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Abstract
Nonparametric cognitive diagnosis methods are useful in cognitive diagnosis modeling for
calibration efficiency, especially when sample size is small or large, or the latent attributes
are more complex. This article proposes the Mantel-Haenszel chi-squared statistic as an
index for detecting the misspecification of latent attributes as well as testlet effects in
nonparametric cognitive diagnosis methods. The proposed theoretical considerations are
augmented by simulation studies conducted to assess the performance of the Mantel-
Haenszel statistic under various conditions within the nonparametric diagnosis framework,
with a special focus on situations were the set of latent abilities assumed to underlie the data
was underspecified.

Keywords Cognitivediagnosismodel .Nonparametric approach . Local independence .Qmatrix
validation

Cognitive diagnosis models are used to provide diagnostic feedback to examinees and
stakeholders at a finer grain size than a single test score. Many different models have been
proposed, but they all require a common feature, the Q-matrix, that indicates the item J by
latent attribute K relationship (Tatsuoka 1983). Each entry qjk in the matrix indicates whether
the kth attribute is necessary in the solution of the jth item. An examinee’s performance with
respect to what is measured is assumed to be influenced by a composite of the latent attributes
such that different combinations define profiles of distinct proficiency classes, which are
characterized by the K-dimensional latent attribute vectors α1, α2, …, αC, with C = 2K.
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The validity of a cognitive diagnosis model depends on whether the K-dimensional latent
attribute vector entirely determines classes of examinees so that the conditional distributions of
item scores are all independent of each other after adjusting for the effect of the attributes. This
property is often called local independence (e.g., Rupp et al. 2010; Lord and Novick 1968). The
assumption of local independence is equivalent to the assumption that the K attributes α1, α2,…,
αK span the complete latent space—that is, no latent attributes have been missed or left out. Said
differently, violations of local independence indicate the possible misspecification of attributes.

The testlet effect also calls into question the assumption of local independence. A testlet is a
cluster of items that shares a common stimulus, such as a reading passage and measures
something additional in common (Wainer and Kiely 1987). One way to account for the testlet
effect is to incorporate specific dimensions in addition to the K-dimensional latent attributes
the Q-matrix specifies. Therefore, testing for local independence can be used as a diagnostic
tool for detecting testlet effects as well as incorrect specifications of the latent attributes in
cognitive diagnostic modeling.

In cognitive diagnosis modeling, evaluations of model-data fit provide information about
the cognitive diagnosis model and data fit as well as the Q-matrix and data fit (e.g., Chen et al.
2013). Various fit statistics and methods have been proposed for both types of evaluations.
Some of them include conventional relative fit measures such as Akaike’s Information
Criterion (AIC), Bayesian Information Criterion (BIC), log likelihood, and Bayes factor
(e.g., Chen et al. 2013; Kunina-Habenicht et al. 2012; Rupp et al. 2010). Furthermore, absolute
fit measures such as the residual between the observed and predicted Fisher-transformed corre-
lation, the residual between the observed and predicted correct proportion, the residual between
the observed and predicted log-odds ratios, and the G statistic have been proposed (e.g., Chen
et al. 2013; Rupp et al. 2010). These statistics and methods are limited to use in parametric
cognitive diagnosis models because most statistics are computed as a function of maximum
likelihood estimates; the predicted item responses are generated based on the fitted model.

This article proposes the Mantel-Haenszel (MH) statistic as an index for detecting
misspecification of latent attributes as well as testlet effects in nonparametric cognitive diag-
nosis methods. Obviously, under the nonparametric methods, evaluation of model-data fit is
informative about the Q-matrix and data fit only. The MH statistic is a well-researched tool for
evaluating the conditional independence of binary variables that are stratified along the levels of
a third random variable, for example, examining conditional independence of item pairs that are
stratified along the levels of total test scores under an IRT model (Rosenbaum 1984).

The next section describes the assumption of conditional independence underlying cogni-
tive diagnosis models and provides a brief review of nonparametric cognitive diagnosis
methods. Then, the MH test of model fit is presented. Next, simulation studies are described
with a wide range of conditions. Then, an analysis of real data is described. In the final section,
applications and implications of the method are discussed.

