictions
on mixing proportions,

zb = argmax
k

⎡

⎣K−|Bb| ∏

j∈Bb

φ(yj ; μk, σ
2I)

⎤

⎦ ,

with k = 1, 2, . . . , K . This expression can be further simplified to obtain the following rule
for the assignment of block b to a particular class:

zb = argmin
k

⎡

⎣
∑

j∈Bb

‖yj − μk‖2
⎤

⎦ .

We can see that in the presence of positive constraints, the membership of a block of
points is decided by the K-means method in an intuitive way. Similarly to picking the small-
est distance to a cluster center in the case of a single point, the block is assigned to a center
that minimizes the sum of squared deviations from the class mean within the block. How-
ever, this membership criterion operates with the squares of Euclidean distances rather than
distances themselves.

2.4 K-means Algorithmwith Negative Constraints

We now turn to the situation where negative constraints are defined along with positive
ones. Melnykov et al. (2016) described some difficulties in handling negative restrictions
that arise mainly from the fact that the number of possible configurations grows very fast
with the number of blocks involved. We will describe some common situations that occur
with two and three blocks that can be readily generalized for a larger number of blocks.

First, let a negative constraint be defined between two blocks. Among the B blocks
defined in the dataset, without the loss of generality, we can number the blocks in such
a way that the negative constraint disconnects blocks 1 and 2, with the sets of indices B1
and B2, respectively. Utilizing the results of Melnykov et al. (2016), we observe that posi-
tive block relations remain in place even as negative constraints are enforced additionally.
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With the kernel τ |Bb|
k

∏
j∈Bb

φ(yj ; μk, �k) describing the structure of block b, the posterior
probability that block 1 belongs to cluster k equals

π1k = τ
|B1|
k

∏

j1∈B1

φ(yj1
; μk,�k)

K∑

s=1
s �=k

τ |B2|
s

∏

j2∈B2

φ(yj2
; μs ,�s)

×

⎡

⎢⎢⎣
K∑

k′=1

τ
|B1|
k′

∏

j1∈B1

φ(yj1
; μk′ ,�k′)

K∑

s′=1
s′ �=k′

τ
|B2|
s′

∏

j2∈B2

φ(yj2
; μs′ ,�s′)

⎤

⎥⎥⎦

−1

.

Then, it follows that the membership of block 1 is determined by

z1 = argmax
k

⎡

⎢⎢⎣τ
|B1|
k

∏

j1∈B1

φ(yj1
; μk,�k) ×

⎛

⎜⎜⎝
K∑

s=1
s �=k

τ |B2|
s

∏

j2∈B2

φ
(
yj2

; μs ,�s

)

⎞

⎟⎟⎠

⎤

⎥⎥⎦ ,

which in turn can be re-written as

z1 = argmax
k

⎡

⎣
K∑

s=1,s �=k

exp

⎛

⎝− 1

2σ 2

⎛

⎝
∑

j1∈B1

‖yj1
− μk‖2 +

∑

j2∈B2

‖yj2
− μs‖2

⎞

⎠

⎞

⎠

⎤

⎦ ,

where we once again utilized the sphericity of covariance matrices and equality of mixing
proportions. The corresponding expressions for block 2 are completely symmetric.

Similarly, in the case of three blocks represented by B1, B2, and B3, where negative con-
straints are established for each pair, i.e., all three blocks must belong to different clusters
in the solution,

z1 = argmax
k

⎡

⎢⎢⎢⎣

K∑

s=1,
s �=k

K∑

h=1,
h �=k,h �=s

exp

⎛

⎝− 1

2σ 2

⎛

⎝
∑

j1∈B1

‖yj1
− μk‖2

+
∑

j2∈B2

‖yj2
− μs‖2 +

∑

j3∈B3

‖yj3
− μh‖2

⎞

⎠

⎞

⎠

⎤

⎥⎥⎥⎦ .

Thanks to the symmetry, z2 and z3 are determined by similar expressions with straightfor-
ward index adjustments.

