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Abstract
Dealing with unequal priors in both linear discriminant analysis (LDA) based on Gaussian
distribution (GDA) and in Fisher’s linear discriminant analysis (FDA) is frequently used in
practice but almost described in neither any textbook nor papers. This is one of the first
papers exhibiting that GDA and FDA yield the same classification results for any number
of classes and features. We discuss in which ways unequal priors have to enter these two
methods in theory as well as algorithms. This may be of particular interest if prior knowl-
edge is available and should be included in the discriminant rule. Various estimators that use
prior probabilities in different places (e.g. prior-based weighting of the covariance matrix)
are compared both in theory and by means of simulations.

Keywords Unequal priors · Linear discriminant analysis · Fisher

1 Introduction

This paper deals with methods of linear discriminant analysis (LDA) under the assumption
of unequal priors. We concentrate on LDA based on Gaussian distribution (GDA) and a
weighted version of Fisher’s LDA (FDA).

Several authors have different opinions about the equivalence of Gaussian and Fisher’s
linear discriminant analysis, especially if unequal priors are present. One might state GDA
and FDA are only identical if equal priors are assumed or given (Fahrmeir et al. 1996).
Others show GDA and FDA are identical in special cases (Rencher 1995) and implicitly
readers may guess they are not identical in other cases. The purpose of this paper is to get
things straight concerning the similarities and differences of GDA and FDA in theory and
application.

� Carmen van Meegen
carmen.meegen@tu-dortmund.de

Sarah Schnackenberg
schnackenberg@statistik.tu-dortmund.de

Uwe Ligges
ligges@statistik.tu-dortmund.de

1 Department of Statistics, TU Dortmund University, Dortmund, 44221, Germany

Journal of Classification (2020) 37:598–615

Published online: 24 July 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s00357-019-09336-2&domain=pdf
mailto: carmen.meegen@tu-dortmund.de
mailto: schnackenberg@statistik.tu-dortmund.de
mailto: ligges@statistik.tu-dortmund.de


Therefore, we briefly review the theory of LDA in Section 2, more precisely, for both
GDA (see Section 2.1) and FDA (see Section 2.2). Section 2.3 lists possible estimators
applied in GDA and FDA. Subsequently, in Section 3, we prove that GDA and FDA yield
the same classification results under some assumptions.

Afterwards, we shortly discuss implementations of GDA and FDA in Section 4, e.g.
function lda from R package MASS (R Core Team 2016; Venables and Ripley 2002) as
well as self-implemented versions of these methods (see Section 4.2). These functions are
applied in simulations to compare GDA and FDA in conjunction with various estimators for
the covariance matrix. Next, the design of the simulation study is explained in Section 4.3
and followed by the results in Section 4.4. Concluding, we summarise the substantial results
of theory and simulation in Section 5.

2 Linear Discriminant Analysis

Assume G ≥ 2 non-empty, disjoint groups which should be discriminated. Each group
g ∈ {1, ...,G} is represented by a p-dimensional random vector Xg = (Xg1, ...,Xgp)′ with
expected value μg and covariance matrix Σg . We imply μg �= μg′ for g �= g′. Prior πg

specifies the probability that a randomly chosen observation x is an element of group g. It
applies πg ∈ (0, 1) and

∑G
g=1πg = 1. For another random vector X which measures the

same features as Xg an observation vector x = (x1, ..., xp)′ ∈ R
p is given.

2.1 LDA Based on Gaussian Distribution

Linear discriminant analysis based on Gaussian distribution (GDA) is a special case of
Bayes’ rule (Huberty 1994). We assume normal distribution within each class with expected
value μg and covariance matrix Σg . Additionally, we assume Σ := Σ1 = ... = ΣG that
is the covariance matrices are all equal, one of the main assumptions of LDA. Hence, the
density function of group g is:

fg(x) = (2π)−
p
2 (det(Σ))−

1
2 exp

[

−1

2
(x − μg)

′Σ−1(x − μg)

]

. (1)

The term

d2
g(x) = (x − μg)

′Σ−1(x − μg) (2)

in the exponential function in Eq. 1 is the squared Mahalanobis distance (Mahalanobis
1936) between observation x and expected value μg . Given the covariance matrix is an
identity matrix Σ = Ip , the squared Mahalanobis distance from Eq. 2 becomes the squared
Euclidean distance

∑p

j=1(xj − μgj )
2.

The discriminant rule of GDA is based on the idea of assigning an observation x to the
group g with the highest posterior (Bayes 1763; Huberty 1994):

P(g|x) = πg exp[− 1
2 (x − μg)

′Σ−1(x − μg)]
∑G

g′=1 πg′ exp[− 1
2 (x − μg′)′Σ−1(x − μg′)] . (3)

The denominator in Eq. 3 is identical for all groups and can be neglected. Taking the
logarithm of the numerator in Eq. 3 results in the canonical classification function:

Lg(x) = −1

2
(x − μg)

′Σ−1(x − μg) + log(πg). (4)
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We assign an observation x to group

g = argmax
g′=1,...,G

Lg′(x). (5)

Multiplying the canonical discriminant function in Eq. 4 by −2 changes the maximisation
in Eq. 5 into a minimisation. Thus, we obtain an equivalent discriminant rule which assigns
an observation x to group:

g = argmin
g′=1,...,G

L∗
g′(x) (6)

where
L∗

g′(x) = (x − μg′)′Σ−1(x − μg′) − 2 log(πg′). (7)

2.2 Fisher’s Linear Discriminant Analysis

The idea of Fisher’s linear discriminant analysis (FDA) is to find r < p linear combinations

Yg =
⎛

⎜
⎝

Yg1
...

Ygr

⎞

⎟
⎠ =

⎛

⎜
⎝

α′
1Xg

...
α′

rXg

⎞

⎟
⎠ =

⎛

⎜
⎝

α′
1
...

