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Abstract
We extend the standard Bayesian multivariate Gaussian generative data classifier by conside-
ring a generalization of the conjugate, normal-Wishart prior distribution, and by deriving
the hyperparameters analytically via evidence maximization. The behaviour of the opti-
mal hyperparameters is explored in the high-dimensional data regime. The classification
accuracy of the resulting generalized model is competitive with state-of-the art Bayesian dis-
criminant analysis methods, but without the usual computational burden of cross-validation.

Keywords Hyperparameters · Evidence maximization · Bayesian classification ·
High-dimensional data

1 Introduction

In the conventional formulation of classification problems, one aims to map data samples
x ∈ IRd correctly into discrete classes y ∈ {1, . . . C}, by inferring the underlying statistical
regularities from a given training setD = {(x1, y1), . . . , (xn, yn)} of i.i.d. samples and cor-
responding classes. The standard approach to this task is to define a suitable parametrization
p(x, y|θ) of the multivariate distribution from which the samples in D were drawn. If the
number of samples n is large compared to the data dimensionality d, computing point esti-
mates of the unknown parameters θ by maximum likelihood (ML) or maximum a posteriori
probability (MAP) methods is accurate and usually sufficient. On the other hand, if the ratio
d/n is not small, point estimation–based methods are prone to overfitting. This is the ‘curse
of dimensionality’. Unfortunately, the regime of finite d/n is quite relevant for medical
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applications, where clinical data-sets often report on relatively few patients but contain
many measurements per patient.1

In generative classification models, a crucial role is played by the class-specific sample
covariance matrices that capture the correlations between the components of x. These will
have to be inferred, either explicitly or implicitly. While the sample covariance matrix �

is a consistent estimator for the population covariance matrix �0 in the limit d/n → 0,
for finite d/n, the empirical covariance eigenvalue distribution �(ξ) is a poor estimator
for its population counterpart �0(λ). This becomes more pronounced as d/n increases.2

In addition to the clear bias in covariance estimation induced by high ratios of d/n, the
geometry of high-dimensional spaces produces further extreme and often counterintuitive
values of probability masses and densities (MacKay 1999).

The overfitting problem has been known for many decades, and many strategies have
been proposed to combat its impact on multivariate point estimation inferences. Regular-
ization methods add a penalty term to the ML loss function. The penalty strength acts as a
hyperparameter, and is to be estimated. The penalty terms punish, e.g. increasing values of
the sum of absolute parameter values (LASSO) or squared parameter values (ridge regres-
sion), or a linear combination of these (elastic net) (Zou and Hastie 2005). They appear
naturally upon introducing prior probabilities in Bayesian inference, followed byMAP point
estimation. Feature selection methods seek to identify a subset of ‘informative’ components
of the sample vectors. They range from linear methods such as principal component analysis
(Hotelling 1933) to non-linear approaches such as auto-encoders (Hinton and Salakhutdinov
2006). They can guide experimental work, by suggesting which data features to examine.
Most of these techniques use heuristics to determine the number of features to select. Early
work by Stein and et al. (1956) introduced the concept of shrinking a traditional estima-
tor toward a ‘grand average’. In the univariate case, this was an average of averages (Efron
and Morris 1977). For the multivariate case, the James-Stein estimator is an admissible esti-
mator of the population covariance matrix (James and Stein 1961). This idea was further
developed by Ledoit and Wolf (2004) and Haff (1980). More recent approaches use mathe-
matical tools from theoretical physics to predict (and correct for) the overfitting bias in ML
regression analytically (Coolen et al. 2017).

Any sensible generative model for classifying vectors in IRd will have at least O(d)

parameters. The fundamental cause of overfitting is the fact that in high-dimensional spaces,
where d/n is finite even if n is large, the posterior parameter distribution p(θ |D) (in a
Bayesian sense) will be extremely sparse. Replacing this posterior by a delta-peak, which is
what point estimation implies, is always a very poor approximation, irrespective of which
protocol is used for estimating the location of this peak. It follows that by avoiding point esti-
mation altogether, i.e. by retaining the full posterior distribution and doing all integrations
over model parameters analytically, one should reduce overfitting effects, potentially allow-
ing for high-dimensional data-sets to be classified reliably. Moreover, only hyperparameters
will then have to be estimated (whose dimensionality is normally small, and independent
of d), so one avoids the prohibitive computational demands of sampling high-dimensional
spaces. The need to do all parameter integrals analytically limits us in practice to parametric
generative models with class-specific multivariate Gaussian distributions. Here, the model

1This is the case for rare diseases, or when obtaining tissue material is nontrivial or expensive, but measuring
extensive numbers of features in such material (e.g. gene expression data) is relatively simple and cheap.

2While �(λ) is not a good estimator for �0(λ), Jonsson (1982) showed that in contrast
∫
dλ�(λ)λ is a good

estimate of
∫
dλ�0(λ)λ; the bulk spectrum becomes more biased as d/n increases, but the sample eigenvalue

average does not.
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parameters to be integrated over are the class means in IRd and class-specific d × d covari-
ance matrices, and with carefully chosen priors, one can indeed obtain analytical results.
The Wishart distribution is the canonical prior for the covariance matrices. Analytically
tractable choices for the class means are the conjugate (Keehn 1965; Geisser 1964) or the
non-informative priors (Brown et al. 1999; Srivastava and Gupta 2006).

As the data dimensionality increases, so does the role of Bayesian priors and their asso-
ciated hyperparameters, and the method used for computing hyperparameters impacts more
on the performance of otherwise identical models. The most commonly used route for
hyperparameter estimation appears to be cross-validation. This requires re-training one’s
model k times for k-fold cross-validation; for leave-one-out cross-validation, the model will
need to be re-trained n times.

In this paper, we generalize the family of prior distributions for parametric generative
models with class-specific multivariate Gaussian distributions, without loss of analyti-
cal tractability, and we compute hyperparameters via evidence maximization, rather than
cross-validation. This allows us to derive closed-form expressions for the predictive proba-
bilities of two special model instances. The numerical complexity of our approach does not
increase significantly with d since all integrals whose dimensions scale with d are solved
analytically.

