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Abstract
Support vector machine (SVM) parameters such as penalty parameter and kernel parame-
ters have a great influence on the complexity and accuracy of SVM model. In this paper,
quantum-behaved particle swarm optimization (QPSO) has been employed to optimize the
parameters of SVM, so that the classification error can be reduced. To evaluate the proposed
model (QPSO-SVM), the experiment adopted seven standard classification datasets which
are obtained from UCI machine learning data repository. For verification, the results of the
QPSO-SVM algorithm are compared with the standard PSO, and genetic algorithm (GA)
which is one of the well-known optimization algorithms. Moreover, the results of QPSO are
compared with the grid search, which is a conventional method of searching parameter val-
ues. The experimental results demonstrated that the proposed model is capable to find the
optimal values of the SVM parameters. The results also showed lower classification error
rates compared with standard PSO and GA algorithms.

Keywords Quantum particle swarm optimization (QPSO) · Optimization algorithms ·
Support vector machine (SVM) · Classification · Parameter optimization

1 Introduction

Support vector machine (SVM) is one of the well-known machine learning methods for
classification and regression problems. It was introduced by Vapnik, and it has been used
in many applications such as biometrics (Tharwat et al. 2018), bioinformatics (Byvatov and
Schneider 2002), and chemoinformatics (Tharwat and Moemen 2017). In SVM classifier,
the training patterns are used to train the classification model, and this model is used to
classify an unknown pattern. SVM has two main parameters: the penalty parameter (C) and
kernel parameters. The penalty parameter determines the trade-off between maximizing the
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classification margin and minimizing the training error, while the kernel parameters are used
to transform the data from input feature space to a high-dimensional space. Thus, choosing
the values of the two parameters controls the performance of SVM.

Swarm intelligence algorithms achieved competitive results when solving optimization
problems including parameter tuning problems (Wang and Guo 2013; Yang 2014). Parti-
cle swarm optimization (PSO) is one of the well-known optimization algorithms. It is a
population-based stochastic optimization algorithm, and it has a small number of parame-
ters; hence, it can be easily implemented. In the PSO algorithm, the particles moved in the
search space with a velocity constantly updated by (1) the particle’s own experience;and (2)
the experience of the whole swarm (Eberhart and Kennedy 1995).

PSO has been applied in many optimization problems. PSO is widely used in image
processing. For example, Maitra et al. used the PSO algorithm to search for the opti-
mal thresholding value in image segmentation (Maitra and Chatterjee 2008). Moreover,
Akhilesh et al. used a new variant of the PSO algorithm for image segmentation (Chan-
der et al. 2011). In power applications, the PSO algorithm was used for different purposes.
Miyatake et al. used the PSO algorithm to search for the maximum power point track-
ing of multiple photovoltaic and they found that the PSO algorithm converged rapidly to
the global maximum power point (Miyatake et al. 2011). Sidhartha Pandan and Narayana
Prasad Padhy used PSO to find the optimal location of the static synchronous compensator
and its coordinated design with power system stabilizers (Panda and Padhy 2008). They
found that the PSO algorithm improved the stability of the power system. The PSO algo-
rithm has been used to solve mathematical problems. Liang et al. used the PSO algorithm to
find the global solution of multimodal functions (Liang et al. 2006). Moreover, Zhao Xin-
chao proposed a perturbed PSO algorithm (Xinchao 2010). He used the new algorithm to
search for the optimal solutions for 12 functions, and he found that the proposed algorithm
achieved results better than the standard PSO algorithm. In machine learning, PSO was used
to search for SVM parameters (Subasi 2013). Moreover, the PSO algorithm was used to
adjust the weights of back-propagation (BP) neural networks, and it achieved good results
compared with the BP algorithm (Bashir and El-Hawary 2009). In addition, PSO was used
for feature subset selection (Lin et al. 2008). In clustering, PSO was used to search for the
centroids of a user specified number of clusters, and the PSO algorithm achieved results
better than K-means clustering (Merwe et al. 2003). However, due to the stochastic nature
of PSO, swarm intelligence algorithms are never guaranteed to find an optimal solution for
any problem, but they will often find a good solution if one exists.

Many variants of PSO algorithm were proposed to generate random numbers. Richer
and Blackwell used the Levy distribution to improve the performance of the PSO algorithm
(Richer and Blackwell 2006). Moreover, Kennedy used a double-exponential distribution
with other versions of Gaussian distributions in the PSO algorithm to achieve good results
(Kennedy 2004, 2005). The influence of different probability distributions, such as Gaus-
sian, Cauchy, and the exponential probability distributions, was studied by Krohling and
Coelho, and they found that these distributions could improve the performance of the PSO
algorithm (Krohling 2004; Santos Coelho and Krohling 2005; Krohling and Santos Coelho
2006). Chaos theory was proposed to adapt the inertia weight factor of PSO (Liu et al. 2005).
The proposed Chaotic PSO efficiently balances the exploration and exploitation phases
(Tharwat and Hassanien 2018).

Recently, Sun et al. proposed a new strategy based on quantum mechanics (Clerc and
Kennedy 2002). They used the quantummodel to sample around the previous best positions,
and then the mean best solution was introduced in the proposed version of PSO, quantum-
behaved particle swarm optimization (QPSO) (Sun and Feng 2004; Sun et al. 2004; 2005).
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In the QPSO algorithm, the iterative equations are different from that of PSO. Moreover, the
QPSO does not require velocity vectors to move the particles as in the PSO algorithm, and
the number of adjusting parameters of QPSO was less than the standard PSO; hence, the
QPSO algorithm is easier to implement than PSO. The QPSO algorithm has been used to
solve different optimization problems and it achieved competitive results (Mikki and Kishk
2006; Li et al. 2007; Omkar et al. 2009).

