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Clustering Analysis of a Dissimilarity: a Review
of Algebraic and Geometric Representation

D. Fortin1

Abstract
It is customary to split clustering analysis into an optimization level, then a (preferably)
graphical representation level to take benefit of human vision for an effective understand-
ing of (big) data structure. This article aspires to clarify relationships between clustering,
both its process and its representation, and the underlying structural graph properties, both
algebraic and geometric, starting from the mere knowledge of a dissimilarity matrix among
items, possibly with missing entries. It is inspired by an analogous work on seriation prob-
lem, relating Robinson property in a dissimilarity with missing entries, with interval graph
recognition using a sequence of 4 lexicographic breadth first searches.

Keywords Clustering · Dissimilarity measure · Matching · Ear decomposition · LexBFS ·
LexDFS · Schnyder woods

1 Introduction

Clustering plays an important role in many real-life applications; the visualizing of the
clustering result is deeply related with the clustering process itself. Hierarchical analysis
receives most favors as it may be drawn in a plane; more generally, planar representation
receives much attention especially under spectral studies: knowing the correlation matrix
between items, the principal explanation of relationships among items lay in the plane of
first eigenvectors; outliers, if any, are well discarded by looking at next eigenvectors plane
and so on. In the presence of missing entries, some attempts have been made to appropriately
fill the correlation matrix from the approximated distribution. In general, it is customary to
study spectral and original space of a problem, separatedly; however, few studies in clus-
tering face the issue of missing entries as such. This article aspires to clarify relationships
between clustering, both its process and its representation, and the underlying structural
graph properties, both algebraic and geometric, starting from the mere knowledge of a
dissimilarity matrix among items, possibly with missing entries. It is inspired by an analo-
gous work on seriation problem, relating Robinson property in a dissimilarity with missing
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entries, with interval graph recognition using a sequence of 4 lexicographic breadth first
searches (LexBFS) (Fortin 2017).

The article is structured as follows: we review in Section 3 the clustering process and
in Section 4 its planar representation from the algebraic and geometric point of views
in each section; then, follow our minor contributions to existing algorithms for maxi-
mum matchings and ear decomposition of simple undirected graphs: we establish the
intimate relationship between augmenting paths and a sequence of a LexBFS sweep and
a lexicographic depth first search (LexDFS) sweep in Section 5; so do we between non-
separating ear decomposition and a pair of LexDFS sweeps in Section 6. It puts further
shed on the connection between the structure of these lexicographic traversals and the
decompositions retrieved by the algorithms known for long and it is discussed further in
Section 7.

We insert many (small sized) teaching examples as illustrative witnesses of the relation-
ships between clustering analysis as a whole and the lexicographic traversals in underlying
graphs.

2 Notations and Prerequisites

Vectors (resp. matrices) are denoted by lower (resp. upper) case letters with the all ones case
e (resp. E); dot product 〈u |v〉 extends to matrices through vec(.) operator that stacks entries
columnwise 〈U |V 〉 = 〈vec(U)|vec(V )〉 = ∑

I

∑
J uij vij where matrix scalar entries are

lowercased for ease of reading; in particular 〈U |U〉 = ‖U‖2
F is the usual Frobenius norm.

We suppose the reader familiar with graphs and matchings and that he or she is relatively
aware of concepts from computational geometry, mostly a basis of fundamental cycles of
an undirected graph. For a graph G(V,E), we refer to its maximum genus γM(G), its
cyclomatic number βT (G) w.r.t. (with respect to) a spanning tree T (a.k.a. (also known
as) cycle rank, Betti number) and (implictly) to its matching number ω(G) (a.k.a. Berge
number). It is well known that the cardinality of a basis of fundamental cycles is β(G) =|
E | − |V | +1. These invariants are involved in Sections 4.2 and 5 (Section 7.1 for weighted
case) respectively.

We call circuit a simple cycle without repetition and prefer to use rooted circuit to
speak of a circuit with a distinguished vertex, over the widespread usage of a Loop in
computational geometry.

Since our study mainly addresses the representation of a clustering in some plane, we
recall the definition of Schnyder property in orienting an undirected graph (raised after the
seminal work by Schnyder 1989).

Definition 2.1 An orientation of an undirected graph G(V,E) fulfills a generalized Schny-
der property with k colors, if all edges may be oriented in such a way that for each vertex
v ∈ V , edges are ordered in, say clockwise ordering, and

• the k outgoing orientations are clockwise compatible,
• if ingoing orientation occurs between outgoing arcs colored i and i + 1 clockwise, then

ingoing arc has color i − 1 modulo k,
• no edge oriented in both directions share the same color orientation.

A k-Schnyder suspension of a graph is an orientation of edges satisfying the Schny-
der property with k distinguished vertices having each a distinguished extra outgoing arc
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(no associated edge in G) whose color satisfies Schnyder property with a different color
among all distinguished vertices (see Section 4.1.2 for standard Schnyder woods with only
3 colors).

3 Clustering from a Dissimilarity

Clustering aims at grouping items that resemble each other together while separating groups
as much as possible for a better discrimination; in other words, we address the dilemma of
minimizing the inertia intra-group while maximizing the inertia inter-group. Most algebraic
approaches assume a dense matrix as input and usually fail in the circumstance of sparse
matrix. In this section, we review optimization problems that address both algebraic and
geometric issues on the support graph of the matrix data (whether missing entries exist or
not).

3.1 Algebraic Clustering

As most approaches, the focus is put on minimizing the intra-group inertia only: for non-
negative values, the 1-norm is equivalent to the 2-norm and for binary variable xij its square
x2
ij is equal to xij , whence a linear assignment problem (LAP) to be minimized on the

dissimilarity (equivalently maximized on the similarity dmax − D). However, in real-life
instances, not all distances among items are known, so that matrices have missing entries
(left blank in the example below, drawn from recognition of a permuted Robinson prop-
erty (Fortin 2017)) that could not be properly filled by a unique value (huge value in the
dissimilarity case) since it forces the same relationship among items while they may vary
instead.