3 Experiments and Illustrations

3.1 Motivating Example

We begin by considering an example that will emphasize the flexibility of our method and
show the advantage of defining block restrictions over the direct labeling of points. Suppose
that there are two classes of individuals overlapping quite substantially with one another.
Thus, the two classes may represent two species of animals that, in principle, could be
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identified with high degree of certainty by an expert. An example of such process is detailed
in Nimmo et al. (2018) in relation to the identification of insects that belong to family
Chironomidae. The identification of these insects involves their dissection on a microscopic
scale, exposure to specialized chemical solutions, and further slide preparation that takes
4 weeks. For the classification described in Nimmo et al. (2018), the slides had to be mailed
to an expert located off-site. Alternatively, the identification can be made by observing
morphological characteristics of Chironomidae flies such as their length, measurements of
antennae, leg segments, and other parts of the body. The latter method is not error-proof,
but much less demanding in terms of time and effort. To train the clustering algorithm, a
small group of individuals can be first identified by an expert using the classical technique
involving the microscopic slide preparation. At this point, the algorithms such as seeded
K-means or constrained K-means will assign labels to the points that have been identified.
The identification of Chironomidae can involve a large number of species; however, for
illustrative purposes, we will focus on only two classes in this example.

Figure 1 shows a two-dimensional dataset generated from two such classes of points
with n = 200. Both clusters here are spherical and have approximately equal proportions,
making this dataset favorable for classification by the K-means algorithm. Three points in
each class have been identified and this information is used to start the K-means algorithm.
In Fig. 1, these points are shown circled and connected by the lines of corresponding color.
Note that the points used for training were all picked in the area of overlap between the
clusters where misclassifications can easily occur. We implement the constrained K-means
approach with these starting conditions and observe that in the estimated classification the
classes are essentially flipped. As a result, the majority of animals that belong to species 1
will be classified as species 2, while those from species 2 will be identified as species 1.
Being driven to maintain the labels of the points in the training set, this method does so at
the expense of the vast majority of the observations.

This scenario is less likely to occur if a large random sample of points is chosen for train-
ing. At the same time, the described situation is not far-fetched if one takes it into account
that the observations used in the training set are often the ones that are readily available
to the researcher and are not selected at random. On the surface, it may also seem advan-
tageous to determine the classification of points in the “gray” area with an intent to equip
the algorithm with the tools to classify observations in the most difficult circumstances.
However, such a strategy can easily misfire as shown by our example. We will explore this
phenomenon in more detail in the simulations with a larger number of clusters.

Fig. 1 Differences between the true (a) and estimated classifications using the constrained K-means algo-
rithm (b) and the proposed method (c). The points with known classification are shown via connecting
lines
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3.2 Experiments

We now proceed to consider a variety of practical situations with different configurations
of positive and negative constraints. Where appropriate, we consider a comparison with the
constrained K-means and seeded K-means approaches of Basu et al. (2002) that are often
used as benchmarks for other algorithms (Gu and Lu 2012; Fatehi et al. 2014). In addition,
in the situations where negative constraints are defined among all specified blocks the con-
strained K-means approach is close in spirit to our proposed method. R package MixSim
(Melnykov et al. 2012) was used to simulate datasets with varying degrees of overlap and
clustering complexity.

3.2.1 Ten Clusters with Positive and Negative Constraints in Place

We first consider a simulation with K = 10 classes where ten blocks were defined in
such a manner that each class has exactly one block within it and all blocks are separated
by negative constraints. This setup fits well with the constrained K-means and seeded K-
means methods of Basu et al. (2002), but such a configuration captures only one in a variety
of possible scenarios that our proposed method is capable of handling.

In addition, a “naive” semi-supervised clustering approach was realized where a ran-
domly chosen training set was utilized for finding the initial mean in each of the ten clusters.
Then, each of the remaining points was assigned to the cluster with the nearest mean, but
no repeated recalculation of means and reassignment of points took place. This approach
amounts to one iteration of the K-means algorithm.

To generate the datasets of varying complexity, the number of dimensions p was taken
at 5, 10, and 20 and the average pairwise overlap ω̄ was set at 0.01 and 0.10. Here, the
pairwise overlap is defined as the sum of misclassification probabilities when two clusters
are considered at a time (Maitra andMelnykov 2010). For each combination of p and ω̄, 100
datasets of n = 10, 000 points each were generated with approximately equal allocations of
points to the ten clusters. The training set was obtained by randomly extracting a fraction of
points in each class.

The results of the simulation study are summarized in Tables 1 and 2 where the proposed
method is labeled as “ssK-means” (for “semi-supervised K-means”). In Table 1, training
percentages varied between 1 and 7% in 2% increments, while in Table 2 larger percentages
between 10 and 70% were considered.

It can be seen that all four methods performed roughly the same with the “naive” method
falling behind somewhat at lower training percentages. This effect is maintained for both
lower and larger values of the average pairwise overlap and across different dimensionality
values. Thus, the proposed method has been shown to be quite viable in the simulated sce-
nario with the training sets picked at random. It is worth noting that in practice the training
sets are often formed not at random, but based on other considerations such as availability
of points or their perceived usefulness in classification of future observations.