The main objective of this paper is to use the QPSO algorithm to present a novel
QPSO-SVM model for parameters optimization of SVM, which improves the classifica-
tion performance. This novel approach adjusts the parameters’ values to make the optimal
separating hyperplane obtainable in linear and nonlinear classification problems.

The rest of the paper is organized as follows: Section 2 presents the related work. In
Section 3, the background of the SVM classifier, PSO, and QPSO are introduced; the pro-
posed model (QPSO-SVM) is introduced in Section 4; experimental results and discussion
are presented in Section 5; concluding remarks and future work are provided in Section 6.

2 RelatedWork

There are many studies of tuning SVM parameters empirically by trying a finite number
of values and selecting the values that achieve the minimum classification error. This pro-
cedure needs an exhaustive search to find the feasible solution, and this is computationally
infeasible (Friedrichs and Igel 2005). A grid search algorithm is used to find optimal param-
eters of SVM. In this algorithm, the parameters vary with a fixed step-size through the
parameter space, and the values of each parameter combination are calculated. This algo-
rithm is suitable for adjustment of very few parameters, but it is time-consuming (Chapelle
et al. 2002; Wang 2005; Friedrichs and Igel 2005). A leave-one-out (LOO) error and its
gradient method were proposed to optimize SVM parameters (Friedrichs and Igel 2005).
Different studies used evolutionary algorithms to find the optimal values of SVM parame-
ters to improve the accuracy and stability of the classification model. Shawkat et al. showed
that selecting the optimal degree of a polynomial kernel plays a critical role in SVM to
ensure a good generalization (Ali and Smith 2003). In another research, PSO was used for
parameter determination of SVM and feature selection (Lin et al. 2008). Wu et al. used a
hybrid genetic algorithm (GA) for SVM parameter optimization to predict the maximum
electrical daily load (Wu et al. 2009). Moreover, ant colony optimization (ACO) was used
to search for the optimal SVM parameters (Zhang and Chen 2010). Subasi used PSO algo-
rithm to find SVM parameters for diagnosis of neuromuscular disorders in EMG signals
(Subasi 2013). Social emotional optimization (SMO) was used to optimize SVM parame-
ters, and it achieved competitive results (Zhang and Zhang 2015). Bat, dragonfly, and whale
algorithms were used also to optimize SVM parameters (Tharwat et al. 2016; Tharwat et al.
2017; Tharwat and Moemen 2017).

3 Preliminaries

3.1 Support Vector Machine Classifier

SVM is one of the most widely used learning algorithms. The goal of SVM is to separate
different classes using hyperplanes. The performance of SVM is highly affected by nonlin-
early separable data. However, this problem can be solved by transforming the data from
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the input space to a new higher dimensional space using one of the kernel functions. The
data after this transformation can be separated easily. Selecting a suitable kernel function
and adjusting its parameters helps the SVM classifier to create linear decisions through
a nonlinear transformation. Computationally, searching for the best decision plane is an
optimization problem (Chapelle et al. 2002).

Assume we have N training patterns (X = {x1, x2, . . . , xN }), where xi is the i th training
pattern and each pattern has d attributes and it is in one of two classes yi ∈ {±1}. Thus, the
training set is denoted by {(x1, y1), (x2, y2), . . . , (xN , yN )}, where y1, y2, . . . , yN indicate
the class labels for x1, x2, . . . , xN . In linearly separable data, the linewT x+b = 0 represents
the decision boundary between the two classes, positive and negative classes, where w is
a weight vector, b is the threshold or bias, and x is the input vector or the training pattern
(Tharwat 2016a; Tharwat et al. 2017). This line in the two-dimensional space, i.e., wT x +
b = 0, is represented by a hyperplane in higher dimensional space, and it divides the space
into two spaces, namely positive half space (where the patterns from the positive class are
located) and negative half space (where the patterns from the negative class are located)
(Wang 2005).

The goal of the SVM classifier is to select the values of w and b to orientate the hyper-
plane to be as far as possible from the closest patterns and to construct the two planes,
H1 → wT xi + b = +1 for yi = +1 and H2 → wT xi + b = −1 for yi = −1, where
wT xi + b ≥ +1 for positive class and wT xi + b ≤ −1 for negative class. These two planes
can be combined as follows, yi (wT xi + b) − 1 ≥ 0 ∀i = 1, 2, . . . , N .

The distance from H1 and H2 to the hyperplane is denoted by d1 and d2, respectively,
and these distances represent the margin of SVM. The hyperplane is equidistant from the
two planes; hence, d1 = d2 = 1

‖w‖ and the margin represents the total of d1 and d2. The
margin width needs to be maximized as follows:

min
1

2
‖w‖2

s.t. yi (wT xi + b) − 1 ≥ 0 ∀i = 1, 2, . . . , N (1)

Equation 1 represents quadratic programming problem, where min 1
2‖w‖2 is the objec-

tive function and yi (wT xi + b) − 1 ≥ 0 represents the constraint. This equation can be
formalized into Lagrange formula as follows:

min LP = ‖w‖2
2

−
∑

i

αi (yi (wT xi + b) − 1)

= ‖w‖2
2

−
∑

i

αi yi (wT xi + b) +
N∑

i=1

αi (2)

where αi ≥ 0, i = 1, 2, . . . , N represent the Lagrange multipliers and each Lagrange
multiplier (αi ) corresponds to one training pattern and LP represents the primal problem.
The values of w, b, and α which can be calculated by differentiating LP with respect to w
and b and setting the derivatives to zero as follows:

∂LP

∂w
= 0 ⇒ w =

N∑

i=1

αi yixi (3)

∂LP

∂b
= 0 ⇒

N∑

i=1

αi yi = 0 (4)
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Substituting Eqs. 3 and 4 into Eq. 2, the dual problem can be written as follows:

max LD =
N∑

i=1

αi − 1

2

∑

i, j

αiα j yi y jxTi x j

s.t. αi ≥ 0,
N∑

i=1

αi yi = 0 ∀i = 1, 2, . . . , N (5)

where LD represents the dual form of LP . In dual SVM, the objective function is maximized
with respect to αi , instead of minimizing it with respect to w and b as in primal SVM as
denoted in Eqs. 2 and 5.

