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Abstract

We introduce the §-machine, a statistical learning tool for classification based on
(dis)similarities between profiles of the observations to profiles of a representation set con-
sisting of prototypes. In this article, we discuss the properties of the §-machine, propose an
automatic decision rule for deciding on the number of clusters for the K-means method on
the predictive perspective, and derive variable importance measures and partial dependence
plots for the machine. We performed five simulation studies to investigate the properties
of the §-machine. The first three simulation studies were conducted to investigate selection
of prototypes, different (dis)similarity functions, and the definition of representation set.
Results indicate that we best use the Lasso to select prototypes, that the Euclidean distance
is a good dissimilarity function, and that finding a small representation set of prototypes
gives sparse but competitive results. The remaining two simulation studies investigated the
performance of the §-machine with imbalanced classes and with unequal covariance matri-
ces for the two classes. The results obtained show that the §-machine is robust to class
imbalances, and that the four (dis)similarity functions had the same performance regardless
of the covariance matrices. We also showed the classification performance of the §-machine
compared with three other classification methods on ten real datasets from UCI database,
and discuss two empirical examples in detail.

Keywords Dissimilarity space - Nonlinear classification - The Lasso

1 Introduction

Classification is an important statistical tool for various scientific fields. Examples of appli-
cations in which classification questions arise include early screening for Alzheimer’s
disease, detecting of spam in a mailbox, and determining whether someone is creditwor-
thy for a mortgage. Many classification techniques are currently available, most of which
base their classification rules on a set of predictor variables. Traditional classification tech-
niques include logistic regression and discriminant analysis (see Agresti (2013)). The past
two decades have seen an increase in the popularity of estimation and learning methods that
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use basis expansion. Friedman et al. (2009) summarized a host of procedures dealing with
basis expansion and/or ensemble methods for building a classification rule.

In daily life, human beings constantly receive input that needs to be categorized into
distinct groups or classes. If, for example, we see something above our head, we look at it
and instantly determine whether it is a plane, a bird, a fly, or a shooting star. The accuracy
of these categorizations is very high, and we are seldom mistaken. There is a large body
of literature investigating the way in which we (humans) categorize (for an overview, see
Ashby 2014). Although there are different theories, most are defined on the concept of
similarity or dissimilarity, i.e., the dissimilarity of the perceived observation from either
exemplars or prototypes. In the theory about categorization, an exemplar is usually defined
as an actually existing entity, whereas a prototype is defined as an abstract average of the
observations in a category.

In line with the human potential for categorization, we propose the §-machine, using
dissimilarities as the basis for classification. From the available predictor variables we com-
pute a dissimilarity (or similarity) matrix using a (dis)similarity function, which serves
as the input for a classification tool. The classification is based in the dissimilarity space
(Duin and Pekalska 2012), i.e., the dissimilarities take the role of predictors in classification
techniques. By changing this basis, it is possible to achieve nonlinear classification in the
original variable space. The classification rule we envision is based on the dissimilarity of
a new case from these exemplars or prototypes. A classification rule of this kind is in line
with the way we humans recognize objects in daily life and therefore might provide highly
accurate classifications.

Scaling of predictor variables influences the dissimilarities; for this reason, scaling
influences the classification performance. Many studies have been conducted to investi-
gate different standardization methods (see e.g., Cooper and Milligan 1988; Steinley 2004;
Vesanto 2001; Schaffer and Green 1996; Cormack 1971; Fleiss and Zubin 1969), but the
conclusions were inconsistent. In sum, the performance of different standardization meth-
ods varies in relation to different types of data, different algorithms, standardization within
or without clusters, and perhaps other factors. In all our applications, we use the z-score
method, i.e., the test set was standardized by the corresponding mean and variance from the
training set.

In this paper, we put forward the 6-machine approach to classification and prediction. We
define the §-function that computes dissimilarities between profiles of observations on the
predictor variables, and classification is based on these dissimilarities. We propose variable
importance measures and partial dependence plots for the §-machine, and a new decision
rule for deciding on the number of clusters for the K-means method. Furthermore, we show
relationships with support vector machines (Cortes and Vapnik 1995) and kernel logistic
regression (Zhu and Hastie 2012). In Section 4 and 5, we show a pilot study, five simulation
studies, and application examples. In Section 6, finally, we discuss the results obtained and
suggest some avenues for future development.

2 The §-Machine
2.1 The Dissimilarity Space
Suppose we have data for a set of observations representing the training set,i = 1,..., I.

For each of these observations, we have measurements on P variables Xy, ..., X,,..., Xp
called a row profile. The measurements are denoted by lowercase letters, i.e., x;1 represents
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the measurement for observation i on variable or feature 1. For every observation in the train-
ing set, a response Y is available which assigns observation i to one of C + 1 classes, i.e.,
y €{0,1, ..., C}. In the remainder of this paper, the focus will be on the case where C = 1.

Besides the training set, there is also a representation set indexed by » = 1,..., R.
This representation set consists of either exemplars or prototypes. As in the training set, the
elements in the representation set are characterized by measurements or values on each of
the P variables. For the representation set, no information concerning the response variable
is necessary.

Finally, a test set is available indexed by t = 1, ..., T. For the test set, there are also mea-
surements on the P variables and the response variable Y. The goal of the test set is to verify
the accuracy of the classification rule. Instead of working with a training set and test set, we could
use a cyclic algorithm, like 10-fold cross-validation, where parts of the data change roles.

Let us define a dissimilarity function §(-) that takes as input two profiles of equal length
and returns a scalar d;,, i.e.

dir = 8(xi, X,), ey

where x; is the vector which contains the row profile with the measurements for observation
i on the P variables. The elements d;, can be collected in the / x R matrix D. Rows of this
matrix are given by

d; = [di1, dia, ..., dig]" 2

collecting the dissimilarities of observation i towards the R exemplars/prototypes (i.e., an
R vector).

Table 1 presents four examples of (dis)similarity function §(-). Unlike the Euclidean dis-
tance and the squared Euclidean distance, the Gaussian decay function and the Exponential
decay function lead to similarity values. The Gaussian decay function and the Exponential
decay function are commonly used in psychophysics (Nosofsky 1986). De Rooij (2001)
used these functions to model probabilities in longitudinal data.

In multivariate analysis, the matrix X with elements x;, defines a P-dimensional space,
usually called the feature or predictor space. Similarly, the matrix D with elements d;,
defines an R-dimensional dissimilarity space (Pekalska and Duin 2005) or dissimilarity fea-
ture space. Note that the observations in this dissimilarity space occupy only the “positive”
orthant of the R-dimensional space, since dissimilarities are positive by definition.

2.2 The Representation Set
In Section 2.1, we defined dissimilarities between the observations and a representation set.
There are several choices for this representation set. One choice is simply to define the

representation set as being equal to the training set. With this choice, matrix D is of size
I x I. However, this might be problematic for some classification tools to use in the next

Table 1 Four (dis)similarity functions

Reference Function

The Euclidean distance 8(Xi,X,) =diy = Zf::l(x,-,, — x,,,)2
The squared Euclidean distance S(Xj, X,) = dizr

The Exponential decay function 8(x;, X,) = exp(— % ~diy)

The Gaussian decay function 8(xi, Xp) = exp(—% . dl.%_)
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step, because D could be a singular matrix. Another choice is to randomly select a sub-
set of the training set and use this random selection as the representation set. If R is the
number of randomly selected observations, the size of matrix D is I x R. Apart from the
random selection procedure, systemic procedures can be applied to build a representation
set. K-medoids clustering is a clustering method which breaks observations into clusters.
The resulting medoids are chosen as the representation set. We will apply the partitioning
around medoids (PAM) algorithm (Kaufman and Rousseeuw 1990) for K-medoids cluster-
ing. K-medoids clustering minimizes a sum of distances or dissimilarities, the unexplained
part of the data scatter. In contrast, the evaluation criterion of clusters can be switched from
the unexplained part to the explained part of the data scatter. Mirkin (2012) showed that the
explained part can be written in terms of the summary inner product. The most contributing
observation is the nearest in the inner product to the center. The representation set can be
obtained from the clustering method based on these inner products (IP).

The above four choices, the entire training set, random selection of the training set, PAM,
and the IP method, lead to dissimilarities between the observations and exemplars, i.e., actually
existing entities. Another possible choice is to use prototypes. To find prototypes, clustering meth-
ods can be used. Two well-known clustering algorithms are K-means (MacQueen 1967)
and probabilistic distance clustering (Ben-Israel and Iyigun 2008). Al-Yaseen et al. (2017)
applied a modified K-means method to each outcome category to reduce the number of
observations in the training set. The new observations are the averages of observations within
clusters, called high-quality observations, which then are used for training the classifier.

Similarly, we implement a K-means clustering method to find a representation set
defined on prototypes. The algorithm is applied on each outcome category of the response
variable Y. For example, for a dataset with two classes, kg and k; clusters are obtained for
the two classes, respectively. Then the representation set consists of R = ko +kj prototypes,
so the size of the dissimilarity matrix D is I x R.

For the K-means method, the number of clusters needs to be determined by users, while
we propose to use an automatic decision rule, similar to the decision rule in Mirkin (1999)
and Steinley and Brusco (2011). The number of clusters in each outcome category is deter-
mined by the percentage of explained variance compared with a user-specific threshold. The
percentage of explained variance v, is calculated by

The total sum of squares — Total within-cluster sum of squares

v = 3)

The total sum of squares

In the algorithm, one needs to specify a threshold to apply the automatic decision rule. After-
wards, the number of clusters in each class is automatically determined. The steps of the
K -means algorithm applying the automatic decision rule are shown in the below Algorithm.

Algorithm 1 K -means algorithm.