3.2.2 Selecting a Training Set in the Overlap Area

We now proceed to evaluate some less straightforward clustering situations that will show-
case the advantages of our proposed method. First, let us extend the scenario described in
Section 3.1 to a larger number of clusters and consider how the choice of points for training
affects the proportion of correct classifications. We consider K = 4 two-dimensional clus-
ters with the average pairwise overlap ω̄ equal to 0.2. Each dataset consists of the total of
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Table 1 Smaller training percentages

p = 5 p = 10 p = 20

ω̄ = 0.01 ω̄ = 0.1 ω̄ = 0.01 ω̄ = 0.1 ω̄ = 0.01 ω̄ = 0.1

ssK-means 1% M 0.9583 0.7234 0.9614 0.7446 0.9635 0.7555

IQR 0.0054 0.0132 0.0034 0.0084 0.0023 0.0068

3% M 0.9596 0.7296 0.9621 0.7504 0.9643 0.7603

IQR 0.0039 0.0121 0.0029 0.0085 0.0021 0.0071

5% M 0.9604 0.7354 0.9630 0.7550 0.9649 0.7650

IQR 0.0036 0.0122 0.0027 0.0086 0.0025 0.0065

7% M 0.9613 0.7420 0.9638 0.7602 0.9657 0.7700

IQR 0.0032 0.0121 0.0028 0.0089 0.0024 0.0061

Constrained K-means 1% M 0.9588 0.7219 0.9615 0.7451 0.9635 0.7553

IQR 0.0039 0.0132 0.0030 0.0090 0.0023 0.0068

3% M 0.9595 0.7282 0.9623 0.7498 0.9643 0.7599

IQR 0.0036 0.0126 0.0029 0.0082 0.0022 0.0067

5% M 0.9602 0.7350 0.9629 0.7551 0.9651 0.7648

IQR 0.0033 0.0122 0.0029 0.0086 0.0022 0.0062

7% M 0.9612 0.7408 0.9639 0.7598 0.9658 0.7692

IQR 0.0032 0.0122 0.0028 0.0088 0.0023 0.0063

Seeded K-means 1% M 0.9588 0.7226 0.9615 0.7449 0.9635 0.7552

IQR 0.0039 0.0130 0.0030 0.0090 0.0023 0.0070

3% M 0.9595 0.7282 0.9623 0.7500 0.9643 0.7597

IQR 0.0036 0.0127 0.0029 0.0088 0.0022 0.0068

5% M 0.9602 0.7350 0.9629 0.7551 0.9650 0.7644

IQR 0.0033 0.0123 0.0028 0.0086 0.0022 0.0062

7% M 0.9612 0.7409 0.9639 0.7599 0.9658 0.7693

IQR 0.0032 0.0118 0.0028 0.0085 0.0023 0.0061

Naive K-means 1% M 0.9496 0.6866 0.9459 0.6856 0.9384 0.6500

IQR 0.0056 0.0228 0.0056 0.0165 0.0062 0.0176

3% M 0.9568 0.7215 0.9575 0.7315 0.9565 0.7242

IQR 0.0037 0.0161 0.0037 0.0099 0.0028 0.0083

5% M 0.9588 0.7312 0.9602 0.7449 0.9605 0.7455

IQR 0.0031 0.0143 0.0034 0.0084 0.0024 0.0066

7% M 0.9599 0.7379 0.9618 0.7541 0.9630 0.7571

IQR 0.0030 0.0124 0.0030 0.0081 0.0025 0.0056

Results of the simulation study for K = 10. M and IQR represent the median and interquartile range of the
proportion of correct classifications, p is the dimensionality, and ω̄ is the average pairwise overlap between
mixture components

n = 500 points with equal proportions among the four classes that were generated. We have
seen in Section 3.1 that the choice of a training set in the “gray” area carries a substantial
misclassification risk. Let fk(x) and fk′(x), where k, k′ = 1, ...,K, k �= k′, be two of the
Gaussian pdfs used by MixSim to generate the classes of points and let the “gray” area be
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Table 2 Larger training percentages

