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Clustering Large Datasets by Merging K-Means
Solutions
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Abstract
Existing clustering methods range from simple but very restrictive to complex but more
flexible. The K-means algorithm is one of the most popular clustering procedures due to its
computational speed and intuitive construction. Unfortunately, the application of K-means
in its traditional form based on Euclidean distances is limited to cases with spherical clusters
of approximately the same volume and spread of points. Recent developments in the area
of merging mixture components for clustering show good promise. We propose a general
framework for hierarchical merging based on pairwise overlap between components which
can be readily applied in the context of the K-means algorithm to produce meaningful
clusters. Such an approach preserves the main advantage of the K-means algorithm—its
speed. The developed ideas are illustrated on examples, studied through simulations, and
applied to the problem of digit recognition.

Keywords K-means · Finite mixture models · Merging components · Pairwise overlap ·
Classification EM algorithm

1 Introduction

Cluster analysis is the area of unsupervised learning with the objective of grouping data
in such a way that observations within each group have similar characteristics but groups
themselves are relatively distinct. Such groups of data points are commonly called clus-
ters. As follows from this description, the notion of a cluster is subjective and can vary
not only based on the nature of the data but also analysis goals. In the most traditional
understanding of the word, clusters present group objects heavily populated with observa-
tions and separated from each other by substantial gaps in the density of data points. The
more clear the density gap, the more distinct (or well-separated) clusters are. There exist a
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wide variety of clustering methods. Among procedures most popular in statistical literature,
there are hierarchical agglomerative and divisive algorithms (Sneath 1957; Ward 1963), K-
means (MacQueen 1967) and K-medoids (Kaufman and Rousseeuw 1990) algorithms, and
model-based clustering (Fraley and Raftery 2002).

Hierarchical algorithms rely on the notion of the object dissimilarity and vary according
to the rules of measuring distances among objects. Such rules are commonly called linkages.
The single linkage (Sneath 1957) measures the closeness of groups based on the distance
between two nearest neighboring objects that belong to the groups. It is well-known for the
so-called chaining effect that is helpful in detecting well-separated clusters (in the sense
of separation by substantial gaps in the density of data points) of arbitrary shapes (see,
e.g., page 685 in Johnson and Wichern 2007). On the other hand, the use of this linkage
should not be recommended if the goal is to identify groups with a considerable overlap.
Ward’s linkage (Ward 1963) is one potential candidate in such a situation. This rule aims
at minimizing the increase in the error sum of squares associated with merging and tends
to produce compact clusters of roughly elliptical shapes (see, e.g., page 693 in Johnson and
Wichern 2007). Ward’s linkage is a reasonable choice when the goal is the detection of
compact clusters in the presence of substantial overlap.

Model-based clustering employs the notion of finite mixture models (McLachlan and
Peel 2000) with every mixture component modeling a particular group of data. Model-based
clustering methods show great flexibility in modeling heterogeneity in data due to their
ability to incorporate distributions of essentially all forms. Under this setting, clusters are
allowed to have various levels of separation, skewness, modality, etc. The specific form of
a cluster is completely defined by the properties of a mixture component associated with it.

Despite excellent performance demonstrated in experiments and applications, model-
based clustering is a rather sophisticated tool that requires that the functional form of
mixture components is known in advance. Michael and Melnykov (2016) studied how the
performance of the method changes with varying complexity of datasets and showed that as
the dimensionality and size of the data increases the performance also decreased. This will
limit its application in the case of clustering massive datasets.

With no doubt, K-means is one of the most well-known and widely used clustering
algorithms. While proposed around the middle of the last century, even nowadays a sub-
stantial amount of literature is devoted to studying the algorithm and its properties (Steinley
and Brusco 2007; Celebi et al. 2012; Melnykov and Melnykov 2014; Aletti and Micheletti
2017). The main reasons justifying its popularity among practitioners are computational
speed and intuitive nature. K-means represents the class of partitional clustering algorithms
(Celebi 2015) and, in its most traditional form, aims at minimizing the objective function∑n

i=1
∑K

k=1 I (zi = k)||yi − μk||2 over membership labels z1, z2, . . . , zn and cluster mean
vectors μ1,μ2, . . . ,μK , where y1, y2, . . . , yn is the observed dataset consisting of n data
points, K is the number of clusters, and I (A) is an indicator function yielding 1 if the
condition A is true and producing 0 otherwise. Thus, K-means minimizes the within clus-
ter sum of squares which is accomplished through an iterative two-step procedure. At the
first step of the bth iteration, the partitioning z

(b)
1 , z

(b)
2 , . . . , z

(b)
n is obtained according to the

rule z
(b)
i = argmink ||yi − μ

(b−1)
k ||, i.e., based on the proximity of yi to the current clus-

ter centers measured in terms of Euclidean distances. At the second step, cluster means are
recalculated according to the following formula:

μ
(b)
k =

∑n
i=1 I (z

(b)
i = k)yi

∑n
i=1 I (z

(b)
i = k)

. (1)
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The algorithm is terminated when a stable partitioning solution is obtained yielding the
estimated partitioning vector ẑ1, ẑ2, . . . , ẑn and mean estimates μ̂1, μ̂2, . . . , μ̂K .

Despite the general attractiveness and popularity of the K-means algorithm, there are
numerous issues and restrictions that have to be taken into consideration before applying
the algorithm. K-means is designed to show good performance on spherical clusters with
approximately the same volume and spread of points. Three examples illustrating the per-
formance of K-means in various scenarios are provided in Fig. 1. In each case, there are
two well-separated clusters that may differ in shape or size. 95% confidence ellipsoids and
different colors represent the true groupings, while plotting characters illustrate the solution
obtained by the algorithm. In plot (a), there are many observations from the elongated clus-
ter that are mistakenly combined into a common group with data points from the smaller
cluster. This effect can be explained by the use of Euclidean distances to measure the prox-
imity of observations to cluster centers. When cluster shapes deviate from being spherical,
K-means should be applied with extra caution. In the meantime, the sphericity itself does
not necessarily lead to finding good partitionings. As we can see from plot (b), several obser-
vations from the edge of the cluster with larger volume are misclassified implying that the
presence of spherical clusters is still insufficient for the successful use of K-means. Finally,
plot (c) highlights the ideal conditions, under which the K-means algorithm is expected to
perform best. There are two spherical clusters of approximately the same volume and spread
of data points. The considered illustrations suggest that practitioners should be very careful
with the use of K-means as the ideal conditions necessary for the good performance of the
algorithm are very restrictive and often unrealistic.

One possibility to relax the imposed restrictions is to employ a more general dis-
tance metric such as the Mahalanobis one. Then, K-means has the same flavor as
the algorithm based on Euclidean distances, but involves calculating distances by√

(yi − μk)
T �−1

k (yi − μk), where �k is the covariance matrix associated with the kth data
group. For more details on this version of K-means, we refer the reader to a paper by Mel-
nykov and Melnykov (2014). Unfortunately, due to such a modification, K-means loses
much of its original appeal due to the necessity to initialize, estimate, and invert covariance
matrices �k for k = 1, 2, . . . , K . An interesting approach to covariance matrix estimation
based on double shrinkage method was considered in Aletti and Micheletti (2017). In gen-
eral, we can conclude that K-means in its traditional form lacks flexibility to provide good

(a) (b) (c)

Fig. 1 a–c Illustrative examples: solutions provided by the K-means algorithm. Colors represent differ-
ent groups, ellipsoids denote corresponding 95% confidence regions, and plotting characters illustrate the
partitioning obtained by K-means
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solutions unless in most trivial situations. On the other hand, more complex versions of K-
means might provide better options at a higher cost. In this paper, we propose an alternative
approach to clustering through K-means that makes the algorithm applicable in a much
broader range of problems.

