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Abstract
k-means clustering is a well-known procedure for classifying multivariate observations. The
resulting centroid matrix of clusters by variables is noted for interpreting which variables
characterize clusters. However, between-clusters differences are not always clearly captured
in the centroid matrix. We address this problem by proposing a new procedure for obtaining
a centroid matrix, so that it has a number of exactly zero elements. This allows easy inter-
pretation of the matrix, as we may focus on only the nonzero centroids. The development
of an iterative algorithm for the constrained minimization is described. A cardinality selec-
tion procedure for identifying the optimal cardinality is presented, as well as a modified
version of the proposed procedure, in which some restrictions are imposed on the positions
of nonzero elements. The behaviors of our proposed procedure were evaluated in simula-
tion studies and are illustrated with three real data examples, which demonstrate that the
performances of the procedure is promising.

Keywords Clustering · Interpretation · Cardinality constraint · Alternating least squares

1 Introduction

k-means clustering is one of the most popular procedures for classifying the rows of an
observations × variables data matrix into a small number of clusters (Aggarwal and Reddy
2013). The k-means clustering procedure is widely used for classification purposes and
recent advances in its development can be found in Steinley (2006). Various extensions and
related procedures of the k-means clustering exist, fuzzy versions (Miyamoto et al. 2008),
probabilistic models (Bock 1996), and variable selection procedures (Brusco and Cradit
2001), for example. Applications of k-means clustering can be found in various fields of
sciences, such as biology (Jetti et al. 2014), environmental science (Dalton et al. 2016),
agricultural science (Hyland et al. 2016), engineering (Peng et al. 2013), applied psychology
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(Cortina and Wasti 2005; Kuerbis et al. 2014), and experimental psychology (Schloss et al.
2015; Alsius et al. 2016; Slobodenyuk et al. 2015).

For the n-observations × p-variable data matrix X, k-means clustering is formulated as
minimizing the least squares loss function

f (M,Y) =
∑

i,l

mil ||x′
(i) − yl ||2 = ||X − MY′||2 (1)

over M and Y. Here, M = {mil}(i = 1, · · · , n; l = 1, · · · , k) is an n-observations × k-
clusters binary membership matrix and Y = {yjl}(j = 1, · · · , p) is a p-variables × k-
cluster centroid matrix. x(i) and yl denote the i-th row vector and l-th column vector of X
and Y, respectively. The operator ||X||2 = tr(X′X) denotes the sum of the squared elements
in X. The minimization of Eq. 1 can be attained by using the iterative algorithm proposed
by MacQueen (1967), in which M and Y are alternately updated.

The resulting membership matrixM shows how observations are classified into clusters.
In the interpretation of what variables characterize the clusters, the centroid matrix Y plays
a key role. Let us illustrate such an interpretation process with Adachi’s (2006) 13 (jobs)
× 12 (attributes) data matrix X called job impression data in this article, which describes
the extent to which the jobs are described by the impression attributes. We applied k-means
clustering to the column-centered version of the data matrix, with the number of clusters set
to 4. Table 1 shows the resulting centroid matrix. Its j -th row equals the average vector of
the observations classified into the l-th cluster and represents the variables that characterize
the l-th cluster. For example, the third cluster (C3) is characterized by the impressions of
“powerful,” “strong,” and “fast,” as the elements for them in C3 show larger values than
those in the other clusters, where police, journalist, sailor, and athlete are classified into C3.
The within-column and between-column contrasts in the centroids help to capture which
variables feature clusters, although these contrasts are not always observed clearly in the
centroid matrix.

A typical strategy to clarify the contrasts is to ignore the elements close to zeros (those
less than 0.4 in absolute value, for example) in the centroid matrix and regard them as
zeros. For example, we can consider that the first cluster (C1) is characterized by the
“useful,” “stubborn,” and “busy” impression, by ignoring the elements having absolute val-
ues less than 0.4. This strategy is not desirable, however, because which elements can be

Table 1 Estimated centroid
matrix by k-means with four
clusters to job impression data

C1 C2 C3 C4

Admirable 0.338 − 0.379 0.121 0.005

Useful 0.557 − 0.393 0.182 − 0.276

Good 0.205 − 0.129 0.021 − 0.062

Large − 0.010 − 0.418 0.382 0.057

Powerful − 0.071 − 0.796 1.029 − 0.238

Strong 0.031 −0.711 1.014 − 0.436

Fast − 0.333 0.125 0.950 − 1.100

Noisy − 0.279 0.246 0.871 − 1.212

Young 0.019 0.686 0.461 − 1.548

Honest 0.443 − 0.332 0.168 − 0.224

Stubborn 0.569 − 1.239 0.386 0.569

Busy 0.590 0.282 0.207 − 1.243
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ignored depends on the users’ decisions. Such decisions are both subjective and potentially
erroneous, because, in fact, they weaken the initial fit achieved by the centroid matrix in an
intuitive manner.