In Section 2, we first define our generative Bayesian classifier and derive the relevant
integrals. Special analytically solvable cases of these integrals, leading to two models (A
and B), are described in Section 3 along with the evidence maximization estimation of
hyperparameters. Closed-form expressions for the predictive probabilities corresponding
to these two models are obtained in Section 3.4. We then examine the behaviour of the
hyperparameters in Section 4.1 and carry out comparative classification performance tests
on synthetic and real data-sets in Section 5. We conclude our paper with a discussion of the
main results.

2 Definitions

2.1 Model and Objectives

We have data D = {(x1, y1), . . . , (xn, yn)} consisting of n samples of pairs (x, y), where
x ∈ IRd is a vector of covariates, and y ∈ {1, . . . , C} a discrete outcome label. We seek to
predict the outcome y0 associated with a new covariate vector x0, given the data D. So we
want to compute

p(y0|x0,D) = p(y0, x0|D)
∑C

y=1 p(y, x0|D)
= p(y0, x0|x1, . . . , xn; y1, . . . , yn)

∑C
y=1 p(y, x0|x1, . . . , xn; y1, . . . , yn)

= p(x0, . . . , xn; y0, . . . , yn)
∑C

y=1 p(x0, . . . , xn; y, y1, . . . , yn)
(1)

We next need an expression for the joint distribution p(x0, . . . , xn; y0, . . . , yn). We assume
that all pairs (xi , yi) are drawn independently from a parametrized distribution p(x, y|θ)

whose parameters θ we do not know. Using de Finetti’s representation theorem and the fact
that exchangeability is a weaker condition than i.i.d, we can write the joint distribution of
{(xi , yi)}ni=0 as

p(x0, . . . , xn; y0, . . . , yn) =
∫
dθp(θ)

n∏

i=0

p(xi , yi |θ) (2)
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It now follows that

p(y0|x0,D) =
∫
dθp(θ)

∏n
i=0 p(xi , yi |θ)

∑C
y=1

∫
dθp(θ)p(x0, y|θ)

∏n
i=1 p(xi , yi |θ)

(3)

We regard all model parameters with dimensionality that scales with the covariate dimen-
sion d as micro-parameters, over which we need to integrate (in the sense of θ above).
Parameters with d-independent dimensionality are regarded as hyperparameters. The
hyperparameter values will be called a ‘model’ H . Our equations will now acquire a
label H :

p(y0|x0,D, H) =
∫
dθp(θ |H)

∏n
i=0 p(xi , yi |θ , H)

∑C
y=1

∫
dθp(θ |H)p(x0, y|θ , H)

∏n
i=1 p(xi , yi |θ , H)

(4)

The Bayes-optimal hyperparameters H are those that maximize the evidence, i.e.

Ĥ = argmaxH p(H |D) = argmaxH log

{
p(D|H)p(H)

∑
H ′ p(D|H ′)p(H ′)

}

= argmaxH

{

log
∫
dθp(θ |H)

n∏

i=1

p(xi , yi |θ , H) + logp(H)

}

(5)

What is left is to specify the parametrization p(x, y|θ) of the joint statistics of covariates x

and y in the population from which our samples are drawn. This choice is constrained by
our desire to do all integrations over θ analytically, to avoid approximations and overfitting
problems caused by point estimation. One is then naturally led to class-specific Gaussian
covariate distributions:

p(x, y|θ) = p(y)p(x|y, θ), p(x|y, θ) = e− 1
2 (x−μy )T �y (x−μy )

√
(2π)d/Det�y

(6)

Thus, the parameters to be integrated over are θ = {μy,�y, y = 1, . . . , C}, i.e. the class-
specific means and precision matrices.

2.2 Integrals to be Computed

In both the inference formula p(y0|x0,D, H) (4) and in the expression for Ĥ (5), the
relevant integral we need to do analytically is the one in

�(H, n,D) = − log
∫
dθp(θ |H)

n∏

i=1

p(xi , yi |θ , H) (7)

In the case where we require �(H, n + 1,D), when evaluating the numerator and the
denominator of Eq. 4, we simply replace

∏n
i=1 by

∏n
i=0, so that

p(y0|x0,D) = e−�(H,n+1,D)

∑C
z=1 e

−�(H,n+1,D)|y0=z

Ĥ = argminH �(H, n,D) (8)
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Working out �(H, n,D) for the parametrization (6) gives:

�(H, n,D) = 1

2
nd log(2π) −

n∑

i=1

logpyi

− log
∫ [

C∏

z=1

dμzd�zpz(μz, �z)

][
n∏

i=1

(Det�yi
)
1
2

]

e− 1
2

∑n
i=1(xi−μyi

)T �yi
(xi−μyi

)

(9)

where p(yi) = pyi
is the prior probability of a sample belonging to class yi . For generative

models, this is typically equal to the empirical proportion of samples in that specific class.
To simplify this expression, we define the data-dependent index sets Iz = {i|yi = z},
each of size nz = |Iz| = ∑n

i=1 δz,yi
. We also introduce empirical covariate averages and

correlations, with xi = (xi1, . . . , xid ):

X̂z
μ = 1

nz

∑

i∈Iz

xiμ, Ĉz
μν = 1

nz

∑

i∈Iz

(xiμ − X̂z
μ)(xiν − X̂z

ν) (10)

Upon defining the vector X̂z = (X̂z
1, . . . , X̂

z
d ), and the d ×d matrix Ĉz = {Ĉz

μν}, we can
then write the relevant integrals after some simple rearrangements in the form