p = 5 p = 10 p = 20

ω̄ = 0.01 ω̄ = 0.1 ω̄ = 0.01 ω̄ = 0.1 ω̄ = 0.01 ω̄ = 0.1

ssK-means 10% M 0.9624 0.7495 0.9650 0.7687 0.9668 0.7773

IQR 0.0030 0.0130 0.0029 0.0084 0.0021 0.0062

30% M 0.9707 0.8064 0.9729 0.8206 0.9740 0.8271

IQR 0.0027 0.0104 0.0022 0.0062 0.0021 0.0053

50% M 0.9790 0.8620 0.9807 0.8727 0.9814 0.8771

IQR 0.0023 0.0071 0.0017 0.0050 0.0016 0.0034

70% M 0.9873 0.9173 0.9883 0.9233 0.9889 0.9265

IQR 0.0019 0.0050 0.0013 0.0041 0.0012 0.0033

Constrained K-means 10% M 0.9624 0.7485 0.9650 0.7678 0.9669 0.7767

IQR 0.0031 0.0131 0.0030 0.0084 0.0021 0.0058

30% M 0.9706 0.8045 0.9728 0.8193 0.9739 0.8260

IQR 0.0029 0.0113 0.0022 0.0063 0.0021 0.0051

50% M 0.9788 0.8587 0.9806 0.8710 0.9812 0.8752

IQR 0.0023 0.0071 0.0018 0.0061 0.0017 0.0039

70% M 0.9872 0.9149 0.9883 0.9213 0.9887 0.9240

IQR 0.0018 0.0052 0.0013 0.0038 0.0012 0.0031

Seeded K-means 10% M 0.9624 0.7484 0.9650 0.7677 0.9669 0.7767

IQR 0.0030 0.0130 0.0030 0.0085 0.0021 0.0061

30% M 0.9706 0.8045 0.9728 0.8194 0.9739 0.8260

IQR 0.0029 0.0109 0.0022 0.0063 0.0021 0.0049

50% M 0.9788 0.8589 0.9806 0.8709 0.9812 0.8751

IQR 0.0023 0.0070 0.0018 0.0059 0.0017 0.0040

70% M 0.9872 0.9147 0.9882 0.9213 0.9887 0.9240

IQR 0.0018 0.0051 0.0013 0.0045 0.0012 0.0031

Naive K-means 10% M 0.9618 0.7482 0.9636 0.7653 0.9649 0.7696

IQR 0.0030 0.0130 0.0029 0.0081 0.0026 0.0053

30% M 0.9705 0.8067 0.9727 0.8202 0.9738 0.8262

IQR 0.0024 0.0097 0.0023 0.0063 0.0018 0.0052

50% M 0.9788 0.8623 0.9807 0.8726 0.9813 0.8768

IQR 0.0022 0.0073 0.0018 0.0053 0.0016 0.0042

70% M 0.9873 0.9171 0.9883 0.9231 0.9888 0.9263

IQR 0.0019 0.0049 0.0014 0.0039 0.0014 0.0030

Results of the simulation study for K = 10. M and IQR represent the median and interquartile range of the
proportion of correct classifications, p is the dimensionality, and ω̄ is the average pairwise overlap between
mixture components

defined by the choice of a constant C > 1 to have C−1 ≤ fk(x)
fk′ (x)

≤ C. Figure 2 shows the
proportion of correct classifications for the proposed method (green dots) and constrained
K-means (blue triangles) as a function of C. The average proportions were determined over
10,000 runs for 3, 5, 7, and 9 points in the training set.
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(a) 3 points in the training set (b) 5 points in the training set

(c) 7 points in the training set (d) 9 points in the training set

Fig. 2 a–d Proportion of correct classifications versus the ratio of densities (C) defining the “gray” area for
the proposed method (dots) and constrained K-means (triangles)

While the proposed method shows a stable performance for different training set sizes
and even leads to slightly better outcomes for lower values of C, the constrained K-means
algorithm experiences problems if the size of the training set is small and especially when
the points for training are picked in the area of high overlap. For C < 3, it has lower
classification proportions even when the training set is obtained from 9 randomly selected
points that represent about 7% of the given class and are classified without error.

It is worth noting that a similar effect is observed if one or more of the points in the
training set are misclassified. When the labels are determined for the points in the training
set, it is typically assumed that these labels are 100% error-free. However, in practice, there
is a possibility that a point may be misidentified even by an expert or some other error
may occur. We have simulated n = 10, 000 points in equal proportions between K = 2
two-dimensional clusters with the pairwise overlap of 0.2 and generated at random two
blocks of three points with known labels in each class. In the absence of errors, both the
proposed method and constrained K-means yield 0.900 rate of correct classifications over
1000 simulations.
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Now to determine the effect that an incorrect label may have, we kept one of the blocks
error-free, while in the second one we included one point that was misidentified and in
reality came from the opposite class. Since our method does not rely on direct labeling, its
proportion of correct classifications stands unaffected at 0.900 due to the negligible effect
that one point has on a set of 10,000 data. At the same time, the constrained K-means
method sees its rate go down to 0.882.