The values of w, b, and α are determined by solving Eqs. 3, 4, and 5. The nonzero α’s
are corresponding to support vectors (SVs), which are the patterns that are closest to the
separating hyperplane; thus, SVs achieved the maximum width margin.

In the case of nonseparable data, more misclassified patterns result. Therefore, a slack
variable, εi , is added to relax the constraints of linear SVM, where εi indicates the distance
between the i th training pattern and the corresponding margin hyperplane, and it should be
minimized. The objective function of SVM after adding εi will be as follows:

min
1

2
‖w‖2 + C

N∑

i=1

εi

s.t. yi (wT xi + b) − 1 + εi ≥ 0 ∀i = 1, 2, . . . , N (6)

where C represents the penalty parameter, and it controls the trade-off between the slack
variable penalty and the size of the SVM margin. Lagrange formula of Eq. 6 is as follows:

LP = 1

2
‖w‖2 + C

N∑

i=1

εi −
N∑

i=1

αi [yi (wT xi + b) − 1 + εi ] (7)

where αi ≥ 0.
The value of εi is calculated by differentiating LP with respect to εi as follows:

∂LP

∂εi
= 0 ⇒ C = αi + εi (8)

As denoted in Eq. 8, αi is limited by the upper-bound C , and SVs with αi = C lie outside
the margin or on the margin boundary.

In case of nonlinearly separable data, SVM uses kernel functions to transform the data
into a higher dimensional space using a nonlinear kernel function (φ) where the data can be
linearly separable. The objective function of SVM will be as follows:

min
1

2
‖w‖2 + C

N∑

i=1

εi

s.t. yi (wTφ(xi ) + b) − 1 + εi ≥ 0 ∀i = 1, 2, . . . , N (9)

There are different kernel functions such as follows:

– Linear kernel, K (xi , x j ) = 〈xi , x j 〉;
– Radial basis function (RBF) or Gaussian kernel, K (xi , x j ) = exp(−||xi − x j ||2/2σ 2);
– Polynomial kernel of degree d , K (xi , x j ) = (〈xi , x j 〉 + c)d (Scholköpf and Smola

2001).
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In this study, the RBF kernel function is applied in the SVM classifier to obtain the
optimal or near optimal solutions.

3.2 SVM Parameter Optimization: Illustrative Example

In SVM, the penalty parameter C and kernel function parameters have considerable influ-
ence on the classification performance. The parameter C controls the trade-off between the
minimization of classification error and maximization of margin. In the RBF kernel func-
tion, the value of σ parameter affects the mapping of the input data to a higher dimensional
space. In this section, an illustrative example is presented to explain the impact of each
parameter on the classification performance of SVM.

In this example, the data consists of 500 patterns, and the data was nonlinearly separable
as shown in Fig. 1; therefore, the RBF kernel function was used. Table 1 lists the training
error rate, number of SVs, and the number of misclassified patterns using different values
of C and σ .

3.2.1 The Influence of C Parameter

The value of C parameter controls the classification accuracy and the number of SVs. Small
C allows the constraints to be easily ignored, while large C makes the constraints difficult
to ignore (Wang 2005). In this part from the example, the value of σ parameter was ten. The
results of this example with different values of C are given in Table 1.
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Fig. 1 The effect of the penalty parameter C and kernel parameter σ on the decision boundary of SVM.
Decision boundary is in blue line and misclassified patterns are marked with red squares
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Table 1 The influence of C and σ on the classification results of SVM

σ = 10 C = 1

C Training accuracy # of Misc. # SVs σ Training accuracy # of Misc. # SVs

(%) patterns (%) patterns

0.001 50 250 500 0.005 100 0 500

0.01 95 32 434 0.05 100 0 500

0.1 100 0 354 0.5 100 0 365

1 100 0 80 5 100 0 72

10 100 0 34 50 98 12 265

100 100 0 34 500 50 250 479

As shown in Fig. 1a, a small value of C leads to a high number of misclassified patterns
and SVs (see, Table 1). In Fig. 1b, the number of misclassified patterns was decreased to
zero, and the number of SVs was 80 when C = 1. As shown in Table 1, the number of SVs
was decreased from 80 to 34 when C was increased from one to ten. Moreover, the number
of misclassified patterns reached to its minimum when C ≥ 0.1.

Generally, when C was small (in our example C = 0.001 or C = 0.01), the margin
was maximized; hence, the number of SVs and misclassified patterns was increased. Thus,
very small C may lead to severe underfitting as reported in (Keerthi and Lin 2003). On
the contrary, very large C (in our example C = 100) minimizes the margin’s width and
increases the weight of the nonseparable patterns. Thus, one single outlier can affect the
boundary, which makes the classifier sensitive to noisy data. Thus, large C may lead to
severe overfitting (Keerthi and Lin 2003). In addition, increasing C increases the training
time and number of SVs.

From these findings, we can conclude that the value of C parameter is changed through
a wide range of values and the optimal value of C can be reached by trying a finite number
of values and preserving the value that obtains the minimum classification error (Ben-Hur
et al. 2008).

3.2.2 The Influence of σ Parameter

The values of kernel parameter, σ in RBF kernel, affect the partitioning outcome in the
feature space. Thus, it has a much greater influence on the classification accuracy than C as
reported in (Scholköpf and Smola 2001). The σ parameter defines how far the impact of a
single training pattern reaches, with high values meaning close and low values meaning far.