Some motivation behind the proposed approach can be found in the analysis of dataset
Crabs (Campbell and Mahon 1974) by means of the popular model-based clustering R
package MCLUST (Fraley and Raftery 2006) which employs Gaussian mixture models with
different covariance matrix structures. There are four classes in this dataset. One hundred
observations represent Blue crabs, while the other hundred data points represent Orange
crabs. Each of these two species are further divided into male and female subgroups of
equal sizes. The dataset is known to be difficult for clustering. Hennig (2010) explained the
challenges by model misspecifications, Bouveyron and Brunet (2014) referred to dimen-
sionality issues, and Melnykov (2013) blamed the problem of initialization. An interesting
observation can be made as a result of running MCLUST: among all models, the software
chooses the one with nine Gaussian components with covariance matrices of the same
shape, orientation, and volume. This nine-component mixture was preferred over many
other sophisticated models, including those with unequal covariance matrices. This example
suggests that at least sometimes it might be reasonable to fit the data with multiple triv-
ial components instead of using few complicated ones. This conclusion can be joined with
the idea of merging components that are located so close to each other that they are likely
to model the same cluster. The idea of merging mixture components for model-based clus-
tering was recently considered by several authors (Baudry et al. 2010; Finak and Gottardo
2016; Melnykov 2016). This approach serves as an effective remedy in many cases when the
existence of the one-to-one correspondence between clusters and mixture components is not
a reasonable assumption. The technique considered in this paper is based on the connection
established between model-based clustering and K-means. This connection allows measur-
ing the degree of overlap between components of a K-means solution that is necessary for
deciding which groups have to be merged. It provides an effective remedy for K-means that
considerably extends the area of possible applications of this popular algorithm. One of its
main advantages is the applicability to clustering massive datasets.

The rest of the paper is organized as follows. Section 2 focuses on necessary preliminar-
ies in finite mixture modeling as well as merging mixture components. Section 3 establishes
the connection between K-means and model-based clustering and develops an approach for
merging solutions obtained by K-means. It also introduces a new visualization tool called
the overlap map. Section 4 investigates the performance of the developed technique in var-
ious situations. An application to digit recognition is considered in Section 5. A discussion
is given in Section 6. An appendix is supplied to show other extensions of the current
methodology and other supplementary material.

2 Finite Mixture Modeling andModel-Based Clustering

Let Y 1, Y 2, . . . ,Y n be a simple random sample of size n consisting of p-dimensional obser-
vations. Assume that Y i is distributed according to a finite mixture model, i.e., it follows a
distribution of the form

g(y|�) =
K∑

k=1

τkfk(y|ϑk), (2)
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where τk represents the mixing proportion of the kth mixture component fk with
the parameter vector ϑk , K is the total number of components, and � =
(τ1, τ2, . . . , τK−1,ϑ

T
1 ,ϑT

2 , . . . ,ϑT
K)T is the complete parameter vector. Mixing propor-

tions are subject to restrictions τk > 0 and
∑K

k=1 τk = 1. The functional form of fk is
pre-specified and most commonly chosen to follow the multivariate normal distribution.
Then, mixture (2) can be written as

g(y|�) =
K∑

k=1

τkφp(y|μk,�k),

where φp(y|μk,�k) represents the p-variate Gaussian probability density function with
mean vector μk and covariance matrix �k . The parameter vector � is usually unknown
and can be estimated through various procedures, among which maximum likelihood
estimation is the most popular. The form of the corresponding likelihood function typi-
cally does not allow deriving closed-form solutions for parameter estimates. As a result,
the maximization is usually carried out by means of an iterative procedure called the
expectation-maximization (EM) algorithm (Dempster et al. 1977).

The EM algorithm is a standard instrument for handling problems with missing informa-
tion. In the finite mixture modeling framework, membership labels of observations denoted
as z1, z2, . . . , zn can be assumed known.

The EM algorithm maximizes the conditional expectation of the complete-data log like-
lihood function given observed data. In the mixture modeling setting, this expectation,
commonly known as the Q-function, is given by

Q(�|�(b−1)) =
n∑

i=1

K∑

k=1

π
(b)
ik

[
log τk + log fk(yi |ϑk)

]
, (3)

where π
(b)
ik = E{I (Zi = k)|yi , �

(b−1)} is the posterior probability that yi belongs to the
kth mixture component. As shown in McLachlan and Peel (2000), the E-step reduces to
updating posterior probabilities by means of the expression

π
(b)
ik = τ

(b−1)
k fk(yi |ϑ (b−1)

k )
∑K

k′=1 τ
(b−1)
k′ fk′(yi |ϑ (b−1)

k′ )
. (4)

In the case of p-variate Gaussian mixtures, the above can be written as

π
(b)
ik = τ

(b−1)
k φp(yi |μ(b−1)

k ,�
(b−1)
k )

∑K
k′=1 τ

(b−1)
k′ φp(yi |μ(b−1)

k′ ,�
(b−1)
k′ )

(5)

and the M-step is provided by the following expressions:

τ
(b)
k = 1

n

n∑

i=1

π
(b)
ik , μ

(b)
k =

∑n
i=1 π

(b)
ik yi

∑n
i=1 π

(b)
ik

, �
(b)
k =

∑n
i=1 π

(b)
ik (yi − μ

(b)
k )(yi − μ

(b)
k )T

∑n
i=1 π

(b)
ik

.

Iterations of the EM algorithm produce a non-decreasing sequence of likelihood values.
Upon the convergence of the EM algorithm at some iteration b�, the maximum likelihood

estimate �̂ = �(b�) and estimated posterior probabilities π̂ik = π
(b�)
ik are obtained.

Model-based clustering has a connection with finite mixture modeling through the Bayes
decision rule z̃i = argmaxk πik , where z̃i is the membership label for yi obtained by the
rule. It is assumed that each component can adequately fit exactly one group of data and
thus the one-to-one correspondence between mixture components and clusters is formed.
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This relationship is very appealing from the interpretation point of view as each cluster
can be seen as a sample from a particular component distribution. When one-to-one corre-
spondence between mixture components and clusters is not valid, i.e., when more than one
component is needed for adequate modeling of a data group, merging components for clus-
tering is one of several possible remedies. The underlying idea is based on the assumption
that several components located close to each other, and thus overlapping, model a partic-
ular group of data points. Subject to desired cluster characteristics, this assumption is not
always true, but can often be rather effective.

Indeed, a good measure of the closeness of mixture components is required. Melnykov
(2016) recommends using pairwise misclassification probabilities and suggests employ-
ing the pairwise overlap between mixture components ωkk′ defined as the sum of two
misclassification probabilities ωk|k′ and ωk′|k , where ωk′|k for Gaussian mixtures is given by

ωk′|k = Pr
[
τkφp(Y |μk,�k) < τk′φp(Y |μk′ , �k′) | Y ∼ φp(y|μk, �k)

]
.

Maitra and Melnykov (2010) showed that in the general case this probability can be
calculated as

ωk′|k = Pr

⎡

⎢
⎢
⎣

p∑

j=1
j :λj �=1

(λj −1)Uj + 2
p∑

j=1
j :λj =1

δjWj ≤
p∑

j=1
j :λj �=1

λj δ
2
j

λj − 1
−

p∑

j=1
j :λj =1

δ2j + log
τ 2k |�k′ |
τ 2
k′ |�k|

⎤

⎥
⎥
⎦ ,

(6)

where δj = γ T
j �

− 1
2

k (μk −μk′), λ1, λ2, . . . , λp and γ 1, γ 2, . . . , γ p are the eigenvalues and

eigenvectors of the matrix �
1
2
k �−1

k′ �
1
2
k , respectively, Uj s are independent non-central χ2

random variables with one degree of freedom and noncentrality parameter λ2j δ
2
j /(λj − 1)2,

and Wj s are independent standard normal random variables, independent of Uj s.
Several special cases of result (6) based on particular forms of covariance matrices can

be derived. If covariance matrices are assumed to be unequal and spherical, i.e., �k �= �k′
with �k = σ 2

k I and �k′ = σ 2
k′I , Eq. 6 reduces to

ωk′|k = Pr

[

U ≤ σ 2
k′

σ 2
k − σ 2

k′

(
(μk − μk′)T (μk − μk′)

σ 2
k − σ 2

k′
+ log

τ 2k σ
2p
k′

τ 2
k′σ

2p
k

)]