Input: the predictor variables matrix X, the response vector y, and a threshold
Output: the representation set defined on prototypes
Step 1: Forc =0to C,set K = 1:
(a) For the observations belong to class ¢, do K-means clustering.
(b) Calculate the percentage of explained variance, v,. Do
(b 1) If v, > threshold, K is the number of prototypes in class c. Else
(b2)K =K +1,goto(a)
Step 2: The representation set consists of the corresponding prototypes in each class.
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We put the automatic decision rule or the criterion and the percentage of explained vari-
ance, under the context of the §-machine. Mirkin (1999) used the similar idea as one possible
stopping rule for algorithm separate-conquer clustering (SCC). Steinley and Brusco (2011)
used the similar idea to construct the lower bound technique (LBT) to choose the number of
clusters. Although the idea is similar, it is applied under different circumstances. For the §-
machine using the K-means algorithm, we use the K-means algorithm on each class of the
data, and the algorithm finds prototypes simultaneously. Whereas algorithm SCC searches
prototypes one by one, and the algorithm is applied on the entire data. For the method pro-
posed by Steinley and Brusco (2011), the user still needs to specify the maximal Kyax. As
the data are partitioned into K = 2,---, Knax, and LBTk is computed correspondingly.
The chosen K is the one corresponding to the lowest LBTg.

A final option for deriving prototypes is to ask content-specific experts to name a few
typical profiles called archetypes, and ask for values on the variables for these archetypes.
When the expert comes up with R archetypes, the size of matrix D is I x R.

2.3 Dissimilarity Variables in Classification

Let us denote by 7 the probability that Y is in one of the classes, i.e., # = Pr(Y = 1). This
probability for a specific observation will depend on the R dissimilarities from members of
the representation set, which will be denoted by 7(d;) = Pr(Y = 1|d;). Although many
different classification techniques can be used, our focus will be on logistic regression. That
is, we define this probability to be

exp (o +dfB)

w () = 1+exp(a+dB)’

“

where B represents an R vector of regression coefficients. The model can be fitted by
minimizing the binomial deviance:

Deviance = —2 Z [vilogm(d;) + (1 — y;) log(1 — 7(d;))]. 3)

l

If the representation set consists of the entire training set, it is necessary to select dis-
similarity variables, because otherwise the logistic regression would be indeterminate. With
some choices, i.e., random selection of training set or clustering methods, a standard logistic
regression could be carried out. However, there is a danger of overfitting. To avoid overfit-
ting, we implement two exemplar/prototype selection method: the Lasso (Tibshirani 1996;
Friedman et al. 2010b) and forward-stepwise selection based on the lowest AIC. Selected
exemplars (or prototypes) will be called active exemplars (or prototypes). A comparison of
these two selection methods will be shown in Section 4.

We define the §-machine as the method that uses the (dis)similarity function to compute
a (dis)similarity matrix from the predictor matrix and then uses this dissimilarity matrix in
logistic regression.

2.4 Variable Importance Measure
In a logistic regression with dissimilarity variables, it is impossible to see the value of the
original variables, all we obtain are regression weights for dissimilarities from certain mem-

bers of the representation set. Nevertheless, often the focus lies on the value of the original
variables. Therefore, in this subsection, we define variable importance measures.
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To verify the importance of a predictor variable X ,, a permutation test approach is
used. One such example is the importance measure for random forests (Breiman 2001).
In this approach, the values of variable X, are randomly shuffled over observations in the
training set. Once the variable is shuffled the dissimilarities are computed by applying the
d-function, and the dissimilarities are used in the logistic regression.

The variable importance measure is the deviance obtained using the original data minus
the deviance of the model fitted used in the permuted variable. By repeating the whole
procedure a large number of times, a mean decrease in deviance can be computed (together
with a standard deviation or a 95% interval). The larger the average in decrease the more
important the variable is for predictive performance. The procedure is repeated for each
predictor variable, and the results are plotted in a variable importance plot.

2.5 Partial Dependence Plots

Although models are interpreted in terms of dissimilarity from one or more exemplars or
prototypes, it might be of interest to see the relationship between predictor variables and the
response. For this purpose, we use partial dependence plots (Friedman 2001; Berk 2008)
representing a conditional relationship between a predictor variable and the response vari-
able, keeping other variables at fixed values. To obtain the partial dependence plot for
variable X, first, obtain the unique values of this variable and collect them in the vector
v with length V,,. Second, define the V), auxiliary matrices X containing the original vari-
ables and in the column of the pth variable, define a single unique value from the vector
v. Finally, for each of the auxiliary matrices, make a prediction of the response probability
and average these over the observations to obtain a final predicted value. The variability in
this prediction will be represented by the standard error.

3 Theoretical Comparisons with Support Vector Machines and Kernel
Logistic Regression

Support vector machines have become popular methods for classification. Support vector
machines work by trying to find a hyperplane that separates the two classes. The distance
from the hyperplane to the observations is called the margin. The methodology seeks the
hyperplane with the largest margin. The points closest to the hyperplane are called the
support vectors. Support vector machines extend the idea of enlarging the original vari-
able space by using kernels, where the dimension of the enlarged space can be very large
(Friedman et al., 2009, pp.423-429; James et al. 2013, pp.350-354). The major improve-
ment in support vector machines came through the kernel trick, which is to avoid working
in the enlarged space, one only involves the predictor variables via inner products. It was
recognized that much better separation was possible by using kernels rather than the origi-
nal variables. Kernels can take different forms, but one important kernel is the radial basis
kernel. The radial basis kernel is defined in terms of the squared Euclidean distance as

K (xi,X,) = exp(— y x d}). (6)

Although the hyperplanes are linear in the enlarged space, in the original variable space,
this leads to nonlinear classification boundaries.

If the idea of seeking the largest margin is applied in the original variable space, it is
called the support vector classifier or the linear support vector machine. Linear support
vector machines are closely related to logistic regression procedures. It has been recognized
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(Friedman et al. 2009) that the same kernels as used in SVMs may be used in logistic
regression, i.e., a basis expansion is applied and then logistic regression is applied. A logistic
regression based on the radial basis kernel is quite close to our logistic regression based on
dissimilarities. In our approach, we use the dissimilarities directly, whereas kernel logistic
regression (KLR) uses the exponent of minus the scaled (by y) squared Euclidean distance.
The Gaussian decay function is quite similar to the radial basis function in support vec-
tor machines. The only thing that differentiates these two functions is that the radial basis
function has a tuning parameter, while the Gaussian decay function has a fixed value 1/P.

4 Simulation Studies
4.1 The New Decision Rule of the K-Means Method: a Pilot Study

In Section 2.2, we proposed an automatic decision rule of deciding on the number of clusters
for the K-means method. An artificial problem is generated to show the usefulness of the
automatic decision rule in terms of the predictive performance. The problem has two classes.
Each of the classes consists of four 2-dimensional Gaussians. The centers are equally spaced
on a circle around the origin with radius r (see Fig. 1). The radius r controls if clusters have
overlap or not. With a larger radius, there is less overlap. In our study, we set the radius
r € {2+/2, 8}, which stands for the data with or without overlap (left and right sides of
Fig. 1).

In this pilot study, the representation set contains either prototypes or exemplars. The
prototypes are selected using the K-means method with the automatic decision rule, when
we choose the number of prototypes to be the number of clusters that can explain at least
v, of the variance in each outcome category. Two levels of the percentage of explained
variance v, are chosen: 0.5 and 0.9. To avoid a local minimum, we use 100 random starting
points. With the resulting cluster statistics, Euclidean distances are computed between the
observations in the training set and the estimated cluster means (prototypes). The exemplars
are selected by three different methods. The first method is simply to treat the whole training
set as the representation set, we calculate Euclidean distances between the training set itself
resulting an / x [ distance matrix, where / is 500 in this case. The second method is to use
partitioning around medoids (PAM) (Kaufman and Rousseeuw 1990) to select exemplars on
each class. We set the number of clusters from two to ten, the optimal number of medoids

x2

Fig.1 Examples of the artificial problem in the pilot study. The left one is the radius » = 2+/2, and the right
one is r = 8. The triangle and the cross denote the observation classified as class 0 and class 1, respectively
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for each class is chosen based on the optimum average silhouette width (Rousseeuw 1987).
With the selected medoids from the two classes, Euclidean distances from the observations
in the training set and the selected medoids are computed. Besides PAM, we also use the
clustering method based on the inner product (IP) (Mirkin 2012). To reduce computational
time, we use the partition from PAM, and set them as the initial setting for the IP method.

The Lasso is performed resulting in active prototypes or exemplars. For each condition,
100 replications will be simulated. With each dataset, a test set is generated with size 1000.
The misclassification rate (MR) in the test set is used to evaluate the predictive perfor-
mance. The misclassification rate is the percentage of misclassified observations. For this
pilot study, the MR will be calculated for each condition, and the average MRs will be
presented in the results table.

To perform this study, we use the open source statistical analysis software R (R Core
Team 2015). PAM is implemented in the cluster package (Maechler et al. 2013). The
Lasso is implemented in the glmnet package (Friedman et al. 2010a).

For both cases, r € {2+/2, 8}, the §-machine using a higher level of the percentage of
explained variance v, = 0.9 had a lower MR than using the threshold v, = 0.5, see Table 2.
Although v, = 0.5 resulted in less active prototypes than v, = 0.9 in both cases, MR
increased sharply from v, = 0.5 to v, = 0.9.

The §-machine using the K-means method (v, = 0.9) and using the whole training set
had the same MR, which indicates that the K-means method using the automatic decision
rule can successfully find high-quality observations. Moreover, the §-machine using the K -
means method leads to a smaller number of active prototypes than that of the one using
the entire training set. Therefore, only a small number of high-quality prototypes is enough
to train a good classifier. For the data without overlap, the §-machine using the K-means
method (v, = 0.9) found one prototype for each cluster precisely. This result supports the
usefulness of the automatic decision rule of the K-means method.