In this article, considering the above problem of the interpretability of the resulting
centroid matrix, we propose a new clustering procedure that produces an easily inter-
preted centroid matrix. We call this procedure cardinality-constrained k-means clustering
(CCKM). In CCKM, a number of the elements in the centroid matrix Y are constrained to
be zeros, where Card(Y) for the cardinality of Y, i.e., its number of nonzero elements. The
constraint is expressed as

Card(Y) = c (2)
with c a pre-specified integer. That is, our proposed CCKM is formulated as minimizing
Eq. 1 subject to Eq. 2. Here, it should be noted that it is unknown which elements in Y
are zero/nonzero. They are also estimated optimally in CCKM. This provides the centroid
matrix with pk−c zero elements, which facilitates the interpretation ofY, as we may ignore
the zero elements in Y. Here, it is noteworthy that no subjective decision is involved in
what elements are ignored; as described above, which elements are to be zeros is estimated
optimally.

The classic work Gordon (1973) firstly introduced constrained clustering procedure, in
which a priori information as to clusters are incorporated to clustering. Such a priori infor-
mation is thoroughly discussed in DeSarbo and Mahajan (1984); some pairs of objects are
constrained to be in the same or different cluster, for example. These constraints are helpful
for obtaining interpretable and valid clusters. The related works can be found in Steinley
and Hubert (2008) and Basu et al. (2008). These procedures require clearly defined infor-
mation as to cluster structures although is often unavailable before applying clustering in
the case of exploratory data analysis. The proposed procedure in this paper does not require
such external information with combination of cardinality selection procedure introduced
in Section 3.

The proposed procedure is also related to variable selection technique in clustering
(Brusco and Cradit 2001). These procedures are designed to obtain appropriate cluster struc-
ture even if some musking variables (Fowlkes and Mallows 1983) exist, which often spoils
clustering result. In order to accomplish this, variable selection procedure specifies the set
of variables which manifest cluster structure by various strategies, which are detailed and
compared in Steinley and Brusco (2008). CCKM differs from the variable selection proce-
dures in that it is aimed to improve interpretability of cluster centroids and therefore, the set
of variable corresponds to clusters are not always identical.

The remaining parts of this paper are organized as follows. In the following section, we
present the algorithm for minimizing Eq. 1 under the cardinality constraint (2). In Section 3,
a cardinality selection procedure is proposed, in which the best c is chosen with an informa-
tion criterion. In Section 4, a modified version of CCKM is presented, in which cardinality
constraints are imposed row/column-wise, although Eq. 2 is imposed matrix-wise. Two
numerical simulations and three real data examples are presented in Sections 5 and 6,
respectively, in order to assess and illustrate the performances of the proposed procedure.
Section 7 is devoted to a general discussion.

1.1 RelatedMethod: Factor Rotation

Interpretability of solutions is of importance also in the multivariate analysis procedures
other than clustering. Factor rotation is a well-known technique to obtain interpretable
solutions in factor analysis (FA), in which its initial solution is transformed into more
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interpretable one of simple structure (Browne 2001). It is based on the rotational indeter-
minacy of the FA solution, which allows a factor loading matrix be transformed in a post
hoc manner. Varimax rotation (Kaiser 1974), Oblimin rotation (Harman 1976), and Promax
rotation (Hendrickson and White 1964) are known as common procedures for factor rota-
tion. More generally, rotation can be applied to some other multivariate analysis techniques,
not limited for factor analysis; Yamashita (2012) and Satomura and Adachi (2013) proved
that solutions can be rotated in canonical correlation analysis.

In clustering, however, such post hoc transformations of solutions are not feasible. We
therefore propose CCKM for improving the interpretability of solutions in clustering, and
it is surely beneficial for practical users. Also, as a special case of CCKM, we propose RC-
CCKM to produce the centroid matrix having a simple structure, by means of restricting
the row/column cardinality of the centroid matrix. Such a structure is desired also in FA
(Thurstone 1947; Ullman 2006).

2 Algorithm

The optimization algorithm for CCKM is outlined in Section 2.1. It is composed of two steps
called the M- and Y-steps, which are iteratively alternated until convergence is reached.
These steps are described in detail in Section 2.2.