1 Conditional Independence and Its Violations

Let Yij denote the binary item response of the ith examinee to the jth item, i = 1, ..., I, j = 1, ..., J.
Cognitive diagnosis models describe the joint distribution of item response vector Yi condi-
tional on binary attribute vectorαic = {αick}, for c = 1, 2, ..., 2K, and for k = 1, ..., K. Each entry
αick indicates whether the ith examinee has mastered the kth attribute. Each binary entry qjk in
the Q-matrix indicates whether the kth attribute is relevant for the jth item, with 1 meaning the
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attribute is relevant and 0 indicating it is irrelevant. The joint probability of a cognitive
diagnosis model for the ith examinee is

P Y ið j αi

�
¼ ∏

J

j¼1
P Y ij
� ��αi

�
: ð1Þ

Therefore, most models are required to satisfy the assumption of conditional independence
among item responses Yij given the attribute vector αic (e.g., Rupp et al. 2010) because the
assumption makes it possible to assess the joint probability or likelihood of the models.

The assumption of conditional independence is violatedwhen the dimensionality of theQ-matrix
is incorrectly specified. More specifically, a necessary attribute may be omitted. The assumption
may be also a concern when the response to an item is based on the responses to the previous items,
or when items are grouped by sharing a common stimulus such as a reading passage or a common
scenario. Such a grouping of items is referred to the testlet effect, and an additional dimension may
be required to adequately model the data, but would be considered as a nuisance dimension because
it is not substantively meaningful (e.g., Wainer and Kiely 1987). Most cognitive diagnosis models
ignore the testlet effect, and it may result in underspecified dimensions. Therefore, the existence of
testlets calls into question the assumption of local independence. Amisfit item jmay indicate that the
item is problematic or qj is underspecified; a few misfit items indicate the dimensions of Q-matrix
may be underspecified; misfit items sharing a common stimulus may indicate a testlet effect.

2 Nonparametric Cognitive Diagnosis Methods

Nonparametric cognitive diagnostic methods assess examinees’ mastery and nonmastery of
attributes without regard to parametric form. These methods are useful in cognitive diagnosis
modeling, especially when parametric model fitting is inefficient because of too small or large
sample sizes, or more complex sets of latent attributes (Junker 2011).

One approach to nonparametric cognitive diagnosis methods is to apply cluster analysis to
identify groups of examinees with similar pattern of latent attributes given the assumption of a
conjunctive relationship among attributes and a valid Q-matrix. Chiu et al. (2009) clustered the
sum score vectorsWi = (Wi1,…,WiK) using hierarchical agglomerative andK-means clustering to
produce the 2K latent classes. Ayers et al. (2008) utilized the capability score vectors Bi = (Bi1,…,
BiK), where Bik ¼ ∑ jY ijqjk=∑ jqjk instead ofWi. Park and Lee (2011) mapped item responses to

an attribute matrix and then conducted K-means and hierarchical agglomerative clustering.
Another approach utilizes the Hamming distance technique that was originally proposed by

Barnes (2003) with a valid Q-matrix. In this technique, examinees’ latent attribute vectors are
obtained by minimizing the Hamming distance between the observed item responses Yi and all
possible ideal responses η1, η2, ⋯, ηC, C = 2K,

D Y i;αcð Þ ¼ ∑
J

j¼1
jY ij−ηcjj: ð2Þ

Like Barnes (2003), Chiu and Douglas (2013) posited a conjunctive relationship among the
attributes. Lim and Drasgow (2017) proposed an algorithm given the assumption of conjunctive,
disjunctive, or compensatory relationships among attributes. The theoretical justification of this
approach is that the true attribute pattern minimizes the expected distance between Yi and ηc

regardless of what the true model is, under some regularity conditions (Lim and Drasgow 2017;
Wang and Douglas 2015).
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3 Mantel and Haenszel Test of Model Fit

The MH statistic χ2 introduced by Mantel and Haenszel (1959) is generally used to test for
conditional independence—of two dichotomous or categorical variables j and j′ by forming the
row-by-column contingency tables, conditional on the levels of the control variable C. For IRT
models, the MH statistic has been commonly used to detect differential item functioning, items
that function differently for two groups of examinees called focal and reference groups with
different experiences or backgrounds (Holland and Thayer 1988). In the procedure, the sample
is stratified into C classes according to their observed total test score.