�(H, n,D) = 1

2
nd log(2π) −

C∑

z=1

nz logpz

− log
∫

⎡

⎣
C∏

z=1

dμzd�zpz(μz,�z)(Det�z)
nz
2 e− 1

2 nzμ
T
z �zμz

⎤

⎦

×e
∑C

z=1 μz·�z

∑
i∈Iz

xi− 1
2

∑C
z=1

∑
i∈Iz

xT
i �zxi

= 1

2
nd log(2π) −

C∑

z=1

nz logpz

−
C∑

z=1

log
∫
dμd�pz(μ+X̂z,�)(Det�)

1
2 nze− 1

2 nzμ
T �μ− 1

2 nzTr(Ĉz�)(11)

To proceed, it is essential that we compute �(H, n,D) analytically, for arbitrary X̂ ∈ IRd

and arbitrary positive definite symmetric matrices Ĉ. This will constrain the choice of our
priors pz(μ,�) for the covariate averages and correlations in outcome class z. All required
integrals are of the following form, with � limited to the subset 
d of symmetric positive
definite matrices:

�z(H, n,D) =
∫

IRd
dμ

∫


d

d�pz(μ+X̂z|�)pz(�)(Det�)
1
2 nze− 1

2 nzμ
T �μ− 1

2 nzTr(Ĉz�) (12)

We will drop the indications of the sets over which the integrals are done, when these are
clear from the context. The tricky integral is that over the inverse covariance matrices �.

The choice in Shalabi et al. (2016) corresponded to pz(μ, �) ∝ e− 1
2μ2/β2

z δ[� − 1I/α2
z ],

which implied assuming uncorrelated covariates within each class. Here we want to allow
for arbitrary class-specific covariate correlations.
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2.3 Priors for Class-Specific Means and Covariance Matrices

The integrals over μ and � can be done in either order. We start with the integral over μ.
In contrast to most studies, we replace the conjugate prior for the unknown mean vector by
a multivariate Gaussian with an as yet arbitrary precision matrix A. This should allow us to
cover a larger parameter space than the conjugate prior (which has �z

−1 as its covariance
matrix):

pz(μ|A) = (2π)−
d
2
√
DetAze

− 1
2μT Azμ (13)

Insertion into Eq. 12 gives

�z = (2π)−
d
2

∫
d�pz(�)e− 1

2 nzTr(Ĉz�)− 1
2 X̂

T

z AzX̂z
[
Det(�nz )DetAz

] 1
2

×
∫
dμe− 1

2μT (nz�+Az)μ−μT AzX̂z

=
∫
d�pz(�)e− 1

2 nzTr(Ĉz�)

[
Det(�nz )DetAz

Det(nz�+Az)

] 1
2

e
1
2XT Az(nz�+Az)

−1AzX̂z− 1
2 X̂

T

z AzX̂z

=
∫
d�pz(�)e− 1

2 nzTr(Ĉz�)
[
Det(nz�

1−nzA−1
z +�−nz )

]− 1
2
e− 1

2 X̂
T [(nz�)−1+(Az)

−1]−1X̂z

(14)

Our present more general assumptions lead to calculations that differ from the earlier work
of, e.g. Keehn (1965), Brown et al. (1999), and Srivastava et al. (2007). Alternative analyt-
ically tractable priors are the transformation-invariant Jeffrey’s or Reference priors, which
are derived from information-theoretic arguments (Berger et al. 1992). There, the calcu-
lation of the predictive probability is simpler, but the sample covariance matrix is not
regularized. This causes problems when n < d, where the sample covariance matrices
would become singular and the predictive probability would cease to be well defined. Our
next question is for which choice(s) of Az we can do also the integrals over � in Eq. 14
analytically. Expression (14), in line with Keehn (1965), Brown et al. (1999), and Srivas-
tava et al. (2007), suggests using for the measure pz(�) over all positive definite matrices
� ∈ 
d a Wishart distribution, which is of the form

p(�) = (Det�)(r−d−1)/2

2rd/2�d( r
2 )(DetS)r/2

e− 1
2 Tr(S

−1�) (15)

Here, r > d − 1, S is a positive definite and symmetric d × d matrix, and �p(x) is the
multivariate gamma function which is expressed in terms of the ordinary gamma function
via:

�p

( r

2

)
= πp(p−1)/4

p∏

j=1

�

(
r

2
− j−1

2

)

(16)

The choice Eq. 15 is motivated solely by analytic tractability. However, since the prior
domain is the space of all positive definite matrices, we are assured that upon using Eq. 15,
our posterior will be consistent. Distribution (15) implies stating that � is the empirical
precision matrix of a set of r i.i.d. random zero-average Gaussian vectors, with covariance
matrix S. Since Eq. 15 is normalized, for any S, we can use it to do all integrals of the
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following form analytically:
∫


d

d�(Det�)(r−d−1)/2e− 1
2 Tr(S

−1�) = 2rd/2�d

( r

2

)
(DetS)r/2 (17)

In order for Eq. 14 to acquire the form (17), we need a choice for Az such that the following
holds, for some γ0, γ1 ∈ IR: [(nz�)−1+(Az)

−1]−1 = γ1z�+γ0z1I. Rewriting this condition
gives:

Az(γ0z, γ1) = [(γ1z� + γ0z1I)
−1 − (nz�)−1]−1 (18)

Conditions to ensureAz is positive definite are considered in the supplementary material.
Upon making the choice (18) and using Eq. 17, we obtain for the integral (14):

�z = e− 1
2 γ0zX̂

2
z

∫
d�pz(�)

e− 1
2 nzTr(Ĉz�)− 1

2 γ1zX̂
T

z �X̂z

√
Det[nz�

1−nz (γ1z� + γ0z1I)−1]
(19)

We conclude that we can evaluate (19) analytically, using Eq. 17, provided we choose for
pz(�) the Wishart measure, and with either γ0z → 0 and γ1z ∈ (0, nz) or with γ1z → 0
and γ0z ∈ (0, nzλmin). Alternative choices for (γ0z, γ1z) would lead to more complicated
integrals than the Wishart one.