2.1 Outline: Whole Algorithm

Our proposed CCKM is formulated as

minimize f (M,Y) = ||X − MY′||2 over M and Y (3)

subject to the cardinality constraint (2) and the membership constraint imposed on M such
that

mil ∈ {0, 1} and
∑

l

mil = 1. (4)

Two parameter matrices are alternately updated in the M- and Y-steps, respectively, starting
from multiple sets of initial values in order to avoid accepting a local minimum as a final
solution. In each step, Eq. 1 is minimized overM or Y with the other parameter matrix kept
fixed. The CCKM algorithm is thus summarized as follows.

Step 1. Set t = 0.
Step 2. Set initial values forM and Y.
Step 3. (M-step) Update M to that which minimizes f (M,Y) subject to Eq. 4 with Y

fixed.
Step 4. (Y-step) Update Y to that which minimizes f (M,Y) subject to Eq. 2 with M

fixed.
Step 5. If the currentM has an empty column filled with zeros, return to Step 2.
Step 6. Increase t by one and go to Step 7, if the decrease in the Eq. 1 value from the

previous round is less than 1.0 × 10−7; otherwise, return to Step 3.
Step 7. Update M̂ and Ŷ by the current M and Y if f (M̂, Ŷ) > f (M,Y) or t = 1.
Step 8. If t = tmax , accept M̂ and Ŷ as the final solution; otherwise, return to Step 2.

The purpose of Step 5 is to avoid a solution with an empty cluster to which no observations
belong. In order to avoid accepting a local minimum, Steps 2 to 6 are repeated tmax times
starting from different initial values. Among the resulting multiple solutions, that with the
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lowest (1) value is selected as the optimal solution. The update formulas used in the M- and
Y-steps are presented in the following section.

2.2 Optimization in M-Step and Y-Step

For the M-step, the corresponding step in the k-means clustering (MacQueen 1967) can be
used: for fixed Y, the optimal M = {mil} minimizing Eq. 1 is given by

mil =
{
1 (l = arg min

l

f (M,Y))

0 (otherwise)
, (5)

for i = 1, · · · , n.
The problem in the Y-step cannot be solved straightforwardly and we therefore need a

trick. As such a one, we use the fact that Eq. 1 can be decomposed as

f (M,Y) = ||X − MA′||2 + ||D1/2(A − Y)||2. (6)

Here, D = diag{d11, · · · , dll , · · · , dkk} denotes the k × k diagonal matrix with dll the num-
ber of the observations classified into the l-th cluster (l = 1, · · · , k), while A is defined
as

A = X′M(M′M)−1, (7)

the l-th column of which contains the averages of the observation in the l-th cluster. The
identity in Eq. 6 can be proved as follows. Equation 1 can be rewritten as

f (M,Y) = ||X − MY′||2
= ||X − MA′ + MA′ − MY′||2 (8)

= ||X − MA′||2 + ||D1/2(A − Y)||2 − tr{(X − MA′)′(MA′ − MY′)}
with its last term vanishing as

tr{(X − MA′)′(MA′ − MY′)}
= tr{X′M(M′M)−1M′X} − tr{X′M(M′M)−1M′X} − tr(X′M′M) + tr(X′M′M)

= 0. (9)

In the right-hand side of Eq. 6, only g(Y) = ||D1/2(A − Y)||2 is relevant to Y. Thus, our
task is to minimize g(Y) subject to Eq. 2. The minimum can be found using the fact that
g(Y) satisfies the following identity and inequality:

g(Y) =
∑

(j,l)∈Z

d
1/2
ll a2j l +

∑

(j,l)∈Z⊥
d
1/2
ll (ajl − yjl)

2 ≥
∑

(j,l)∈Z

d
1/2
ll a2j l , (10)

where Z denotes the set of pk − c pairs (j, l)s for the elements yjls to be zero, while Z⊥
is the complement of Z. The inequality in Eq. 10 shows that g(Y) attains its lower limit∑

(j,l)∈Z d
1/2
ll a2j l when the elements yjls in the second term in Eq. 10 is equal to zero, that

is, when the yjls with (j, l) ∈ Z⊥ is set equal to zero. Further, the limit
∑

(j,l)∈Z d
1/2
ll a2j l

is minimal when Z contains the indices for the pk − c smallest a2j ls among all squared
elements in A. Therefore, the optimal Y is obtained as

yjl =
{
0 (iff a2j l ≤ a2[pk−c])
ajl (otherwise)

(11)

for l = 1, · · · , k and j = 1, · · · , p, where a2[pk−c] denotes the (pk − c)-th smallest value

among all a2j ls.
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Equations 5 and 11 are used for the updates in M- and Y-steps, respectively. They guaran-
tee the monotonic decrement in the the f (M,Y) value. In the following simulation studies
and real data examples, we used 300 different initial values for M and Y; i.e., tmax = 300.