α′
r

⎞

⎟
⎠Xg = A′Xg (8)

of the random vectors Xg , g = 1, ...,G, which separate the groups as much as possible
(Fisher 1936; Huberty 1994). Thereby, αj = (αj1, ..., αjp)′ ∈ R

p for j = 1, ..., r and
A = (α1, ..., αr ) ∈ R

p×r . First, we take a closer look at one specific linear transformation
Ygj = α′

jXg of the random vector of group g. The expected value of Ygj is

μYgj
:= E(Ygj ) = E(α′

jXg) = α′
jμg (9)

and the variance of Ygj is

σ 2
Ygj

:= var(Ygj ) = var(α′
jXg) = α′

jΣαj (10)

for g = 1, ...,G and j = 1, ..., r . Since the covariance matrices are identical for all groups,
the variances of the linear transformations Ygj are all equal as well, so σ 2

Yj
:= σ 2

Y1j
= ... =

σ 2
YGj

. Further, we refer to μw = ∑G
g=1 πgμg as a weighted mean of the expected values.

The linear transformations of μw are μYwj
= α′

jμw for j = 1, ..., r .
In the following paragraph, we simply formulate the optimisation problem as a function

of α. To obtain a suitable discrimination with the transformations in Eq. 8, the idea of Fisher
is that the expected values μYg

= α′μg need to differ as much as possible for all groups

and the variance σ 2
Y = α′Σα should be as small as possible (Fisher 1936). For that purpose,

consider the sum of squared difference between μYg
and μYw

weighted by the priors. This

sum of weighted differences needs to be maximised whereas σ 2
Y should be minimised. This

is achieved by solving the weighted optimisation problem (Filzmoser et al. 2006):

max
α∈Rp

∑G
g=1 πg(μYg

− μYw
)2

σ 2
Y

= max
α∈Rp

α′Bμwα

α′Σα
. (11)

The numerator in Eq. 11 contains the weighted covariance matrix between the groups:

Bμw =
G∑

g=1

πg(μg − μw)(μg − μw)′. (12)
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The eigenvectors of Σ−1Bμw with corresponding positive eigenvalue yield the solution of
the maximisation problem in Eq. 11 (Mukhopadhyay 2009). The solution is unique up to
scalar multiplication, that is why in some literature it is mentioned that the optimisation
problem in Eq. 11 is solved under the side condition α′Σα = 1 (Johnson and Wichern
2007; Mukhopadhyay 2009).

We obtain r suitable solutions αj , j = 1, ..., r , from the optimisation problem in Eq. 11.
Their derivation is explained below. The rank of a matrix is equal to the number of nonzero
eigenvalues, i.e. r := rk(Σ−1Bμw) ≤ min{rk(Σ−1), rk(Bμw)}. The inverse covariance
matrix Σ−1 is a p × p-dimensional matrix which has maximum rank p. This leads to
r ≤ min{p, rk(Bμw)}. Further, the G vectors πg(μg − μw), g = 1, ...,G, contained in Bμw

are linearly dependent because:

G∑

g=1

πg(μg − μw) =
G∑

g=1

πgμg − μw

G∑

g=1

πg = μw − μw = 0. (13)

Consequently, at least one of the vectors πg(μg −μw) can be rewritten through the remain-
ing G − 1 vectors. Thus, the space spanned by π1(μ1 − μw), ..., πG(μG − μw) is less than
or equal G − 1. According to this, we receive r ≤ min{p,G − 1}.

The r ≤ min{p,G−1} positive eigenvalues λ1 ≥ ... ≥ λr > 0 of Σ−1Bμw or identically

of Σ− 1
2 BμwΣ− 1

2 lead to the solution of the optimisation problem in Eq. 11. The matrices

Σ−1Bμw and Σ− 1
2 BμwΣ− 1

2 have the same eigenvalues since

Σ− 1
2 BμwΣ− 1

2 vj = λjvj ⇔ Σ−1BμwΣ− 1
2 vj = λjΣ

− 1
2 vj (14)

for j = 1, ..., r (Mukhopadhyay 2009). Let v1, ..., vr denote the associated orthogonal and

normalised eigenvectors of Σ− 1
2 BμwΣ− 1

2 . From these, the corresponding eigenvectors

αj = Σ− 1
2 vj (15)

of Σ−1Bμw can be determined which satisfy α′
jΣαj = 1 for j = 1, ..., r and maximise the

ratio in Eq. 11.
The vectors α1, ..., αr ∈ R

p in Eq. 15 are the so-called discriminant components.
They transform the p-dimensional random vector X into an r-dimensional random vec-
tor Y = A′X . The linear transformations Yj = α′

jX are pairwise uncorrelated. It is

cov(Yj ,Yk) = α′
jΣαk = v′

jΣ
− 1

2 ΣΣ− 1
2 vk = v′

j vk = 0 for j, k ∈ {1, ..., r} with j �= k

since the eigenvectors v1, ..., vr are pairwise orthogonal.
The discriminant components are used for both dimension reduction and classification.

To classify an object with observation vector x ∈ R
p , the sum of the squared projected

distance between the observation and the expected value of one group is considered (Rao
1948; Wald 1944). Besides, this sum can be adjusted with the associated prior of a group
(Filzmoser et al. 2006). Fisher’s discriminant rule assigns observation x to group

g = argmin
g′=1,...,G

Dg′(x) (16)

where

Dg′(x) =
r∑

j=1

(α′
j (x − μg′))2 − 2 log(πg′) (17)

denotes Fisher’s discriminant score with penalty (Filzmoser et al. 2006). The penalty
−2 log(πg) in Eq. 17 is equal to that of the canonical discriminant function L∗

g (see Eq. 7,
Section 2.1). It penalises the distance between an observation and a group with higher prior
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less than the distance between an observation and a class with small prior. For the simple
reason that πg ∈ (0, 1) for all g = 1, ...,G, it holds 2 log(πg) < 0. Therefore, the higher
a prior πg , the smaller the penalty and the less is added to Fisher’s discriminant score of
group g.