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 9 2 11 6 11 6 9 11 6 11 6 11 11 9 11 6
9 0 9 11 2 11 6 1 11 6 6 11 1 11 3
2 9 0 11 6 11 6 6 9 11 6 11 6 11 11 11 6

11 11 11 0 11 8 11 11 11 11 8 11 1 8 2
6 2 6 11 0 11 4 2 11 4 6 11 11 2 11

11 11 11 8 11 0 11 11 1 11 5 11 6 3 11 6 11
6 6 11 0 4 3 11 4 11 4 11 11 3 11 2

6 6 11 4 11 4 0 5 11 1 11 4 11 5 11 4
9 1 9 11 2 11 3 5 0 11 5 11 6 9 11 11 3

11 11 11 11 1 11 11 11 0 11 5 11 7 2 11 6 11
6 6 6 11 4 11 4 1 5 11 0 11 2 4 11 11 5 11 4

11 11 8 5 11 11 11 5 11 0 11 11 2 5 11 1 11
6 6 6 11 4 6 2 11 0 4 11 11 6 11

11 6 4 9 11 4 11 4 0 11 11 11 6
11 11 11 1 11 6 11 11 7 11 2 11 11 0 7 11
11 11 8 11 3 11 11 11 2 11 5 11 11 7 0 11 7
9 1 2 11 3 5 11 5 11 6 11 0 11 3

11 11 11 2 11 6 11 11 6 11 1 11 11 7 11 0
6 3 6 11 2 4 3 11 4 11 6 11 3 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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3.1.1 Linear Assignment Problem

For non-dense and non-square case, i.e., bipartite graph, multiscaling (auction) algo-
rithm (Bertsekas and Castañon 1992) has been experienced more efficient than Hungarian
method, provided the scaling is appropriately tailored (Buš and Tvrdı́k 2009).

For non-square m×n LAP, say landscape shape m < n, let us denote row (resp. column)
indices by I (resp. J ) and let us introduce extra binary primal variables to turn inequalities
into equalities

max 〈C|X〉 (1)

s.t. (2)

πi |
∑

J

xij = 1, i ∈ I (3)

pj |
(

xsj +
∑

I

xij

)

= 1, j ∈ J (4)

λ|
∑

J

xsj = n − m (5)

0 ≤ ζij | xij ≥ 0, i ∈ I, j ∈ J (6)

0 ≤ σj | xsj ≥ 0, j ∈ J (7)

where multipliers have been written on the left on each constraint and extra variables xsj

capture the landscape shape columnwise. The dual Lagrangian rewrites

∑

I

∑

J

cij xij +
∑

I

πi

(

1 −
∑

J

xij

)

+
∑

J

pj

(

1 − xsj −
∑

I

xij

)

(8)

−λ

(

(n − m) −
∑

J

xsj )

)

+
∑

I

∑

J

ζij xij +
∑

J

σj xsj (9)

xij ∈ {0, 1}mn (10)

subject to first order optimality conditions:

cij − πi − pj + ζij = 0

−pj + λ + σj = 0

hence, the dual problem:

min
∑

I

πi +
∑

J

pj − λ(n − m) (11)

s.t. πi + pj = cij + ζij ≥ cij (12)

pj = λ + σj ≥ λ (13)

together with the complementary conditions at optimum ζ̄ij = σ̄j = 0. It exhibits the
separability in the profit πi and price pj dual variables from the primal LAP.

Given an assignment, the auction algorithm selects λ = minjassigned pj and σj = 0 for
all j unassigned, i.e., xsj = 1 and then, it alternates between forward and reverse bidding:

• forward: for unassigned i, let ji = arg max(cij − pj ) then

bidi = pji
+ max

1
(cij − pj ) − max

2
(cij − pj ) + ε ≥ min(pji

+ ε, ∞)
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for first and second maximum written max
1

and max
2

respectively. Price and profit are

updated first as

pji
= max(λ, bidi ) (increase)

πi = max
2

(cij − pj ) − ε

and if bidi ≥ λ then i is assigned to ji , whence πi +pji
= bidi +πi = pji

+max
1

(cij −
pj ) = ciji

as required for optimality.
• reverse: for unassigned j such that pj > λ let ij = arg max(cij − πi) then

bidj = πij + max
1

(cij − πi) − max(λ + ε, max
2

(cij − πi)) + ε

similarly to forward case.

– if max
1

(cij − πi) ≥ λ + ε then

pj = max(λ + ε, max
2

(cij − πi)) − ε

πij = bidj (increase)

and j is assigned to ij so that pj + πij = cij j as required for optimality.
– otherwise pj = max

1
(cij − πi) − ε < λ; notice that, since j is no longer

examined, we may degrade pj = λ.

The multiscaling scheme comes after the way ε goes to 0 (Buš and Tvrdı́k 2009).
To avoid the cycling of the forward-reverse auction, we must ensure an irreversible

progress before the switching between the forward and reverse stages. This is guaranteed if
the switching is done only when the assignment is enlarged in the current forward or reverse
stage.

If at least one feasible assignment exists for the square n × n LAP with integer costs,
then the scaled Forward Reverse Auction Algorithm (FRAA) has been proven to return an
optimal assignment in O(n3 log(ncmax)) steps. Among other algorithms, FRAA offers an
easy parallelization for huge cost matrices of real-life applications (biological data).

3.1.2 Subtour Patching

The idea of subtour-patching is borrowed from the traveling salesperson problem (TSP):
start with finding an optimal assignment φ for the linear assignment problem. If φ is a tour,
it is clearly a shortest tour and TSP optimality is done. Otherwise, φ consists of several
subtours (also called 2-factors). In this case, patch the subtours together to yield a single
tour, namely, an optimal tour. Summarizing, the problem is given an optimal assignment φ ,
find a permutation α such that φ ◦α is an optimal tour (Burkard et al. 1998; Deineko 2004;
Deineko et al. 2006).