In this example, the value of C parameter was one. The results of this example with
different values of σ are given in Table 1. As shown in Table 1, the training error rate was
high when the value of σ was 500, while the error rate decreased when σ = 0.005, 0.05, 0.5,
or 5. Moreover, the maximum number of SVs achieved when σ was very low (0.005 or 0.05)
or very high (500). In addition, the number of SVs decreased to its minimum when σ = 5.

From these findings, we can conclude that a very small value of σ tends to make the ker-
nel value for any unknown pattern not very close to a trained pattern. Mathematically, very
small σ makes the kernel value, K (xtest, xi ) = exp(−||xtest − xi ||2/2σ 2) will be approxi-
mately zero, where xtest is an unknown pattern which is far from a training pattern (xi ). In
other words, the kernel function with a very small σ maps the pairwise distance between two
far patterns, i.e. xtest and xi , to be approximately zero in the new higher dimensional space.
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Thus, a very small σ tends to be less bias and more variance this is so-called overfitting;
thus, the decision boundary tends to be strict and sharp and the number of SVs increases as
shown in Fig. 1d. On the other hand, a very large value of σ maximizes the kernel value,
hence increases the number of misclassified patterns and SVs. Therefore, very large σ tends
to less variance and more bias this is so-called underfitting; therefore, the decision bound-
ary will be more smooth and flexible (see, Fig. 1c). These findings are in agreement with
(Kecman 2001; Wang 2005).

To conclude, from these findings, the σ parameter controlling the flexibility of the
resulting SVM in fitting the data. Hence, this parameter may lead to overfitting or
underfitting.

3.3 Classical/Standard Particle SwarmOptimization (PSO)

The original PSO was first introduced by Reynolds and simulated by Kennedy and Eberhart
(Reynolds 1987; Eberhart and Kennedy 1995). The main goal of PSO is to search in the
search space for the positions that are close to the optimal solution(s). In the PSO algorithm,
each individual is referred to as a particle, and each particle represents one solution to a
problem in d-dimensional space; hence, each particle represents one point in the search
space. The number of particles (N ) is determined by the user.

The particles’ positions are initialized randomly, and the position of the i th particle
in the t th iteration is denoted by X(t)(i) = [X(t)(i, 1), . . . ,X(t)(i, d)]. The movement of
each particle depends mainly on two kinds of information. The first kind is the personal
experience of the particle. This is represented by the previous best position (the posi-
tion that achieved the best fitness value by the particle), which is denoted by P(t)(i) =
[P(t)(i, 1), . . . ,P(t)(i, d)]. The second kind of information is the other particles’ experi-
ences (the knowledge of the particles around that particle). This is referred as global best
position (P(t)(g)), and it represents the position of the particle that has the best fitness value,
where g indicates the index of the best particle among all the particles in the swarm (Santos
Coelho 2010).

The particles updates their positions as in Eq. 10.

X(t+1)(i) = X(t)(i) + V(t)(i), (10)

where V(t)(i) is the velocity vector of the i th particle in the t th iteration. The velocity is
calculated as in Eq. 11 and it consists of the following terms:

1. The current motion or original velocity of that particle (wV(t)(i)), wherew is the inertia
weight.

2. The position of the previous best position of that particle that is called particle memory
or cognitive component. This term is used to adjust the velocity towards the best posi-
tion visited by that particle (C1r1(P(t)(i)−X(t)(i))), where C1 is the cognition learning
factor and r1 is the uniformly generated random number in the range of [0, 1].

3. The position of the best fitness value or social component (C2r2(P(t)(g)−X(t)(i))) that
is used to adjust the velocity towards the global best position, where C2 indicates the
social learning factors and r2 is the uniformly generated random number in the range
of [0, 1] (Hassan et al. 2005)

V(t+1)(i) = wVt (i) + C1r1(P(t)(i) − X(t)(i))

+C2r2(P(t)(g) − X(t)(i)). (11)
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As denoted in Eq. 11, the velocity of the particles depends on random variables; thus, the
particles are moved randomly. Hence, the motion of the particles is called a random walk
(Yang 2014). The PSO algorithm searches for better positions by keep moving the particles
towards the global solution (Eberhart and Kennedy 1995; Kennedy 2010).

3.4 Quantum-Behaved Particle SwarmOptimization (QPSO)

In standard PSO, the position and velocity of a particle determine the trajectory, and
the particle moves along the determined trajectory in Newtonian mechanics. In quantum
mechanics, the trajectory term is meaningless, because the position and velocity of a par-
ticle cannot be determined simultaneously according to the uncertainty principle. Thus, in
quantum PSO (QPSO), the particles move in a different fashion (Sun and Feng 2004; Sun
et al. 2005).

In the QPSO algorithm, the particles are depicted by Schrödinger equation ψ(x, t),
instead of position and velocity in the classical or standard PSO algorithm. Hence, the
dynamic behavior of the particles in QPSO is widely divergent from PSO, where the exact
values of the position and velocity cannot be determined simultaneously (Liu et al. 2005).
Employing the Monte-Carlo method, the particles in the QPSO algorithm move according
to Eq. 12 (Sun and Feng 2004; Sun et al. 2005; Xi and Sun 2008; Cai et al. 2008).

{
X(t+1)(i) = p(i) + α.|Mbest − X(t)(i)|. ln( 1u ) if k ≥ 0.5
X(t+1)(i) = p(i) − α.|Mbest − X(t)(i)|. ln( 1u ) if k < 0.5,

(12)

where α is a design parameter called contraction-expansion (CE) coefficient, u and k are the
uniformly generated random numbers in the range of [0, 1],Mbest indicates the global point
or mean best of the population and it represents the mean of the previous best positions, i.e.,
P, of all particles and it is calculated as in Eq. 13, and the p is the local attractor, which is
used to guarantee convergence of the QPSO algorithm, the value of p is defined as in Eq. 14
(Santos Coelho 2010).