The §-machine using PAM and using the K-means method (v, = 0.9) had the same
classification performance in terms of MR for both the data with and without overlap. Using
PAM, eight active exemplars were successfully found in both data cases, while using the
K -means method, we found eight active prototypes only for the data without overlap. Thus,
in this study, the §-machine using PAM resulted in sparser models than using the K-means

method. The IP method did not perform well for the data with overlap (r = Zﬁ) similar

to the §-machine using prototypes (v, = 0.5). But for the data without overlap (r = 8), the
IP method had satisfactory results.

Table 2 The average misclassification rate (MR) and the average number of active prototypes or exemplars

Method r=2y2 r=38
MR Active prototypes/exemplars MR Active prototypes/exemplars
ve =0.5 0.46 (0.03) 5.01(1.53) 0.31 (0.07)  5.00 (0.90)
ve =0.9 0.29(0.02) 15.96 (1.81) 0.00 (0.00)  8.00 (0.00)
The training set  0.29 (0.02)  66.14 (21.33) 0.00 (0.00) 33.97 (16.61)
PAM 0.29 (0.02)  8.00 (0.00) 0.00 (0.00)  8.00 (0.00)
Inner product 0.45(0.04) 4.30(2.43) 0.02 (0.04) 7.97(0.17)

Standard deviations are shown within brackets
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Table3 Summary of independent factors and levels for simulation study 1-3. The last row is the extra factor
for simulation study 3

Factor # Level

Artificial problem 3 Two norm, four blocks, Gaussian ordination
The training size 2 50, 500

The number of predictor variables 3 2,5,10

The number of irrelevant variables 3 0,2,5

The representation set (only for simulation study 3) 4 The training set, v, = 0.5, v, = 0.9, PAM

4.2 Five Simulation Studies

In simulation study 1, we discuss two techniques for selecting active exemplars: the Lasso,
and forward-stepwise selection based on AIC. The comparison of the Lasso and forward
selection based on AIC, within the §-machine is made. Three types of artificial datasets are
generated, each varying in the following factors: the training size, the number of predictor
variables, and the number of irrelevant variables (Table 3). The sizes of a training set are 50
and 500, corresponding to a small and large dataset. To explore the effects of the numbers
of predictor variables, we choose 2, 5, and 10. These are the relevant variables which have
a relation with the response variable. The irrelevant variables, on the contrary, are sampled
from the standard Gaussian distribution and are included in the data as noise.

Simulation study 2 investigates the difference between the §-machine with the Euclidean
distance and three (dis)similarity functions mentioned in Table 1. The same factors are used
as in Simulation study 1.

Simulation study 3 is to investigate the selection of the representation set. The research
question now arises, how a representation set should be selected out of the whole training
set to guarantee a good gradeoff between the accuracy and the complexity of the model. In
Section 4.1, a pilot study showed that the K-means method using the automatic decision
rule and partitioning around medoids (PAM) (Kaufman and Rousseeuw 1990) had a good
performance, but the inner product clustering method (IP) (Mirkin 2012) did not perform
well. Because of the poor performance of the IP method, in simulation study 3, we do not
include it. In this study, we go further, which considers more factors as shown in Table 3
than the pilot study.

The data generated from the above three simulation studies all have balanced classes.
Therefore, in simulation study 4, we investigate the performance of the §-machine for imbal-
anced data. Japkowicz and Stephen (2002) considered the class imbalance problem on three
different dimensions: the degree of concept complexity, the size of the training set, and the
level of imbalance between the two classes. In this simulation study, we only consider the
two norm problem, keep the number of predictors as two, the size of the training set is
kept fixed at 500. The levels of class imbalance are defined as the ratio of the size of the
majority class to that of the minority class. Six levels of class imbalance are considered:
{1,2,4,8, 16, 32}, which were inspired by Japkowicz and Stephen (2002). For example, if
the level of imbalance is 2, the data have one class of size 333 and the other class of size 167.

Support vector machines (SVMs) have been shown to be robust to the class imbalance
problem, because they base the decision line on a small number of support vectors (Jap-
kowicz and Stephen 2002). Therefore, we consider support vector machines with radial
basis kernel (SVM(RBF)) as a reference and compare the performance of the §-machine
to SVM(RBF). The performance of different methods is evaluated by the misclassification
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rate (MR). Because the MR is sensitive to the distribution over classes, in this simulation
study, two extra criteria will be used: the area under the receiver operating characteristic
(ROC) curve (AUC) and the F-measure. The ROC curve is created by plotting the sensitiv-
ity against (1—specificity) at various threshold settings (Fawcett 2006). The F-measure is a
harmonic mean of precision and sensitivity (Van Rijsbergen 1979).

In simulation study 4, the data from the two norm problem are the two classes drawn
from two multivariate Gaussian distribution with different means but the same covariance
matrix, the identity matrix (denoted by X). In simulation study 5, we consider the situation
where the two classes have different means and covariance matrices. Similar to the way of
generating imbalanced data, we consider the ratios of standard deviation of the two predic-
tors from the first class to the second class. Let us keep the covariance matrix of the second
class as the identity matrix. The covariance matrices for the first class are ¥ and 4%. As in
simulation study 4, we fix the number of predictor variable to 2 and the size of the training
set to 500.

In all simulation studies, for each condition, 100 replications will be simulated. With
each dataset, a test set of size 1000 is generated using the same characteristics. The misclas-
sification rate (MR) in the test set is used to evaluate the predictive performance, except for
the two extra criteria in simulation study 4.

The forward selection based on the AIC logistic regression is implemented in the
stepAIC function in the MASS package (Venables and Ripley 2002). SVM(RBF) is
implemented in the svm function in the e1071 package (Meyer et al. 2014).

(a) Two norm. (b) Four blocks.

(c) Gaussian ordination.
Fig. 2 Examples of three artificial problems in two dimensions. The triangle and the cross denote the

observation classified as class 0 and class 1, respectively. The lines are the decision boundaries in each
problem
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4.3 Data Descriptions

The three types of artificial problems are given as follows: two norm, four blocks, and
Gaussian ordination (Fig. 2).

e Two norm: This problem has two classes. The points are drawn from two multivariate
Gaussian distributions, and their covariance matrices are equal to the identity matrix.
Class 0 is multivariate Gaussian distribution with mean (a, a, ..., a) and class 1 with
mean (—a,—a,...,—a),a = 2/\/? The two classes are linearly separable.

e Four blocks: The data consist of two classes. The predictor variables are inde-
pendent and identically generated from the uniform distribution in the range (— 2, 2).
For observation i, the product of predictor variables is calculated, which is || 11;:1 Xip-
According to the product, the rank of observation i in all generated observations is
obtained. Then the rank is transformed to a scale between 0 and 1, i.e.,

rank — 1
Z.rank = ———. 7
I-1

After that, Z.ranks are used as the probabilities to draw observed classes from
a Bernoulli distribution. Therefore, if an observation has a higher product, it has a
higher probability of becoming class 1, and vice versa. Figure 2b illustrates that an
observation’s class is closely related to whether the product is positive or negative.

Since the probabilities are used to assign observations to class O or class 1 by drawing
from a Bernoulli distribution, the noise is generated systematically. Observations with
probability around 0.5 have a higher chance of being assigned to the class with the
lowest probability.

® Gaussian ordination: The variables are independent and identically generated
from the uniform distribution in the range (—2, 2). For observation i, the sum of the
squares of the predictor variables is calculated, which is > 11;1 xl.zp, and the rank of the
value is generated. Again, the ranks are transformed to a scale between 0 and 1. The
rescaled ranks, Z.ranks, are taken as the probabilities, and the corresponding outcomes
are generated from the Bernoulli distribution using the probabilities. Therefore, a point
that is close to the origin of the coordinate plane has a high probability of being assigned
to the class O (see Fig. 2c¢).

The transformed ranks are used as the probabilities rather than using the sum of
squares variables, because the sum of squares measure, which is defined by many coor-
dinates, has little difference in the distances between pairs of observations in space
(Beyer et al. 1999). In other words, the sum of squared variables of observations do
not indiscriminate in a high-dimensional space. When the dimensionality increases, the
proportional difference between the farthest observation and the closest observation
diminishes.

The baseline error for the two norm problem, the four blocks problem, and the Gaus-
sian ordination problem is 0.02, 0.25, and 0.25 respectively. The term “the baseline error”
denotes the percentage of the generated response variable that is inconsistent with the true
class, i.e., the class that has the highest probability. Different artificial problems have differ-
ent ways to determine the true class of an observation. For the two norm problem, according
to the generated data, we calculate the densities from the two multivariate Gaussian distri-
butions. Then, the observation is assigned to the class which fits a multivariate Gaussian
distribution that has the higher density. This is the true class of the observation in question.
If we say an observation is assigned wrongly, then the true class is inconsistent with the
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generated y. For the four blocks problem, the true class of an observation is determined by
the sign of the product of this observation’s predictor variables. For the Gaussian ordina-
tion problem, the true class of an observation is determined by whether the Z.rank of this
observation is larger than 0.5.

4.4 Result Analysis

As the increase of replications can always achieve significant results, emphasis of the sim-
ulation studies is on the effect sizes. To assess the effect size of the factors and their
interactions, partial n squared (nf,) (Cohen 1973; Richardson 2011) is used. Suppose that

there are two independent factors, A and B. The formula of partial 5 squared for factor A is
= SS(A)
P SS(A) + SS(Withingroups)’

where SS(A) and SS(Withingroups) are the sum of squares for the effect of factor A and
S S (Withingroups) is the sum of squares within the groups. A common rule of thumb is
that n% values of 0.01, 0.06, and 0.14 represent a small, a medium, and a large effect size,
respectively (Rovai et al. 2013).