Let φ be a permutation with two subtours φ1 and φ2 where i ∈ φ1 and j ∈ φ2 hold.
Essentially, the subtour patching scheme relies on the fact that if we postmultiply φ by the
transposition (i, j), this will result in a permutation where the two subtours φ1 and φ2 are
patched together. Hence, the number of subtours of φ ◦ (i, j) is one less than the number
of subtours of φ . A permutation α will be called a patching permutation for φ if φ ◦ α is a
cyclic permutation.

Permutation α is called an optimal patching permutation for φ if φ ◦ α is an opti-
mal tour. The theory of subtour patching is based on the Gilmore and Gomory result that
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every tree permutation on a certain patching graph is a patching permutation; then by
dynamic programming, a patching permutation is retrieved by multiplying adjacent trans-
positions among subtours. Notice that for special four points condition on the cost matrix,
the exponential neighborhood searched in polynomial time may shrink , e.g., in Kalmanson,
Supnick, van der Veen structured matrices. In clustering case, there is no need to patch all
subtours together but it is aimed at balancing cluster sizes; therefore, we define a patching
graph among tiny 2-factors G(V,E) with a vertex per 2-factors and multiple edges weighed
by all defined entries between 2-factors from the dissimilarity. In above example, consider
the assignment which has 2-factors, in disjoint cycles notation: (1, 3), (2, 9, 5), (4, 15),
(6, 10), (7, 19, 17, 16, 12, 18, 14, 13), (8, 11) and patching graph Fig. 1. Remind that clus-
tering aims at grouping together items that resemble each other and at separating groups
as much as possible for a better discrimination; therefore, it makes sense to threshold the
patching graph with a small to medium dissimilarity level.

As in TSP case the ordering of 2-factors play a prominent role for patching them; there-
fore, it raises a seriation problem whose solution could be handled by thresholding the
weights as in Robinsonian dissimilarity recognition (Fortin 2017).

3.2 Geometric Clustering

The fundamental problem in distance geometry is the assigned Distance Geometry Problem
(aDGP), a decision problem that, given an integer K > 0 and a connected simple edge-
weighted graph G = (V ,E, d) where d is a positive edge weight function E 
→ R

+ , asks
whether there exists a realization x that maps V to R

K such that

‖x(u) − x(v)‖ = duv, for all (u, v) ∈ E

where ‖.‖ indicates an arbitrary norm (most applications using the Euclidean norm). The
aDGP is an inverse problem: whereas computing some of the pairwise distances given the
positions of the points is an easy task, the inverse inference (retrieving the point positions
given some of the distances) is not so easy. Notice that a realization can be represented by
a | V | ×K matrix, the i-th row of which is the location vector xi for vertex i ∈ V . The

Fig. 1 Patching graph among
(small) 2-factors with multiple
edge weights
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even more complicated unassigned Distance Geometry Problem (uDGP) deals with a set
of (possibly multiple) distances and aims at the same condition, together with assigning all
the distances in the set to actual entries in the distance matrix (Duxbury et al. 2016). Where
aDGP solved for a dissimilarity, then we could apply the celebrated k-means algorithm to
achieve the clustering; notice that our algebraic approach above remains valid to fix the a
priori number of clusters. Notice that aDGP is related to the widely used multidimensional
scaling.

4 Representation of a Clustering

This section is devoted to the challenging issue of representing the clusters, obtained by
optimization problems, in some surface so that the human vision capability helps the user
to give a structural interpretation of the (huge) data under study; again, it is divided into
algebraic and geometric tools at this aim.

4.1 Algebraic Representation: Simplicial Embedding

In this section, we apply fundamental forms of integral matrices theoretically studied by
Newman (1972), in a computational perspective; then we address, the representation of
these matrices on some surface (of small genus to be effective, e.g., either the plane or the
torus) for visualizing purpose to help the interpretation about data structure. A bunch of
pathological cases are provided to stress the issues. We focus on surface of small genus
(either the sphere/plane or the torus), yet we exhibit relatively simple structural properties
that require higher order genus.

4.1.1 Singular Ideals Decomposition

Smith Normal Form (SNF) is the diagonal matrix S such that S[i, i] divides S[i + 1, i + 1]
up to the rank of A, and S = LAR where L and R are unimodular. It is polynomially
computable; yet, it suffers fast-growing entries (called expression swell) and requires integer
arithmetic in arbitrary precision together with modular reduction; among others, Storjohann
(1998) computes S while bounding the expression swell in terms of the determinant det(S)

(see Hruz and Fortin 1993 for worst case expression swell). Storjohann (1998) gives all the
complexity proofs; however, for the sake of completeness, we detail the easy cases omitted
in his article. Let T be a 2 × 2 upper triangular matrix with coprime entries, using Bézout
identity for extended gcd, b1t11 + b2t12 = h where h = gcd(t11, t12) may be greater than 1,
and q1 = t11/h, q2 = t12/h

[
1 0

−b2q2 1

] [
t11 t12
0 t22

] [
b1 −q2
b2 q1

]

=
[

h 0
0 q1t22

]

A careful look at the induction proof shows that it arises at upper left corner reduction
and at each lower right corner whenever ak−1 does not divide ak with the notations of the
reference above. As a consequence, the induction ai divides aj for j ∈ (i, k] requires to
backtrack upwards in order to retrieve the largest index i ∈ [0, k − 1] such that ai divides
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g = gcd(ai+1, . . . , ak) (with the convention a0 = 1) and then to apply 2 × 2 diagonal
transform

[
b1 b2

−s2 s1

] [
ghs1 0

0 ghs2

] [
1 0
1 1

] [
1 −b2s2
0 1

]