2.3 Estimation

In general, the expected values μg and covariance matrix Σ are unknown and must be
estimated suitably. For this purpose, we need a sample X = (X′

1, ..., X
′
G)′ ∈ R

n×p with
known group membership. The sample of group g denotes X′

g = (xg1, ..., xgng ) ∈ R
p×ng

with xgi ∈ R
p for i = 1, ..., ng and g = 1, ...,G. The total number of observations is

n = ∑G
g=1ng . The most common estimate for the expected value of group g is its mean:

μ̂g = xg = 1

ng

ng∑

i=1

xgi (18)

for g = 1, ...,G (Hastie et al. 2009). The covariance matrix Σ which is assumed to be
identical for all groups is estimated by the pooled covariance matrix

Σ̂ = Spool = 1

n − G
W (19)

with the estimated covariance matrix within the groups

W =
G∑

g=1

(ng − 1)Sg . (20)

Sg is the estimated covariance matrix of group g and is defined by:

Sg = 1

ng − 1

ng∑

i=1

(xgi − xg)(xgi − xg)
′. (21)

Another estimate of the covariance matrix which is weighted by the priors is

Σ̂ = Sw =
G∑

g=1

πgSg (22)

with Sg as in Eq. 21 (Filzmoser et al. 2006). It can be shown that the estimators in Eqs. 19
and 22 are identical for equal priors π1 = ... = πG = 1

G
and class sizes n1 = ... = nG = n

G
:

Sw =
G∑

g=1

πgSg =
G∑

g=1

1

G
Sg = 1

n − G

G∑

g=1

n − G

G
Sg

= 1

n − G

G∑

g=1

( n

G
− 1

)
Sg = 1

n − G

G∑

g=1

(ng − 1)Sg = Spool .

Additionally, in FDA, we need estimates for μw and Bμw . The empirical equivalent for
the weighted mean of the expected values can be defined as

μ̂w = xw =
G∑

g=1

πgxg (23)
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with xg as in Eq. 18 (Filzmoser et al. 2006). Various estimates for the covariance matrix
between the groups have been proposed which differ in prefactor (Johnson and Wichern
2007; Krzanowski and Marriott 1995; Rao 1948) or weighting (Bryan 1951; Filzmoser et al.
2006; Krzanowski and Marriott 1995). One weighted estimate we refer to is (Filzmoser
et al. 2006)

B̂μw =
G∑

g=1

πg(xg − xw)(xg − xw)′. (24)

Nevertheless, the choice of the estimate for the covariance matrix between the groups is not
as important as that of the covariance matrix within the groups. Especially in the case of two
groups with two features we show (see Appendix) that the discriminant component only
depends on the expected values and the covariance matrix within the groups. Hence, the
estimate for the covariance matrix between the groups has no influence on the discriminant
result.

In some cases, information about the priors is given by pre-test or other studies. If no
prior information is disposable, we can assume a discrete uniform distribution, thus:

π̂g = 1

G
(25)

for g = 1, ...,G (McLachlan 1992). An alternative is using the relative group frequencies
(Huberty 1994). Then, the priors are estimated by

π̂g = ng

n
. (26)

In case that the groups are all of the same size, the two estimates in Eqs. 25 and 26 are
identical.

3 Theoretical Comparison of GDA and FDA

To prove that GDA and FDA as described in the previous section yield the same results,
one could compare the discriminant hyperplanes of the discriminant rules. In case we have
G = p = 2 groups and features, we obtain a line which can be calculated easily. Therefore,

we need the discriminant component α1 = Σ−1(μ2−μ1)

((μ1−μ2)
′Σ−1(μ2−μ1))

1
2
. For a detailed derivation,

see Appendix. For increasing G or p, the analytical derivation of discriminant components
becomes more difficult and thus the determination of hyperplanes as well. So, we concen-
trate on the discriminant rules while comparing GDA and FDA for any number of groups
and features. Note that there is no straightforward way to get posterior probabilities from an
FDA for further comparisons.

Consider Fisher’s discriminant rule with penalty and all p instead of r discriminant com-
ponents (see Eq. 17, Section 2.2). To determine the discriminant components, we solve the

eigenvalue equation for the matrix Σ− 1
2 BμwΣ− 1

2 . This is symmetric, positive semidefi-
nite and has the eigenvalues λ1 > ... > λr > 0 = λr+1 = ... = λp. The corresponding
normalised eigenvectors v1, ..., vr , ..., vp ∈ R

p are pairwise orthogonal according to the
spectral theorem (Mukhopadhyay 2009). Hence, the matrix V = (v1, ..., vr , ..., vp) ∈ R

p×p

is orthogonal and it applies V ′V = VV ′ = Ip. LetA∗ = (α1, ..., αr , ..., αp) ∈ R
p×p denote

the matrix of the p discriminant components (see Eq. 15, Section 2.2), then A∗ = Σ− 1
2V .
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Contemplating Fisher’s discriminant score with penalty (see Eq. 17, Section 2.2) and p

discriminant components this yields:

D∗
g(x) =

p∑

j=1

(α′
j (x − μg))

2 − 2 log(πg)

=
⎛

⎜
⎝

α′
1(x − μg)

...
α′

p(x − μg)

⎞

⎟
⎠

′ ⎛
⎜
⎝

α′
1(x − μg)

...
α′

p(x − μg)

⎞

⎟
⎠ − 2 log(πg)

=
⎛

⎜
⎝

⎛

⎜
⎝

α′
1
...

α′
p

⎞

⎟
⎠ (x − μg)

⎞

⎟
⎠

′ ⎛
⎜
⎝

⎛

⎜
⎝

α′
1
...

α′
p

⎞

⎟
⎠ (x − μg)

⎞

⎟
⎠ − 2 log(πg)

= (A∗′(x − μg))
′A∗′(x − μg) − 2 log(πg)

= (x − μg)
′A∗A∗′(x − μg) − 2 log(πg)

= (x − μg)
′Σ− 1

2VV ′Σ− 1
2 (x − μg) − 2 log(πg)

= (x − μg)
′Σ−1(x − μg) − 2 log(πg) = L∗

g(x).

Thus, Fisher’s weighted discriminant score with all p discriminant components is equal to
the canonical discriminant score (see Eq. 7, Section 2.1).