M(t)
best = 1

N

N∑

i=1

P(t)(i)

=
(
1

N

N∑

i=1

P(t)(i, 1),
1

N

N∑

i=1

P(t)(i, 2), . . . ,
1

N

N∑

i=1

P(t)(i, d)

)
, (13)

p(i) = φP(t)(i) + (1 − φ)P(t)(g), (14)

where

φ = C1r1
C1r1 + C2r2

. (15)

The CE parameter (α) controls the speed of convergence. Some studies used fixed α and
the results proved that this parameter is sensitive to the population size and the maximum
number of iterations. Hence, fixed α is not practically efficient. Sun et al. proposed to use
time-varying CE parameter instead of using a fixed value, and they found that decreasing
the value from α1 to α0 (α0 < α1) in the course of iterations is simple and efficient than
fixed value (Sun et al. 2012). In this research, the value of α is computed as follows:

α = α0 + (Maxiter − t).(α1 − α0)/Maxiter (16)
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where α0 is the initial value of α, α1 is the final value of α, t is the current iteration, and
Maxiter is the maximum number of iterations. The value of α0 was suggested to be smaller
than 0.6, and the value of α1 was suggested to be larger than 0.8 and smaller than 1.2 (Sun
et al. 2012).

The steps of QPSO algorithm are listed in Algorithm 1.

3.4.1 QPSO vs. PSO

There are some characteristics that make QPSO outperforms PSO such as follows:

– In QPSO, the exponential distribution of the particles’ positions makes QPSO globally
convergent.

– The PSO particles converge to the global best solution. On the other hand, in QPSO,
the particles cannot converge to the global best position without considering their col-
leagues. Equation 12 indicates that the distance between the current position andMbest
position determines the position for the particle’s in the next iteration. Hence, in QPSO,
the Mbest may be pulled away from the global best position (P(t)(g)) by the parti-
cles which are far from the global best position, called lagged particles. When the
lagged particles converging to P(t)(g), the Mbest will be approaching P(t)(g) slowly.
The distance between Mbest and the previous best positions of particles near P(t)(g)
is decreased slowly, which decelerate the convergence of particles near P(t)(g); hence,
the particles can wait and explore globally around P(t)(g) until the lagged particles are
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close to P(t)(g), this called waiting phenomena. Therefore, QPSO never abandons any
lagged particle and hence QPSO seems to be more cooperative and intelligent. Simply,
Mbest enhances the search capability of the particles and makes them search globally
for the optimal solution (Sun et al. 2012).

Figure 2 shows the difference between PSO and QPSO. As shown, the black circle rep-
resents the global best position, blue circles represent the lagged particles, and red circles
represent the other particles. The dashed arrows around the circles, in QPSO, represent the
possible direction of the particles; the solid arrow with a big arrowhead points to the direc-
tion in which the particle moves with high probability. As shown in the left panel in Fig. 2,
the particles in PSO algorithm converges to the global best position without waiting for
their colleagues. Hence, the influence of the lagged particle on the other particles is very
little, and if the lagged particles fail to find positions better than P(t)(g) during iteration,
their influence on the other particles will be null. On the contrary, in the QPSO algorithm
(as shown in the right panel in Fig. 2), the lagged particles have a great impact on the other
particles through using Mbest; hence, the particles around P(t)(g) can fly in any direction.
However, the particles move in the direction toward P(t)(g)with higher probability since the
overall tendency of the particles’ movements is convergence to P(t)(g). In the next section,
an illustrative example will be presented to explain the difference between PSO and QPSO
algorithms.

3.4.2 QPSO vs. PSO: an Illustrative Example

In this section, a simple example is introduced to show the difference between the QPSO
and PSO algorithms. In this example, the PSO and QPSO algorithms were used to search
for the optimal solution and the fitness function was as follows:

min : F(x) =
d∑

i=1

x2i , −5 ≤ xi ≤ 5 (17)

In this example, for both algorithms, the number of particles was 20, and the maximum
number of iterations was 30.

Figure 3 shows the average distance (AD) between the lagged particles and the global
best position in the PSO and QPSO algorithms. In this example, the farthest five particles

PSO QPSO

Fig. 2 The movements of particles in PSO and QPSO algorithms
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Fig. 3 The average distance (AD) between the lagged particles and the global best position in the PSO and
QPSO algorithms

from the global best position represent the lag particles. As shown, in different four runs, as
the iterations proceed, the lagged particles of QPSO algorithm become closer to the P(t)(g)
than PSO.

From this finding, it can be concluded that the particles in the QPSO algorithm were
more cooperative as they help the lagged particles to be closer to the global best position
through usingMbest parameter; hence, the distance between the lagged particles and P(t)(g)
decreased as the iterations proceed.

Figure 4 shows the indices of the lagged particles during the last ten iterations, where
the top index represents the farthest particle from P(t)(g), and the red arrow indicates the
change of index. As shown, in the PSO panel, as the iterations proceed, the top two indices
were stable and they did not change. Moreover, as the iterations proceed, there was a small
number of indices changed, and there were only nine different indices during the last ten
iterations. On the other hand, in the QPSO algorithm, the indices were changed more than
in PSO. As shown, in the QPSO panel, the first index was 8, and then it changed to 4, and
the second index was changed many times during the iterations, and there were 17 different
indices during the last 10 iterations.