=
[

gh 0
0 ghs1s2

]

where b1s1 + b2s2 = 1 after factoring out h = gcd(s1, s2)

It is well known that SNF is unique but left and right unimodular matrices are not. It is
customary to use Hermite normal form (HNF) to deal with principal submatrix, i.e., left-
sided unimodular transform, then apply double-sided unimodular reduction to yield SNF as
in 2 × 2 cases above. However, we may apply double-sided reductions from the very begin-
ning, using different pivoting strategies to find an upper trapezoidal matrix: either partial
pivoting along the row and the column, or full pivoting within the lower right rectangular
matrix (as much as Gauss inverse in field case); furthermore, either the minimum or the
maximum in absolute value may be chosen whose influence on expression swell vary. At
the end of first phase, we get a simplicial decomposition:

LAR =
[

D C

0 0

]

where D is diagonal with D[i, i] divides D[i + 1, i + 1] and C is rectangular and reduced
rowwise w.r.t. the diagonal element. By analogy to the field case (QRP, resp. QR decom-
position), we call it a singular (resp. principal) ideals decomposition according to the
double-sided (resp. Hermite) triangular initialization. Since every column in C is a convex
combination of the columns in D, it justifies the name simplicial decomposition. In a second
phase, C is zeroed rowwise using extended gcd w.r.t. diagonal element to lead to a square
lower triangular matrix whose transpose feeds the induction phase once more yielding the
unique SNF; example below shows the factorization on the matrix in right hand side and
expression swell of the entries of left and right factors are displayed in Table 1
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

8 0 0 0 0 0 0 0
0 16 0 0 0 0 0 0
0 0 16 0 0 0 0 0
0 0 0 16 0 0 0 0
0 0 0 0 16 0 0 0
0 0 0 0 0 128 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= L

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

72 120 120 88 56 88 72 56
104 72 24 56 8 72 88 72
56 56 40 40 120 72 24 120
72 120 120 88 56 56 120 8
8 104 72 88 72 88 40 88

104 8 88 56 72 72 104 88

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

R

After the first phase, all pivoting policies yield the same upper left decomposition but a
different lower right matrix:

[
diag(

[
8, 16, 16, 16

]
) 0

0 B

]

Since D[i, i] divides D[i + 1, i + 1] for all 1 <= i < k, then D† = D[k, k]D−1 is
integral and R−1D†L−1 defines a pseudo-inverse up to D[k, k] scaling.

4.1.2 Finding a Suspension

Definition 4.1 For each vertex, v in a k-Schnyder suspension is associated with a vector
whose i-th component is the cyclomatic number of the cone delimited by the outgoing arcs
i + 1 and i − 1 w.r.t. cyclic ordering mod k around v.
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Table 1 Expression swell for Hermite phase, then various pivoting policies for Smith phase

Pivoting Selection Expression swell Lower right B

Hermite 2128320

[
128 0 0 0

0 33536 27088 25552

]

Partial max 7185196197690269408

[
16 0 0 0

0 936576 100608 402560

]

Partial min 651950928

[
16 0 0 0

0 61824 41344 2688

]

Full max 13400907890647173952

[
16 0 0 0

0 936576 714752 100608

]

Full min 1311325392

[
16 0 0 0

0 61824 41344 2688

]

A graph is planar if and only if it has a 3-Schnyder suspension; therefore, its cyclomatic
vectors fulfill a Principal Ideals Decomposition starting from the 3 suspension vertices,
so that the base of the simplex they define contains all the remaining vertices, and the
circle circumscribed to the base too; therefore, it yields a polar coordinates representa-
tion with center as the apex projection on the base. Examples in Figs. 2 and 3 give a
planar representation along SNF to show the successful case of simplicial embedding.
However, both have an Asteroidal-Triple (AT); therefore, they do not belong to the inter-
val, permutation, trapezoid, and co-comparability graph classes; as such, the recognition of
which class of graphs they belong to remains opened. The authors in Felsner and Zickfeld
(2008) study 3-Schnyder and orthogonal surfaces in order to lift vertices inside the base
such that edges have a 3D non-crossing representation with a single bend, called a rigid
representation.

All other graphs in the sequel are non-planar; even with a k-Schnyder suspension, there
may be no longer a principal ideals decomposition with the k roots, possibly with row and

Fig. 2 A 3-Schnyder suspension
with an AT {a, b, c}, its
cyclomatic vectors and SNF
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Fig. 3 A 3-Schnyder suspension, cyclomatic vectors and rigid representation

column rank deficiencies that could not lead to a direct polar embedding in the base of the
simplex defined by the roots of suspension trees. A bunch of examples shows the spread
of properties within graph classes, SNF and Schnyder’s woods: Fig. 4 for its obstruction to
planarity, Fig. 5 for its not Hamiltonian (left)/ triangle-free (right) properties, Fig. 6 for its
Hamiltonian (TSP related), triangle-free and 4-colorable properties, Fig. 7 for its polyno-
mial recognition as complete multipartite, Fig. 8 for its 4-edge-disjoint trees Section 4.1.3,
Figs. 9 and 10 for their embedding in the torus (genus equals 1), and finally Fig. 11 for its
embedding in a surface of higher genus to be addressed in Section 4.2.

H =

⎡

⎢
⎢
⎣

2 0 8 0 8 8
0 2 2 2 2 2
0 0 12 0 12 12
0 0 0 0 0 0

⎤

⎥
⎥
⎦

Fig. 4 A 4-Schnyder 1-planar
suspension of K3,3
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Fig. 5 A 4-Schnyder 2-planar suspension of Petersen (left) and Grőtzsch (right) graphs

Instead, we are looking for a planar immersion in the simplex base at largest principal ideal
given by SNF S, say hyperplane 〈e|x〉 = S[k, k], since the cyclomatic vectors C rewrite,
using decomposition of left and right inverses accordingly:

[
diag(S) 0

0 0

]

= LCR, det(L) = det(R) = ±1

⎧
⎨

⎩

L−1 =
[

L1
L2

]

R−1 = [
R1 R2

]

C = R1 diag(S)L1

It is eventually required to search for a grid (more generally lattice) immersion in the
selected base; in this event, shortest/closest lattice vector problems are involved (Hanrot
et al. 2011). Anyway, the rank 1 deficiency remains intractable w.r.t. algebraic processing
despite a neat structure is available.