The results obtained from the first three simulation studies will be analyzed using fixed
effect models, and statistics for factors and their interactions will be tested. In this paper, for
ease of interpretation, we focus on two-way interaction effects. The three artificial problems
will be modeled separately. Therefore, for each problem, the model is as follows:

MR=t+m4v+iv+s+mxv+mxiv+mxs+vxXiv+vxXs+ivxs+e, (8

where “x” represents the interaction between two factors, 7 is the intercept, € is the random
error, and m, v, iv, s are the method, the number of predictor variables, the number of
irrelevant variables, and the training size, respectively. For simulation study 1, the method
factor indicates the two variable selection methods. For simulation study 2, the method
factor contains the §-machine with the Euclidean distance and the other three (dis)similarity
functions. For simulation study 3, the method factor stands for the four representation set:
the training set, the representation set selected by the K-means method with the automatic
decision rule (v, = 0.5, v, = 0.9), and the representation set selected by PAM.

For simulation 4 and 5, we do not consider many factors as the first three studies. The
ANOVA model is as follows:

outcome = 7 + method + A + method x A + €, )

where, in simulation study 4, the outcomes are MR, AUC, and the F-measure, the factor A
stands for the level of imbalance factor and the method factor contains the §-machine using
the four (dis)similarity functions and SVM(RBF); and in simulation study 5 the outcome
is MR, the method factor contains the §-machine with the Euclidean distance and the other
three (dis)similarity functions, and the factor A stands for the covariance factor.

4.5 Results
4.5.1 Comparison of Two Selection Methods in the §-Machine
Table 4 shows the misclassification rates (MRs) averaged over all design factors except the

method factor. The standard deviations are shown within brackets. For the three artificial
problems, the §-machine using the Lasso outperformed the one using the forward stepwise
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Table 4 The average misclassification rates of the §-machine with two types of variable selection methods

Problem Lasso Forward stepwise
Two norm 0.04 (0.02) 0.05 (0.03)
Four blocks 0.44 (0.09) 0.46 (0.08)
Gaussian ordination 0.32 (0.06) 0.34 (0.06)

Best results are set in italics. Standard deviations are shown in brackets

method in terms of MRs. For the three problems, the method factor had a medium effect
size, which indicates that the MR decreases if we use the Lasso rather than the forward step-
wise method as the selection method in the §-machine. The other method-related factors had
either no effect size or only small effect size (results not shown). In sum, the §-machine with
the Lasso outperformed the forward stepwise method in all three artificial problems. More-
over, the Lasso was also superior to the forward stepwise method in terms of computational
time.

4.5.2 Comparison of the Four (dis)Similarity Functions in the §-Machine

The misclassification rates and their standard deviations (shown within brackets) are given
in Table 5. Table 6 gives the estimated nfj for each model component for the three problems.
The method-related effect sizes which are larger than or equal to 0.06 are set in italics,
indicating at least medium effect sizes.

Generally speaking, for the two norm problem, the §-machine had quite good results in
terms of MRs, which were very low. Although the §-machine with the Euclidean distance
had the lowest MR overall, the effect size of the method () was small. Thus, for the linearly
separable problem, the 6-machine had a satisfactory performance, and this performance
can be marginally changed by using different dissimilarity functions. More specifically,
the §-machine using the Euclidean distance slightly outperformed the other dissimilarity
functions.

For the four blocks problem, the §-machine had very high MRs, especially with the
squared Euclidean distance which failed to predict the four blocks problem, as the mean
MR was around 0.5. The large effect size of the method factor m shows that changing a
dissimilarity function had a large influence on the performance of the §-machine. The inter-
action of the method with the number of predictor variables (m : v) also had a large effect
size. Figure 3a illustrates that, when the data had two predictor variables, the §-machine
with the other three dissimilarity functions performed very similar, whereas the §-machine

Table 5 The average misclassification rate of the §-machine with four (dis)similarity functions

Problem Euc. Exp. Gau. sq.Euc.

Two norm 0.03 (0.02) 0.04 (0.02) 0.04 (0.03) 0.04 (0.02)
Four blocks 0.44 (0.09) 0.44 (0.09) 0.44 (0.09) 0.50 (0.02)
Gaussian ordination 0.32 (0.06) 0.32 (0.06) 0.32 (0.06) 0.36 (0.07)

Standard deviations are shown within brackets. Euc., Exp., Gau., and sq.Euc., are abbreviations of the
Euclidean distance, the Exponential decay, the Gaussian decay, the squared Euclidean distance, respectively
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Table 6 Estimated effect size 77127 for each model component for the three problems

Problem m v s iv m:v m:s m:iv vis v:iv s v
TN 0.02 0.00 0.32 0.04 0.00 0.02 0.00 0.00 0.01 0.03
FB 0.44 0.79 0.26 0.18 0.54 0.12 0.06 0.27 0.15 0.01
GOM 0.15 0.00 0.53 0.55 0.04 0.02 0.09 0.00 0.04 0.06

The method-related effect sizes which are larger than or equal to 0.06 are set in italics. TN, FB, and GOM
are abbreviations of the two norm, the four blocks, and the Gaussian ordination problems

using the squared Euclidean distance had very high MRs. As the number of predictor vari-
ables increases, the differences among the §-machine with four dissimilarity functions did
not exist, for MRs of the four dissimilarity functions were all around 0.5. The large effect
of the number of predictor variables v also indicates that the number of predictor variables
had a very strong influence on MRs. The interaction between the method and the training
size (m : s) had a medium effect size. The difference in MRs of the §-machine with differ-
ent dissimilarity functions became larger when the training size was larger (see Fig. 3b), but
the performance of the 6-machine with the Euclidean distance, the Exponential decay, and
the Gaussian decay were very similar, regardless of the size of the training set. Figure 3c
illustrates the medium effect size of the interaction between the method and the number of

Four blocks Four blocks
I .
£ [ ¢ i ;
' = o i i
Method i i
8 2 i i
s Eucldean s 1 i
] f
5 == Exponential decay 8 i i i
. Gaussian decay ! i i
s | squared Eucldean b : !
v=2 v=2 v=2 v=2 v=5 v=5 v=5 v=6 v=10 v=10 v=10 v=10 =50 $=50 =50 =50 $=500 $=500 $=500 $=500
(a) The interaction of the method factor with (b) The interaction of the method factor with
the number of predictor variables factor. the training size factor
Four blocks Gaussian ordination
e i 3 s s ] |
€3 - B |
& : s - _1‘ ||
3 P 8 ) L E |
i ]| ==| | |
o w0 M0 R0 w2 2 w2 w2 w5 w5 15 s % Fo W0 o 2 2 2 2 s W5 s s
(c) The interaction of the method factor with (d) The interaction of the method factor with
the number of irrelevant variables factor the number of irrelevant variables factor

Fig. 3 The box plots for MRs of the §-machine with the Euclidean distance and the three (dis)similarity
functions. The shading patterns are explained in graph (a)
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irrelevant variables (m : iv). When the data had no irrelevant variables, the §-machine with
the Euclidean distance, the Exponential decay, and the Gaussian decay had lower MRs than
the §-machine with the squared Euclidean distance. As the number of irrelevant variables
increases, the difference of MRs for the §-machine with different (dis)similarity functions
gets smaller.

In sum, the squared Euclidean function is not recommended in this problem. The
d-machine with the other three (dis)similarity functions have the similar predictive perfor-
mance. Therefore, in the case of a problem with two predictor variables, where there is
significant interaction between two variables, the §-machine with the squared Euclidean dis-
tance is the last to recommend. In the case of data with more than two predictor variables,
the §-machine fails to predict on this problem.

For the Gaussian ordination problem, the §-machine with the squared Euclidean distance
again had the highest MR. The method factor m had a large effect size, indicating that using
different dissimilarity functions had large influence on the MR. The interaction between
the method and the number of irrelevant variables (m : iv) had a medium effect. Figure 3d
reveals the interaction between these two factors. If the data have no irrelevant variables,
four dissimilarity functions perform similarly. But if the data have irrelevant variables, the
squared Euclidean distance is the last one to choose.

4.5.3 Selection of the Representation Set

From simulation study 2, we found, when the number of predictor variables was larger than
two, the §-machine failed to predict the four blocks problem. Therefore, in this study for the
four blocks problem, we made a comparison on the data with only two predictor variables.
For the remaining two problems: the two norm problem, the Gaussian ordination problem,
we considered all factors mentioned on Table 3.

For the two norm and the Gaussian ordination problems, the 6-machine based on either
the training set or the reduced representation set had similar MRs (see Table 7 (a)). In the
analysis of variance (see Table 8), for the two norm problem, the method factor and the
two-way interactions including the method factor had either no effect or a small effect.
The small effect size of the method factor suggests that using different representation sets
hardly influenced the performance of the §-machine. For the Gaussian ordination problem,
the effect size of the method () was medium. The 6-machine using the whole training set

Table 7 The average results of the three problems for each type of the representation set

Problem v, = 0.5 v, = 0.9 The whole training set PAM

(a) The average misclassification rate

Two norm 0.04 (0.02) 0.04 (0.02) 0.03 (0.02) 0.04 (0.02)
Four blocks 0.32(0.07) 0.33(0.07) 0.33(0.08) 0.46 (0.08)
Gaussian ordination 0.34 (0.06) 0.32 (0.05) 0.32 (0.06) 0.35(0.07)

(b) The average numbers of active prototypes/exemplars

Two norm 6.37 (3.43) 7.58 (5.80) 6.62 (3.29) 4.74 (1.93)
Four blocks 8.98 (5.77) 44.73 (55.61) 31.80 (41.28) 7.54 (6.07)
Gaussian ordination 18.28 (16.09) 75.72 (85.59) 46.72 (60.47) 7.84 (4.78)

Standard deviations are shown within brackets
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Table 8 Estimated effect size 7712, for each model component for the three problems

Problem m v s iv m:v m:s m:iv vis v:iv s v
TN 0.01 0.01 0.29 0.05 0.00 0.02 0.00 0.00 0.01 0.02
FB 0.25 0.58 0.59 0.15 0.16 0.10
GOM 0.10 0.02 0.54 0.58 0.02 0.02 0.06 0.01 0.04 0.07

The method-related effect sizes which are larger than or equal to 0.06 are set in italics. TN, FB, and GOM
are abbreviations of the two norm, the four blocks, and the Gaussian ordination problems

or using the K-means method (v, = 0.9) had the lowest MRs. The §-machine using PAM
had the highest MR but also had the sparsest solutions.