, (7)

where U is a non-central χ2 random variable with p degrees of freedom and noncentrality
parameter (μk − μk′)T (μk − μk′)σ 2

k /(σ 2
k − σ 2

k′)2. If covariance matrices are assumed to be
equal, i.e., �k = �k′ ≡ �, the following result is obtained:

ωk′|k = �

⎛

⎜
⎝−1

2

√

(μk − μk′)T �−1(μk − μk′) + log τk′
τk√

(μk − μk′)T �−1(μk − μk′)

⎞

⎟
⎠ , (8)

where �(·) represents the cumulative distribution function of the standard normal random
variable. Finally, if covariance matrices are equal and spherical, i.e., �k = �k′ ≡ σ 2I ,
expression (8) can be simplified further:

ωk′|k = �

(

− 1

2σ
‖μk − μk′ ‖ + σ log τk′

τk

‖μk − μk′ ‖

)

. (9)

Expressions for ωk|k′ necessary for the calculation of ωkk′ = ωk′|k + ωk|k′ are obtained
similarly.
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3 Merging K-Means Solutions

Some similarity between the EM and K-means algorithms can be noticed. Both algorithms
aim at optimizing partitionings, which is fulfilled by means of iterative procedures involv-
ing a parameter estimation step. In the course of the EM algorithm, fuzzy classifications for
observations are obtained in the form of posterior probabilities calculated at the E-step. On
the other hand, K-means provides hard assignments at each iteration. In Celeux and Gov-
aert (1992), the authors showed that the traditional K-means algorithm based on Euclidean
distances that minimizes the within cluster variability can be seen as the so-called clas-
sification EM (CEM) algorithm applied to a mixture of Gaussian components with equal
spherical covariance matrices and equal mixing proportions. The CEM algorithm includes
an additional classification step incorporated into the procedure right after the E-step and
targets maximizing the classification likelihood rather than the original one.

The general formulation of the CEM algorithm is provided below.

E-step Estimate posterior probabilities π
(b)
ik based on the current parameter vector �(b−1)

as described in Eq. 4.

C-step Classify observations into K groups by the rule z
(b)
i = argmaxk π

(b)
ik .

M-step Estimate model parameters based on the Q-function given in Eq. 3 with posterior
probabilities π

(b)
ik replaced by hard assignments I (z

(b)
i = k). This modified version will be

called the Q̃-function, i.e.,
Q̃(�|�(b−1)) = ∑n

i=1
∑K

k=1 I (z
(b)
i = k)

[
log τk + log fk(yi |ϑk)

]
.

In this paper, we consider four variations of the K-means algorithm and establish the
correspondence between them and model-based clustering relying on the CEM algorithm.
Recall that according to the Bayes decision rule, yi is classified to the kth cluster if πik >

πik′ for all k′ = 1, 2, . . . , k − 1, k + 1, . . . , K .
Taking into consideration the functional form of posterior probabilities for Gaus-

sian mixtures given in Eq. 5, the inequality πik > πik′ implies τkφp(yi |μk, �k) >

τk′φp(yi |μk′ ,�k′). After straightforward manipulations, we conclude that yi is classified
to the kth component if the inequality

(yi − μk)
T �−1

k (yi − μk) < (yi − μk′)T �−1
k′ (yi − μk′) + log

τ 2k |�k′ |
τ 2
k′ |�k|

(10)

holds for all k′ = 1, 2, . . . , k − 1, k + 1, . . . , K . As we show below, all four versions
of K-means can be seen as variations of model-based clustering with specific restrictions
following from the comparison of the decision rule for K-means and inequality (10). We
discuss K-means solutions from the mixture modeling point of view and thus refer to
components rather than clusters detected by the algorithm.

After the connection between the K-means algorithm and model-based clustering is
established, we extend it further to formulate merging principles for K-means solutions.
To simplify terminology in the following subsections, components with equal covari-
ance matrices are called homoscedastic while those with unequal covariance matrices are
called heteroscedastic. In Section 3.1, we consider the simplest version of K-means that is
employed in this paper. Three other versions of K-means, their relationship to the overlap
and some interesting properties are discussed in Appendix A.
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3.1 HoSC-K-Means: K-Means with Homoscedastic Spherical Components

This setting represents the traditional K-means algorithm based on Euclidean dis-
tances. By the K-means classification rule, yi is assigned to the kth component if√

(yi − μk)
T (yi − μk) <

√
(yi − μk′)T (yi − μk′) holds for all k′ = 1, 2, . . . , k − 1, k +

1, . . . , K . It is immediate to see that this inequality is equivalent to decision rule (10)
with restrictions �1 = . . . = �K ≡ σ 2I and τ1 = . . . = τK = 1/K imposed. Thus,
HoSC-K-means can be seen as model-based clustering through the CEM algorithm for
Gaussian mixtures with homoscedastic spherical components and equal representations.
The corresponding Q̃-function from the CEM algorithm is given by

Q̃(�|�(b−1)) =
n∑

i=1

K∑

k=1

I (z
(b)
i = k)

[

log
1

K
+ logφp(yi |μk, σ

2I )

]

,

where the complete parameter vector is � = (μT
1 , μT

2 , . . . ,μT
K, σ 2)T with M = Kp + 1

parameters. Mean vectors are calculated at the M-step according to Eq. 1. The common
variance σ 2 is estimated by the expression

(σ 2)(b) = 1

np

n∑

i=1

K∑

k=1

I (z
(b)
i = k)(yi − μ

(b)
k )T (yi − μ

(b)
k ). (11)

The overlap under the imposed restrictions can be readily obtained from Eq. 9 and is given
by

ωkk′ = 2�

(

−‖μk − μk′ ‖
2σ

)

. (12)

This simple formula can be used to assess the level of overlap between components
produced by HoSC-K-means and thus to decide which ones should be merged.

3.2 General Framework for DEMP-Based Hierarchical Merging

Directly estimated misclassification probabilities (DEMP) (Hennig 2010; Melnykov 2016)
can be conveniently used for measuring the degree of overlap between mixture compo-
nents (Riani et al. 2015). In the course of hierarchical merging, pairwise misclassification
probabilities are calculated between groups of combined components. Melnykov (2016)
employed the sum of misclassification probabilities as a linkage function. However, many
other functions can be readily used in the considered framework. The choice of a particular
linkage should be dictated by the properties of clusters one wants to find.

DEMP-based hierarchical merging of mixture components presents a general framework,
where the choice of a particular linkage is driven by the desired properties of clusters. This
paper falls into this general framework. In this work, the pairwise overlap is used to measure
the closeness of K-means components. In the course of hierarchical merging, we employ
single and Ward’s linkages depending on the particular characteristics of clusters sought.
The use of relatively simple linkage functions that do not require Monte Carlo simulations
as in Melnykov (2016) should be recommended for clustering large datasets. Although all
versions of K-means studied in Sections 3.1-Appendix A.3 are viable and can be used in
the considered framework, the simplest HoSC-K-means should be preferred for massive
data due to its remarkable speed. The combination of HoSC-K-means and effective linkage
functions provides the assurance of the speedy performance of the merging algorithm, which
from now on we call DEMP-K .

The outline of the proposed hierarchical merging algorithm is as follows.
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Outline of the hierarchical merging algorithm:

1. Find a K-means solution for some value K such that K > G, where G is the true
number of clusters. Some practical guidance on choosing an appropriate values of K

and estimation of G is provided in the next section.
2. Based on the specific variation of the K-means algorithm, calculate all K(K + 1)

misclassification probabilities and corresponding K(K + 1)/2 pairwise overlaps. High
pairwise overlaps ωkk′ reflect the closeness of theK-means components and thus 1−ωkk′
can serve as a dissimilarity measure in the course of traditional hierarchical clustering.

3. Based on the particular choice of the linkage function, conduct hierarchical clustering
of detected K-means components and find the corresponding tree structure.

4. Given a specific value of G, “cut” the tree and identify K-means components that are
associated with the same cluster.

5. Find the final partitioning by retrieving observations corresponding to each K-means
component within detected clusters.