Usually Fisher’s discriminant rule (see Eqs. 16 and 17, Section 2) only uses the first r

discriminant components. However, using r or p discriminant components in Fisher’s dis-
criminant score does not change the assignment of an observation into one of the G groups.
Because the last (p − r) terms of the sum α′

j (x − μg) are equal for all μg , g = 1, ...,G,
they do not contribute to the assignment. We take a closer look at the last discriminant
components αj for j = r + 1, ..., p. These are eigenvectors for the matrix Σ−1Bμw with
corresponding eigenvalues λr+1 = ... = λp = 0. Therefore, it applies

Σ−1Bμwαj = Σ−1
G∑

g=1

πg(μg − μw)(μg − μw)′αj = λjαj = 0αj = 0 (27)

for j = r + 1, ..., p. This implies that the last (p − r) eigenvectors αj with corresponding
eigenvalue 0 and the vectors (μg − μw) for all g = 1, ...,G are orthogonal. Thus, αj

and (μg − μw) − (μg′ − μw) = (μg − μg′) for g, g′ = 1, ...,G are orthogonal. Hence
0 = α′

j (μg − μg′) = μYgj
− μY

g′j
and therefore:

0 = μYgj
− μY

g′j
⇔ μY

g′j
= μYgj

⇔ α′
jμg′ = α′

jμg

⇔ α′
j x − α′

jμg′ = α′
j x − α′

jμg ⇔ α′
j (x − μg′) = α′

j (x − μg)

for j = r + 1, ..., p. The last (p − r) projected distances between an observation x and the
expected value μg are equal for all groups g = 1, ...,G. Then:

p∑

j=r+1

α′
j (x − μg) =

p∑

j=r+1

α′
j (x − μg′) (28)

for all g, g′ = 1, ...,G, meaning the sum of the last (p−r) projected distances is constant for
all G groups and consequently can be neglected in the discriminant rule without changing
the assignment.
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To sum up, we have two remarkable results. First, Fisher’s weighted discriminant rule
is the same for a number of r, r + 1, ..., p discriminant components. Second, Fisher’s dis-
criminant score with penalty and p discriminant components is identical to the canonical
discriminant score. All in all, we obtain the discriminant rule which assigns observation x

to group:

g = argmin
g′=1,...,G

Dg′(x) = argmin
g′=1,...,G

D∗
g′(x) = argmin

g′=1,...,G
L∗

g′(x) = argmax
g′=1,...,G

Lg′(x). (29)

That means the discriminant rules of FDA and GDA yield the same results for any number
of groups and features. This is valid for the presence of unequal priors as well, but only
when applying Fisher’s discriminant score with penalty.

4 Implementation

In practice, the expected values and covariances are generally unknown and have to be
estimated (see Section 2.3). Various implementations in statistical software systems exist,
those of the probably most frequently used systems are briefly described in Section 4.1. In
the preceding sections, we described various methods to estimate the theoretical moments.
Using these estimators in GDA and LDA, we may observe different results. Hence, we
implemented these as described in Section 4.2. In the simulation study (see Section 4.3)
implemented in R (R Core Team 2016), we investigate how large the actual differences
between the various combinations of estimators and methods are.

4.1 Implementations in Statistical Software Systems

4.1.1 R

The R package MASS contains the function lda which performs Fisher’s LDA (see
Section 2.2) (Venables and Ripley 2002). Herbrandt (2012) provides the only detailed
description of the algorithms implemented in this function and the associated predict-
method. The covariance matrix Σ is estimated by the pooled covariance matrix Spool (see
Eq. 19, Section 2.3). Unlike in Section 2.3 (see Eq. 24), lda uses the following estimate
(Herbrandt 2012; Venables and Ripley 2002) for the covariance matrix between the groups:

B̃μw = 1

G − 1

G∑

g=1

πgn(xg − xw)(xg − xw)′. (30)

The predict-method for lda classifies new observations under the assumption of
a normal distribution (Herbrandt 2012). This method function utilises the discriminant
components from the lda-output and calculates a centred projection of the observations
(Herbrandt 2012; Venables and Ripley 2002). These centred and projected observations
are plugged in an adapted version of the canonical discriminant function (see Eq. 7,
Section 2.1). Then, the posterior probabilities (see Eq. 3, Section 2.1) can be calculated.
Hence, training and prediction with lda form a mixture of FDA and GDA.
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4.1.2 SAS

SAS offers two procedures for LDA: DISCRIM and CANDISC.
The CANDISC procedure performs discriminant analysis as a dimension reduction

technique (SAS Institute Inc. 2018). Although the ‘CAN’ part of CANDISC stands for
‘canonical’, we do not use it here as it does not match our definition of canonical used in
this paper. Given an input sample X and a dummy variable Y describing the known group
membership and the total sample covariance matrix:

S =
(

SX,X SX,Y

SY,X SY,Y

)

an eigenvalue decomposition of the matrix:

Σ̂− 1
2 SX,Y S−1

Y,Y SY,XΣ̂− 1
2

is performed. The pooled covariance matrix Σ̂ is estimated as in Eq. 19.
One can prove SX,Y S−1

Y,Y SY,X = n
n−1 B̂μw if the priors are estimated by relative group

frequencies (26). Therefore, the resulting eigenvectors are identical to those of the FDA case
described by V (see Section 2.2). The resulting coefficients (discriminant components) αj ,

j = 1, . . . , r (see Eq. 15, Section 2.2) are the columns of A = Σ̂− 1
2V . The scores given

by CANDISC are not in the quadratic form of our previous descriptions of the discriminant
scores. Unfortunately, the CANDISC procedure does not allow for prediction as it is focused
on dimension reduction.

The DISCRIM procedure in SAS can be used to perform LDA based on the multivariate
normal distribution when using the (default) option METHOD=NORMAL and (default) option
POOL=YES (SAS Institute Inc. 2018). In this case, linear discriminant functions are derived
based on the density functions (see Eq. 1, Section 2.1) with the pooled covariance matrix
Σ̂ (see Eq. 19, Section 2.3). The PRIORS statement can be set to equal (default) or
proportional in order to assign equal (25) or proportional (26) priors for the classes.
Priors can also be specified individually. Therefore, the DISCRIM procedure with settings
mentioned above performs GDA by solving the minimisation problem given in Eq. 6.