For the four blocks problem, we only kept the data with two relevant variables. Thus, in
Table 8, the spaces under the number of features (v) are blank. The method factor and the
two-way interactions including the method factor had large effect. The large effect of the
method factor was shown in Table 7(a), which the §-machine using PAM had much higher
MR than using other methods. Figure 4a illustrates the large effect size of the interaction
between the method and the training size factor (m : s). When the size of the training set
was 50 (s = 50), the §-machine using the four representation sets had similar results. After
the sample size increased to 500, PAM had the worst performance in terms of MRs. The
other three methods performed similarly. Figure 4b showed the large effect of the interaction
between the method and the number of irrelevant variables (m : i). If the data have no irrel-
evant variable, the four representation sets performed similarly. If the data have irrelevant
variables, PAM is the worst representation set selection method to choose.

Table 7 (b) gives the average numbers of active prototypes/exemplars for each problem
and each type of the reduced representation set. PAM and the K-means method (v, = 0.5)
had the smallest number of active exemplars/prototypes among all the three problems.
Except for the two norm problem, the effect size of the method on the number of active pro-
totypes was large (results not shown). This large effect size indicates that using the K -means
method (v, = 0.5) and PAM instead of the other two representation selection methods had
fewer active prototypes/exemplars.

Four blocks N Four blocks
° =05 e
2 = =09 2

the traning set

2 A 2

=50 =50 550 =50 5600 5500 5500 5500 =0 0 = 0 R =2 2 = B = =5

(@) The interaction of the method factor with the (b) The interaction of the method factor with the
training size factor number of irrelevant variables factor

Fig.4 The box plots for MRs of the §-machine with different representation selection methods. The shading
patterns are explained in graph (a)
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Table 9 Estimated effect size 77[2,

for each model component for Outcome Method Ratio Method:ratio
the two norm problem
MR 0.03 0.63 0.02
The method-related effect sizes AUC 0.05 0.58 0.05
which are larger than or equal to F-measure 0.05 0.65 0.07

0.06 are underlined

In sum, for the three artificial problems, the 6-machine using the K-means method (v, =
0.5) had comparable misclassification rate with the §-machine using the whole training set.
Moreover, the §-machine using the K-means method (v, = 0.5) offered sparser solutions,
resulting in more interpretive models. PAM performed well on the two norm and Gaussian
ordination problem in terms of MRs and the sparseness of the solutions. For the four blocks
problem, PAM had the worst performance.

4.5.4 Study with Imbalanced Classes

Table 9 displays the effect sizes for the method factor (method), the level of imbalance fac-
tor (ratio), and the interaction between the two (method:ratio). The method factor and the
interaction (method:ratio) had small effects, except that the influence on the F-measure for
the interaction has a medium effect (nf7 = 0.07). Therefore, we only show the results of
the F-measure in Fig. 5. Furthermore, because SVM(RBF) and the §-machine using the
four dissimilarity functions performed the same when the levels of imbalance were from
1 to 4, we only show the results for levels 8 to 32. Figure 5 illustrates that with increas-
ing class imbalance, the §-machine using the Euclidean distance and the squared Euclidean
distance function achieved higher classification performance than using the other two dis-
similarity functions. Moreover, compared with SVM(RBF), the §-machine had competitive

Two norm
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Fig. 5 The box plots for the F-measure of the §-machine with different dissimilarity functions compared
with SVM(RBF)
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Table 10 The short descriptions of the 10 UCI datasets

Dataset Problem Variable Size Class distribution (%)
1 Haberman’s Survival 3 306 73.53/26.47
2 Blood Transfusion Service Centre 4 748 23.80/76.20
3 Banknote Authentication 4 1372 44.46/55.54
4 Liver 5 345 44.93/55.07
5 Pima Indian Diabetes 8 768 34.90/65.10
6 Ionosphere 34 351 64.10/35.90
7 Spambase 57 4601 39.40/60.60
8 Sonar 60 208 53.37/46.63
9 Musk version 1 166 476 43.49/56.51
10 Musk version 2 166 6598 15.41/84.59

performance. The high average F-measure value (above 0.9, results not shown) suggests
that the §-machine is not sensitive to the class imbalance problem.

4.5.5 Study with Unequal Covariance Matrices

The covariance factor does influence the MR of the §-machine, as n% = 0.94. With unequal
covariance matrices the performance of the §-machine became worse, which the average
MR has increased from 0.02 to 0.08. The interaction between the method factor and the
covariance factor had an effect size close to zero ('If; = 0.002, results not shown), which
means the §-machine using the four dissimilarity functions had the same performance
regardless of the two covariance matrices.

5 Applications
5.1 UCI Datasets

Ten empirical datasets (Table 10) from the UCI machine learning database (Newman et al.
1998) were used to evaluate the performance of the §-machine and to compare the §-
machine with other methods. For these ten datasets, the number of predictor variables ranges
from 3 to 166. The sizes of the datasets vary from 208 to 6598. For each dataset, half of
the observations were assigned to the training set, the other half constituted the test set. As
the distribution of the response variable is skewed in some datasets (e.g., Musk dataset ver-
sion 2), stratified sampling was conducted when the training set and test set were sampled.
Dataset descriptions are shown in Appendix.

The following methods were compared: the §-machine using four (dis)similarity func-
tions, classification trees, support vector machines with radial basis kernel (SVM (RBF)),
and the Lasso. We decided to use SVM(RBF) here, because it is related to the §-machine
using the Gaussian decay function. The comparison of the §-machine and the Lasso is a
comparison of a linear classifier in the dissimilarity space versus the predictor space. We
also used classification trees. Tree models are easily interpreted. But they are often not com-
petitive with other supervised learning methods (James et al. 2013). Also classification trees
suffer from high variance. Three outcome measures were chosen: the misclassification rate
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(MR), the area under the receiver operating characteristic (ROC) curve (AUC), and the F-
measure. The last two criteria were introduced because of the imbalanced classes in some
datasets.

We mainly focused on the results of AUC shown in Table 11 (a) and took the results of
MR and the F-measure as the references (see Table 11 (b) and (c)). In order to compare
the four methods, we ordered ten datasets into three parts. Part I shows the datasets that
had substantial AUC differences among the §-machine with four (dis)similarity functions
and had substantial differences between the §-machine, classification trees, SVM(RBF),
and the Lasso, where we define a substantial difference as a difference between the high-
est AUC and the lowest AUC larger than or equal to 0.05. Part II shows the datasets that
had no substantial differences among the §-machine with four functions, but had substan-
tial difference between the §-machine methods and the other methods; Part III shows the
datasets that were insensitive to the choice of classification methods. Hence, Part I is used to
evaluate the difference among the four dissimilarity functions in the §-machine. Part I and
Part II are important for the comparison of the performance of the different classification
methods.

5.1.1 Results

For both datasets from Part I (see Table 11 (a)), the Gaussian decay function achieved the
best prediction in terms of AUC, followed by the Euclidean distance and the exponential
decay function. The squared Euclidean distance had the lowest AUC.

The comparison of the §-machine with the other three classification methods were made
based on the datasets from Part I and Part II in Table 11 (a). The §-machine and the
SVM(RBF) had the best predictive performance among all the methods in terms of AUC.
Among the nine datasets from Part I and Part II, the §-machine had five times lower, two
times equal, and two times higher values than those of the SVM(RBF). From the five times,
two datasets had a substantial decrease of AUC if the §-machine was applied instead of
the SVM(RBF). The performance of the §-machine is better than the SVM(RBF) if we use
the criteria of the F-measure and MR (see Table 11 (b) and (c)), which is shown by more
bold values than the SVM(RBF) in these two tables. The similar results of the §-machine
and the SVM(RBF) using the three criteria show that the §-machine is very competitive and
sometimes superior to the support vector machine.

For the two other methods, classification trees and the Lasso, the Lasso had intermediate
performance. The results showed that for the nine datasets from Part I and Part II, the §-
machine had three times equal and five times higher AUC than the Lasso. For three out of
the five datasets, the difference of AUC between the §-machine machine and the Lasso was
substantial. The comparison of the §-machine and the Lasso reveals that linear classifiers
build in the dissimilarity space can achieve a better performance than the ones build in the
original predictor space. Classification trees had the worst performance among all methods.

As the ten datasets are well known and are frequently used for evaluation of classifi-
cation methods (Ghazvini et al. 2014; Duch et al. 2012; Tao et al. 2004), we compare the
performance of the 6-machine against the previous results. In general, there was not a sin-
gle classification method that had significantly best results for all these datasets in the past,
because each classification method relies on assumptions, estimators, or approximations.
Any classification method can achieve the best performance if there is an ideal dataset
that fulfills these (Duin et al. 2010). The three studies carried out by Duch et al. (2012),
Tao et al. (2004), and Ghazvini et al. (2014) had seven, two, and one out of ten datasets
overlapping with our ten datasets, respectively. From these studies, we conclude that in
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Table 11 Results of AUC, MR and the F-measure in the test sets of the 10 UCI datasets

Part Dataset The §-machine CART SVM (RBF) The Lasso ref.