From this finding, it can be concluded that due to the noncooperative behavior of the PSO
algorithm, the lagged particles may remain constant, i.e., far from P(t)(g). This noncooper-
ative behavior has a significant negative impact on the performance of the PSO algorithm.
While, in the QPSO algorithm, Mbest parameter helps the lagged particles to converge to
P(t)(g); hence, QPSO outperformed PSO as reported in (Sun et al. 2011, 2012).
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Fig. 4 The indices of lag particles in the PSO and QPSO algorithms during the last ten iterations

4 The ProposedModel: QPSO-SVM

In this section, we describe the proposed QPSO-SVM model (as shown in Fig. 5) to find
optimal values of SVM parameters. The detailed explanation is as follows:

4.1 Data Preprocessing

The first step in our model is the data preprocessing. This step adopts linear scaling to (1)
avoid features in greater numeric ranges dominating those in smaller ranges and (2) avoid
numerical difficulties during the calculation (Zhao et al. 2011). Each feature can be scaled
to the range [0, 1] as follows:

v′ = v − min

max−min
, (18)

where v is the original value, min and max are the lower and upper bounds of the feature
value, respectively, and v′ is the scaled value.
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Fig. 5 Flowchart of the proposed model (QPSO-SVM)

4.2 Data Partitioning

In this model, the data was partitioned using the k-fold cross-validation method. In k-fold
cross-validation, the original data was randomly partitioned into k subsets of (approximately)
equal size, and the experiment is run k times as shown in Fig. 5. For each run, one subset was
selected as the testing set, and the other k − 1 subsets were utilized as the training set. The
average of the k results from the folds can then be calculated to produce a single estimation.

4.3 Parameters’ Initialization

In this step, the parameters of the QPSO algorithm including the number of particles, max-
imum number of iterations, and initial positions were initialized. In the proposed model,
the QPSO algorithm provides the SVM classifier with the values of C and σ to train SVM
using the training set. Thus, there were only two parameters in our problem; thus, the
search space is two-dimensional, and each position represents a combination between the
C and kernel parameter. The particles’ positions were initialized randomly. The searching
range of parameter C of SVM was bounded by Cmin = 0.01 and Cmax = 3000, and the
searching range of σ parameter was bounded by σmin = 0.01 and σmax = 100 (Lin et al.
2008). Increasing these limits enlarges the search space; thus, more particles are needed to
search for the optimal solution, which results in more computation and slow convergence
rate.

4.4 Fitness Evaluation

For each position, the training set is used to train the SVM classifier, while the test-
ing set is used to calculate misclassification or error rate, which is defined as the ratio
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between the number of misclassified patterns (Ne) to the total number of testing pat-
terns (N ) as denoted in Eq. 19. The optimal solution (X∗) is located in a position (Xi ∈
R2) where the values of C and σ at that location achieve the minimum testing error
rate.

Minimize : F = Ne

N
(19)

4.5 Termination Criteria

The positions of particles were updated according to Eq. 12. In the proposed model, the
QPSO algorithm is terminated when a maximum number of iterations are reached or when
the best solution is not updated for a given number of iterations. In our experiments, the
maximum number of repetitions of the best solution was ten.

5 Experimental Results and Discussion

The experiments were carried out to evaluate the performance of the proposed QPSO-SVM
algorithm for the parameter optimization of SVM.

5.1 Experimental Setup

To get an unbiased comparison of CPU times, all experiments are performed using the same
PC with the detailed settings as shown in Table 2.

To evaluate the proposed algorithm, seven standard classification datasets were used.
The datasets were obtained from University of California at Irvin (UCI) Machine Learning
Repository (Blake and Merz 1998). The descriptions of all datasets are listed in Table 3.
These datasets are widely utilized to compare the performance of different classification
problems in the literature. As shown in Table 3, the iris, wine, and glass datasets have more
than two classes; thus, one-against-all (1AA) multiclass SVM method was used (Friedrichs
and Igel 2005). Since the number of patterns in each class is not a multiple of ten as shown
in Table 3, the dataset cannot be partitioned fairly using k-fold cross-validation. However,
the ratio between the number of patterns in the training and testing sets was maintained
as closely as possible to 9:1. We must point out that the abbreviations D1, D2, . . . , D7 in
Table 3 are short for the datasets listed in the Table.

Table 2 The detailed settings
Name Detailed settings

Hardware

CPU Core (TM) i5-2400

Frequency 3.10 GHz

RAM 4G

Hard Drive 160 GB

Software

Operating system Window 7

Language MATLAB R2012a (7.14)
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Table 3 Datasets description
Dataset Dimension # Patterns # Classes

Wine (D1) 13 178 3

Ionosphere (D2) 34 351 2

Iris (D3) 4 150 3

Liver-disorders (D4) 6 345 2

Sonar (D5) 60 208 2

Glass (D6) 9 214 7

Pima Indians diabetes (D7) 8 768 2

5.2 Parameter Setting for QPSO

Tuning the parameters for any optimization algorithm is important as designing the algo-
rithm itself. In this section, the effect of the number of particles and the maximum number
of iterations on the testing error rate and computational time of the proposed model
(QPSO-SVM) were investigated using Iono dataset.

5.2.1 Number of Particles

In this section, the effect of the number of particles on the testing error and computational
time of the proposed model was tested when the number of particles ranged from 5 to 30.
The results of this experiment are shown in Fig. 6. From the figure, it is observed that
increasing the number of particles reduces the testing error, but more computational time
was needed. Moreover, the minimum error rate reached to its minimum when the number
of particles was 20.