4.1.3 SPSS

In SPSS, the command DISCRIMINANT (IBM Corp 2015; Leech et al. 2005) allows for
linear discriminant analysis. The documentation of the underlying algorithm (IBM Corp
2016) suggests a GDA approach is used for the classification functions while the command
also allows for variable selection and other sorts of discriminant analyses. The PRIORS
subcommand can be set to EQUAL (default) or SIZE in order to assign equal (25) or
proportional (26) priors for the classes. Priors can also be specified individually.

4.2 Implementations of Alternative Methods

Henceforth, we focus on the implementation in R. For evaluation, we construct a grid of
observations in the space of the explanatory variables for the discriminant analysis. The
results of applying lda and self-implemented versions of both GDA (gda, wgda) and FDA
(fda, wfda) for all observations on the grid are compared using the estimators described
in Section 2.3.

The functions gda and fda are based on the estimator Spool (see Eq. 19, Section 2.3)
whereas wgda and wfda make use of Sw (see Eq. 22, Section 2.3). Furthermore,
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predict-methods for these self-implemented functions are implemented. The one for
GDA applies the canonical discriminant function given in Eq. 4 or Eq. 7 (see Section 2.1),
the one for FDA utilises Fisher’s discriminant score with penalty (see Eq. 17, Section 2.3).

4.3 Design of the Simulation Study

We simulate the behaviour of FDA and GDA to support theoretical findings from the previ-
ous sections. For data generation, we choose fixed class means and rather change the shape
of the ‘landscape’ by choosing various (even rather extreme) covariance matrices. We gen-
erate different settings for priors by varying the class probabilities, because setting priors
correctly and having penalties based on priors is essential according to the theoretical find-
ings. Further on, different settings of priors are used for estimating GDA and FDA on each
of the simulated situations. With these settings of rather extreme variances and also unequal
priors, we should be able to detect differences between FDA and GDA in case there were
any.

In order to graphically visualise the results a two-dimensional classification problem
with G = 3 classes is considered. The chosen expected values of the three classes are
μ1 = (1, 1)′, μ2 = (4, 3)′ and μ3 = (2, 5)′. They are selected in such a way that they differ
without leading to possible perfect linear separation. We construct a covariance matrix Σ

which is equal for all three classes

Σ =
(
1 ρ

ρ 1

)

(31)

while the covariance ρ corresponds to the correlation and we choose ρ ∈ {−0.9,−0.5,
−0.1, 0, 0.3, 0.6, 0.8}. Thus, various correlation structures between variables are covered,
including uncorrelated variables. For each scenario, we generate 100 training data sets with
n = 150 random numbers from bivariate normal distributions with the described parameters
μ1, μ2, μ3 and Σ for each ρ. On the one hand, we assume equal class sizes n1 = n2 =
n3 = 50, and on the other hand, we generate training data sets with different class sizes, i.e.
n1 = 15, n2 = 30 and n3 = 105.

Table 1 contains the selected combinations of priors for the three groups. We consider
equal priors in combination I as well as three situations with unequal priors in combinations
II–IV. The combinations II and III cover the cases of one high prior ( 12 vs. 1

4 ) as well as
two high ones ( 25 vs. 1

5 ). Thereby, in each instance, there are two priors of the same size.
Furthermore, in combination IV, the priors of all three groups differ and they are equal to
the relative group frequencies of n1 = 15, n2 = 30 and n3 = 105.

Consider one training data set with fixed class sizes n1, n2, n3, one value of ρ,
and one combination of priors. Based on this training data set and the given priors,
a discriminant rule is estimated with each function (lda, gda, fda, wgda, wfda).

Table 1 Combinations of
considered priors for three classes Combination π1 π2 π3

I 1
3

1
3

1
3

II 1
4

1
4

1
2

III 1
5

2
5

2
5

IV 1
10

1
5

7
10
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Next, a two-dimensional grid is generated which exists of 12321 lattice points, i.e.
{−3.0,−2.9, ..., 8.0} × {−3.0,−2.9, ..., 8.0}. Each grid point is classified by all five esti-
mated discriminant rules. The classified grid points are compared pairwise and the relative
number of differently classified lattice points is calculated. Overall, there are 10 function
comparisons. Similarly, the remaining 99 training data sets for the contemplated combi-
nation which are based on the same ρ are processed. The relative numbers of differently
classified grid points are averaged over the number of training data sets. On the basis of this
relative number of differently classified grid points, the differences between the methods
and the different estimators are compared. This procedure is repeated for each combination
of priors and ρ.

4.4 Results of the Simulation Study

The results for equal as well as unequal class sizes are exemplarily given in Tables 2 and 3
for ρ = −0.9 and ρ = 0. Here, 0∗ indicates that at most two of 12321 grid points are
classified differently in 100 repetitions. These small values only appear in comparisons with
lda (see Tables 2 and 3, rows 1–4) and their occurrence may change when using a different
operating system, hardware or R version.

This numerical difference can be neglected and is probably based on the different numer-
ical implementations of lda and our self-implemented functions. Thus, lda yields the
same classification results as gda and fda (see Tables 2 and 3, rows 1 and 3) although
our self-implemented function fda uses another estimator Bμw for the covariance matrix
between groups than lda. Note that lda, gda and fda apply Spool as an estimator for the
covariance matrix Σ and the functions wgda and wfda apply Sw . Hence, in the compar-
isons lda vs. wgda and lda vs. wfda for ρ = −0.9, the mean relative number of
differently classified grid points is not larger than 0.0322 for equal class sizes (see Table 2,
column 4) and not larger than 0.0332 for unequal class sizes (see Table 2, column 5).