3.3 Practical Implementation

Having the foundation for merging K-means solutions outlined, we focus on other techni-
cal details now. One issue concerns choosing a reasonable number of components K for the
K-means algorithm. Various methods for selecting K are proposed in literature. One pos-
sibility is to employ approximate BIC values calculated based on the connection between
K-means and mixture modeling (Goutte et al. 2001). Some other approaches include using
various indices (Calinski and Harabasz 1974; Krzanowski and Lai 1985). Our empirical
studies show that the specific choice of K is not critical in the considered framework. To
illustrate this idea, we conduct a small simulation study. A mixture model with three well-
separated skew normal components as in Section 4.2.1 was used to simulate 100 datasets
for each sample size n = 103, 104, 105, 106. K-means solutions were obtained assuming
K = 3, . . . , 40 and the proposed merging algorithm DEMP-K was applied. Figure 2 pro-
vides relationships between the obtained median of the adjusted Rand index (AR) and the
number of components K for different sample sizes. As we can see, the obtained results
are robust to the choice of K . When n = 1000, we observe decrease in AR values for
K > 30 that can be explained by the detection of some random patterns in skewed clus-
ters. This effect diminishes for higher sample sizes. Another illustration for the robustness
of the proposed procedure to the choice of K is provided in Section A.4 of the Appendix
A. As the specific choice of the number of components is not critical, one does not have to
examine all possible values of K in the search for the best index or BIC value. Intuitively,

Fig. 2 Correspondence between the median adjusted Rand index values obtained as a result of merging
K-means solutions with different numbers of components for various sample sizes
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K has to be large enough to allow adequate filling of clusters of arbitrary shapes with small
spheres associated with a K-means solution. A reasonable number can be chosen by the
elbow method plotting between cluster variability versus K . The elbow is the point at which
the increase in between cluster variability becomes small relative to previous increases. In
this paper, we consider K = 5, 10, 15, . . . to identify an appropriate K value. The same
trend as the one illustrated in Fig. 2 is observed for the other K-means variations. As the
main goal of our methodology is to develop tools for fast clustering, from now on, we focus
on HoSC-K-means.

When the true number of clusters G is not known, choosing the estimate Ĝ is another
standalone problem that is beyond the scope of this paper. Here, we outline a couple of pos-
sible approaches to the problem and discuss a novel graphical tool that we call an overlap
map. One potential approach is to provide some pre-specified overlap threshold value ω∗
as in Melnykov (2016). Then, the merging process stops when there are no more groups of
components that produce the overlap exceeding the threshold level. Another possibility is to
employ a visual tool that would simplify the process of making a decision. Melnykov (2016)
introduced a graphical display called the quantitation tree which illustrates the merging pro-
cess and helps detect the best number of groups by the change in color hues associated with
the overlap value between merged groups of components. One more method that is based
on constructing a tree structure for data groups is considered in Stuetzle and Nugent (2010).
The authors develop a graph-based procedure to construct the cluster tree of a nonparamet-
ric density estimate. Although the authors do not focus on finding an approach for detecting
the best Ĝ, their paper presents ideas related to our discussion.

Fig. 3 Illustrative examples considered in Section 4.1. The first row represents two half-circular clusters and
the second row corresponds to the case with two inscribed circular clusters. The first and second columns rep-
resent the HoSC-K-means solution and corresponding overlap map, respectively. The third column provides
the partitioning result obtained by merging
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In this paper, we propose another tool that we call the overlap map. An example of such
a tool, designed to identify well-separated clusters of arbitrary shapes by the use of single
linkage, can be found in Fig. 3 (second plot in both rows). The map presents overlap values
for all K(K − 1)/2 pairs of components by means of color hues ranging from the pale
yellow color for low overlap values to the dark red color for high values. The legend located
in the right-hand part of each plot demonstrates the association between overlap values
and color hues. The first pair of components included in the plot is reflected by the cell in
the lower left corner and is chosen among all pairs according to the highest overlap value
produced. The next component added to the display has the highest overlap with one of the
components already included in the plot. This process of adding components is repeated
until all of them are reflected in the display. The row of color hues located in the bottom
of the display serves for choosing the optimal number of clusters Ĝ obtained by merging.
The color of each cell matches the darkest hue in the corresponding column. Red color hues
located next to each other represent a group of components with substantial overlap that
are likely to model one cluster. Such groups are usually separated from each other by pale
yellow cells associated with considerable gaps. The overlap plot in the first row of Fig. 3
suggests that there are two well-separated groups of points as there is one pale yellow cell
separating groups of components with darker hues. The overlap map provides an intuitive
instrument for choosing the optimal number of well-separated clusters. On the other hand,
this tool somewhat loses its visibility and appeal when the number of components is high.

4 Experimental Validation

In this section, we illustrate the idea of merging HoSC-K-means solutions and provide
experimental validation of the proposed approach in various settings.

4.1 Illustrative Examples

The settings considered here include half-circular and inscribed circular clusters. For the
purpose of illustration simplicity, we consider bivariate well-separated clusters as provided
in Fig. 3.

Half-circular clusters Consider a setting with two non-globular groups that are presented
in the first row of Fig. 3. The total sample size is equal to 1,000.

A 10-group solution obtained by HoSC-K-means is presented in the first plot. The cor-
responding overlap map suggests that there are two well-separated clusters. The first cluster
is obtained by combining components 6, 7, 8, 9, and 10. The second cluster is produced
by merging components 1, 2, 3, 4, and 5. As we can see from the overlap map, two closest
components from different clusters are the ones with numbers 4 and 10. The corresponding
overlap is very small (ω̂4,10 < 0.01) which is reflected by the pale yellow color separating
darker color hues. It is worth mentioning that when sample sizes are not very high, local
patterns in data can lead to lower overlap values between some components. For example,
the overlap between components 8 and 9 (0.04 < ω̂8,9 < 0.05) is not as high as for the other
pairs. This effect, already discussed in Section 3.2, is alleviated for datasets with larger sam-
ple sizes. The last plot in the first row of Fig. 3 presents the obtained solution: successfully
detected clusters are separated by a considerable gap in the density of points.
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Inscribed circular clusters The next setting considered in this section involves one circular clus-
ter inscribed into the other one. The second row of Fig. 3 provides corresponding illustrations.

The first plot shows the 11-component HoSC-K-means solution. The overlap map asso-
ciated with this solution is provided in the next plot. It clearly suggests the presence of two
well-separated clusters. Components 1 to 10 are all merged together based on consider-
able overlap values. Component 11 is well-separated from the others and is responsible for
modeling the inscribed cluster. The obtained grouping is provided in the last plot of Fig. 3.

These simple examples illustrate the proposed idea and demonstrate the utility of
overlap maps. Alternative solutions based on 20 HoSC-K-means components along with
corresponding overlap maps are provided in Section A.5 of Appendix A.

4.2 Simulation Studies

In this section, we consider three different settings to investigate the performance of the
proposed technique and compare it with other clustering procedures. In all cases, clusters
are simulated from mixtures of skew normal components using the R package MIXSMSN

(Prates et al. 2013). The goal of the considered studies is to detect these skewed clusters in
various settings. Model parameters and technical details of the simulation studies are pro-
vided in Appendix A.6. It is challenging to assess time performance of various clustering
methods as procedures can be implemented on different platforms. Therefore, we decided
to employ and record computing time for standard functions available in R. The considered
methods include spectral clustering (Fiedler 1973; Spielman and Teng 1996) and Nyström
approximation (Jain et al. 2013) (both avalable through function specc from the package
KERNLAB), partitioning around medoids (PAM) (Kaufman and Rousseeuw 1990) and Clara
Han et al. (2012) (functions pam and clara from the package CLUSTER), hierarchical clus-
tering with Ward’s linkage without squaring dissimilarities (option “ward.D” in function
hclust from the package STATS; for details on existing variations of theWard’s algorithm, we
refer the reader to Murtagh and Legendre 2014), model-based clustering (Fraley and Raftery
2006) (function Mclust from the package MCLUST), K-means (MacQueen 1967) (function
kmeans from the package STATS), entropy-based merging (Baudry et al. 2010), and the
proposed method DEMP-K . To read about the specifics of the above-listed clustering pro-
cedures, we refer the reader to Han et al. (2012). In all studies of this section, we consider
sample sizes n = 103, 104, 105, 106 and assume that the exact number of clusters is known.
In each setting, we simulate 100 datasets. Indeed, the case of n = 106 can be seen as an
illustration of rather massive data. The performance of all clustering algorithms is assessed
in terms of proportions of correct classifications (CP), adjusted Rand index (AR), and
computing time (T ) (in seconds, run on Fedora 23; Intel(R) Xeon(R) CPU E5-2687W @
3.10GHz RAM 64Gb). Table 1 provides median and interquartile range values for CP and
AR as well as median values for T . Some clustering algorithms encountered problems with
datasets of larger sample sizes (n = 105 and n = 106). Themost common issue is the impossi-
bility to allocate the required amount of memory. As a result, only Nyström, Clara,K-means,
and DEMP-K methods, designed for clustering massive datasets, can be run in these cases.