The two remaining analytically integrable candidate model branches imply the following
choices for the inverse correlation matrix Az of the prior pz(μ|Az) for the class centres:

γ0z = 0 : Az = nzγ1z

nz−γ1z
�, γ1z = 0 : Az =

[
γ −1
0z 1I − (nz�)−1

]−1
(20)

Note that the case Az → 0, a non-informative prior for class means as in Brown et al.
(1999), corresponds to (γ0z, γ1z) = (0, 0). However, the two limits γ0z → 0 and γ1z → 0
will generally not commute, which can be inferred from working out (19) for the two special
cases γ0z = 0 and γ1z = 0:

γ0z = 0 : �z =
(

γ1z

nz

)d
2

∫
d�pz(�)[Det(�)] nz

2 e− 1
2 nzTr(Ĉz�)− 1

2 γ1zX̂
T

z �X̂z (21)

γ1z = 0 : �z =
(

γ0z

nz

)d
2

e− 1
2 γ0zX̂

2
z

∫
d�pz(�)[Det(�)] nz−1

2 e− 1
2 nzTr(Ĉz�) (22)

This non-uniqueness of the limit Az → 0 is a consequence of having done the integral over
� first.

3 The Integrable Model Branches

3.1 The Case γ0z = 0: Model A

We now choose γ0z = 0, and substitute for each z = 1 . . . C the Wishart distribution Eq. 15
into Eq. 19, with seed matrix S = kz1I. This choice is named Quadratic Bayes in Brown
et al. (1999). We also define the p×p matrix M̂z with entries M̂z

μν = Xz
μXz

ν . The result of
working out (19) is, using Eq. 17:

�z =
(
2nzγ1z

nzk
rz
z

)d
2 �d

(
rz+nz

2

)

�d

( rz
2

) [Det(nzĈz+γ1zM̂z+k−1
z 1I)]−(rz+nz)/2 (23)
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This, in turn, allows us to evaluate (11):

�(H, n,D) = 1

2
nd log(π) −

C∑

z=1

nz logpz − 1

2
d

C∑

z=1

[
log(γ1z/nz)−rz log kz

]

−
C∑

z=1

log

⎡

⎣
�d

(
rz+nz

2

)

�d

( rz
2

)

⎤

⎦

+1

2

C∑

z=1

(rz+nz) logDet(nzĈz+γ1zM̂z+k−1
z 1I) (24)

The hyperparameters of our problem are {pz, γ1z, rz, kz}, for z = 1 . . . C. If we choose flat
hyper-priors, to close the Bayesian inference hierarchy, their optimal values are obtained by
minimizing (24), subject to the constraints

∑C
z=1 pz = 1, pz ≥ 0, rz ≥ d , γ1z ∈ [0, nz], and

kz > 0. We now work out the relevant extremization equations, using the general identity
∂x logDetQ = Tr(Q−1∂xQ):

• Minimization over pz: pz = nz/n.
• Minimization over kz:

kz = 0 or rz = nz

[
dkz

Tr[(nzĈz+γ1zM̂z+k−1
z 1I)−1

− 1

]−1

(25)

• Minimization over rz, using the digamma function ψ(x) = d
dx log�(x):

rz = d or log kz = 1

d

d∑

j=1

[

ψ

(
rz+nz−j+1

2

)

− ψ

(
rz−j+1

2

)]

− 1

d
logDet(nzĈz+γ1zM̂z+k−1

z 1I)

]

(26)
• Minimization over γ1z:

γ1z ∈ {0, nz} or γ1z = 1

rz+nz

[
1

d
Tr[(nzĈz+γ1zM̂z+k−1

z 1I)−1M̂z]
]−1

(27)

In addition, we still need to satisfy the inequalities rz ≥ d, γ1z ∈ [0, nz], and kz > 0.
We observe in the above results that, unless we choose γ1z ∈ {0, nz}, i.e.A = 0 orA−1 =

0, we would during any iterative algorithmic solution of our order parameter equations have
to diagonalize a d × d matrix at each iteration step. This would be prohibitively slow, even
with the most efficient numerical diagonalization methods. Since γ1z = nz implies that the
prior pz(μ|A) forces all class centres to be in the origin, we will be left for the current model
branch only with the option γ1z → 0, corresponding to a flat prior for the class centres. We
thereby arrive at the Quadratic Bayes model of Brown et al. (1999), with hyperparameter
formulae based on evidence maximization.

3.2 The Case γ1z = 0: Model B

We next inspect the alternative model branch by choosing γ1z = 0, again substituting for
each z = 1 . . . C the Wishart distribution (15) into Eq. 19 with seed matrix S = kz1I. The
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result is:

�z =
(
2nz−1γ0z

nzk
rz
z

)d
2 �d

(
rz+nz−1

2

)

�d(
rz
2 )

[Det(nzĈz+k−1
z 1I)]−(rz+nz−1)/2e− 1

2 γ0zX̂
2
z (28)

For the quantity (11), we thereby find:

�(H, n,D) = 1

2
nd log(π) + 1

2
dC log 2 −

C∑

z=1

nz logpz− 1

2
d

C∑

z=1

[

log

(
γ0z

nz

)

−rz log kz

]

−
C∑

z=1

log

⎡

⎣
�d

(
rz+nz−1

2

)

�d

( rz
2

)

⎤

⎦ + 1

2

C∑

z=1

γ0zX̂
2
z

+1

2

C∑

z=1

(rz+nz−1) logDet(nzĈz+k−1
z 1I) (29)

If as before we choose flat hyper-priors, the Bayes-optimal hyperparameters
{pz, γ1z, rz, kz}, for z = 1 . . . C are found by maximizing the evidence (29), subject to the
constraints

∑C
z=1 pz = 1, pz ≥ 0, rz ≥ d , γ0z ≥ 0, and kz > 0. For the present model

branch B, differentiation gives:

• Minimization over pz: pz = nz/n.
• Minimization over kz:

kz = 0 or rz = (nz−1)

[
dkz

Tr[(nzĈz+k−1
z 1I)−1

− 1

]−1

(30)

• Minimization over rz:

rz =d or log kz = 1

d

d∑

j=1

[

ψ

(
rz+nz−j

2

)

−ψ

(
rz−j+1

2

)]

− 1

d
logDet(nzĈz+k−1

z 1I)

(31)

• Minimization over γ0z: γ0z = d/X̂
2
z .