4.1.3 Edge Disjoint Trees

Let us define a k-Schnyder standard if and only if edges have a single orientation; for stan-
dardizing, duplicate each bicolored edge to get single colored edges then assign endpoints
appropriately around outgoing edges to fulfill Schnyder property. Notice that it simply
introduces multiple edges in the original graph but it results in distorted principal ideals.
It yields a representation of the dissimilarity with k edge disjoint trees in spirit of Bailey
et al. (2014), Durocher and Mondal (2015), Kundu (1974), Kaiser (2012), and Li et al.
(2015) do; however, it changes the algebraic structure since the principal ideals are differ-
ent, and the geometric structure as well, by introducing a torsion around the vertices during
standardization of bicolored edges (see Fig. 8).
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Fig. 6 A 4-Schnyder 3-planar suspension of Chvátal graph

4.2 Geometric Representation: Embedding inOrientable SurfacewithHigher Genus

Since Chvátal graph is 4-connected, it is upper-embeddable (Jæger and Kundu, see Xuong

1979) in an orientable surface of genus
⌊

β(G)
2

⌋
= 6; no matter the edges wrap around the

Fig. 7 A 5-Schnyder 2-planar suspension of K2,2,2,2 graph
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Fig. 8 A standard 4-Schnyder suspension of K3,3

canonical fundamental polygon, we arrive at the planar representation inside the polygon as
shown in Fig. 11. However, all crossings occur outside the fundamental polygon so that the
actual structure is hidden. Various crossing numbers have been defined, especially bundled
crossing number where edges are grouped for ease of visualizing (Alam et al. 2016; Holten
and van Wijk 2009) in the spirit of our study, and more generally on crossing families
(Aronov et al. 1994; Mohar 2009).

Fig. 9 A 3-Schnyder suspension
embedding in the torus of K3,3
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Fig. 10 A 3-Schnyder suspension embedding in the torus of Grötzsch graph

In spite of a numerous literature for embedding in higher genus orientable surface (Ren
et al. 2009; Cabello et al. 2016; Johnson 1975), a few only address planar embedding in
small genus (Castelli Aleardi et al. 2009; Gonçalves and Lévêque 2012) and all require a
triangulated graph w.r.t. the orientable surface.

5 Strongly Simple Augmenting Paths

This section focuses on the matching number of a bipartite graph in connection with discov-
ering the genus of a surface well adapted for embedding the exact/approximated solution of
an underlying optimization problem. Alternating augmenting paths for bipartite graphs are
well known since Berge’s work; for simple connected graphs, starting from some matching
we review in this section the augmenting path framework. Maximum cardinality matchings
play a fundamental role in studying the genus of a graph (Kotrbčı́k and Škoviera 2012).
It is involved too in maximum weighted matching implementation of blossom framework;

Fig. 11 A 3-Schnyder suspension embedding in a non-canonical polygon of Chvátal graph
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despite this augmenting phase is marginal in the whole primal-dual scheme (Kolmogorov
2009), recently, N. Blum gives another implementation, say BLOSSOM VI, of the algo-
rithm with varying δ parameter (Blum 2015). His modifications of BFS and DFS to handle
general graphs may be rephrased in respectively LexBFS and LexDFS using the partition
refinement paradigm whose implementation is quite easy (Habib et al. 2000).

Given some matching M in a graph G = (V ,E), a vertex is M-free whenever it is
not incident to a matching edge; w.l.o.g. we consider that M-free vertices form a stable
set or else the matching could be improved by at least one edge. A path P in G is M-
alternating if it contains alternately edges in M and not in M; a simple M-alternating path
is M-augmenting if it starts and end with an M-free vertex., then clearly the symmetric
difference PM yields a matching of cardinality 1 greater than M , whence the original
Berge’s theorem. When the graph is general, it is first transformed into a directed bipartite
graph �GM = (A,B, �EM) w.r.t. the matching M as follows: A and B are both copies of V

and for all (u, v) ∈ E, (uA, vB) and (vA, uB) (resp. (uB, vA) and (vB, uA)) belong to �EM

according to whether (u, v) ∈ M (resp. ∈ M). For sake of simplicity, we number uA = 2u

(resp. uB = 2u−1) for layered neighbors in either LexBFS or LexDFS partition refinement.

Definition 5.1 A path P in �GM is strongly simple if it is simple and for all uA ∈ P , then
uB ∈ P .

Theorem 5.1 (Blum 2015) Let G = (V ,E) and M a matching, then there exists an M-
augmenting path in G if and only if there exists a strongly simple path in �GM = (A,B, �EM)

We claim that in 2 sweeps, a LexBFS sweep for shortest distances, followed by a
LexDFS sweep for longest strongly simple paths, an M-augmenting path if any, is found;
in our opinion, it simplifies the modified BFS and DFS versions used by Blum (in spirit of
Hopcroft-Karp’s original work) to find a maximum cardinality matching in O(

√|V |(| E |
+ |V |)).