3 Cardinality Selection Based on Information Criteria

In the CCKM algorithm, the cardinality of centroid matrix Y has to be set to a positive
integer c, as in Eq. 2. In this article, the minimum and maximum of c, cmin, cmax , are
defined as

cmin = p, cmax = pk. (12)

It should be noted that Y has p non-zero elements when Y has a perfect cluster structure;
i.e., each variable is associated with only one cluster. The selection of the number of non-
zero elements in Y can be viewed as a model selection problem, since the selection partially
specifies the model part of CCKM, MY′, fitted to the given data matrix X. Thus, informa-
tion criteria, such as Akaike information criterion (AIC) and Bayesian information criterion
(BIC), for the model selection problem can be suitable for determining c, which directly
constrains the cardinality of the model fitted to the dataset. In this study, we propose using
AIC and BIC to select the “best” c among the interval [cmin, cmax].

Let E = {eij } be the matrix of errors defined as E = X − MY′ and assume that data
matrix X is modeled as X = MY′ + E with eij distributed independently and identically
according to N(0, σ 2) for all i and j . Here, N(0, σ 2) represents normal distribution with its
mean zero and variance σ 2. Then, it can be shown that the least squares and maximum like-
lihood estimates for CCKM are equivalent. Under the above assumption, the log-likelihood
function to be maximized in ML estimation is expressed as

l(M,Y) = −np

2
log ||X − MY′||2. (13)

Its maximization is equivalent to minimizing least squares function (1). For a positive
integer c, the maximum of l(M,Y) is attained as

l(M,Y) ≤ −np

2
log fmin(c). (14)

where fmin(c) denotes the attained function value of Eq. 1. Using Eq. 14, the information
criteria AIC(c) and BIC(c) for a specific c are defined as

AIC(c) = np × log fmin(c) + 2ν(c), (15)

BIC(c) = np × log fmin(c) + log(np) × ν(c), (16)

where ν(c) denotes the number of parameters to be estimated and equals the sum of the
numbers of the memberships in M, the nonzero elements in Y, and error variance σ 2:

ν(c) = n + c + 1. (17)

Therefore, the best c can be given by c = arg min
cmin≤c≤cmax

AIC(c) or BIC(c). AIC and BIC

were originally proposed as model selection criteria and also used for cardinality selection
in studies in the literature Adachi and Trendafilov (2015, 2017). This approach is not con-
sidered to be computationally efficient, however, because CCKM involves the optimization
with respect to a binary membership matrix, as in the standard k-means, and therefore is sen-
sitive to local minima. To select c with AIC(c) or BIC(c) is not feasible because a heavy
computational load is required for all runs, especially when the data matrix is large (i.e., X
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contains many objects and variables). In such a situation, the centroid matrix to be estimated
is also large, although CCKM must facilitate the interpretation of such a large matrix.

In order to find a suitable c value with a lower computational cost, we propose the
following algorithm.

Step 1. Set Sinitial and Sdecrease to an integer within the range [0, 1]. Set ccurrent = cmin

and S = cmax × Sinitial .
Step 2. Repeat Steps 2 and 3 for S > 1.
Step 3. (Forward search) Repeat (a) to (c).

(a) Set c = ccurrent and compute

�AIC(c) = AIC(c + 1) − AIC(c) (18)

or

�BIC(c) = BIC(c + 1) − BIC(c). (19)

(b) If �AIC(c) or �BIC(c) is smaller than 0, set ccurrent = ccurrent + S and
return to Step 2; otherwise, proceed to (c).

(c) Set S = S × Sdecrease and proceed to the backward search.

Step 4. (Backward search) Repeat (a) to (c).

(a) Set c = ccurrent and compute �AIC(c) or �BIC(c).
(b) If �AIC(c) or �BIC(c) is greater than 0, set ccurrent = ccurrent − S and

return to Step 4; otherwise proceed to (c).
(c) Set S = S × Sdecrease and proceed to the forward search.

Step 5. If the previous step is forward search, repeat backward search with S = 1 until
�AIC(c) or �BIC(c) becomes positive; otherwise, repeat forward search until
�AIC(c) or �BIC(c) becomes negative.