4.2.1 Experiment 1: Three Well-separated Clusters, Equal Mixing Proportions

The goal of this study is to identify three well-separated bivariate clusters with non-elliptical
shapes. A sample dataset is presented in Fig. 4 a. Table 1 provides the results of the corre-
sponding simulation study in the first horizontal block. As we can see, spectral clustering,
hierarchical withWard’s linkage, MCLUST, entropy-based merging, and DEMP-K show the
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(a) (b) (c)

Fig. 4 Sample datasets from simulation studies in a Section 4.2.1, b Section 4.2.2, and c Section 4.2.3. The
first two datasets are bivariate; plot (c) presents the first two principal components. All datasets considered
have a sample size equal to 10,000

best performance in terms of CP andAR. Nyström approximation follows closely behind.
Spectral clustering is designed to work well in situations with well-separated clusters.
MCLUST shows good performance as ellipsoids associated with mixture components model
data adequately due to considerable gaps between groups. Ward’s linkage shows good per-
formance because of the same reason. Expectedly, entropy-based approach performs well:
skewed clusters are often modeled with several overlapping Gaussian components that get
merged based on the entropy change criterion. As the goal is to find well-separated clus-
ters, we employ the single linkage in DEMP-K and this choice determines the good result
obtained. Based on the elbowmethod,K-means solutions with 20 clusters have been used in
DEMP-K . Table 1 suggests that PAM, Clara, and K-means algorithm show similar results
but do not perform as well as the procedures mentioned above. This can be explained by the
tendency of these algorithms to detect nearly spherical clusters of similar volumes. Hierar-
chical clustering based on a single linkage is the worst performer in this experiment. Among
the four methods that can be run for large datasets, DEMP-K shows a slightly better but
also somewhat slower performance compared to Nyström.

4.2.2 Experiment 2: SevenWell-Separated Clusters, Unequal Mixing Proportions

The goal of this experiment is to identify seven well-separated bivariate clusters. Additional
clustering complexity has been introduced through severely unequal mixing proportions.
In the sample dataset provided in Fig. 4b, nearly half of the data are associated with the
large cyan cluster. As a result, other clusters are relatively small in terms of the number
of points. In this setting, the best performers in terms of CP and AR are spectral clus-
tering and DEMP-K based on the single linkage (K equal to 40 by elbow method). Due
to the high separation of clusters, this is not unexpected. DEMP-K shows slightly better
results. Hierarchical clustering with the average linkage falls just behind these two meth-
ods (Appendix A.6). The performance of Nyström approximation degraded considerably as
opposed to that in the previous experiment. MCLUST also encounters difficulties due to split-
ting the large cyan cluster into several ones and combining some smaller groups together.
Expectedly, the entropy-based merging approach is considerably better than MCLUST as
merging mixture components for clustering works effectively in the considered setting: the
large skewed cluster is modeled with several Gaussian components that are combined in
the course of the merging procedure. PAM, Clara, and K-means again show relatively sim-
ilar and not very good performance due to the same reasons as before and unequal cluster
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sizes. Hierarchical clustering based on Ward’s, single, and complete linkages does not show
good performance either. With regard to the four methods that can be run for large datasets,
DEMP-K shows substantially better results. CP and AR are both close to the unity while
the other procedures are considerably lower. Specifically, we correctly classify at least 20%
of additional data points when we use DEMP-K .

4.2.3 Experiment 3: Three Overlapping Ten-Dimensional Clusters

In the third experiment considered, our goal is considerably different: we aim to identify
overlapping compact clusters. To make the situation more challenging, we consider ten-
dimensional clusters with two of them having the same mean. The third cluster is located
close to the other two as we can see from the first two principal components presented in
Fig. 4 c. Clearly, the application of the single linkage is not adequate when we are looking
for overlapping clusters. Therefore, per discussion in Section 3.2, we employWard’s linkage
in the context of the DEMP-K algorithm. By elbow method, K is chosen to be equal to 30.

As we can see, MCLUST and the entropy-based merging procedure are the best per-
formers in this setting. DEMP-K follows behind the two showing slightly worse results.
Comparable results are also obtained by hierarchical clustering with Ward’s linkage. All
other procedures perform quite poorly in this difficult setting. Among the four procedures
that can be run on large datasets, DEMP-K shows a much better performance.

Table 2 Three additional hierarchical clustering methods based on average, single, and complete linkages

H. average H. single H. complete

Experiment 1 n = 103 CP 0.927, 0.314 0.666, 0.326 0.863, 0.125

AR 0.800, 0.412 0.555, 0.575 0.661, 0.188

T 0.001 0.001 0.001

n = 104 CP 0.670, 0.009 0.340, 0.330 0.819, 0.192

AR 0.565, 0.026 0.000, 0.567 0.594, 0.264

T 0.049 0.055 0.048

Experiment 2 n = 103 CP 0.929, 0.025 0.756, 0.097 0.736, 0.110

AR 0.948, 0.034 0.556, 0.251 0.608, 0.173

T 0.001 0.001 0.001

n = 104 CP 0.933, 0.097 0.598, 0.145 0.706, 0.112

AR 0.947, 0.205 0.168, 0.260 0.558, 0.155

T 0.049 0.055 0.049

Experiment 3 n = 103 CP 0.668, 0.324 0.349, 0.012 0.713, 0.060

AR 0.548, 0.565 0.000, 0.000 0.542, 0.044

T 0.001 0.001 0.001

n = 104 CP 0.339, 0.005 0.338, 0.004 0.714, 0.066

AR 0.000, 0.000 0.000, 0.000 0.523, 0.061

T 0.048 0.088 0.049

The description is similar to that of Table 1
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Results for three additional hierarchical linkages (average, single, and complete) for
DEMP-K are given in Table 2. In all considered experiments, we note that DEMP-K with
Ward’s linkage performs better than DEMP-K with average, single, or complete linkages.
Overall, examples considered in this section demonstrate the broad utility of the developed
clustering technique. Depending on the desired properties of clusters such as shape and sep-
aration, one has to choose an appropriate linkage function. When sample sizes are not large,
there are a few methods that can be successfully used for clustering. For high sample sizes,
the use of considered procedures either degrades considerably or is limited by required com-
puting resources. At the same time, the conducted experiments demonstrate that DEMP-K
has the potential to show consistently good performance with various sample sizes in all
settings considered.

5 Application to Digit Recognition

In this section, we apply the developed methodology to the problem of digit recognition.
The analyzed dataset was introduced by Alimoglu and Alpaydin (1996) and is publicly
available from the University of California Irvine machine learning repository. Forty-four
subjects have been asked to write one of the ten digits (0 to 9) in random order using pressure
sensitive tablets. The stylus pressure information has been ignored and the collected data
represent pairs of coordinates for 8 regularly spaced points located along the pen movement
trajectory. To alleviate the translation and scale distortion issues, the collected observations
have been normalized. As a result, each written digit can be seen as a sixteen-dimensional
observation (eight (x, y) pairs) with coordinate values in the range from 0 to 100. The
dataset has a rather moderate sample size of 10,992 that allows us comparing the developed
methodology with other clustering techniques, some of which would not be applicable in
the case of large datasets. By doing this, we emphasize that although the application of
DEMP-K to massive datasets is advantageous, it can also be used in other settings.