In the partition refinement paradigm of LexBFS (resp. LexDFS), the pivot neighbors
are put ahead the class they belong to (resp. collected and put in a single part behind the
pivot part) while their original ordering is kept; we borrow notations from Fortin (2017)
for describing the four points condition on vertex ordering σ of simple undirected graphs
G(V,E): for all j <σ k <σ l (BFS), respectively for all i <σ k <σ l (DFS)

j?l : k ⇒ ∃i <σ j, i?k : l (unsigned LexBFS)

i?l : k ⇒ ∃i <σ j <σ k, j?k : l (unsigned LexDFS)

where the ternary operator j?l : k means (vj , vl) ∈ E and (vj , vk) ∈ E for associ-
ated vertices in G. The structure of either traversal has been proven first by using labeling
scheme (Berry and Bordat 1998; Xu et al. 2013) and rewritten using partition refinement
in Fortin (2017), i.e., without recoursing to the (trivial) relationship between labels in the
former paradigm and parts in the latter. Under partition refinement, a LexBFS ordering σ is
retrieved in O(|E |), and the actual complexity for LexDFS is not accurately known, despite
it is conjectured an amortized O(|E |) complexity in order to maintain the original ordering
among the pivot neighbors belonging to the same part (Fig. 12).

For concrete programming, we consider even and odd parts, and we assume that match-
ings are associated with even to odd vertices while remaining edges are from odd to even
vertices in graph �GM ; in examples below, we denote vertices of �GM whose traversals oper-
ate upon, by their corresponding vertex in G appended with E (resp. O) for ease of reading
which vertex is concerned in graph G.

Journal of Classification (2020) 3 :180–2027194



Fig. 12 Graphs with M-free vertices {4, 12} (left) {10, 15} (right)

For LexBFS sweep, we start with two parts: odd M-free vertices in the part ahead
and all remaining odd and even vertices (except even M-free vertices since they have no
neighbor) so that the final ordering alternates even and odd vertices by previous observation
on pivot neighbors; furthermore, by �GM definition w.r.t. matched edges, even vertices are
followed by exactly the same number of odd vertices. For LexDFS sweep, we start with a
single part given by the final ordering from LexBFS sweep appended with even M-free
vertices since they finish any augmenting path; the observation on pivot neighbors leads to
an alternate sequence of odd and even vertices.

[
4O 12O 1E 2E 3E 9E 10E 11E 9O 3O 2O 1O 11O 10O

cont’d 5E 6O 7E 8E 8O 7O 6E 5O

]

[
4O 1E 9O 10E 11O 12E 5E 6O 7E 8O 6E 5O 8E 7O 9E

cont’d 1O 2E 3O 4E 3E 2O 12O 11E 10O

]

[
10O 15O 6E 7E 8E 9E 11E 12E 13E 14E 7O 6O 9O 8O 12O 11O 14O 13O

cont’d 16E 1O 2E 5E 5O 2O 1E 3E 4E 16O 4O 3O

]

[
10O 6E 7O 8E 9O 10E 7E 6O 16E 1O 2E 5O 1E 16O 11E 12O 13E 14O 15E

cont’d 12E 11O 14E 13O 3E 4O 5E 2O 4E 3O 9E 8O 15O

]

Lemma 5.1 If M-free vertices are interleaving in LexDFS ordering, then there exists a
greater matching.

Proof Let consider the first interleaving sequence in LexDFS odd-even ordering among M-
free verices u, v, uO, . . . , vE, xE, . . . , uE. W.l.o.g. consider uO = 1O; by LexDFS def-
inition, there exists iO > 1O such that iO?lE : kE where kE = vE and lE = xE

and uO < iO < kE; therefore, using four points condition, there exists jO such that
jO?kE : lE with iO < jO < kE. The crucial point here is that, since vE is M-free but
xE is not, xE was ahead of vE in starting LexDFS ordering and would occur before if jO

Fig. 13 interleaving M-free vertices and LexDFS four points property
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were connected to lE; therefore, j = k−1 and k = l−1 whatever i is. Clearly, we augment
the matching M from 1 to k by selecting odd to even vertices (see Fig. 13).

This constructive proof using four points property of LexDFS sweep proves an alter-
native to Blum’s modified DFS traversal. It simplifies the BLOSSOM implementation as
for increasing the cardinality of a current matching; however, it is marginal compared with
managing the blossoms among maximum cardinality matchings of different weights. To our
knowledge, no comparison has been made between BLOSSOM V (a cutting algorithm with
possibly an exponential number of cuts, see Section 7.1 below) and general purpose branch
and bound software with adaptative branching rule (Fig. 14) (Fortin and Tseveendorj 2009).

6 Non-separating Ear Decomposition

Finally, we address the case of any kind of graph to be embedded on a surface through the
knowledge of its Betti number; to this aim, we review the ear decomposition algorithm.

Definition 6.1 An ear decomposition of a simple graph G = (V ,E) is a sequence D =
(P0, . . . , Pk) such that P0 is a cycle and each Pi for i > 0 is a path that intersects ∪j<iPj

in exactly its endpoints.

A short (resp. long) ear has 1 (resp. more than 1) edge and no (resp. at least 1) inner
vertex. Let the complement of induced subgraph Gi of vertices in Vi = V (∪j≤iPj ) be
denoted Ḡi with vertices V̄i = V \Vi . An ear decomposition is non-separating if and only if
Ḡi is connected for all i. The birth of an edge (resp. inner vertex) is the smallest path index
of its appearance; it defines an ordering u <birth v meaning birth(u) < birth(v). A path Pi

is induced if there is no chord among inner vertices.

Definition 6.2 Let (r, t) and (r, u) be edges of a simple connected graph G, a Mondshein
sequence through (r, t) and avoiding (r, u) is an ear decomposition D of g such that (r, t) ∈
P0, Pbirth(u) is the last long ear with the single inner vertex u that does not contain edge
(r, u) and D is non-separating.