The above algorithm seeks c that minimizes AIC(c) or BIC(c) within the range
[mmin,mmax] by repeating the forward and backward searches and reducing the step size S

through iteration. The rate of decrement in the step size is controlled by Sdecrease and the
initial step size is defined as cmax × Sinitial . The total computational cost is therefore dra-
matically reduced in comparison with that incurred by performing CCKMwith computation
of AIC(c) or BIC(c) for all cs. In the following simulation and real data examples, we set
Sinitial = 0.9 and Sdecrease = 0.7, settings that were empirically confirmed to behave well.

4 CCKMwith Row/Column-Wise Cardinality Constraint (RC-CCKM)

While a matrix-wise cardinality is constrained by cardinality parameter c in CCKM, we can
also consider its modified version subject to row- and column-wise cardinality constraints.
By combining row- and column-wise constraints, we can restrict both the cardinality of
the centroid matrix and the positions of the nonzero elements, so that the resulting matrix
approximates a simple structure. The utility of this approach can be illustrated with an
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example of a 5 variables × 3 clusters centroid matrix that has several zero elements, but is
not easily interpretable:

Y =

⎡

⎢⎢⎢⎢⎣

∗
∗ ∗ ∗

∗
∗ ∗ ∗

∗

⎤

⎥⎥⎥⎥⎦
. (20)

Here, the cardinality is 10 and ∗ represents a nonzero element. Although this matrix has
more zero elements than unconstrained ones, it is still difficult to interpret in that the cen-
troid matrix has a column (the third column) filled with non-zero elements, which indicates
that all the variables are associated with the third cluster. To interpret of such a cluster,
abstraction and integration of all variables are required, and it is not always straightforward
to name the cluster. Similarly, the second and fourth rows are filled with non-zeros. We
therefore prefer the centroid matrix

Y =

⎡

⎢⎢⎢⎢⎣

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗

⎤

⎥⎥⎥⎥⎦
(21)

because it does not contain any row/column vector filled with non-zeros in spite of its
cardinality equaling that of Eq. 20. In order to obtain a centroid matrix as in Eq. 21, the
positions of nonzero elements, in other words, the cardinality of rows and columns, have to
be restricted. Such constraints are defined as

Card(y(j)) = r(j), Card(yl ) = c(l) (22)

where r(j) and c(l) denote the cardinality of the row and column of Y, respectively.
To find the matrices M and Y that minimize Eq. 1 under the above constraint, the Y-

step in Section 2.2 can be modified as follows. To minimize Eq. 1 subject to the constraint
Card(y(j)) = r(j), the set Z is redefined as

Z = {(j, l)|a2j l ≤ a2j [r(j)]}, (23)

where {a2j [k−r(j)]} denotes the {k − r(j)}-th smallest element among a2j1, · · · , a2jk for j =
1, · · · , p. Each row is therefore updated by using the above Z and referencing the squared
elements of A in Eq. 7. In a parallel manner, under Card(yl ) = c(l), Z is redefined as

Z = {(j, l)|a2j l ≤ a2[c(l)]l} (24)

with a2[p−c(l)]l the {p − c(l)}-th smallest element among a21l , · · · , a2pl for l = 1, · · · , k.
We refer to the above procedure as CCKM with row/column-cardinality constraint (RC-

CCKM). The performance of the procedure is demonstrated later in one of the real data
examples.

5 Simulation Studies

In order to assess the behaviors of the CCKM algorithm presented in Section 2 and the
AIC/BIC-based cardinality selection procedure presented in Section 3, we performed two
numerical simulation studies. The behaviors to be assessed are the following two. (1) The
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correctness of the identification of the true cardinality is identified by the cardinality selec-
tion procedure and (2) the recovery by CCKM of the true parameters from which artificial
datasets are synthesized. Therefore, the purpose of the first simulation study was to assess
the accuracy of the cardinality selection, and of the second to evaluate the performance of
the parameter recovery.

5.1 Accuracy of Cardinality Selection

First, we examined the accuracy of true cardinality in the cardinality selection procedure.
A hundred data matrices X of n = 100 by p = 30 were randomly generated with setting
k = 3, as follows.

Step 1. A positive integer cT was randomly drawn from the interval [0.1× pk, 0.9× pk]
and used for the true cardinality of a centroid matrix.

Step 2. The cT nonzero elements in Y were drawn from the uniform distribution U(1, 5),
with their positions and signs randomly chosen.

Step 3. The true membership matrixMwas formed by randomly assigning n observations
to k clusters.

Step 4. The elements of n × p error matrix E were drawn from the standard normal
distribution N(0, 1).