It can be noticed that some digits such as 6 can be written in a rather unique way. Due
to the conducted normalization at the data pre-processing stage, we can expect roughly
spherical dispersions around group means. On the other hand, some other digits can be
written in a variety of ways. Figure 5 illustrates 20 realizations of the digit 1. It can be
remarked that when the digit is underlined, its image closely resembles that of the digit 2.
Similarly, the digit 7 is often crossed by a horizontal line. On the other hand, many people
do not cross it. The digit 8 is another complex case as different trajectories can be used to
write the same symbol. In such cases, clusters can hardly be assumed spherical. Instead,
we can expect that clusters potentially include several subclusters, each with its own mean

Fig. 5 Twenty realizations of the digit 1
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and roughly spherical dispersion. Under these circumstances, merging subclusters detected
by K-means with a sufficiently high number K can lead to a more meaningful clustering
solution than those obtained by the competitors. As we discussed in Section 3.2, the choice
of the linkage function for hierarchical merging is an important problem. Due to the broad
variety of shapes and trajectories used in writing digits, we do not expect to detect well-
separated clusters except for some relatively simple cases. As per discussion in Section 3.2,
the use of single linkage cannot be recommended in this case and we focus on Ward’s
linkage in this application. Due to the nature of the considered problem, the true number of
clusters is known to be G = 10. Based on the plot provided in Fig. 9 in Appendix A.7, we
choose the number of HoSC-K-means components to be equal to 30. After K = 30, the
increase in the proportion of the total variability explained by the between cluster variability
is rather minor. Due to the robustness of the proposed procedure, the specific choice of K

is not critical.
Table 3 illustrates solutions obtained by the same methods as those considered in

Section 4.2. For each partitioning, we provide the classification agreement table (with rows
and columns representing true and estimated partitionings, respectively), proportion of cor-
rect classifications CP , adjusted Rand index AR, and computing time T in seconds. As
we can see, the majority of clustering methods encounter difficulties with clustering at
least some digits. This is especially true for 0, 7, and 8. The developed technique based
on merging K-means components shows the best performance with CP = 0.843 and
AR = 0.708. The other methods demonstrate considerably worse results with values

Table 3 Classification agreement tables for 8 clustering methods

Rows and columns represent true and estimated classifications, respectively
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varying from CP = 0.554 and AR = 0.380 (Nyström clustering) to CP = 0.764 and
AR = 0.588 (Clara). Entropy-based merging not included in the summary table yielded
CP = 0.532 andAR = 0.329 with T = 1450.61.

From the K-means solution provided in Table 3(g), we can see that clusters representing
digits 4 and 6 are identified quite well except for the 88 digits 9 that have been incorrectly
assigned to the fourth cluster due to the similarity of the digits 4 and 9. Other clusters are not
detected successfully. For example, almost all digits 7 are assigned to data groups contain-
ing digits 1 or 2. At the same time, many digits 0 and 8 are combined into a separate cluster.
Many similar issues can be also detected after examining the results of other algorithms.
On the contrary, Table 3(h) presents a considerably better partitioning obtained by our pro-
posed technique. The most noticeable improvement as opposed to K-means is associated
with clusters corresponding to digits 0, 7, and 8. As a result of using DEMP-K instead of
K-means, additional 1,930 digits have been identified correctly. The best performing com-
petitor Clara misclassifies 871 digits more than DEMP-K . Figure 6 provides the means of
the obtained DEMP-K solution. All digits are easily recognizable except the one represent-
ing the digit 8. This effect can be explained by the presence of a high number of digits 1, 5,
8, and 9 assigned to be in the same cluster.

6 Discussion

We proposed a novel approach for cluster analysis by means of merging components
associated with the solution obtained by K-means. This technique falls into a general
DEMP-based hierarchical merging framework with various linkages. The main advantage
of the developed procedure is in the preserved speed of theK-means algorithm which makes
it highly applicable for clustering massive datasets.

The methodology is based on the notion of pairwise overlap which can be instantly calcu-
lated for pairs of spherical components with equal covariance matrices. Simulation studies
on well-separated and overlapping skewed clusters demonstrate a good promise of the pro-
posed procedure, especially in detecting well-separated clusters of complex shapes. The
application of the merging procedure to the problem of digit recognition illustrates that the
technique is highly practical even for the cluster analysis of datasets with moderate sample
sizes.

Despite the attractiveness of the proposed methodology, there are some challenges the
reader should be aware of. If the true number of clusters is unknown, a careful choice of the
threshold overlap value, ω∗ (discussed in Section 3.3), should be made as it will determine
which components are to be merged and, in turn, determine how many clusters are obtained.
The use of overlap maps can somewhat relax this problem when the goal is to identify well-
separated clusters. The linkage choice is extremely important and should be dictated by the
desired cluster characteristics. Finally, a reasonable value of K should be chosen for the

Fig. 6 The means of the 10 data groups obtained by DEMP-K
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original K-means algorithm. Fortunately, the developed procedure is rather robust to the
choice of K .

Appendix A

A.1 HoEC-K-means: K-means with Homoscedastic Elliptical Components

This form of theK-means algorithm is based onMahalanobis distances and assigns yi to the

kth component if inequality
√

(yi − μk)
T �−1(yi − μk) <

√
(yi − μk′)T �−1(yi − μk′)

holds for all k′ = 1, 2, . . . , k−1, k+1, . . . , K . This inequality can be obtained from Eq. 10
by letting �1 = . . . = �K ≡ � and τ1 = . . . = τK = 1/K . Thus, HoEC-K-means can
be seen as model-based clustering through the CEM algorithm for Gaussian mixtures with
homoscedastic elliptical components and equal proportions. Based on these restrictions, the
Q̃-function is given by

Q̃(�|�(b−1)) =
n∑

i=1

K∑

k=1

I (z
(b)
i = k)

[

log
1

K
+ logφp(yi |μk,�)

]

,

where the parameter vector is given by � = (μT
1 ,μT

2 , . . . ,μT
K, vech(�)T )T with

vech(�) being the vector that consists of unique elements in �, namely, vech(�)T =
(σ11, . . . , σp1, σ22, . . . , σp2, . . . , σpp). Thus, the total number of parameters is M = Kp +
p(p + 1)/2. As before, the kth mean vector is estimated at the M-step according to Eq. 1.
The common variance-covariance matrix � is estimated by

�(b) = 1

n

n∑

i=1

K∑

k=1

I (z
(b)
i = k)(yi − μ

(b)
k )(yi − μ

(b)
k )T . (13)

Incorporating the above-listed restrictions in Eq. 8, the overlap can be calculated by

ωkk′ = 2�

(

−1

2

√

(μk − μk′)T �−1(μk − μk′)

)

.

A.2 HeSC-K-means: K-means with Heteroscedastic Spherical Components

Under this form of K-means, yi is assigned to the kth component if inequality√
(yi − μk)

T (yi − μk)/σ
2
k <

√
(yi − μk′)T (yi − μk′)/σ 2

k′ is satisfied for all k′ =
1, 2, . . . , k − 1, k + 1, . . . , K . This inequality is equivalent to decision rule (10) with the
following restrictions: �1 = σ 2

1 I , . . . ,�K = σ 2
KI and τ1 = σ

p

1 /
∑K

h=1 σ
p
h , . . . , τK =

σ
p
K/

∑K
h=1 σ

p
h . Thus, HeSC-K-means is equivalent to model-based clustering based on the

CEM algorithm for Gaussian mixtures with heteroscedastic spherical components and mix-
ing proportions as provided above. The Q̃-function from the CEM algorithm in this setting
is given by

Q̃(�|�(b−1)) =
n∑

i=1

K∑

k=1

I (z
(b)
i = k)

[

log
σ

p
k

∑K
h=1 σ

p
h

+ logφp(yi |μk, σ
2
k )

]

,
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where � = (μT
1 ,μT

2 , . . . ,μT
K, σ 2

1 , σ 2
2 , . . . , σ 2

K)T is the parameter vector with M = K(p +
1) parameters. Mean vectors are estimated by Eq. 1 and variance parameters are calculated
by the expression

(σ 2
k )(b) =

∑n
i=1 I (z

(b)
i = k)(yi − μ

(b)
k )T (yi − μ

(b)
k )

pnτ
(b)
k

, (14)

where mixing proportions are estimated by τ
(b)
k = (σ

p
k )(b−1)/

∑K
h=1(σ

p
h )(b−1). Incorporat-

ing the above-mentioned restrictions into result (7) leads to calculating the overlap value
by

ωkk′ = Pr
[
χ2

p,νσ 2
k

≤ νσ 2
k′
]

+ Pr

[

χ2
p,νσ 2

k′
≤ νσ 2

k

]

,

where ν = (μk − μk′)T (μk − μk′)/(σ 2
k − σ 2

k′)2 and χ2
p,νσ 2

k

with χ2
p,νσ 2

k′
are non-central χ2

random variables with p degrees of freedom and noncentrality parameters νσ 2
k and νσ 2

k′ ,
respectively.