Fig. 14 A Mondshein sequence and matching in cycles intersection of the Grötzsch graph
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Fig. 15 A Mondshein sequence and matching in cycles intersection of the Chvatal graph

It is known that a simple connected graph G = (V ,E) with edges (r, t), (r, u) ∈ E is
3-connected if and only if it has a a Mondshein sequence through (r, t) and avoiding (r, u).
Constructing a Mondshein sequence D = (P0, . . . Pβ(G)−1) through (r, t) and avoiding
(r, u) relies on the following

Lemma 6.1 (Schmidt 2014) Let G = (V ,E) be a simple 3-connected graph, a Mondshein
sequence D = (P0, . . . Pβ(G)−1) through (r, t) and avoiding (r, u) can be constructed in
amortized linear time O(| E |).

where the cyclomatic (Betti) number β(G) =| E | − | V | +1 is the dimension of a
basis of fundamental cycles; as an illustrative example, Fig. 15 shows the case for Chvátal
graph.

We claim that in 2 LexDFS sweeps, a non-separating ear decomposition of a simple
3-connected graph could be retrieved under the partition refinement.

Lemma 6.2 Using the four points property of LexDFS, the circuit P0 is retrieved from the
forward semi-umbrellas recognized along the LexDFS sweep

Proof For the first semi-umbrella, we get u <σ v <σ w in the LexDFS ordering σ with
(u, v) and (u,w) in E and let v = v1 <σ . . . <σ vp <σ w be the sequence in σ then for all
1 < j ≤ p, (u, vj ) ∈ E (or else it contradicts the first semi-umbrella). If (vp,w) ∈ E then
we found the circuit [u, v, . . . w]; otherwise, (vp,w) ∈ E, let consider the partition refine-
ment at pivot w: if ∃1 ≤ j < p such that (vj , w) ∈ E, we get the circuit [u, . . . , vj , w]
(notice it happens whenever w has no more neighbor to process). Otherwise, let w2 be the
vertex following w in σ , (w,w2) ∈ E, then proceed with the first semi-umbrella occurring

Fig. 16 Circuit retrieval from forward semi-umbrellas along LexDFS sweep
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Fig. 17 Chord in ear
decomposition contradicts
LexDFS four points property

after w in σ until the previous argument apply. If the enumeration stops without applying
the argument, then 3-connectedness is violated.

Gathering forward semi-umbrellas is done along LexDFS sweep (Fig. 16) and they are
at most O(| E |), hence the LexDFS complexity for selecting P0. Let σ = [P−, P0, P+],
the second sweep starts with 2 parts, P0 and [P+, P−] to keep cycle structure in P+ as
close as possible to P0.

Lemma 6.3 Using the four points property of LexDFS, the non-separating ear decomposi-
tion is retrieved from the second LexDFS sweep

Proof Since the first part P0 is a circuit without chord, LexDFS keeps it ahead up to possible
a reordering of its vertices. By induction, we assume a non-separating ear decomposition has
been found up to Pe; we just have to prove that next path Pe+1 with endpoints in ∪e

0Pe has no
chord. By contradiction, consider the first chord w.r.t. LexDFS ordering Fig. 17 and consider
endpoints of Pe then for i <σ < k <σ l such that i?l : k; therefore ∃ji <σ < j <σ k such
that j?k : l, hence either vj∈ ∪e

0Pe and we have found a path in ear decomposition before
Pe+1, or vj ∈ Pe+1 and we have a chord before contradicting our assumption.

Remark 6.1 LexDFS enumeration of paths in a non-separating ear decomposition does not
examine simple edge between different paths; they have to be added to the tail of the list as
noticed in Schmidt (2014).

Were the first sweep σ0 start with P0, the second sweep σ1 possibly differs from the first
only by the P0 part, ahead the remaining vertices in σ0; see below, the example in Schmidt
(2014) starting from 1,3,5,4,2,6,7,8,9,10,11,12,13,14

[
σ0
σ1

]

=
[

1 5 4 2 3 6 7 8 9 11 12 13 14 10
1 5 4 2 3 6 7 8 9 11 12 13 14 10

]

7 Discussion

This section summarizes the challenging issues at both optimization and representation lev-
els described above; furthermore, it provides perspectives to carry the methodology over
input data not far from dissimilarities.

7.1 MaximumWeightedMatching

The separability of profit and price dual variables is crucial for solving the LAP optimization
problem by auction on either dense or sparse costs. Notice that we can start from the optimal
solution of the linear relaxation, i.e., where binary variables are replaced by continuous
variables in [0, 1] and then rows are assigned to columns along the decreasing ordered
optimal (fractional) values until no more assignment is feasible: here, we get the optimal
binary solution from the fractional solution (since it is integral), in disjoint cycle notations
(1, 3), (2, 9), (4, 15), (5, 17), (6, 10, 16), (7, 19), (8, 11), (12, 18), (13, 14).
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For maximum cardinality matching of minimum weight, we can add a sufficiently large
number dmax = max|dij | to every edge so that if the matching found is not of maximal
cardinality then a better solution can be found with greater cardinality; it leads to maximum
weighted matching on cost matrix C = ndmax − D

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 186 193 184 189 184 189 186 184 189 184 189 184 184 186 184 189
186 0 186 184 193 184 189 194 184 189 189 184 194 184 192
193 186 0 184 189 184 189 189 186 184 189 184 189 184 184 184 189
184 184 184 0 184 187 184 184 184 184 187 184 194 187 193
189 193 189 184 0 184 191 193 184 191 189 184 184 193 184
184 184 184 187 184 0 184 184 194 184 190 184 189 192 184 189 184
189 189 184 0 191 192 184 191 184 191 184 184 192 184 193

189 189 184 191 184 191 0 190 184 194 184 191 184 190 184 191
186 194 186 184 193 184 192 190 0 184 190 184 189 186 184 184 192
184 184 184 184 194 184 184 184 0 184 190 184 188 193 184 189 184
189 189 189 184 191 184 191 194 190 184 0 184 193 191 184 184 190 184 191
184 184 187 190 184 184 184 190 184 0 184 184 193 190 184 194 184
189 189 189 184 191 189 193 184 0 191 184 184 189 184

184 189 191 186 184 191 184 191 0 184 184 184 189
184 184 184 194 184 189 184 184 188 184 193 184 184 0 188 184
184 184 187 184 192 184 184 184 193 184 190 184 184 188 0 184 188
186 194 193 184 192 190 184 190 184 189 184 0 184 192
184 184 184 193 184 189 184 184 189 184 194 184 184 188 184 0
189 192 189 184 193 191 192 184 191 184 189 184 192 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Here, all subtours in a LAP formulation should have length 2 which introduces xij = xji

whenever the size is square (forcing cji = cij when one entry is missing in cost matrix); for
bipartite case, LAP constraints are completed with

∑
J xij ≤ 1 (resp.