Table 2 Mean relative numbers of differently classified grid points based on 100 training data sets with equal
and unequal class sizes and correlation ρ = −0.9. Further, 0∗ indicates that at most two of 12321 grid points
are classified differently

n1 = n2 = n3 = 50 n1 = 15, n2 = 30, n3 = 105

π1
1
3

1
4

1
5

1
10

1
3

1
4

1
5

1
10

π2
1
3

1
4

2
5

1
5

1
3

1
4

2
5

1
5

π3
1
3

1
2

2
5

7
10

1
3

1
2

2
5

7
10

lda vs. fda 0∗ 0 0 0 0 0 0 0∗

lda vs. wfda 0∗ 0.0146 0.0109 0.0322 0.0332 0.0206 0.0232 0.0007

lda vs. gda 0∗ 0 0 0 0 0 0 0∗

lda vs. wgda 0∗ 0.0146 0.0109 0.0322 0.0332 0.0206 0.0232 0.0007

fda vs. wfda 0 0.0146 0.0109 0.0322 0.0332 0.0206 0.0232 0.0007

fda vs. gda 0 0 0 0 0 0 0 0

fda vs. wgda 0 0.0146 0.0109 0.0322 0.0332 0.0206 0.0232 0.0007

wfda vs. gda 0 0.0146 0.0109 0.0322 0.0332 0.0206 0.0232 0.0007

wfda vs. wgda 0 0 0 0 0 0 0 0

gda vs. wgda 0 0.0146 0.0109 0.0322 0.0332 0.0206 0.0232 0.0007
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Table 3 Mean relative numbers of differently classified grid points based on 100 training data sets with equal
and unequal class sizes and correlation ρ = 0. Further, 0∗ indicates that at most two of 12321 grid points are
classified differently

n1 = n2 = n3 = 50 n1 = 15, n2 = 30, n3 = 105

π1
1
3

1
4

1
5

1
10

1
3

1
4

1
5

1
10

π2
1
3

1
4

2
5

1
5

1
3

1
4

2
5

1
5

π3
1
3

1
2

2
5

7
10

1
3

1
2

2
5

7
10

lda vs. fda 0∗ 0∗ 0∗ 0 0 0 0 0

lda vs. wfda 0∗ 0.0090 0.0073 0.0201 0.0225 0.0140 0.0160 0.0005

lda vs. gda 0∗ 0∗ 0∗ 0 0 0 0 0

lda vs. wgda 0∗ 0.0090 0.0073 0.0201 0.0225 0.0140 0.0160 0.0005

fda vs. wfda 0 0.0090 0.0073 0.0201 0.0225 0.0140 0.0160 0.0005

fda vs. gda 0 0 0 0 0 0 0 0

fda vs. wgda 0 0.0090 0.0073 0.0201 0.0225 0.0140 0.0160 0.0005

wfda vs. gda 0 0.0090 0.0073 0.0201 0.0225 0.0140 0.0160 0.0005

wfda vs. wgda 0 0 0 0 0 0 0 0

gda vs. wgda 0 0.0090 0.0073 0.0201 0.0225 0.0140 0.0160 0.0005

Provided that equal priors and class sizes are present, all lattice points are classified into
the same class by each discrimination function (see Tables 2 and 3, column 1) because the
estimators Spool and Sw are identical in this case (see Section 2.3). In all situations, when
focussing on the comparisons fda vs. gda and wfda vs. wdga, the mean relative
numbers of differently classified lattice points are 0 (see Tables 2 and 3, rows 6 and 9). Thus,
GDA and FDA yield identical results when using the same estimator for the covariance
matrix Σ . This closely resembles our theoretical result in Section 3.

We have to distinguish several cases if different estimators for the covariance matrix Σ

are used:

– If we consider unequal priors, the results of the methods are not identical in general.
– If we consider equal priors and unequal numbers of observations for different classes,

the results of the methods are not identical in general.
– If we consider equal priors and an equal number of observations for different classes,

the results of the methods are identical.

In Tables 2 and 3, non-identical results can thus be seen for the six comparisons lda
vs. wfda, lda vs. wgda, fda vs. wfda, fda vs. wgda, wfda vs. gda
and gda vs. wgda.

In addition, the more the priors resemble the relative group frequencies, the smaller the
mean relative number of differently classified grid points and the smaller the differences
between the classification results of the distinct functions (see Tables 2 and 3, column 1 and
8). Similar results are obtained from the simulations with ρ ∈ {−0.5,−0.1, 0.3, 0.6, 0.8}.

Knowing that results of different methods are identical if exactly one of Spool or Sw is
used, we can focus on comparisons based on Spool and Sw independent of the methods.
Figure 1 illustrates an example of estimated hyperplanes based on one training data set
with equal class sizes and ρ = 0 using the estimate Spool (gda, fda) on the left and
Sw (wgda, wfda) on the right. Each plot shows two sets of hyperplanes: one for priors
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Fig. 1 Estimated hyperplanes based on one training data set with ρ = 0, equal class sizes n1 = n2 = n3 =
50 using the estimate Spool (left) and Sw (right). Each plot shows two sets of hyperplanes: one for priors
π1 = π2 = π3 = 1

3 (dashed) and one for priors π1 = 1
10 , π2 = 1

5 , π3 = 7
10 (dotted)

π1 = π2 = π3 = 1
3 (dashed) and one for priors π1 = 1

10 , π2 = 1
5 , π3 = 7

10 (dotted). If
we utilise the estimate Spool and assume equal priors and class sizes, the hyperplanes are
identical to those obtained with Sw (see Fig. 1, dashed).

The estimated hyperplanes of estimate Spool for unequal priors run parallel to the ones
based on equal priors (see Fig. 1, left). In this instance, changing the priors changes the
intercepts of the hyperplanes but not the slopes. Thus, the hyperplanes of Spool have an
intuitive behaviour by assigning a larger surface to a class with higher prior.

This is not the case if we consider Sw as we can see on the right of Fig. 1. The estimated
hyperplanes based on unequal priors (dotted) have both different intercepts and slopes com-
pared to those for equal priors (dashed). Unlike Spool , the estimate Sw depends on the
priors.

In practice, GDA and FDA yield the same results for both unequal priors and class sizes,
provided the same estimator is used for the covariance matrix Σ . Thereby, the choice of an
estimator for the covariance matrix between the groups Bμw does not affect the outcome.