5.2.2 Number of Iterations

The number of iterations/generations also have a great impact on the performance of the
proposed model. In this section, the effect of the number of iterations on the testing error
and computational time of the proposed model was tested when the number of iterations
was ranged from 10 to 100. The results of this experiment are shown in Fig. 7. As shown in
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Fig. 6 Effect of the number of particles on the performance of the QPSO-SVM model using Iono dataset: a
testing error rate of the QPSO-SVM model with different numbers of particles; b computational time of the
QPSO-SVM model using different numbers of particles
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Fig. 7 Effect of the number of iterations on the performance of the QPSO-SVM model using Iono dataset.
a Testing error rate of the QPSO-SVM model with different numbers of iterations; b computational time of
the QPSO-SVM model using different numbers of iterations

the figure, it can be noticed that, when the number iterations was increased, the testing error
was decreased until it reached an extent at which increasing the number of iterations did not
affect the testing error. In addition, the computational time increased when the number of
iterations was increased.

According to the other parameters of QPSO, Jun Sun et al. suggested that QPSO algo-
rithm can obtain a global convergence when α0 < 0.6 and 1.2 > α1 > 0.8 (Sun et al. 2012).
On the basis of the above parameter analysis and research results, Table 4 lists the detailed
settings for the QPSO algorithm that were used in the proposed model.

5.3 Experimental Results

In this section, three experiments were conducted. The aim of the first experiment is to
compare the proposed model, i.e., QPSO-SVM with PSO-SVM. The goal of the second
experiment is to compare the QPSO-SVM with the grid search SVM. The last and third
experiment was conducted to compare QPSO-SVM with one of the well-known optimiza-
tion algorithms: GA. To compare the classification error rate of the proposed algorithm with
the other algorithms, we used the nonparametric Wilcoxon signed-rank test for all datasets.

5.3.1 QPSO vs. Classical PSO

This experiment was conducted to compare our proposed QPSO-SVM algorithm with the
PSO-SVM that was proposed in (Lin et al. 2008). In this experiment, theC and σ parameters
were optimized by using our proposed algorithm. Table 5 shows the average classification

Table 4 The initial parameters of
QPSO algorithm Parameter Value

α0 0.5

α1 0.9

Population size 20

Maximum number of iterations 50

Problem dimension 2
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Table 5 Comparison between
the proposed QPSO-SVM
algorithm and the PSO-SVM
algorithm that was proposed by
(Lin et al. 2008) (%)

Dataset QPSO-SVM PSO-SVM p value for

Wilcoxon testing

D1 7.85 ± 5.45 8.89 ± 6.08 < 0.005

D2 2.22 ± 3.15 2.5 ± 2.76 < 0.005

D3 1.33 ± 4.22 2.0 ± 4.50 < 0.005

D4 21.70 ± 3.07 23.29 ± 5.47 < 0.005

D5 7.62 ± 7.17 8.62 ± 7.0 0.1285

D6 18.70 ± 8.42 20.23 ± 3.46 < 0.005

D7 21.33 ± 5.45 21.33 ± 6.08 < 0.005

error rate obtained by the QPSO and PSO algorithms in this experiment, and the obtained
results are illustrated with the form of average ± standard deviation. As shown, the QPSO-
SVM algorithm yielded lower classification error rates than the PSO-SVM algorithm in all
datasets. Moreover, the p value for D5 (Sonar dataset) is larger than the predicted statistical
significance level of 0.005, but the other p values are smaller than the significance level of
0.005. Furthermore, the optimization processes of QPSO-SVM and PSO-SVM are given in
Fig. 8. The values shown in these figures are the average of all cross-validation results, and
both algorithms started from the same initial solutions. As shown in the figure, the QPSO-
SVM algorithm achieved results better than the PSO-SVM algorithm. Figure 8c, e shows
clearly how the PSO was trapped in one of the local minima solutions, while the QPSO
algorithm escaped and converged to better solutions. Moreover, the figure shows how the
QPSO converged faster than the PSO algorithm. For example, as in Fig. 8g, the QPSO and
PSO algorithms achieved the same solution, but the QPSO and PSO algorithms reached to
this solution after 24 and 48 iterations, respectively. This reflects the convergence speed of
the QPSO algorithm compared to PSO.

Generally, from Table 5 and Fig. 8, compared with the PSO-SVM, the proposed QPSO-
SVM algorithm achieved lower classification error rate. This is due to (1) the exponential
distribution of the particles’ positions and (2) the cooperative behavior of the QPSO algo-
rithm as mentioned in Sections 3.4.1 and 3.4.2. Therefore, it is no surprise that QPSO is
efficient than classical PSO.

5.3.2 QPSO-SVM vs. Grid Search

This experiment was performed to compare the proposed QPSO-SVM algorithm with the
grid search SVM algorithm. Table 6 shows the test error rate and computational time of
this experiment. k-fold cross-validation (k = 10) was used to estimate the test error rate of
each approach, and the obtained results are illustrated with the form of average ± standard
deviation. As shown in the table, the cost time of the proposed algorithm was much lower
than the grid search algorithm. As shown in Table 6, the p value for D5 (Sonar dataset)
is larger than the predicted statistical significance level of 0.005, but the other p values
are smaller than the significance level of 0.005. Generally, compared with the grid search
algorithm, the proposed QPSO-SVM algorithm achieved lower classification error rates.