Step 5. Data matrix X of n-observations × p-variables was synthesized with

X = MY′ + μ(ρ)E (25)

where μ(ρ) is defined as

μ(ρ) =
√
1 − ρ

ρ
× ||MY′||2

||E||2 (26)

with ρ being the rate of the variance explained.

In Step 5, μ(ρ) was used for controlling the level of errors, so that ρ approximated the
proportion of the variances in ||X||2 accounted for by the model part MY′ (Adachi 2009;
Yamashita and Mayekawa 2015). We considered the medium error level with ρ = 0.70,
which represents the 70% of the variance of X explained by MY′. For each of 100 Xs,
the best cardinality was selected with AIC and BIC: cAIC and cBIC were used for the
selected cardinality, respectively. The bias of the estimated cardinality was evaluated with
the standardized difference (SD) defined as

SD(m) = (pk)−1(cT − c). (27)

Figure 1 shows the boxplots of the resulting SD(cAIC) and SD(cBIC) in the medium-
error condition. The SD values are found to approximate zero in the BIC-based cardinality
selection, which indicates that the BIC-based procedure almost perfectly specifies the true
cardinality, although it slightly overestimates it in a few cases. Conversely, the AIC-based
selection tended to considerably underestimate the true cardinality, which is seen in the
result that the discrepancy between the true and estimated cardinality is over 7% of all
entries inY at 50 percentile of SD(c). These results show that the BIC-based is more precise
than the AIC-based selection, suggesting that the former should be used.
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Fig. 1 Boxplots of SD(cAIC) and SD(cBIC) as indices of discrepancy between true and estimated
cardinality by AIC and BIC criterion

5.2 Accuracy of Parameter Estimation

In order to assess how well the parameter matrices are recovered in the CCKM algorithm,
we considered the cases where (n, p) = (100, 30) and (30, 100) and three error levels
(ρ = 0.90, 0.70, 0.50). A hundred artificial datasets X were generated as described in
the previous section. Next, CCKM was applied to X with its cardinality set as c = cT

(identical to the true cardinality), c = cT − 0.05 × pk (5% fewer than the true cardi-
nality), and c = cT + 0.05 × pk (5% more than the true cardinality) in order to assess
the sensitivity to cardinality misidentification. For each of 2 (dimension of data matrix;
(n, p) = (100, 30), (30, 100)) × 3 (error level; ρ = 0.90, 0.70, 0.50) × 3 (cardinality
setting; 5% fewer, identical to true cardinality, and 5% more) combinations, we gener-
ated 100 datasets in the manner described in the previous section. The resulting parameters
(M̂, Ŷ) were compared to their true counterparts and the accuracy of their recovery was
evaluated by the following indices. For the membership matrix, we compared M̂ and M
in terms of the Adjusted Rand Index (ARI ) (Rand 1971; Hubert and Arabie 1985) of
these matrices, ranged from 0 to 1 with ARI = 1 representing the perfect coherence of
the two partitions shown by M̂ and M. The proximity between Ŷ = {ŷj l} and its true
counterpart Y = {yjl} was evaluated with Averaged Absolute Error (AAE) defined as
AAE(Ŷ,Y) = (pk)−1 ∑

j,l |ŷj l − yjl |, which indicates the averaged discrepancy between

the pk elements in Ŷ and Y. It should be noted that, before computing the four indices, we
must choose the k × k permutation matrix that minimizes ||ŶP−Y||2, to eliminate the free-
dom of row-permutation of Ŷ shown as ||X−MY′||2 = ||X− (MP)(YP)′||. Therefore, the
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permutation of P was chosen that minimizes ||ŶP−Y||2 among all possible p! permutation
matrices. We use M̂P for M̂ and ŶP for Ŷ with the chosen P.

The CCKM algorithm is run starting from tmax different initial values in order to avoid
accepting a local minimum as the final solution. In this simulation, we ran the CCKM
algorithm from 300 different initial values; i.e., tmax = 300.

Figures 2 and 3 show the parameter recovery results in the two cases of data sizes. Over-
all, the parameters were correctly recovered by CCKM, in that the ARI indices attained
their maximum 1 in almost all cases, and that the discrepancy between Ŷ and Y indicated
by the AAE values are sufficiently small. Even in the case where ρ = 0.50, where the error
variance amounts to the half of the total variance of the dataset, the AAE value is lower
than 0.3 at 50 percentile. Further, even if the cardinality is misidentified, the levels of the
ARI and AAE values are still satisfactory. Thus, it can be considered that the true cardinal-
ity can be identified fairly accurately in CCKM. These results allow us to conclude that the
performances of CCKM is suitable for dealing with practical problems, in that the CCKM
almost perfectly recovers the true parameters.