5 Conclusion

We resolve the misconceptions of the similarities and differences of linear discriminant
analysis based on Gaussian distribution (GDA) and Fisher’s linear discriminant analysis
(FDA).

We prove that GDA and FDA are identical even if unequal priors are present (see
Section 3) given an appropriate penalty in Fisher’s discriminant score is introduced (see
Eq. 17, Section 2.2). We focus on the comparison of the discriminant rules of both methods,
because there is no straightforward way to get posterior probabilities from an FDA for fur-
ther comparisons. Without the penalty, the same results can only be obtained if we assume
equal priors.

Necessarily, in applications, the estimator for the covariance matrix must be the same (see
Section 4.4). Otherwise, identical results can only be obtained if equal priors and equal class
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sizes are given. We show that different estimators for the covariance matrix can yield dif-
ferent hyperplanes. Whereas, the choice of an estimator for the covariance matrix between
the groups does not matter.

Appendix: Comparison for two groups and two features

Assume G = p = 2 groups and features. Hence, in FDA, the number of discriminant
components is r ≤ min{p,G − 1} = min{2, 1} = 1 (see Section 2.2). We obtain at most
one discriminant component α1 = (α11, α12)

′ ∈ R
2. Hereinafter, this is derived.

First, we take a closer look at the weighted covariance matrix between the groups Bμw .
In case of two classes and features, this can be rewritten as:

Bμw =
2∑

g=1

πg(μg − μw)(μg − μw)′

= π1(μ1 − μw)(μ1 − μw)′ + π2(μ2 − μw)(μ2 − μw)′

= π1(μ1μ
′
1 − μ1μ

′
w − μwμ′

1 + μwμ′
w) + π2(μ2μ

′
2 − μ2μ

′
w − μwμ′

2 + μwμ′
w)

= (π1 + π2)μwμ′
w − (π1μ1 + π2μ2)μ

′
w − μw(π1μ1 + π2μ2)

′+π1μ1μ
′
1+π2μ2μ

′
2

= μwμ′
w − μwμ′

w − (π1μ1 + π2μ2)(π1μ1 + π2μ2)
′ + π1μ1μ

′
1 + π2μ2μ

′
2

= π1μ1μ
′
1 + π2μ2μ

′
2 − π2

1μ1μ
′
1 − π1π2μ1μ

′
2 − π1π2μ2μ

′
1 − π2

2μ2μ
′
2

= (1 − π1)π1μ1μ
′
1 + (1 − π2)π2μ2μ

′
2 − π1π2μ1μ

′
2 − π1π2μ2μ

′
1

= π1π2μ1μ
′
1 − π1π2μ1μ

′
2 − π1π2μ2μ

′
1 + π1π2μ2μ

′
2 = π1π2(μ1 − μ2)(μ1 − μ2)

′

= π1π2(μ2 − μ1)(μ2 − μ1)
′.

As previously mentioned (see Section 2.2), the optimisation problem in Eq. 11 is
solved by the eigenvector v1 with the corresponding highest eigenvalue λ1 of the matrix

Σ− 1
2 BμwΣ− 1

2 = π1π2Σ
− 1

2 (μ2 − μ1)(μ2 − μ1)
′Σ− 1

2 . Therefore, the biggest eigenvalue
λ1 and the corresponding normalised eigenvector v1 are determined.

The number of eigenvalues unequal zero of a matrix is equal to the rank of this matrix.
So, we have:

rk
(
Σ− 1

2 BμwΣ− 1
2

)
= rk

(
π1π2Σ

− 1
2 (μ2 − μ1)(μ2 − μ1)

′Σ− 1
2

)

≤ min
{
rk(Σ− 1

2 ), rk(π1π2(μ2−μ1)), rk((μ2−μ1)
′), rk(Σ− 1

2 )
}
=1

because rk(π1π2(μ2 −μ1)) = 1 as well as rk((μ2 −μ1)
′) = 1 . The rank of Σ− 1

2 BμwΣ− 1
2

is 1 or 0. Whereas the zero matrix is the only matrix which has rank 0, it applies

rk
(
Σ− 1

2 BμwΣ− 1
2

)
= 0 if and only if (μ2 − μ1)(μ2 − μ1)

′ = 0 ∈ R
2×2 thus μ2 − μ1 =

Journal of Classification (2020) 37:598–615 611



0 ∈ R
2. This contradicts the assumption of different expected values of the groups (see

Section 2).
The trace of a matrix is equal to the sum of its eigenvalues. So, we reveal the eigenvalue

λ1 = tr
(
Σ− 1

2 BμwΣ− 1
2

)
= tr

(
Σ− 1

2 π1π2(μ2 − μ1)(μ2 − μ1)
′Σ− 1

2

)

= tr
(
π1π2(μ2 − μ1)

′Σ−1(μ2 − μ1)
)

= π1π2(μ2 − μ1)
′Σ−1(μ2 − μ1).

Since the priors are non-negative and the covariance matrix Σ is positive semidefinite λ1 >

0 is the biggest eigenvalue of Σ− 1
2 BμwΣ− 1

2 . Therefore, the corresponding eigenvector is

v1 = Σ
− 1
2 (μ2−μ1)

((μ2−μ1)
′Σ−1(μ2−μ1))

1
2
. It satisfies the two conditions

Σ− 1
2 BμwΣ− 1

2 v1 = Σ− 1
2 π1π2(μ2 − μ1)(μ2 − μ1)

′Σ− 1
2

Σ− 1
2 (μ2 − μ1)

((μ2 − μ1)′Σ−1(μ2 − μ1))
1
2

= Σ− 1
2 (μ2 − μ1)π1π2(μ2 − μ1)

′Σ−1(μ2 − μ1)

((μ2 − μ1)′Σ−1(μ2 − μ1))
1
2

= Σ− 1
2 (μ2 − μ1)λ1

((μ2 − μ1)′Σ−1(μ2 − μ1))
1
2

= λ1v1

and

v′
1v1 =

(
Σ− 1

2 (μ2 − μ1)

((μ2 − μ1)′Σ−1(μ2 − μ1))
1
2

)′
Σ− 1

2 (μ2 − μ1)

((μ2 − μ1)′Σ−1(μ2 − μ1))
1
2

= (μ2 − μ1)
′Σ−1(μ2 − μ1)

(μ2 − μ1)′Σ−1(μ2 − μ1)
= 1.