Euclidean sq.Euclidean Exp.decay Gau.decay

(a) AUC results

I 9 0.93 0.88 0.93 0.95 0.68  0.96 0.89
10 0.97 0.93 0.97 0.98 094  0.99 0.97

o1 0.67 0.67 0.67 0.66 no tree 0.73 0.71
2 0.77 0.76 0.75 0.75 0.71 0.72 0.77
4 0.68 0.69 0.67 0.67 0.65  0.70 0.67
5 0.80 0.79 0.80 0.80 070  0.79 0.80
6 0.99 0.98 0.99 0.99 085  0.99 0.89
7 0.97 0.97 0.97 0.97 0.89 097 0.97
8 0.83 0.81 0.83 0.82 0.65 0.90 0.78

m 3 1.00 1.00 1.00 1.00 0.98 1.00 1.00

(b) the F-measure results

9 0.82 0.76 0.83 0.86 0.60  0.86 0.79
10 0.80 0.74 0.81 0.87 079 082 0.83
1 0.84 0.84 0.85 0.85 no tree 0.85 0.83
2 032 0.27 0.42 0.47 045 025 0.11
4 0.55 0.58 0.52 0.50 0.60  0.50 0.42
5 0.57 0.58 0.59 0.55 0.58  0.59 0.60
6 0.97 0.96 0.97 0.99 0.89  0.96 0.92
7 0.90 0.90 0.91 0.91 0.86  0.90 0.90
8 0.77 0.78 0.76 0.76 0.67  0.80 0.77
3 1.00 1.00 1.00 1.00 097 099 0.99
(c) MR results
9 0.16 0.20 0.15 0.12 029 0.11 0.18 0.0813!
10 0.05 0.07 0.05 0.04 0.06  0.05 0.05 0.1083!
1 0.26 0.27 0.27 0.25 no tree  0.25 0.28 0.251
2 0.21 0.22 0.20 0.21 023 022 0.23 0211
4 0.35 0.31 0.35 0.36 036  0.35 0.39 0.30M1
5 0.26 0.25 0.25 0.26 027 026 0.25 0.23M1
6 0.04 0.06 0.03 0.01 0.14  0.06 0.10 0.05M1
7 0.07 0.08 0.07 0.07 0.11  0.08 0.08 0.06!1
8 0.27 0.25 0.27 0.30 035 0.23 0.26 0.14M1
3 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.0312!

The best value among the four dissimilarity functions and among the four classification methods per dataset
is shown in italic and in bold, respectively. Results of references [1], [2], and [3] were from Duch et al.
(2012), Ghazvini et al. (2014), and Tao et al. (2004)

five out of the ten datasets, SVM(RBF) had achieved the lowest MR. SVM with a linear
kernel, multilayer perceptron networks (Hornik et al. 1989), the iterative axis-parallel rect-
angle algorithm (Dietterich et al. 1997) and kernel-based multiple-instance learning model
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(Tao et al. 2004) had one best result each. We compare the results of the §-machine against
these best results in the last column of Table 11 (c). Only the result of dataset 8§ had a
substantial lower MR value (0.14) than the §-machine. Therefore, the §-machine had a
convincing performance in general.

5.2 Two Empirical Examples

In this section, we give two empirical examples. The first example shows that how the
d-machine is applied and interpreted, and uses the variable importance plot and partial
dependence plots to show the relationship between the original predictor variables and the
outcome variable. The aim of the second example is to show the difference of using the
whole training set as the representation set and a smaller representation set selected by the
K-means clustering and to illustrate the non-linear boundaries generated by the §-machine
in the original feature space.

5.2.1 Kyphosis Data

The first dataset concerns about the results of “laminectomy,” a spinal operation carried
out on children, to correct for a condition called “kyphosis” (see Hastie and Tibshirani
1990) for details. Data are available for 81 children in the R-package gam (Hastie 2015).
The response variable is dichotomous, indicating whether a kyphosis was present after the
operation. There are three numeric predictor variables:

e Age:in months
e Number: the number of vertebrae involved
e Start: the number of the first (topmost) vertebra operated on.

The predictor variables were standardized, before we computed the Euclidean distances.
We then used these distances as variables in the Lasso logistic regression. The regression
estimated function is

log <1L> =29.9340.09d; — 0.19d3 — 1.11d19 — 3.03d11 — 1.20d23
-7

—3.22dp5 + 1.27dy7 + 1.87d35 + 0.22d43 + 0.54d4a — 1.95d46 + 1.71dag — 1.91da9
+1.39ds; — 4.05ds3 + 1.16ds59 — 1.11dg1 + 0.72d71 + 1.2d72 — 3.06d77. (10)

With every unit increase in the distance towards observation 1 the log odds of presenting
kyphosis after the operation go up by 0.09, with every unit increase in the distance towards
observation 3 the log odds go down by 0.19. In order to see which predictor variables are
important for the prediction and the conditional influence of each predictor on the response,
we made a variable importance graph and partial dependence graphs. These are shown in
Fig. 6, where it can be seen that the most important predictor is Start, this is followed by
Age, while Number is of minor importance. The relationship between the three predictor
variables and the probability is single-peaked, first going up, later declining.

5.2.2 Mroz Data
The Mroz data consist of 753 observations. The observations, from the Panel Study of
Income Dynamics (PSID), relate to married women (N = 753). The data are available in

the car package in R (Fox and Weisberg 2011). The outcome variable is whether or not the
woman is participating in the labor force. Two predictor variables are available:
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Fig.6 Variable importance and partial dependence plots for the kyphosis data

e 1wg: log expected wage rate; for women in the labor force, the actual wage rate; for
women not in the labor force, an imputed value based on the regression of lwg on the
other variables.

e inc: family income excluding wife’s income.

The data were split randomly into a training set of 400 observations and a test set of the
remaining 353 observations. In both the training and the test set, the percentage of women
participating in the labor force (Ifp) was about 57%.

We fitted the models on the training set and the representation set based on prototypes
that explain 0.5 of the variance (v, = 0.5) and subsequently made predictions. The percent-
age correct, the sensitivity, the specificity, the positive predictive value, and the negative
predictive value were computed on the test set and were given in Table 12.

Table 12 shows that although the §-machine using the training set had a higher percentage
correct than that of the one using a smaller representation set, the difference was marginal,
and the other results were competitive. Moreover, the number of active prototypes of the 8-
machine using the smaller representation set was five, which was smaller than the 19 active
exemplars of the one using the training set, resulting in a more interpretable model. The
prediction regions derived by the §-machine are presented in Fig. 7 which also includes
the active exemplars/prototypes. It can be seen that the decision lines were nonlinear in the
original two dimensional space.
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Table 12 Percentage correct, sensitivity, specificity, positive predictive value, and negative predictive value
in the test set for the §-machine using the entire training set (exemplars) and using prototypes (v, = 0.5)

Method Perc.Correct ~ Sensitivity ~ Specificity Pos.Pred.Value Neg.Pred.Value
The §-machine (exemplars) 0.70 0.73 0.66 0.74 0.64
The §-machine (v, = 0.5) 0.69 0.75 0.61 0.71 0.65

6 Discussion

The psychological theory of categorization inspired the development of a method using
dissimilarities as the basis for classification, which we called the §-machine. From a set
of variables, a similarity or dissimilarity matrix is computed using a (dis)similarity func-
tion. This matrix, in turn, is used as a predictor matrix in penalized logistic regression. It
was shown that changing basis creates nonlinear classification rules in the original predic-
tor space. The results on the empirical data sets in Section 5 showed that the §-machine
is competitive and often superior to other classification techniques such as support vector
machines, Lasso logistic regression, and classification trees.

Five simulation studies have been conducted to investigate the properties of the §-
machine. The results showed that it is better to use the Lasso to select prototypes than
forward stepwise based on AIC, that the Euclidean distance is a good dissimilarity measure,
and that finding a smaller representation set based on prototypes gives sparse but com-
petitive results. We found that the §-machine is not sensitive to class imbalances, because
boundaries between classes are built only on a few high-quality prototypes or exemplars.
The four (dis)similarity functions had the same performance regardless of the covariance
matrices.

In the pilot study and simulation study 3, we compared different methods to select the
representation set. In the pilot study, three methods have been considered, the K-means
method with the automatic decision rule, PAM, and the inner product clustering method.
The first two methods had good performance, but the inner product clustering method did
not perform well for the data with overlap. Because of this poor performance, we left out the
inner product method in simulation study 3. The results obtained from both studies showed
the performance of the §-machine barely changed when one used a smaller representa-
tion set. In addition, using a smaller representation set offers sparser solutions and leads

80
1

60
1

inc

40

20
1

wg lwg
(a) The representation set: the training set (b) The representation set: prototypes v, =0.5

Fig. 7 Predictions of labor force participation as a function of log wage rate and income for the Mroz data.
Included in the graph with larger points are the active exemplars/prototypes
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to more interpretable models. The results obtained from the pilot study showed that PAM
had the same MR but sparser solutions than the K-means method. The K-means method
using a higher level of the percentage of explained variance (v, = 0.9) had lower MRs than
the lower one (v, = 0.5). The results obtained from simulation study 3 showed that the §-
machine using the K -means method with the automatic decision rule (v, = 0.5) had the best
performance among all the artificial problems regarding the good balance of MRs and the
sparseness of the solutions. We chose two levels of the percentage of explained variance:
ve = 0.5 and v, = 0.9. In some sense, these are arbitrary but both of them showed the great
predictive performance in different types of data. Therefore, the choice of the percentage
is related to the purpose of the study and data. The sparseness of PAM in our simulations
might be caused by pre-setting the number of medoids for each class to be between two
and ten, which limits the maximum number of exemplars to 20. To reduce the computa-
tional time, we have used the clustering results obtained from PAM as the initial setting for
the inner product method. Even though the initial setting contained the prior information of
the good performing PAM in most cases, the classification results deteriorated for the inner
product method.

In our approach, the question in which respect two observations are similar is defined by
the predictor variables. Of course, using a different set of variables might lead to completely
different measures of dissimilarity, which would change the classification. The predictive
performance of the Euclidean distance and the other three (dis)similarity functions in the §-
machine has been studied in simulation study 2, and it can be concluded that the Euclidean
distance is a good dissimilarity function and we suggest to use it as the default dissimilarity
measure. The squared Euclidean distance is sensitive to outliers, in this sense, that it cre-
ates large distances. These large distances have a negative influence on the classification
performance.