In addition, we still need to satisfy the inequalities rz ≥ d and kz > 0. In contrast to the first
integrable model branch A, here we are able to optimize over γ0z without problems, and the
resulting model B is distinct from the Quadratic Bayes classifier of Brown et al. (1999).

3.3 Comparison of the Two Integrable Model Branches

Our initial family of models was parametrized by (γ0z, γ1z). We then found that the follow-
ing two branches are analytically integrable, usingWishart priors for class-specific precision
matrices:

A : (γ0z, γ1z) = (0, γ̂1z) with γ̂1z → 0 (32)

B : (γ0z, γ1z) = (γ̂0z, 0) with γ̂0z → d/X̂
2
z (33)

Where conventional methods tend to determine hyperparameters via cross-validation, which
is computationally expensive, here we optimize hyperparameters via evidence maximiza-
tion. As expected, both models give pz = nz/n. The hyperparameters (kz, rz) are to be
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solved from the following equations, in which �z(ξ) denotes the eigenvalue distribution
of Ĉz:

A : kz = 0 or rz = nz

[
1

∫
dξ�z(ξ)(nzkzξ+1)−1

− 1

]−1

(34)

rz = d or
1

d

d∑

j=1

[

ψ

(
rz+nz−j+1

2

)

−ψ

(
rz−j+1

2

)]

=
∫
dξ�z(ξ) log(nzkzξ+1)

(35)

B : kz = 0 or rz = (nz−1)

[
1

∫
dξ�z(ξ)(nzkzξ+1)−1

− 1

]−1

(36)

rz = d or
1

d

d∑

j=1

[

ψ

(
rz+nz−j

2

)

− ψ

(
rz−j+1

2

)]

=
∫
dξ�z(ξ) log(nzkzξ+1)

(37)

We see that the equations for (kz, rz) of models A and B differ only in having the replace-
ment nz → nz − 1 in certain places. Hence, we will have

(
kA
z , rA

z

) = (
kB
z , rB

z

) +
O(n−1

z ).

3.4 Expressions for the Predictive Probability

Starting from Eq. 8, we derive an expression for the predictive probability for both models
(see supplementary material). The predictive probability for model B:

p(y0|x0,D)=
Wy0 e

− γ0y0
2(ny0+1)

[
2X̂y0 ·(x0−X̂y0 )+ 1

ny0+1 (x0−X̂y0 )2
](
1+ ny0

ny0+1 (x0−X̂y0 )·�−1
y0

(x0−X̂y0 )
)− 1

2 (ry0+ny0 )

∑C
z=1 Wze

− γ0z
2(nz+1)

[
2X̂z ·(x0−X̂z)+ 1

nz+1 (x0−X̂z)2
](
1+ nz

nz+1 (x0−X̂z) · �−1
y0

(x0−X̂z)
)− 1

2 (rz+nz)

(38)

with pz = nz/n, and

Wz = pz

(
nz

nz+1

) d
2 �

(
rz+nz

2

)

�
(

rz+nz−d
2

) [Det�z]− 1
2 , γ0z = d/X̂

2
z, 
z = nzĈz+k−1

z 1I

(39)

Upon repeating the same calculations for model A, one finds that its predictive probability is
obtained from expression (38) simply by setting γ0y0 to zero (keeping in mind that for model
A, we would also insert into this formula distinct values for the optimal hyperparameters kz

and rz).
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4 Phenomenology of the Classifiers

4.1 Hyperparameters: LOOCV Versus EvidenceMaximization

The most commonly used measure for classification performance is the percentage of sam-
ples correctly predicted on unseen data (equivalently, the trace of the confusion matrix),
and most Bayesian classification methods also use this measure as the optimization target
for hyperparameters, via cross-validation. Instead, our method of hyperparameter optimiza-
tion maximizes the evidence term in the Bayesian inference. In k-fold cross-validation,
one needs to diagonalize for each outcome class a d × d matrix k times, whereas using
the evidence maximization route, one needs to diagonalize such matrices only once, giv-
ing a factor k reduction in what for large d is the dominant contribution to the numerical
demands. Moreover, cross-validation introduces fluctuations into the hyperparameter com-
putation (via the random separations into training and validation sets), whereas evidence
maximization is strictly deterministic.

The two routes, cross-validation versus evidence maximization, need not necessarily lead
to coincident hyperparameter estimates. In order to investigate such possible differences, we
generated synthetic data-sets with equal class sizes n1 = n2 = 50, and with input vectors
of dimension d = 50. Using a 100 × 100 grid of values for the hyperparameters k1 and k2,
with kz ∈ [0, kmax,z], we calculated the leave-one-out cross-validation (LOOCV) estima-
tor of the classification accuracy for unseen cases, for a single data realization. The values
of (r1, r2) were determined via evidence maximization, using formula (35) (i.e. following
model branch A, with the non-informative prior for the class means). The value kmax,z is
either the upper limit defined by the condition rz > d − 1 (if such a limit exists, dependent
on the data realization), otherwise set numerically to a fixed large value. The location of the
maximum of the resulting surface determines the LOOCV estimate of the optimal hyperpa-
rameters (k1, k2), which can be compared to the optimized hyperparameters (k1, k2) of the
evidence maximization method.