A.3 HeEC-K-means: K-means with Heteroscedastic Elliptical Components

This final variation of K-means assigns yi to the kth component if inequality√
(yi − μk)

T �−1
k (yi − μk) <

√
(yi − μk′)T �−1

k′ (yi − μk′) holds for all k′ =
1, 2, . . . , k−1, k+1, . . . , K . This inequality can be obtained from the decision rule given in

Eq. 10 by imposing restrictions τ1 = |�1| 12 /∑K
h=1|�h| 12 , . . . , τK = |�K | 12 /∑K

h=1|�h| 12 .
Thus, HeEC-K-means can be seen as model-based clustering relying on the CEM algorithm
for Gaussian mixtures with heteroscedastic elliptical components and mixing weights pro-
portional to the square root of the covariance matrix determinant. The Q̃-function from the
CEM algorithm is given by

Q̃(�|�(b−1)) =
n∑

i=1

K∑

k=1

I (z
(b)
i = k)

[

log
|�k| 12

∑K
h=1 |�h| 12

+ logφp(yi |μk,�k)

]

, (15)

where � = (μT
1 , μT

2 , . . . ,μT
K, vech(�1)

T , vech(�2)
T , . . . , vech(�K)T )T . The total num-

ber of parameters is M = Kp + Kp(p + 1)/2. It can be shown that the M-step involves
updating mean vectors by Eq. 1 and covariance matrices by

�
(b)
k =

∑n
i=1 I (z

(b)
i = k)(yi − μ

(b)
k )(yi − μ

(b)
k )T

nτ
(b)
k

, (16)

where τ
(b)
k represents the current mixing proportion estimated by τ

(b)
k = |�(b−1)

k | 12 /∑K
h=1

|�(b−1)
h | 12 . Although we do not provide calculations for estimates (11), (13), and (14), the

derivation of Eq. 16 is more delicate and is provided below. In order to derive expression
(16), Q̃-function (15) has to be maximized with respect to�k as follows below. Frommatrix

differential calculus, it is known that ∂|�|
∂�

= |�|(�−1)T and ∂A�−1B
∂�

= −(�−1BA�−1)T ,
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where A and B are some matrices of constants and � is an unstructured nonsingular matrix.
These two results will be also used in our derivation.

∂Q̃(�|�(b−1))
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Setting this derivative equal to zero and letting τk = |�k| 12 /∑K
h=1 |�h| 12 yields result (16).

Under considered restrictions, the overlap is calculated as the sum of the misclassifica-
tion probabilities ωkk′ = ωk′|k + ωk|k′ , where ωk′|k is given by

ωk′|k = Pr
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with parameters as described in Eq. 6 and ωk|k′ defined similarly.
This version of theK-means algorithm closely resembles the CEM algorithm for the gen-

eral form of Gaussian mixture models but with mixing proportions of a special form. Recall
that the generalized variance for �k is given by |�k| = ∏p

j=1 λkj , where λk1, λk2, . . . , λkp

are the eigenvalues of �k . The length of the j th axis of the hyperellipsoid correspond-
ing to �k is proportional to

√
λkj and the volume of hyperellipsoid V�k

is proportional

to
∏p

j=1

√
λkj . As a result, we conclude that τk = V�k

/
∑K

h=1 V�h
, i.e., the restriction

imposed on mixing proportions requires that they represent the proportion of the overall
volume associated with the kth component. Alternatively, consider the expected size of the
kth cluster defined as nk = ∑n

i=1 πik . The log-term in Eq 10 is equal to zero when

τk|�k′ | 12
τk′ |�k| 12

= nkV�k′
nk′V�k

= Dk

Dk′
,

whereDk = nk/V�k
can be seen as the “density” of the kth cluster. As a result, we conclude

that the HeEC assumption is appropriate when clusters have similar “densities” of data
points. Intuitively, such a restriction is often reasonable. At the same time, traditional model-
based clustering with unrestricted mixing proportions allows for much higher degrees of
modeling flexibility.

A.4 An Illustration of the Robustness of the Proposed Procedure to the Choice of K

In this example, we repeat an experiment outlined in Section 4.2.3 in a more challenging
setting. A mixture model with three ten-dimensional skew-normal components is employed.
Two of the components have a very substantial overlap as they share the mean parameter.
Under such a setting, the choice of a linkage predetermines the obtained partitioning. If
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a single linkage is chosen, one cannot expect that clusters associated with the three mix-
ture components will be detected due to the considerable overlap between two components
with a common mean. If a Ward’s linkage is selected, approximately elliptical clusters will
be produced but the problem of substantial overlap between components will be relaxed.
No matter what linkage is chosen, our main question is whether the proposed procedure is
sensitive to the choice of the number of K-means components K . 100 datasets are simu-
lated with each size n = 103, 104, 105, 106. Figure 7 provides the median adjusted Rand
index obtained as a result of merging K-means solutions for different numbers K . The first
plot represents the performance of the algorithm with the single linkage used. The second
plot corresponds to the Ward’s linkage. As we can see, the use of the single linkage pro-
duces almost identical results for K ≥ 7 and all considered sample sizes. Thus, the results
are very robust to the choice of the initial number of K-means components. As expected,
the situation is somewhat more challenging when the Ward’s linkage is used. In this case,
hierarchical clustering targets detecting approximately elliptical clusters rather than well-
separated ones and we can notice some sample size effect: the results are slightly worse for
n = 1000. With regard to the robustness of the procedure to the choice of the number of
K-means components, we can notice that roughly the same result is produced after K = 25
for n = 1000 and K = 30 for higher sample sizes. It is worth mentioning here that the
considered situation is rather challenging as two ten-dimensional clusters share a common
mean. Despite that, the achieved value of the adjusted Rand index is about 0.84–0.85 and
corresponding classification agreement is around 94%. It is also worth mentioning that due
to high sensitivity of the adjusted Rand index, we observe some slight variation for K ≥ 30

Fig. 7 Correspondence between the median adjusted Rand index values obtained as a result of merging
K-means solutions with different numbers of components for various sample sizes
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for n = 104, 105, 106. However, this variation is so minor that the maximum difference in
the proportion of classification agreements does not exceed 0.003 for any K ≥ 30.

A.5 Alternative Solutions for Illustrative Examples from Section 4.1

In this section, we present an alternative solution for the HoSC-K-means algorithm with
K = 20. Figure 8 demonstrates obtained solutions as well as corresponding overlap maps.

A.6 Details of the Simulation Studies Considered in Section 4.2

Some technical details associated with the application of the abovementioned clustering
methods are as follows below. A Nyström sample to estimate eigenvalues is chosen to be
equal to 100 (option “nystrom.sample” in function specc). The number of samples drawn
by Clara is 100. The K-means algorithm is initialized by seeding initial cluster centers at

Fig. 8 Illustrative examples considered in Section 4.1. The description is similar to that of Fig. 3. The number
of HoSC-K-means components is chosen to be equal to 20
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Fig. 9 Proportion of the total variability explained by between cluster variability versus the number of K-
means clusters

random. The results of the algorithm are based on 100 restarts. Finally, MCLUST is applied
assuming the most general form of Gaussian components (i.e., unrestricted in volume,
shape, and orientation and denoted as “VVV”). Model parameters for the three experiments
considered in Sections 4.2.1-4.2.3 are provided in Table 4.