To summarize, if the assignment of labels to observations is done in two stages, caution
needs to be exercised due to a real possibility of misclassifying substantial portions of data,
especially, if the majority of training points are located in the area of cluster overlap. Con-
sequently, it is beneficial to include some points with the easy straightforward classification
in the training set. The proposed algorithm would overcome this obstacle by holding off the
assignment of labels to the points comprising each block until the stage in the algorithm
when all observations receive their labels.

3.2.3 Positive and Negative Constraint Configurations

As was pointed out in the beginning of Section 3.2, the proposed method can be used to
model a variety of situations involving both positive and negative constraints not accessible
to methods that rely on the direct labeling of points involved in constraints. For the following
illustrations, we consider the simulations on the two-dimensional datasets generated from
K = 4 classes with n = 500 and ω̄ = 0.1. A typical dataset of this nature is shown in Fig. 3.

A configuration of blocks consistent with that of Section 3.2.1 would involve a block
from each class defined by means of positive constraints and a set of negative constraints
disconnecting all blocks from one another. This configuration is shown in Fig. 4a with three
points per block. The symbols defining each block, such as circles, squares, triangles and
diamonds, are different to indicate the negative constraints in place. Below, we will adhere

Fig. 3 True classification in a dataset with K = 4, p = 2, ω̄ = 0.10
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Fig. 4 a–f Blocks with various configurations of constraints defined over four classes
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to the same conventions by showing positive constraints as connecting lines and indicating
negative constraints by using different symbols in the respective blocks. Figure 4b shows the
proportion of correct classifications as a function of the number of points in each block. For
the subsequent configurations of blocks, we omit the graphs that show correct classification
proportions as they are very similar to (b).

Figure 4c shows a similar situation where only positive constraints are in place and no
negative constraints are defined. Thus, in principle, the blocks that were defined can be
allocated to the same class in the solution. The points participating in the four blocks are all
shown by circles to indicate the lack of negative constraints.

Another possibility is for multiple blocks to be defined within the same class. Thus, in
Fig. 4d, there were three blocks defined in the first and second classes but none were defined
in the remaining two. Also, no negative constraints were imposed.

Figure 4e shows three blocks that were set up in three different classes in such a way that
one of them, shown with squares, is separated from the other two by negative constraints.
However, those two remaining blocks, both shown by circles, do not have a negative con-
straint defined between them. We use this opportunity to illustrate the construction of the
membership function for multiple blocks. Let B1 and B3 represent the blocks marked with
circles and B2 represent the block marked with squares in Fig. 4e. Then, for B1,

z1 = argmax
k

⎡

⎢⎢⎢⎣

K∑

s=1,
s �=k

K∑

h=1,
h �=s

exp

⎛

⎝− 1

2σ 2

⎛

⎝
∑

j1∈B1

‖yj1
− μk‖2

+
∑

j2∈B2

‖yj2
− μs‖2 +

∑

j3∈B3

‖yj3
− μh‖2

⎞

⎠

⎞

⎠

⎤

⎥⎥⎥⎦ .

The key to implementing negative constraints here is the careful treatment of the sums
over s and h. The sum over s is matched with B2 and thus needs an exclusion for k, the
summation index matched with B1. At the same time, the sum over h is matched with B3
and requires an exclusion for s, the index matched with B2.

The membership function for block B2 also needs to reflect the fact that B2 is separated
from the other two blocks, while B1 and B3 do not have a negative constraint between them:

z2 = argmax
k

⎡

⎢⎢⎢⎣

K∑

s=1,
s �=k

K∑

h=1,
h �=k

exp

⎛

⎝− 1

2σ 2

⎛

⎝
∑

j1∈B1

‖yj1
− μs‖2

+
∑

j2∈B2

‖yj2
− μk‖2 +

∑

j3∈B3

‖yj3
− μh‖2

⎞

⎠

⎞

⎠

⎤

⎥⎥⎥⎦ .