Figure 1 shows the resulting surface for uncorrelated data, i.e. �1 = �2 = Id . The
comparison points from our evidence-based optimal hyperparameters (k1, k2) are shown
in Table 1. The small values for (k1, k2) imply that the model correctly infers that the

Fig. 1 LOOCV classification accuracy in (k1, k2) space for uncorrelated synthetic data, with class means
μ1 = (0, 0, . . . , 0) and μ2 = (2.5, 0, . . . , 0), population covariance matrices �1 = �2 = Id , and covariate
dimension d = 50. The hyperparameters (r1, r2) for models A and B were determined via Eq. 35. The results
are based on a single data realization
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Table 1 Comparison of hyperparameter estimation using cross-validation and evidence maximization for
correlated and uncorrelated data

(k1, k2) Method Model A Model B

Uncorrelated data Cross-validation (1–5%, 1–13%) (1%, 1%)

Evidence maximization (3%, 2%) (2%, 1%)

Correlated data Cross-validation (82–87%, 55–61%) (96–100%, 54–92%)

Evidence maximization (94%, 95%) (94%, 94%)

Entries are the values of (k1, k2), given as a percentage of each class kmax , corresponding to the maximum
classification accuracy (within the granularity of our numerical experiments). A range of values is given
when they all share the same classification accuracy

components of x in each class are most likely uncorrelated. The same protocol was sub-
sequently repeated for correlated data, using a Toeplitz covariance matrix, the results of
which are shown in Fig. 2 and Table 1. The larger values for (k1, k2) imply that here the
model correctly infers that the components of x in each class are correlated. In both cases,
the differences between optimal hyperparameter values defined via LOOCV as opposed to
evidence maximization are seen to be minor (Table 2).

4.2 Overfitting

Next, we illustrate the degree of overfitting for models A and B, using examples of both cor-
related and uncorrelated synthetic data-sets. We sampled from the data described in Table 3,
using case 1 (uncorrelated) and case 8 (correlated). In all cases, we chose C = 3 classes of
nz = 13 samples each, for a broad range of data dimensions d . See the caption of Table 3
for a full description of the statistical features of these synthetic data-sets. Measuring train-
ing and validation classification performance via LOOCV on these data resulted in Fig. 3,
where each data-point is an average over 250 simulation experiments. The degree of diver-
gence between the training and validation curves (solid versus dashed) is a direct measure

Fig. 2 LOOCV classification accuracy in (k1, k2) space for correlated synthetic data, with class means μ1 =
(0, 0, . . . , 0) and μ2 = (2.5, 0, . . . , 0), population covariance matrices �1 = �2 = � of symmetric Toeplitz
form with first row (d, d − 1, . . . , 2, 1), and covariate dimension d = 50. The hyperparameters (r1, r2) for
models A and B were determined via Eq. 35. The results are based on a single data realization
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Table 2 Comparison of classification accuracy using cross-validation and evidence maximization methods
for estimating hyperparameters using the same data as Figs. 1 and 2

Classification accuracy (%) Method Model A Model B

Uncorrelated data Cross-validation 87% 86%

Evidence maximization 86% 83%

Correlated data Cross-validation 69% 64%

Evidence maximization 64% 62%

of the degree of overfitting. We observe that model B overfits less for uncorrelated data,
and model A overfits less for correlated data. This pattern is also seen more generally in
Table 4, for a broader range of synthetic data-sets. However, we note that all models still
perform significantly above the random guess level on unseen data, even when d � nz.
For instance, for d = 150 (corresponding to d/nz ≈ 11.5), the Bayesian models can still
classify some 80% of the unseen data correctly.

We thank the reviewers for pointing out other measurements of agreement between true
and predicted values in particular the adjusted Rand Index (Morey and Agresti 1984; Hubert
and Arabie 1985) which neatly corrects for chance prediction results.

5 Classification Accuracy

We compare the classification accuracy of our Bayesian models A and B, with hyperparam-
eters optimized by evidence maximization, to other successful state-of-the-art generative
classifiers from Srivastava et al. (2007). These include the distribution-based Bayesian clas-
sifier (BDA7), the Quadratic Bayes (QB) classifier (Brown et al. 1999), and a non-Bayesian
method, the so-called eigenvalue decomposition discriminant analysis (EDDA) as described
in Bensmail and Celeux (1996). All three use cross-validation for model selection and
hyperparameter estimation. The classifiers (our models A and B and the three benchmark
methods from Srivastava et al. (2007)) are all tested on the same synthetic and real data-
sets, and following the definitions and protocols described in Srivastava et al. (2007), for
a fair comparison. Model A differs from Quadratic Bayes (Brown et al. 1999) only in that
our hyperparameters have been estimated using evidence maximization, as described in
Section 3, rather than via cross-validation. Model A is seen in Table 4 to have lower error
rates than Quadratic Bayes in the majority of the synthetic data-sets. In contrast, model B is
mathematically different from both model A and Quadratric Bayes.

5.1 Implementation

The classifier was implemented in MATLAB.3 The leave-one-out cross-validation pseudo-
code is displayed below.

3MATLAB 8.0, The MathWorks, Inc., Natick, Massachusetts, United States.
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Fig. 3 Overfitting in models A and B as measured via LOOCV. Top—uncorrelated data (case 1 in Table 3).
Bottom—correlated data (case 8 in Table 3). In all cases, nz = 13 for each of the three classes. Solid lines—
classification accuracy on training samples; dashed lines—classification accuracy on validation samples.
Horizontal dotted line—baseline performance of a random guess classifier
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Table 4 Classification performance for synthetic data-sets