Hence, the discriminant component which is the eigenvector of the matrix Σ−1Bμw is
constituted by:

α1 = Σ− 1
2 v1 = Σ− 1

2
Σ− 1

2 (μ2 − μ1)

((μ1 − μ2)′Σ−1(μ2 − μ1))
1
2

= Σ−1(μ2 − μ1)

((μ1 − μ2)′Σ−1(μ2 − μ1))
1
2

.

The discriminant component α1 only depends on the expected values of the groups μ1,
μ2 and the covariance matrix Σ or rather its inverse. Notice, α1 is independent from the
covariance matrix between the groups Bμw .
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In order to determine the hyperplane of Fisher’s discriminant rule, the scores of the two
groups D1 and D2 (see Eq. 17, Section 2.2) are equated:

D1(x)
!= D2(x)

⇔ (α′
1(x − μ1))

2 − 2 log(π1)
!= (α′

1(x − μ2))
2 − 2 log(π2)

⇔ −2(log(π1) − log(π2))
!= (α′

1(x − μ2))
2 − (α′

1(x − μ1))
2

⇔ −2(log(π1) − log(π2))
!= (α′

1(x − μ2) + α′
1(x − μ1))(α

′
1(x − μ2) − α′

1(x − μ1))

⇔ −2(log(π1) − log(π2))
!= α′

1(x − μ2 + x − μ1)α
′
1(x − μ2 − x + μ1)

⇔ −2(log(π1) − log(π2))
!= α′

1(2x − μ1 − μ2)α
′
1(μ1 − μ2)

⇔ −2(log(π1) − log(π2))
!= −2α′

1

(
μ1 + μ2

2
− x

)

α′
1(μ1 − μ2)

⇔ log(π1) − log(π2)
!= α′

1(μ − x)α′
1(μ1 − μ2)

⇔ log(π1) − log(π2)

α′
1(μ1 − μ2)

!= α′
1μ − α′

1x

⇔ −α′
1μ + log(π1) − log(π2)

α′
1(μ1 − μ2)

!= −α′
1x = −α11x1 − α12x2

⇔ α11x1 + α12x2
!= α′

1μ − log(π1) − log(π2)

α′
1(μ1 − μ2)

⇔ x2
!= −α11

α12
x1 + α′

1μ

α12
+ log(π1) − log(π2)

α12(α
′
1(μ2 − μ1))

⇔ x2
!= −α11

α12
x1 + α′

1μ

α12
+ log(π1) − log(π2)

α12((μ2 − μ1)′Σ−1(μ2 − μ1))
1
2

.

Before we equate the canonical discriminant scores of group 1 and 2 those will
rearranged.

Lg(x) = −1

2
(x − μg)

′Σ−1(x − μg) + log(πg)

= −1

2
((x − μg)

′Σ−1x − (x − μg)
′Σ−1μg) + log(πg)

= −1

2
(x′Σ−1x − μ′

gΣ
−1x − x′Σ−1μg + μ′

gΣ
−1μg) + log(πg)

= −1

2
(x′Σ−1x − 2μ′

gΣ
−1x + μ′

gΣ
−1μg) + log(πg)

= −1

2
x′Σ−1x + μ′

gΣ
−1x − 1

2
μ′

gΣ
−1μg + log(πg)

The term − 1
2x

′Σ−1x is the same for all groups g = 1, ...,G and can be neglected. Thus,
we obtain

L̃g(x) = μ′
gΣ

−1x − 1

2
μ′

gΣ
−1μg + log(πg)

= (Σ−1μg)
′x − 1

2
μ′

gΣ
−1μg + log(πg) =: b′

gx + cg
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with bg := (Σ−1μg)
′ and cg := − 1

2μ
′
gΣ

−1μg + log(πg). The hyperplane of the
discriminant rule of GDA results by:

L̃1(x) = b′
1x + c1

!= b′
2x + c2 = L̃2(x)

⇔ (b2 − b1)
′x != c1 − c2

⇔ (Σ−1μ2 − Σ−1μ1)
′x != −1

2
μ′
1Σ

−1μ1 + log(π1) + 1

2
μ′
2Σ

−1μ2 − log(π2)

⇔ Σ−1(μ2 − μ1)
′x != −1

2
(μ′

1Σ
−1μ1 − μ′

2Σ
−1μ2) + log(π1) − log(π2)

⇔ Σ−1(μ2 − μ1)
′x != −1

2
(μ′

1Σ
−1μ1 + μ′

1Σ
−1μ2 − μ′

2Σ
−1μ1 − μ′

2Σ
−1μ2)

+ log

(
π1

π2

)

⇔ Σ−1(μ2 − μ1)
′x != −1

2
(μ′

1Σ
−1(μ1 + μ2) − μ′

2Σ
−1(μ1 + μ2))

+ log(π1) − log(π2)

⇔ Σ−1(μ2 − μ1)
′x != −1

2
(μ′

1 − μ′
2)Σ

−1(μ1 + μ2) + log(π1) − log(π2)

⇔ Σ−1(μ2 − μ1)
′x != (μ2 − μ1)

′Σ−1
(

μ1 + μ2

2

)

+ log(π1) − log(π2)

⇔ α′
1x

!= α′
1μ + log(π1) − log(π2)

((μ2 − μ1)′Σ−1(μ2 − μ1))
1
2

⇔ x2
!= −α11

α12
x1 + α′

1μ

α12
+ log(π1) − log(π2)

α12((μ2 − μ1)′Σ−1(μ2 − μ1))
1
2

.

In case of two groups and features, GDA and FDA have the same hyperplane:

h(x1) := −α11

α12
x1 + α′

1μ

α12
+ log(π1) − log(π2)

α12((μ2 − μ1)′Σ−1(μ2 − μ1))
1
2

.

Thus, GDA and FDA yield the same results even for unequal priors π1 and π2.
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