6 Real Data Examples

In this section, we illustrate CCKM with the cardinality selection procedure, using three
real data examples. Further, the modified version of CCKM with row/column-cardinality
constraints are finally illustrated with an additional example.
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Fig. 2 Boxplot of ARI (adjusted Rand index) and AAE(Ŷ,Y) values in the case with (n, p) = (100, 30)
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Fig. 3 Boxplot of ARI (adjusted Rand index) and AAE(Ŷ,Y) values in the case with (n, p) = (30, 100)

6.1 Example 1: Fisher’s Iris Data

CCKM was applied to Fisher’s (1936) Iris data, in which the 150 observations sampled
from 3 species were measured with respect to 4 variables. Note that the data matrix was
column-wise standardized beforehand. In order to find the optimal cardinality, the BIC-
based cardinality selection procedure was used and the results suggested that c = 8 is
the best. We also applied k-means clustering to the dataset for comparison. The estimated
centroid matrices are shown in Table 2.

In the centroid matrix estimated by CCKM in Table 2, we can find that the first cluster is
contrasted to the second one for Sepal.Length and Sepal.Width. Further, the second cluster
is different from the other clusters for Sepal.Width, with Versicolor in the second cluster

Table 2 Estimated centroid matrices by CCKM with c = 10 (left) and k-means (right); a blank cell shows
exact-zero element

CCKM k-means

C1 C2 C3 C1 C2 C3

Sepal.Length 1.030 − 0.999 1.132 − 0.050 − 1.011

Sepal.Width − 0.969 0.903 0.088 − 0.880 0.850

Petal.Length 0.940 − 1.299 0.993 0.347 − 1.301

Petal.Width 0.969 − 1.252 1.014 0.281 − 1.251
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Table 3 Contingency table for
species vs. the estimated
partitions by CCKM and k-means

CCKM(c = 8) k-means

C1 C2 C3 C1 C2 C3

Setosa 49 0 0 50 0 0

Versicolor 1 37 8 0 39 14

Virginica 0 13 42 0 11 36

characterized by narrow sepals. The contrast between clusters is clearer in the centroid
matrix of CCKM than in that of the resulting k-means clustering, because the former has
exactly zero elements. Further, as shown in Table 3, the three clusters are associated with
the three species, Setosa, Versicolor, and Virginica, respectively. It can be seen that the
estimated memberships correspond to the species, since (49 + 37 + 42)/150 = 85.3% of
150 observations are correctly classified into the true species, while (50+ 39+ 36)/150 =
83.3% in the k-means clustering. The ARI (with its 95 % confidence interval by Steinley
et al. (2016)) between the partition obtained by CCKM for the three species was 0.645
([0.626, 0.664]), while ARI = 0.620 ([0.601, 0.638]) for k-means clustering. Also, ARI

for the two partitions was 0.832 ([0.813, 0.851]), and it suggests that two partitions obtained
by CCKM and k-means are similar, even if the cardinality of centroid matrix is restricted in
CCKM. These results demonstrate that CCKM yields an easily interpreted centroid matrix
subject to the cardinality constraint, and the classification accuracy is improved.

6.2 Example 2: Wine Data

The second example is that of the Wine data available at the UCI machine learning repos-
itory, in which the 178 types of wine are evaluated in terms of 13 chemical features. Note
that the data matrix was column-wise standardized beforehand. CCKM was performed for
the dataset with c = 35 selected by the BIC-based procedure. Table 4 shows the estimated

Table 4 Centroid matrix obtained by CCKM with cardinality of r = 35. The exact-zero elements are shown
as blank cells

C1 C2 C4 C4 C5

Alcohol 0.930 − 0.613 − 0.993 − 0.737

Malic acid − 0.843 0.930

Ash 1.960 − 1.225

Alcalinity of ash − 0.780 1.499 0.668 − 0.587 0.524

Magnesium 0.505 1.548 −0.701

Total phenols 0.881 − 1.004

Flavonoids 0.958 0.491 − 1.233

Nonflavonoid phenols − 0.611 0.743

Proanthocyanins 0.599 − 0.774

Color intensity − 1.007 − 0.709 0.953

Hue 0.975 − 1.180

OD280 315 0.772 −1.275

Proline 1.204 − 0.807 − 0.652
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centroid matrix. It can be seen that each cluster is characterized by a small number of
chemical features, which highlights the contrasts among clusters. For example, the contrast
between the fourth and fifth clusters can be found in “Malic acid” and “Hue”; the observa-
tions classified into the fourth cluster are characterized by lower “Malic acid” and higher
“Hue.” Similarly, the other contrast between clusters can be found in several variables, such
as “Ash,” “Total phenols,” and “Nonflavonoid phenols,” which are clearly highlighted by
the cardinality constrained estimation of nonzero and exact-zero elements.