Error rate (%) d BDA7 QB EDDA Model A Model B

Case 1 10 13.2 19.2 11.2 12.0 ± 3.2 11.0 ± 2.8

50 27.9 33.3 21.7 19.9 ± 4.6 15.6 ± 3.4

100 35.8 31.1 24.8 32.6 ± 6.0 19.9 ± 4.3

Case 2 10 21.3 27.4 16.1 11.9 ± 3.4 11.4 ± 3.6

50 26.8 42.6 12.5 9.3 ± 3.2 5.8 ± 2.2

100 20.8 41.9 9.0 26.5 ± 5.6 3.6 ± 2.1

Case 3 10 10.4 35.0 9.1 27.2 ± 4.9 27.2 ± 5.5

50 27.2 55.7 21.2 48.6 ± 5.0 49.2 ± 5.2

100 46.9 56.4 27.7 55.4 ± 5.2 55.1 ± 4.9

Case 4 10 12.6 32.8 11.6 11.3 ± 3.5 11.1 ± 4.1

50 22.5 30.9 17.0 22.5 ± 4.4 17.8 ± 4.0

100 37.6 32.1 21.1 30.8 ± 5.2 21.9 ± 4.3

Case 5 10 4.1 15.0 4.4 12.8 ± 4.1 12.8 ± 3.5

50 1.2 30.6 0.0 9.2 ± 3.4 5.6 ± 2.7

100 0.2 38.3 0.1 10.9 ± 3.8 5.4 ± 3.4

Case 6 10 5.2 7.9 1.7 4.6 ± 2.3 4.4 ± 2.3

50 0.5 26.5 0.0 3.9 ± 2.3 3.5 ± 2.4

100 0.1 29.4 0.0 4.8 ± 2.5 4.5 ± 2.6

Case 7 10 19.5 22.8 19.7 20.0 ± 6.0 27.3 ± 7.4

50 34.7 30.9 63.9 30.2 ± 5.0 44.7 ± 7.8

100 40.0 35.2 64.8 35.2 ± 5.1 51.7 ± 7.8

Case 8 10 3.7 2.7 5.1 1.6 ± 1.9 1.5 ± 1.5

50 9.2 3.5 25.5 4.4 ± 3.2 9.5 ± 5.0

100 17.3 8.1 55.2 8.7 ± 4.4 23.9 ± 9.0

Case 9 10 1.5 0.9 1.0 0.9 ±1.1 5.4 ± 6.8

50 1.3 0.9 32.5 1.3 ± 1.2 16.9 ± 14.6

100 2.9 2.8 67.0 1.5 ± 1.5 22.4 ± 15.3

Case 10 10 0.4 0.1 3.4 0.1 ± 0.6 0.2 ± 0.6

50 1.7 0.9 32.4 0.8 ± 1.0 15.9 ± 13.6

100 2.2 2.4 64.0 1.4 ± 1.2 23.4 ± 16.0

Three generative Bayesian models, BDA7, QB, and EDDA (results taken from Srivastava et al. 2007) are
used as comparison with our models A and B. Error rates are the percentages of misclassified samples from
the test data-set. The error bars for models A and B represent one standard deviation in the error rates,
calculated over the 100 data realizations

The rate-limiting step in the algorithm is calculation of sample eigenvalues (approxi-
matelyO(d3)). Figure 4 shows the relationship between algorithm time and data dimension
for binary classification with 100 data samples.4

4Leave-one-out cross-validation using an Intel i5-4690 x64-based processor, CPU speed of 3.50GHz, 32GB
RAM. As the data dimension increases above 30,000, RAM storage considerations become an issue on
typical PCs.

Journal of Classification (2020) 37:277–297292



Fig. 4 Processing time in seconds for binary classification on synthetic data (50 samples in each class). Both
models had similar timings so only model A is plotted. Note the logarithmic scale

5.2 Synthetic Data

The study of Srivastava et al. (2007) used a set of ten synthetic data-sets, all with Gaus-
sian multivariate covariate distributions and a range of choices for class-specific means and
covariance matrices. In the present study, we generated data with exactly the same statisti-
cal features. The first six of these choices were also used in Friedman (1989) and involve
diagonal covariance matrices. The remaining four represent correlated data. Each data-set
has C = 3 outcome classes and is separated into a training set, with nz = 13 samples in
each class, and a validation set, with nz = 33 samples in each class. In terms of the bal-
ance nz/d , this allows for a direct comparison with the dimensions used in Srivastava et al.
(2007). The results shown in Table 4 are all averages over 100 synthetic data runs. The data
dimensions are chosen from d ∈ {10, 50, 100}. Since all these synthetic data-sets involve
multivariate Gaussian covariate distributions, there is no model mismatch with any of the
models being compared.

The means and covariance matrices of the synthetic data-sets are given in Table 3. The
covariance matrices for the correlated data-sets are defined in terms of auxiliary random
d × d matrices Rz, with i.i.d. entries sampled from the uniform distribution on the interval
[0, 1], according to either �z = RT

z Rz or �z = RT
z RzRT

z Rz. These covariance matrices
have a single dominant eigenvalue, and further non-dominant eigenvalues that are closer to
zero for data-sets 9-10. Data-sets 7 and 9 have all class means at the origin, whereas each
element of the class mean vectors from data-sets 8 and 10 is independently sampled from a
standard normal distribution.

Table 4 shows the classification error rates, as percentages of misclassified samples over
the validation set. The variability of these for results for the models BDA7, QB, and EDDA,
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i.e. the error bars in the classification scores, is not reported in Srivastava et al. (2007) (where
only the best classifier was determined using a signed ranked test). For completeness, we
have included in this study the standard deviation of the error rate over the 100 synthetic
data runs for our models A and B. Given that all experiments involved the same dimensions
of data-sets and similar average error rates, the error bars for the Srivastava et al. (2007)
results are expected to be similar to those of models A and B. We conclude from Table 4
that our models A and B perform on average quite similarly to the benchmark classifiers
BDA7, QB, and EDDA. On some data-sets, model A and/or B outperform the benchmarks,
on others they are outperformed. However, models A and B achieve this competitive level
of classification accuracy without cross-validation, i.e. at a much lower computational cost.

5.3 Real Data

Next, we test the classification accuracy of our models against the real data-sets used
in Srivastava et al. (2007), which are publicly available from the UCI machine learn-
ing repository.5 Three data-sets were left out due to problems with matching the formats:
Image segmentation (different number of samples than Srivastava et al. (2007)), Cover
type (different format of training/validation/test), and Pen digits (different format of train-
ing/validation/test). Before classification, we looked for identifying characteristics which
could allow for retrospective interpretation of the results, e.g. occurrence of discrete covari-
ate values, covariance matrix entropies, or class imbalances. None were found to be
informative. No scaling or pre-processing was done to the data before classification.