5.3.3 QPSO-SVM vs. Other Optimization Algorithms

This experiment was conducted to compare our proposed QPSO-SVM algorithm with one
of the well-known optimization algorithms that was proposed in (Huang and Wang 2006) to
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Fig. 8 Performance comparison using the datasets listed in Table 3
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Table 6 Results of the proposed QPSO-SVM algorithm and the grid search SVM algorithm

Dataset Grid search SVM QPSO-SVM p value for Wilcoxon testing

Cost time (s) Test error (%) Cost time (s) Test error (%)

D1 398.23 9.12 ± 4.89 287.35 7.85 ± 5.45 < 0.005

D2 925.3 2.4 ± 3.45 822.32 2.22 ± 3.15 < 0.005

D3 237.6 2.54 ± 4.42 165.5 1.33 ± 4.22 < 0.005

D4 890.3 22.67 ± 4.30 765.2 21.70 ± 3.07 < 0.005

D5 597.7 7.83 ± 7.40 489.6 7.62 ± 7.17 0.0054

D6 567.4 20 ± 10.23 408.3 18.70 ± 8.42 < 0.005

D7 1975.3 23.14 ± 6.25 1608.5 21.33 ± 5.45 < 0.005

optimize the values of C and σ parameters. Table 7 shows the results of this experiment. As
shown, QPSO-SVM algorithm achieved lower classification error rates than the GA-SVM
algorithm.

5.3.4 QPSO-SVM vs. Conventional Classifiers

The aim of this experiment is to test the proposed QPSO-SVMmodel using different classi-
fiers. In this experiment, the QPSO-SVM algorithm was compared with k-nearest neighbor
(k-NN) (Dudani 1976), multi-layer perceptron (MLP) (Pal and Mitra 1992), and linear dis-
criminant analysis (LDA) (Tharwat 2016a) classifiers. The value of k in k-NN was three
and in MLP, a hidden layer with 15 nodes and 1000 epochs were used. The results of this
experiment are summarized in Table 8.

As shown in Table 8, the proposed QPSO-SVM algorithm obtained the best results com-
pared to the other classifiers, while the kNN classifier achieved the worst results. This is
because (1) in k-NN, there is no training phase and the testing sample assigned to the class
which has the maximum neighbors, (2) NN has different parameters and these parameters
also need to be tuned, and (3) LDA has the small sample problem (SSS); and this problem
can be solved by reducing the dimensions using one of the dimensionality reduction meth-
ods such as the principal component analysis (PCA) (Tharwat 2016b) algorithm. Hence,
PCA removes some information which may have discriminative data (Tharwat et al. 2017).

To conclude, the developed QPSO-SVM algorithm yielded more appropriate param-
eters, giving lower classification error rate across different datasets. Even so, we still

Table 7 Comparison between
the QPSO-SVM algorithm and
the GA-SVM algorithm that was
proposed by (Huang and Wang
2006) (%)

Dataset QPSO-SVM GA-SVM p value for Wilcoxon

testing

D1 7.85 ± 5.45 9.69 ± 6.44 < 0.005

D2 2.22 ± 3.15 2.5 ± 3.50 < 0.005

D3 1.33 ± 4.22 2.70 ± 3.50 < 0.005

D4 21.70 ± 3.07 22.95 ± 5.23 < 0.005

D5 7.62 ± 7.17 9.72 ± 7.34 < 0.005

D6 18.70 ± 8.42 22.24 ± 4.48 < 0.005

D7 21.33 ± 5.45 23.56 ± 6.51 < 0.005
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Table 8 Comparison between the
QPSO-SVM algorithm and NN,
LDA, and k-NN classifiers (%)

Datasets QPSO-SVM NN LDA k-NN

D1 7.85 + 5.45 10.75 + 4.46 11.26 + 3.45 13.45 + 6.23

D2 2.22 + 3.15 4.32 + 3.68 3.93 + 2.76 6.32 + 3.12

D3 1.33 + 4.22 1.33 + 6.43 3.45 + 2.21 4.15 + 2.36

D4 21.70 + 3.07 23.64 + 4.32 23.51 + 5.23 26.18 + 4.62

D5 7.6 + 7.7 8.52 + 6.98 9.54 + 6.23 11.23 + 4.75

D6 18.70 + 8.42 19.23 + 7.98 20.45 + 8.23 20.15 + 8.05

D7 21.33 + 5.45 23.26 + 6.45 25.23 + 7.64 24.35 + 7.49

cannot guarantee that QPSO-SVM must perform well and outperform other methods in
several applications. In fact, many factors may have a great impact on the quality of
the proposed algorithm, such as the number of classes, the number of training samples,
representativeness, the number of features, and diversity of training sets.

6 Conclusion and FutureWork

The SVM classifier is widely used in different applications. However, the parameters of
SVM affect the test error rate. This study proposes a quantum-behaved based approach
(QPSO-SVM) that can search for the optimal values of SVM parameters that minimize the
classification error rate. In this research, different experiments were conducted to compare
the proposed QPSO-SVM algorithm with the grid search SVM, PSO-SVM, and GA-SVM
algorithms by applying many standard classification datasets. The results of this study
showed that the QPSO-SVM algorithm achieved competitive results.

Several directions for future studies are suggested. First, our fitness function is not suit-
able for imbalanced datasets, where the number of patterns of one class (majority class)
outnumber the number of the other class(es) (minority class(es)). This is because the accu-
racy rate does not distinguish between the number of correct labels of different classes.
Thus, in the imbalanced datasets, the accuracy may lead to erroneous conclusions (He and
Garcia 2009). Therefore, different assessment methods such as geometric mean (GM) can
be used in the fitness function. Second, due to the performance of QPSO, it would be
worthwhile to explore the potential of QPSO to other classifiers. This is currently being
investigated by the authors of this paper.
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Richer, T.J., & Blackwell, T.M. (2006). The Lévy particle swarmvy particle swarm. In 2006 IEEE
International Conference on Evolutionary Computation, pp. 808–815.

Santos Coelho, L.d.os. (2010). Gaussian quantum-behaved particle swarm optimization approaches for
constrained engineering design problems. Expert Systems with Applications, 37(2), 1676–1683.

Santos Coelho, L.d.os., & Krohling, R.A. (2005). Predictive controller tuning using modified particle swarm
optimization based on Cauchy and Gaussian distributions. In Soft Computing: Methodologies and
Applications. Springer, pp. 287–298.
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