A.7 Plot for Selecting the Number of K-means Components in the PenWritten Digits
Application Considered in Section 5

Figure 9 shows the relationship between the proportion of the overall variability explained
by the between cluster variability and the number of K-means clusters. As we can see,
substantial improvements are obtained for K up to the values of 20–25. After K = 30,
the increase in the proportion becomes rather marginal. Therefore, we decided to choose
K = 30.

References

Aletti, G., & Micheletti, A. (2017). A clustering algorithm for multivariate data streams with correlated
components. Journal of Big Data, 4(1), 4–48.

Alimoglu, F., & Alpaydin, E. (1996). Methods of combining multiple classifiers based on different represen-
tations for pen-based handwriting recognition. In Proceedings of the Fifth Turkish Artificial Intelligence
and Artificial Neural Networks Symposium (TAINN 96).

Baudry, J.P., Raftery, A., Celeux, G., Lo, K., Gottardo, R. (2010). Combining mixture components for
clustering. Journal of Computational and Graphical Statistics, 19(2), 332–353.

Bouveyron, C., & Brunet, C. (2014). Model-based clustering of high-dimensional data: a review. Computa-
tional Statistics and Data Analysis, 71, 52–78.

Calinski, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics, 3,
1–27.

Journal of Classification (2020) 37:97–123122



Campbell, N.A., & Mahon, R.J. (1974). A multivariate study of variation in two species of rock crab of
Genus Leptograsus. Australian Journal of Zoology, 22, 417–25.

Celebi, M.E., Kingravi, H.A., Vela, P.A. (2012). A comparative study of efficient initialization methods for
the k-means clustering algorithm. arXiv:1209.1960.

Celebi, M. E. (Ed.) (2015). Partitional Clustering Algorithms. New York: Springer.
Celeux, G., & Govaert, G. (1992). A classification EM algorithm for clustering and two stochastic versions.

Computational Statistics and Data Analysis, 14, 315–332.
Dempster, A.P., Laird, N.M., Rubin, D.B. (1977). Maximum likelihood for incomplete data via the EM

algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39, 1–38.
Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23, 298–305.
Finak, G., & Gottardo, R. (2016). Flowmerge: Cluster merging for flow cytometry data. Bioconductor.
Fraley, C., & Raftery, A.E. (2002). Model-based clustering, discriminant analysis, and density estimation.

Journal of the American Statistical Association, 97, 611–631.
Fraley, C., & Raftery, A.E. (2006). MCLUST version 3 for R: Normal mixture modeling and model-based

clustering. Tech. Rep. 504, University of Washington, Department of Statistics: Seattle, WA.
Goutte, C., Hansen, L.K., Liptrot, M.G., Rostrup, E. (2001). Feature-Space Clustering for fMRI Meta-

Analysis. Human Brain Mapping, 13, 165–183.
Han, J., Kamber, M., Pei, J. (Eds.) (2012). Data mining: concepts and techniques, 3rd edn. New York:

Elsevier.
Hennig, C. (2010). Methods for merging Gaussian mixture components. Advances in Data Analysis and

Classification, 4, 3–34. https://doi.org/10.1007/s11634-010-0058-3.
Jain, S., Munos, R., Stephan, F. (2013). Zeugmann T (eds) Fast Spectral Clustering via the Nyström Method.

Berlin: Springer.
Johnson, R.A., & Wichern, W. (Eds.) (2007). Applied multivariate statistical analysis, 6th edn. London:

Pearson.
Kaufman, L., & Rousseeuw, P.J. (1990). Finding Groups in Data. New York: Wiley.
Krzanowski, W.J., & Lai, Y.T. (1985). A criterion for determining the number of groups in a data set using

sum of squares clustering. Biometrics, 44, 23–34.
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings

of the Fifth Berkeley Symposium, 1, 281–297.
Maitra, R., & Melnykov, V. (2010). Simulating data to study performance of finite mixture model-

ing and clustering algorithms. Journal of Computational and Graphical Statistics, 19(2), 354–376.
https://doi.org/10.1198/jcgs.2009.08054.

McLachlan, G., & Peel, D. (2000). Finite Mixture Models. New York: Wiley.
Melnykov, V. (2013). On the distribution of posterior probabilities in finite mixture models with application

in clustering. Journal of Multivariate Analysis, 122, 175–189.
Melnykov, I., &Melnykov, V. (2014). On k-means algorithmwith the use ofMahalanobis distances. Statistics

and Probability Letters, 84, 88–95.
Melnykov, V. (2016). Merging mixture components for clustering through pairwise overlap. Journal of

Computational and Graphical Statistics, 25, 66–90.
Michael, S., & Melnykov, V. (2016). Studying complexity of model-based clustering. Communications in

Statistics - Simulation and Computation, 45, 2051–2069.
Murtagh, F., & Legendre, P. (2014). Ward’s hierarchical agglomerative clustering method: Which algorithms

implement ward’s criterion? Journal of Classification, 31, 274–295.
Prates, M., Cabral, C., Lachos, V. (2013). mixsmsn: fitting finite mixture of scale mixture of skew-normal

distributions. Journal of Statistical Software, 54, 1–20.
Riani, M., Cerioli, A., Perrotta, D., Torti, F. (2015). Simulating mixtures of multivariate data with fixed

cluster overlap in FSDA library. Advances in Data Analysis and Classification, 9, 461–481.
Sneath, P. (1957). The application of computers to taxonomy. Journal of General Microbiology, 17, 201–226.
Spielman, D., & Teng, S. (1996). Spectral partitioning works: planar graphs and finite element meshes. In

37th Annual Symposium on Foundations of Computer Science, IEEE Comput. Soc. Press (pp. 96–105).
Steinley, D., & Brusco, M.J. (2007). Initializing k-means batch clustering: a critical evaluation of several

techniques. Journal of Classification, 24, 99–121.
Stuetzle, W., & Nugent, R. (2010). A generalized single linkage method for estimating the cluster tree of a

density. Journal of Computational and Graphical Statistics. https://doi.org/10.1198/jcgs.2009.07049.
Ward, J.H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American

Statistical Association, 58, 236–244.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Journal of Classification (2020) 37:97–123 123

http://arXiv.org/abs/1209.1960
https://doi.org/10.1007/s11634-010-0058-3
https://doi.org/10.1198/jcgs.2009.08054
https://doi.org/10.1198/jcgs.2009.07049

	Clustering large datasets by merging K-means solutions
	Abstract
	Introduction
	Finite Mixture Modeling and Model-Based Clustering
	Merging K-Means Solutions
	E-step
	C-step
	M-step


	HoSC-K-Means: K-Means with Homoscedastic Spherical Components
	General Framework for DEMP-Based Hierarchical Merging
	Outline of the hierarchical merging algorithm:

	Practical Implementation

	Experimental Validation
	Illustrative Examples
	Half-circular clusters
	Inscribed circular clusters


	Simulation Studies
	Experiment 1: Three Well-separated Clusters, Equal Mixing Proportions
	Experiment 2: Seven Well-Separated Clusters, Unequal Mixing Proportions
	Experiment 3: Three Overlapping Ten-Dimensional Clusters


	Application to Digit Recognition
	Discussion
	Appendix A 
	A.1 HoEC-K-means: K-means with Homoscedastic Elliptical Components
	A.2 HeSC-K-means: K-means with Heteroscedastic Spherical Components
	A.3 HeEC-K-means: K-means with Heteroscedastic Elliptical Components
	A.4 An Illustration of the Robustness of the Proposed Procedure to the Choice of K
	A.5 Alternative Solutions for Illustrative Examples from Section 4.1
	A.6 Details of the Simulation Studies Considered in Section 4.2
	A.7 Plot for Selecting the Number of K-means Components in the Pen Written Digits Application Considered in Section 5
	References