For many dissimilarity measures, properties are well known (Gower 1966, 1971). How-
ever, the properties of dissimilarity measures in terms of classification performance are
unknown. Such properties can be developed for various dissimilarity measures. Further-
more, it might be interesting to look at the added value of asymmetric dissimilarity
measures. In standard dissimilarity measures 8,5 = Jpq, i.€., the measure is symmetric. It
has been pointed out that some dissimilarities are asymmetric; the Kullback-Leibler dis-
tance for two distributions for example is an asymmetric distance function. An asymmetric
dissimilarity measure can always be broken down into a symmetric part and a skew sym-
metric part (Gower 1971), and further research might investigate how both parts perform in
terms of classification.

We mainly investigated the performance of the §-machine on the three artificial prob-
lems, that is, the three types of relationships between the outcome variable and the predictor
variables. The two norm problem is a linearly separable problem, whereas the other two
problems are not linearly separable. The four blocks problem creates data containing high-
order interaction terms. The Gaussian ordination problem creates data containing quadratic
terms. In real life, the relationship between the two is always unknown, and there are unlim-
ited possibilities and far more complex relationships. Therefore, our simulation studies
only shed some lights to the performance of the 6-machine. We have included the ten UCI
datasets to evaluate the performance of the 6-machine. The results obtained showed that the
d-machine had convincing results in general, and that overall it is competitive to other clas-
sification methods. The comparison of the Lasso and the §-machine suggested that building
a classifier in the dissimilarity space achieves better predictive performance than building a
classifier in the predictor space.
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Bergman and Magnusson (1997) contrasted two approaches in the field of develop-
mental psychopathology: the variable-oriented approach and the person-oriented approach.
In a variable-oriented approach, the analytical unit is the variable, whereas in a person-
oriented approach the analytical unit is the pattern. The approach we propose, however, the
d-machine, can bridge these two approaches. Since the §-machine focuses on dissimilarities
between profiles and prototypes, it is a person-oriented approach. The proposed variable
importance measures and partial dependence plots, on the other hand, can be considered
variable-oriented, and they enable us to interpret the importance of original variables and
the conditional relationship between each predictor variable and the response variable. The
partial dependence plots are similar to plots obtained using generalized additive models
(Hastie and Tibshirani 1990) or from categorical regression using optimal scaling (Van der
Kooij 2007).

Besides the methods mentioned in Section 3, other distance-based classification methods
have been proposed before, i.e., the methods proposed by Boj et al. (2015) and Commandeur
et al. (1999). Boj et al. (2015) argued that in marketing or psychology the data available
often consists of dissimilarity data or distance information rather than of a set of variables.
With the dissimilarity matrix (D) and a response variable Y, the authors propose first to
find a set of latent dimensions (Z) representing the dissimilarity matrix, and then to use
these latent dimensions as predictor variables in a generalized linear model (i.e., a logistic
regression). This procedure is different from our procedure in the sense that we use the
dissimilarity matrix directly as the predictors in the logistic regression procedure, whereas
Boj et al. (2015) use the underlying configuration. In fact, if one started with a matrix
of variables X and defined the distances on the basis of these variables, distance-based
logistic regression would give the same result as a logistic regression based on X in terms
of deviance and predicted probabilities.

Commandeur et al. (1999) provided a whole family of techniques for distance-based
multivariate analysis (DBMA). For the data having numerical predictor variables (X) and
a categorical response (Y), firstly, Commandeur et al. (1999) defined the indicator matrix
Y, with a size of I x (C + 1), where y;c = 1 if observation i belongs to class ¢, and
otherwise zero. The Euclidean distance is used to obtain a distance matrix d(XBy) and a
distance matrix d(YBy), where By and By are general matrices, and d(-) is the Euclidean
distance function. DBMA finds a common configuration Z that simultaneously minimizes
the STRESS loss function. Details of the algorithm can be found in Meulman (1992) or
Commandeur et al. (1999). DBMA emphasizes the representation of objects and variables
in a lower dimensional space, usually two-dimensional space. A disadvantage of DBMA is
that it does not give a clear prediction rule to a new observation. The relationship between
predictor variables and the response variable is indirect through the common configuration
Z. While the §-machine is a classification and prediction approach, moreover, the proposed
variable importance measures and partial dependence plots can illustrate the relationship
between predictor variables and the response variable.

Although we focused on logistic regression as classification tool, other classification
tools could be used. Discriminant analysis or classification trees could be used with the
matrix D as the predictor matrix. Both will lead to interpretable models. Finally, more
advanced classification techniques such as random forests (Breiman 2001) or boosting
(Freund and Schapire 1997) could be applied, with the dissimilarity variables as input.

In the current paper, we focused on classification problems. We are confident that the
results can be adapted for linear regression problems, i.e., the prediction of a continuous
outcome variable. Other type of outcomes can also be modeled using the same ideas, i.e.,
counts using Poisson regression, ordinal outcomes using the proportional odds model, or
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another multinomial model for ordinal outcomes (Agresti 2013). For a nominal outcome,
variable discriminant analysis or the multinomial logit model can be used. In this manner, a
versatile program can be built using dissimilarities as input.

For categorical variables, other dissimilarity measures can be defined, an overview of
which can be found in Cox and Cox (2000). In some research settings, numeric and cate-
gorical predictor variables go side by side. In that case, a dissimilarity measure for mixed
variables is needed. Gower (1971) defined such a general dissimilarity measure. These
distances usually satisfy the distance axioms of minimality, symmetry, and the triangle
inequality. The (dis)similarity coefficient has sufficient flexibility to be used under many
circumstances. Therefore, the §-machine can be extended to deal with the mixed types of
predictor variables problem.

It is also important to investigate the performance of the §-machine in a high-dimensional
space. In the current paper, the number of variables included was up to 10. Increasingly,
however, datasets are collected including very many variables, say 10,000 or more. In such a
high-dimensional classification setting there are often many irrelevant variables. In addition,
the relevant variables will be highly related. Therefore, the relevance of relevant variables is
masked by the irrelevant variables. A second issue is that the distance caused by a difference
in the relevant variables relative to the distance caused by the irrelevant variables becomes
smaller. It means that concepts such as proximity and distance become less meaningful if
we do not select variables. This issue is known to be especially detrimental for learners
based on distances. Friedman and Meulman (2004) proposed a new approach for cluster-
ing observations on subsets of predictor variables. This approach allows for the subsets of
predictor variables for different clusters to be the same, partially overlapping, or different,
in contrast to a conventional feature selection approach which seeks clusters on the same
predictor variables. It might be used in conjunction with the §-machine; this will also be a
topic of further investigation.

All methods discussed and shown were programmed in R. The code plus syntax for the
analysis presented can be obtained upon request from the first author.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Real datasets

All real datasets come from UCI repository.

Dataset 1. Haberman’s Survival Dataset (Yeh et al.,2009): The dataset contains 306
patients who had undergone surgery for breast cancer at the University of Chicago’s
Billings Hospital between 1958 and 1970. The data have four variables.

Dataset 2. The database of Blood Transfusion Service Center in Hsin-Chu City in Tai-
wan. Seven hundred forty-eight observations were randomly selected from the the donor
database. The data have four variables and a binary variable representing whether he/she
donated blood before.

Dataset 3. Banknote authentication Dataset: The data have four variables which are
extracted from images through the wavelet transform tool. The images were taken from
genuine and forged banknote samples.
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Dataset 4: Liver Disorders Dataset: The data contain of seven variables. The first five
variables, X1 — X5, are all blood tests, and are sensitive to liver disorders that might arise
from excessive alcohol consumption. The last variable, X7, was widely misunderstood
as the response variable (McDermott and Forsyth 2016). X7 was not originally collected
and is a selector of assigning the data into train and test set in a particular experiment.
Therefore, in the study, we discard X7. The variable X¢ is a numerical variable, which
indicates the number of alcoholic drinks. Based on the suggestion of McDermott and
Forsyth (2016), we dichotomized X¢ as X > 3 and used it as the response variable.

Dataset 5: Pima Indians Diabetes Dataset: The data were selected from a larger database
by some constraints. All patients here are females at least 21 years old of Pima Indian
heritage. The data have eight variables.

Dataset 6: Ionosphere Dataset: The data were collected by a system which has a phased
array of 16 high-frequency antennas with a total transmitted power of 6.4 kW in Goose
Bay, Labrador. The targets were free electrons in the ionosphere. If there are some type
of structure in the ionosphere, it returns as “Good” radar. On the contrary, it returns as
“Bad” radar. Their signals pass through the ionosphere.

By using an autocorrelation function, the received signals were transformed to the
arguments which are the time of a pulse and the pulse number. There were 17 pulse
numbers for the Goose Bay system. Each instance in this dataset is described by two
variables per pulse number. Thus, the data have 34 variables. There are 351 objects in the
dataset, that is 126 “Bad” and 225 “Good.”

Dataset 7:  Spambase Dataset: The spam e-mails came from the postmaster and individ-
uals who had filed spam. The non-spam e-mails came from filed work and personal
e-mails. There are 57 variables which indicate whether a particular word or character was
frequently occurring in the e-mail.

Dataset 8:  Sonar dataset: The data contain 208 patterns which were obtained by bouncing
sonar signals. Each pattern is a set of 60 numbers which ranges from 0.0 to 1.0. The goal
is to discriminate the sonar signals between a metal cylinder and a roughly cylindrical
rock.

Dataset 9: Musk dataset version 1: 166 variables are used to describe the exact shape, or
conformation, of the molecule. The goal is to predict whether the new molecule is musk
or not.

Dataset 10: Musk dataset version 2: The description is the same as dataset 9, except
version 1 has a smaller sample size.

References

Agresti, A. (2013). Categorical data analysis, 3rd edn. New Jersey: Wiley.

Al-Yaseen, W.L., Othman, Z.A., Nazri, M.Z.A. (2017). Multi-level hybrid support vector machine and
extreme learning machine based on modified K-means for intrusion detection system. Expert Systems
with Applications, 67, 296-303.