Originally, the wines in the dataset are classified into three categories. In Table 5, we
compare these categories and the clusters obtained by CCKM and k-means. Note that the
number of clusters in k-means was set at 5 for comparison. It is interesting that clusters
obtained by the two procedures are fairly similar, as indicated that ARI = 0.715 with
its 95% interval [0.700, 0.731] for the two partitions. For both procedures, the first and
fifth clusters correspond to Category 1 and 3, respectively. Further, the wines in Category
2 is splitted into three clusters (second, third, and fourth clusters). It suggests that even
if CCKM reduces cardinality of centroid matrix, it produces similar cluster structure to
k-means clustering.

6.3 Example 3: Job Impression Data

Here, we illustrate RC-CCKM by using the job impression dataset that was also used
in Section 1. Note that the data matrix was column-wise centered beforehand. Row- and
column-wise cardinalities were set to r(j) = k/2 = 2 and c(l) = p/2 = 6 for
j = 1, · · · , 12, l = 1, · · · , 4. This implies “Each row should contain at least one zero and
each column should contain at least k zeros,” which is a property of an easily interpreted
matrix (Thurstone 1947).

The estimated centroid matrix is presented in Table 6. The resulting cardinality of the
centroid matrix is 19, which is 19/48 ≈ 39.6% of all entries. As in the previous two exam-
ples, we can see clear differences between clusters and the homogeneity in each cluster. As
the row-wise cardinality was set at 2, each row has at least two zero elements and the remain-
ing nonzero elements show the contrast of extreme positive and negative values, as found
in the rows of “powerful” and “strong,” for example. Furthermore, each cluster corresponds
to fewer variables, as compared with the results of k-means in Table 1, which facilitates the
interpretation of clusters. It should be noted that the proportion of the variance explained
by the CCKM is 60.8%, which is not substantially lower than the proportion of 68.9% in
the k-means solution. Further, the memberships estimated in CCKM perfectly correspond
to those in the k-means clustering. These results demonstrate promising performances of
RC-CCKM: it gives easily interpreted solutions while the goodness of fit to data is retained.

Table 5 Contingency table for wine categories vs. the estimated partitions by CCKM and k-means

CCKM(c = 35) k-means

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

Category 1 56 2 0 1 0 54 4 0 1 0

Category 2 1 4 37 27 2 0 18 25 27 1

Category 3 0 1 0 0 47 0 0 1 0 47
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Table 6 Estimated centroid
matrix by CCKM with
row/column-cardinality
constraint and four clusters for
job impression data; exact-zero
elements are shown as blank cells

C1 C2 C3 C4

Admirable 0.338

Useful 0.557 − 0.393

Good

Large − 0.418

Powerful − 0.796 1.029

Strong − 0.711 1.014

Fast 0.950 − 1.100

Noisy 0.871 − 1.212

Young 0.686 − 1.548

Honest 0.443

Stubborn 0.569 − 1.239

Busy 0.590 − 1.243

7 Concluding Remarks

In this paper, we addressed the difficulty in interpreting the centroid matrix resulting from
the standard k-means clustering. We proposed a new procedure called CCKM in which
the cardinality of the centroid matrix is directly constrained ti improve its interpretability.
CCKM produces a centroid matrix with reduced cardinality and its interpretation is easier
than that of the standard k-means clustering, because between-cluster contrasts are high-
lighted by exact-zero elements. We also proposed a cardinality selection procedure and
modified version of CCKM. The results of the simulation studies show that the BIC-based
cardinality selection is more accurate than the AIC-based one, and the parameter estimation
of CCKM is not sensitive to error contamination and misidentification of cardinality. Real
data examples were presented to demonstrate the promising performance of CCKM and its
modified version.

In clustering, the interpretability of solutions is of importance, as well as the classifica-
tion accuracy. Thus, the cardinality constraint is considered to be useful for users in that
the number of non-zero elements is directly associated with interpretability. Further, users
can control the balance of low cardinality and model fit by tuning the cardinality parame-
ter c within a restricted range. Therefore, we can conclude that the proposed procedure is
suitable for extracting interpretable clusters.
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