The membership function for B3 is analogous to that of B1 with appropriate index
adjustments.
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Finally, Fig. 4f shows a configuration of four blocks where only two negative constraints
were defined. The blocks shown with solid circles (B1) and solid squares (B2) will be kept
separate, but either of themmay end up in the same class with the blocks shown by the blank
symbols. Similarly, the blocks shown with blank circles (B3) and blank squares (B4) have
a negative constraint only between the two of them. We present the membership function
for B3, while other membership functions will be similar due to the fact that each block has
only one negative constraint in place separating it from one other block:

z3 = argmax
k

⎡

⎢⎢⎢⎣

K∑

s=1

K∑

h=1,
h �=s

K∑

t=1,
t �=k

exp

⎛

⎝− 1

2σ 2

⎛

⎝
∑

j1∈B1

‖yj1
− μs‖2

+
∑

j2∈B2

‖yj2
− μh‖2 +

∑

j3∈B3

‖yj3
− μk‖2 +

∑

j4∈B4

‖yj4
− μt‖2

⎞

⎠

⎞

⎠

⎤

⎥⎥⎥⎦ .

Overall, the proposed method offers much needed flexibility in modeling positive or
negative constraints. We once again emphasize that the configurations illustrated in Fig. 4c–
f could not be accommodated by the methods that require hard class assignments of the
points involved in the constraints.

3.2.4 Comparison with a Model-Based Semi-supervised Method

The proposed method enjoys the advantages associated with the K-means algorithm, such
as the relative simplicity and ease of practical implementation if compared to model-based
approaches. At the same time, it is worth exploring how ssK-means compares to potentially
more flexible models, for example, those involving the use of finite Gaussian mixtures. In
this simulation study, we focus on the comparison of our algorithm with the semi-supervised
method of Melnykov et al. (2016).

The datasets were generated from mixture models with K = 4 and K = 10 and the
sample size was chosen to be 100K . The number of dimensions p was taken equal to 5,
10, and 20, while the maximum overlap ω̌ was set at 0.01 and 0.1. In each class, one block
of points was defined at random. As discussed in previous sections, the observations within
each block are bound together by positive constraints and, in principle, the blocks drawn
from different classes could be clustered together. The sizes of blocks |B| equal to 1, 10,
and 25 were evaluated. Here, |B| = 1 represents a trivial case of unsupervised clustering
with each block being a singleton. Finally, to evaluate the effect that cluster shapes have on
the outcomes, all simulations were performed for clusters of elliptical as well as spherical
shapes. Of course, the Gaussian mixtures are expected to outperform ssK-means in the case
of elliptical clusters. On the contrary, for the second scenario when spherical clusters are
simulated under the assumptions of equal covariance matrices, it is our expectation that ssK-
means will be highly competitive with semi-supervised Gaussian mixtures. Each simulation
scenario was repeated for 250 mixtures generated by MixSim.

As expected, the model-based method performed noticeably better on elliptical clusters,
especially, in the presence of a larger overlap (ω̌ = 0.1) (Table 3). At the same time, the
ssK-means algorithm was not far behind, especially, in the situations when larger blocks
were used. This emphasizes the positive effect that the introduction of extra information in
the form of constraints has on successful classification.
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On spherical clusters with equal covariance matrices, theK-means algorithmwas expect-
edly very competitive. In fact, it was even more successful than the model-based clustering
method in the vast majority of situations as shown in Table 4. A similar phenomenon
was pointed out by Steinley and Brusco (2011) in their study of unsupervised clustering.
In our semi-supervised setting, this effect is observed across different degrees of overlap,
number of dimensions, and block sizes in positive constraints. Even though our developed
K-means-based method is expected to perform well under such circumstances, the fact
that the proposed method is capable of showing better performance than its model-based
counterpart is quite noteworthy.

4 Discussion

The methodology described in the paper allows to accommodate both positive and negative
constraints in semi-supervised clustering by making them a part of the K-means algorithm
framework. The proposed method performs well in the situations that are generally favor-
able for the use of the K-means algorithm, in particular, when the clusters are roughy
spherical and have approximately equal representations.

The novelty of the proposed approach is in making both kinds of hard constraints an
organic part of this clustering algorithm, while the methods proposed to date either verify
the restrictions concurrently with executing the algorithm or use the labeled data at the
training stage of the algorithm. Another advantage of the proposed method is the fact that
it does not rely on the training data to be labeled as belonging to a certain class before the
algorithm starts, since the placement of blocks into different classes is ensured by means of
negative constraints. Thus, the process does not prohibit the training data from being labeled
in advance but does not rely on such labeling. As a result, a larger variety of clustering
situations can be accommodated compared to the methods that rely on direct labeling.
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