∑
I xij ≤ 1), without

taking care of extra variables xsj (resp. xis). Finally, BLOSSOM algorithm completes this
formulation by valid inequalities on connected induced odd sets

∑
(i,j)∈O xij ≥ 1 and could

start with rounding the continuous variables solutions1 without odd sets inequalities, until
no more assignment is feasible; here, we get (1, 3), (2, 17), (4, 15), (5, 9), (7, 19), (8, 11),
(12, 18), (13, 14).

For maximum unweighted matching, we get respectively (1, 9), (2, 3), (5, 6), (7, 8),
(10, 11), and (1, 16), (2, 5), (3, 4), (6, 7), (8, 9), (11, 12), (13, 14) which lead to the
LexBFS LexDFS sweeps in Section 5.

Notice that since the seminal work by Edmonds (1987), it has been required five imple-
mentations of Blossom algorithm with odd sets (Kolmogorov 2009) in order to actually
achieve the complexity O(

√| V |(| E | + | V |)) and maximum weighted matching is
important enough to leave this branch still active (Blum 2015).

7.2 Generalized Schnyder Woods

For small-sized graphs, Schnyder woods construction is manually tractable. In general, the
algorithm proceeds by selecting an outercircuit passing through all the vertices with min-
imum degree w.r.t. some orientation (say clockwise as in examples); then, it chooses a
vertex in rounds on the outercircuit such that all its uncolored edges can be assigned a color
which fulfills the Schnyder rule and whose removal does not disconnect the outercircuit (the
removal of which yields the outercircuit for the next round), whence the termination and
correctness of the suspension. In planar case, a sufficient condition to meet this framework,
selects a vertex which is not a chord of the outercircuit, provided the graph is triangulated

1All problems have been solved using CPLEX under IBM Academic Initiative
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before starting the algorithm. Despite the geometric change introduced by the triangulation
in this case, the extra edges may be removed after completing the planar drawing.

In orientable surfaces of higher genus, as could be seen in Section 4.2, a triangulation
requires the knowledge of the genus so that Schnyder woods eventually depend on the tri-
angulation, and therefore it strongly impacts the geometric representation; moreover, the
choice of a vertex to process on the outercircuit requires the feasibility of the coloring
together with the connectedness of the outercircuit for next round. As it has been shown
above, multiple edges do not change the algebraic/geometric structure but triangulation
does; therefore, we leave as a challenging issue: how to build a k-Schnyder suspension
under adding multiple edges on demand (when a vertex has degree deficiency).

We believe that the fundamental cycles (Ren et al. 2009) of the induced graph in each
round, their intersection graph and their (so called) attachments on the oriented outercircuit
are useful in this regard (Chambers et al. 2009; Erickson and Whittlesey 2005; Cabello et al.
2016); more precisely, an ear decomposition looks necessary in each round to select the
vertex on the outercircuit that maintains both the coloring capability and the connectedness
of the next outercircuit.

7.3 Preference Matrices

In Fortin (2017), dissimilarity matrices have been studied for Robinson property recognition
(using 4 LexBFS sweeps). It is stated that similarity matrices with an ultrametric property
compatible with an ordering are related to co-comparability graph recognition; a problem
harder than recognizing Robinson property on dissimilarities. The discussion above, on
non-separating ear decomposition opens up new perspectives to recognizing anti-Robinson
property. Consider preference matrices as square non-symmetric matrices, possibly sparse,
with positive entries; then, the whole discussion above (weighted matching, weighted ear
decomposition) applies to such matrices. Indeed, to such a matrix P , we may associate the
symmetric Pencil (L,U) i.e., L = Lt and U = Ut , such that P is made of the lower
triangular part in L and the upper triangular part in U . The naming Pencil for a pair of
matrices comes after the generalization of spectral matrix algorithms (involving a Matrix
A and implicitly the identity I ) to any pair (A,B). A constructive answer to the question
whether there exists an ordering such that the permuted pencil has the (Robinsonian,
anti-Robinsonian) property would refine voting systems knowledge, with Schulze method
(Schulze 2018) at one end and (Robinsonian, anti-Robinsonian) pencil at the other.

8 Conclusion

In this article, we review the clustering of a dissimilarity with missing entries, and its rep-
resentation in orientable surfaces of small genus, from the algebraic and geometric point
of views. Our minor contributions concern the SNF computation where we provide miss-
ing details, in the literature addressing this algebraic topic. For undirected simple graphs,
we establish in a few lemmas, the intimate relationships between a pair of LexBFS and
LexDFS sweeps and augmenting paths to increase the cardinality of a matching on the one
hand; and between a pair of LexDFS sweeps and a non-separating ear decomposition on the
other hand.

It leaves open the challenging issue to construct a k-Schnyder suspension without tri-
angularizing the graph w.r.t. some orientable surface with a priori genus, as most authors
do in computational geometry. Finally, it suggests to use ear decomposition to address the
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relationship between anti-Robinson property of a dissimilarity and co-comparability graph
recognition, for seriation problems; the same tracks look promising as well to extend this
work to preference matrices for voting systems.

This review is far from being exhaustive, both at the optimization level, where more
constraints could be introduced, and at the representation level, where other objects than
surfaces could benefit of human vision capabilities: to our knowledge, braids and knots have
not been targeted while they could quite appropriately render entanglement among clusters.
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