Ashby, E.G. (2014). Multidimensional models of perception and cognition, 1st edn. New York: Psychology
Press.

Ben-Israel, A., & Iyigun, C. (2008). Probabilistic D-clustering. Journal of Classification, 25(1), 5-26.

Bergman, L.R., & Magnusson, D. (1997). A person-oriented approach in research on developmental
psychopathology. Development and Psychopathology, 9(02), 291-319.

Berk, R.A. (2008). Statistical learning from a regression perspective, 1st edn. New York: Springer.

Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U. (1999). When is “nearest neighbor” meaningful. In
Beeri, C., & Buneman, P. (Eds.) Database theory - ICDT 99 (pp. 217-235). Springer: Berlin.

@ Springer



Journal of Classification (2019) 36:442-470 469

Boj, E., Caballé, A., Delicado, P., Esteve, A., Fortiana, J. (2015). Global and local distance-based generalized
linear models. TEST, 25(1), 170-195.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Cohen, J. (1973). Eta-squared and partial Eta-squared in fixed factor ANOVA designs. Educational and
Psychological Measurement, 33(1), 107-112.

Commandeur, J.J., Groenen, P.J., Meulman, J. (1999). A distance-based variety of nonlinear multivariate data
analysis, including weights for objects and variables. Psychometrika, 64(2), 169-186.

Cooper, M.C., & Milligan, G.W. (1988). The effect of measurement error on determining the number of
clusters in cluster analysis. In Gaul, W., & Schader, M. (Eds.) Data, expert knowledge and decisions
(pp. 319-328). Berlin: Springer.

Cormack, RM. (1971). A review of classification, Journal of the Royal Statistical Society. Series A
(General), 321-367.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.

Cox, T.F,, & Cox, M.A. (2000). Multidimensional scaling, 2nd edn. Boca Raton: CRC press.

De Rooij, M. (2001). Distance models for transition frequency data: Ph.D dissertation. Leiden University:
Department of Psychology.

Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T. (1997). Solving the multiple instance problem with axis-
parallel rectangles. Artificial intelligence, 89(1-2), 31-71.

Duch, W., Jankowski, N., Maszczyk, T. (2012). Make it cheap: learning with O (nd) complexity. In: The 2012
International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1-4.

Duin, R.P,, Loog, M., Pekalska, E., Tax, D.M. (2010). Feature-based dissimilarity space classification. In:
Recognizing patterns in signals, speech, images and videos. Springer, pp. 46-55.

Duin, R.P., & Pekalska, E. (2012). The dissimilarity space: bridging structural and statistical pattern
recognition. Pattern Recognition Letters, 33(7), 826-832.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874.

Fleiss, J.L., & Zubin, J. (1969). On the methods and theory of clustering. Multivariate Behavioral Research,
4(2), 235-250.

Fox, J., & Weisberg, S. (2011). An R companion to applied regression, 2nd edn. Thousand Oaks: Sage.

Freund, Y., & Schapire, R.E. (1997). A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1), 119-139.

Friedman, J. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29(5),
1189-1232.

Friedman, J., Hastie, T., Tibshirani, R. (2009). The elements of statistical learning, 2nd edn. New York:
Springer.

Friedman, J., Hastie, T., Tibshirani, R. (2010a). glmnet: regularization paths for generalized linear models
via coordinate descent, R package version 1.6-4, Available at http://www.jstatsoft.org/v33/i01/.

Friedman, J., Hastie, T., Tibshirani, R. (2010b). Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1), 1-22.

Friedman, J., & Meulman, J. (2004). Clustering objects on subsets of attributes (with discussion). Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 66(4), 815-849.

Ghazvini, A., Awwalu, J., Bakar, A.A. (2014). Comparative analysis of algorithms in supervised classifi-
cation: a case study of bank notes dataset. International Journal of Computer Trends and Technology,
17(1), 39-43.

Gower, J.C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis.
Biometrika, 53(3-4), 325-338.

Gower, J.C. (1971). A general coefficient of similarity and some of its properties. Biometrics, 27(4), 857—
871.

Hastie, T. (2015). gam: generalized additive models, R package version 1.12.

Hastie, T., & Tibshirani, R. (1990). Generalized additive models, 1st, Vol. 43, CRC Press, Boca Raton.

Hornik, K., Stinchcombe, M., White, H. (1989). Multilayer feedforward networks are universal approxima-
tors. Neural networks, 2(5), 359-366.

James, G., Witten, D., Hastie, T., Tibshirani, R. (2013). An introduction to statistical learning, 1st edn. New
York: Springer.

Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: a systematic study. Intelligent data
analysis, 6(5), 429—449.

Kaufman, L., & Rousseeuw, P.J. (1990). Finding groups in data: an introduction to cluster analysis. New
York: Wiley.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Cam,
L.M.L., & Neyman, J. (Eds.) Proceedings of the 5th Berkeley symposium on mathematical statistics and
probability (pp. 281-297). Berkeley: Calif.: University of California Press.

@ Springer


http://www.jstatsoft.org/v33/i01/

470 Journal of Classification (2019) 36:442-470

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K. (2013). Cluster: cluster analysis basics and
extensions, R package version 1.14.4.

McDermott, J., & Forsyth, R.S. (2016). Diagnosing a disorder in a classification benchmark. Pattern
Recognition Letters, 73, 41-43.

Meulman, J. (1992). The integration of multidimensional scaling and multivariate analysis with optimal
transformations. Psychometrika, 57(4), 539-565.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F. (2014). e1071: Misc Functions of
the Department of Statistics (€1071), TU Wien, R package version 1.6-4, Available at http://CRAN.
R-project.org/package=e1071.

Mirkin, B. (1999). Concept learning and feature selection based on square-error clustering. Machine
Learning, 35(1), 25-39.

Mirkin, B. (2012). Clustering: a data recovery approach, (pp. 230-233). Boca Raton: Chapman & Hall.

Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J. (1998). UCI repository of machine learning databases,
Available at http://www.ics.uci.edu/mlearn/MLRepository.html.

Nosofsky, R.M. (1986). Attention, similarity, and the identification—categorization relationship. Journal of
Experimental Psychology: General, 115(1), 39-57.

Pekalska, E., & Duin, R.P. (2005). The dissimilarity representation for pattern recognition: foundations and
applications. Singapore: World Scientific.

R Core Team (2015). R: a language and environment for statistical computing, Vienna, Austria: R Foundation
for Statistical Computing, Available at http://www.R-project.org/.

Richardson, J.T. (2011). Eta squared and partial eta squared as measures of effect size in educational research.
Educational Research Review, 6(2), 135-147.

Rousseeuw, P.J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis.
Journal of Computational and Applied Mathematics, 20, 53—65.

Rovai, A.P,, Baker, J.D., Ponton, M.K. (2013). Social science research design and statistics: a practitioner’s
guide to research methods and IBM SPSS Vol. 2. Chesapeake: Watertree Press.

Schaffer, C.M., & Green, P.E. (1996). An empirical comparison of variable standardization methods in cluster
analysis. Multivariate Behavioral Research, 31(2), 149-167.

Steinley, D. (2004). Standardizing variables in K-means clustering. In Banks, D., McMorris, F.R., Arabie, P.,
Gaul, W. (Eds.) Classification, clustering, and data mining applications (pp. 53—-60). Berlin: Springer.

Steinley, D., & Brusco, M.J. (2011). Choosing the number of clusters in K-means clustering. Psychological
Methods, 16(3), 285.

Tao, Q., Scott, S., Vinodchandran, N.V., Osugi, T.T. (2004). SVM-based generalized multiple-instance learn-
ing via approximate box counting. In: Proceedings of the 21st international conference on machine
learning. ACM, pp. 101.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), 58(1), 267-288.

Van der Kooij, A.J. (2007). Prediction accuracy and stability of regression with optimal scaling transforma-
tions: Ph.D dissertation. Leiden University: Department of Education and Child Studies.

Van Rijsbergen, C.J. (1979). Information retrieval (2nd ed.): Butterworths.

Venables, W.N., & Ripley, B.D. (2002). Modern applied statistics with S, 4th edn. New York: Springer.
Available at http://www.stats.ox.ac.uk/pub/MASS4.

Vesanto, J. (2001). Importance of individual variables in the K-means algorithm. In Cheung, D., Williams,
G.J., Li, Q. (Eds.) Advances in knowledge discovery and data mining (pp. 513-518). Berlin: Springer.

Yeh, I.-C., Yang, K.-J., Ting, T.-M. (2009). Knowledge discovery on RFM model using bernoulli sequence.
Expert Systems with Applications, 36(3), 5866-5871.

Zhu, J., & Hastie, T. (2012). Kernel logistic regression and the import vector machine. Journal of
Computational and Graphical Statistics, 14(1), 185-205.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=e1071
http://www.ics.uci.edu/ mlearn/MLRepository.html
http://www.R-project.org/
http://www.stats.ox.ac.uk/pub/MASS4

	The -Machine: Classification Based on Distances Towards Prototypes
	Abstract
	Introduction
	The -Machine
	The Dissimilarity Space
	The Representation Set
	Dissimilarity Variables in Classification
	Variable Importance Measure
	Partial Dependence Plots

	Theoretical Comparisons with Support Vector Machines and Kernel Logistic Regression
	Simulation Studies
	The New Decision Rule of the K-Means Method: a Pilot Study
	Five Simulation Studies
	Data Descriptions
	Result Analysis
	Results
	Comparison of Two Selection Methods in the -Machine
	Comparison of the Four (dis)Similarity Functions in the -Machine
	Selection of the Representation Set
	Study with Imbalanced Classes
	Study with Unequal Covariance Matrices


	Applications
	UCI Datasets
	Results

	Two Empirical Examples
	Kyphosis Data
	Mroz Data


	Discussion
	Appendix A Real datasets
	References