We duplicated exactly the protocol of Srivastava et al. (2007), whereby only a randomly
chosen 5% or 10% of the samples from each class of each data-set are used for training,
leaving the bulk of the data (95% or 90%) to serve as validation (or test) set. The resulting
small training sample sizes lead to nz 
 d for a number of data-sets, providing a rigorous
test for classifiers in overfitting-prone conditions. For example, the set Ionosphere, with
d = 34, has original class sizes of 225 and 126 samples leading in the 5% training scenario
to training sets with n1 = 12 and n2 = 7. We have used the convention of rounding up any
non-integer number of training samples (rounding down the number of samples had only a
minimal effect on most error rates). The baseline column gives the classification error that
would be obtained if the majority class is predicted every time.

We conclude from the classification results shown in Tables 5 and 6 (which are to be
interpreted as having non-negligible error bars) that also for the real data, models A and B
are competitive with the other Bayesian classifiers. The exceptions are Ionosphere (where
models A and B outperform the benchmark methods, in both tables) and the data-sets Thy-
roid andWine (where in Table 6, our model A is being outperformed). Note that in Table 6,
Thyroid and Wine have only 2 or 3 data samples in some classes of the training set. This
results in nearly degenerate class-specific covariance matrices, which hampers the optimiza-
tion of hyperparameters via evidence maximization. Model B behaves well even in these

tricky cases, presumably due to the impact of its additional hyperparameter γ0z = d/X̂
2
z .

As expected, upon testing classification performance using leave-one-out cross-validation
(details not shown here) rather than the 5% or 10% training set methods above, all error
rates are significantly lower.

Examining the results from Sections 5.2 and 5.3 does not lead us to conclusions on when
one specific model outperforms the other. We are currently pursuing two approaches to this

5http://archive.ics.uci.edu/ml/index.php
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Table 5 Average error rate using randomly selected 10% of training samples in each class

Error rate (%) n Class sizes d Baseline BDA7 QB EDDA Model A Model B

Heart 270 150, 120 10 44.4 27.4 32.0 28.3 30.3 30.1

Ionosphere 351 225, 126 34 35.9 12.5 11.1 23.3 8.3 7.5

Iris 150 50, 50, 50 4 66.6 6.2 5.9 7.4 7.5 6.6

Pima 768 500, 268 8 34.9 28.4 29.7 29.0 28.8 28.9

Sonar 208 97, 111 60 46.6 31.2 33.7 34.8 34.9 33.8

Thyroid 215 150, 35, 30 5 30.2 7.9 9.1 8.6 7.6 7.9

Wine 178 59, 71, 48 13 60.1 7.9 16.9 8.2 15.6 16.0

The remaining 90% of samples were used as a validation set. Error rates are the percentage of misclassified
samples over this validation set

problem: (1) finding analytical expressions for the probability of misclassification similar
to Raudys and Young (2004) but with the true data-generating distribution different from
model assumptions and (2) numerical work generating synthetic data from a multivariate
t-distribution with varying degrees of freedom.

6 Discussion

In this paper, we considered generative models for supervised Bayesian classification in
high-dimensional spaces. Our aim was to derive expressions for the optimal hyperparam-
eters and predictive probabilities in closed form. Since the dominant cause of overfitting
in the classification of high-dimensional data is using point estimates for high-dimensional
parameter vectors, we believe that by carefully choosing Bayesian models for which param-
eter integrals are analytically tractable, we will need point estimates only at hyperparameter
level, reducing overfitting.

We showed that the standard priors of Bayesian classifiers that are based on class-specific
multivariate Gaussian covariate distributions can be generalized, from which we derive two
special model cases (A and B) for which predictive probabilities can be derived analytically
in fully explicit form. Model A is known in the literature as Quadratic Bayes (Brown et al.
1999), whereas model B is novel and has not yet appeared in the literature. In contrast to

Table 6 Average error rate using randomly selected 5% of training samples in each class

Error Rate (%) n Class sizes d Baseline BDA7 QB EDDA Model A Model B

Heart 270 150, 120 10 44.4 30.6 38.5 33.9 38.8 39.6

Ionosphere 351 225, 126 34 35.9 16.9 16.1 26.0 10.3 8.8

Iris 150 50, 50, 50 4 66.6 6.9 7.6 9.40 12.8 11.4

Pima 768 500, 268 8 34.9 29.7 32.7 30.7 30.3 30.8

Sonar 208 97, 111 60 46.6 36.8 40.4 39.8 45.6 39.0

Thyroid 215 150, 35, 30 5 30.2 11.7 14.8 14.7 34.5 14.6

Wine 178 59, 71, 48 13 60.1 9.6 33.1 11.2 54.4 33.0

The remaining 95% of samples were used as a validation set. Error rates are the percentage of misclassified
samples over this validation set

Journal of Classification (2020) 37:277–297 295



common practice for most Bayesian classifiers, we use evidence maximization (MacKay
1999) to find analytical expressions for our hyperparameters in both models. This allows us
to find their optimal values without needing to resort to computationally expensive cross-
validation protocols.

We found that the alternative (but significantly faster) hyperparameter determination by
evidence maximization leads to hyperparameters that are generally very similar to those
obtained via cross-validation, and that the classification performance of our models A and B
degrades only gracefully in the ‘dangerous’ regime n 
 d where we would expect extreme
overfitting. We compared the classification performance of our models on the extensive syn-
thetic and real data-sets that have been used earlier as performance benchmarks in Srivastava
and Gupta (2006) and Srivastava et al. (2007). Interestingly, the performance of our models
A and B turned out to be competitive with state-of-the-art Bayesian models that use cross-
validation, despite the large reduction in computational expense. This will enable users in
practice to classify high-dimensional data-sets quicker, without compromising on accuracy.

This paper shows that the analytical approach merits further investigation. Calculat-
ing the predictive probability for arbitrary γ0z, γ1z values remains to be done. The main
obstacle being the resulting symbolic integration. We believe this could lead to interesting
analytically tractable classification models.
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