In this study, the latent attribute vector αc = (αc1,αc2,⋯,αcK)′, for c = 1, 2, …2K =C is
proposed as the stratification variable. As discussed above, in cognitive diagnosis models, item
responses are assumed to be independent given the correctαc, and a higher value ofαc implies
a higher probability that Yj = 1 for each j = 1, 2, …, J (e.g., Holland and Rosenbaum 1985).
Then, any pair of vectors of monotonic nondecreasing functions gj(Y) and gj′(Y) of a vector of
dichotomous responses Y to item j and j′, given any monotonic nondecreasing function h(αc ),
has a nonnegative conditional covariance, a result of Rosenbaum (1984).

Let ijj0c
� �

denote the frequencies of examinees in the 2 × 2 ×C contingency table. Themarginal
frequencies are the row totals i1þcf g and the column totals {iþ10cg, and iþþc represents the total
sample size in the cth stratum. Strata having aminimum total sample size iþþc equal or larger than 1
are included. If any cell count in a table is 0, then theHaldane correction is applied to each cell in the
table to obtain a more accurate significance level of theMH test (e.g., Li et al. 1979). Under the null
hypothesis of conditional independence between j and j′, the following statistic is proposed:

MH χ2 ¼ j∑ci11c−∑cE i11cð Þj−1=2ð Þ2
∑cvar i11cð Þ ; ð3Þ

where E(i11c) = i1+ ci+1c/i++ c and var i11cð Þ ¼ i0þc i1þc iþ0c iþ1c=i2þþc iþþc−1ð Þ:
Under the null hypothesis, the test statistic has approximately a chi-squared distribution

with degrees of freedom equal to 1 when sample sizes in each contingency table become large,
and in cognitive diagnosis models, if each examinee’s true latent attribute vector αi is known.
Mantel and Haenszel (1959) indicate that this summary chi-square reference distribution is
suitable even when some of the strata have small counts. This statistic would be suitable for the
analysis of sparse contingency tables, provided the overall counts for each cell in the combined
table obtained by collapsing across all C contingency tables are sufficiently large. The null
hypothesis of independence is equivalent to the odds ratio equal to 1.

Odds ratioMHj; j0 ¼ ∑C
c¼1 i11c i00cð Þ=ic

∑C
c¼1 i10c i01cð Þ=ic

; ð4Þ

where ic ¼ i11c þ i00c þ i10c þ i01c :

4 Heuristic Justification of the Large Sample Chi-square Reference
Distribution

The estimated test statistic MH χ̂2 would have an asymptotic chi-square distribution with one
degree of freedom as the true MH statistic MH χ2 would, if the true attribute vector α were
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known. Mantel and Haenszel (1959) asserted that under the null hypothesis, the MH χ2 has an
asymptotic chi-squared distribution with one degree of freedom, under some general
conditions.

It is assumed here that the number of items J is sufficiently large so that P α̂ ¼ α½ � is close
to 1, a result of previous theoretical studies (Lim and Drasgow 2017; Wang and Douglas
2015). A rigorous argument requires that the number of items J grows sufficiently fast with the
sample size N. Note that

MH χ̂̂2 ¼ MH χ2 þ MH χ̂̂2−MH χ2
� �

; ð5Þ

where MH χ̂2−MHχ2
� �

represents error, due to using α̂ rather than α. If in (5), we have

convergence in probability to zero in the second term on the right, we see that our approximate

M-H test statistic MHχ̂2 has the same asymptotic distribution as the desired MH statistic
MHχ2. Specifically,

MH χ̂̂2−MHχ2
� �

→P0⟹MH χ̂̂2→Dχ2
1: ð6Þ

The result in (6) is obtained if J is sufficiently large, so that under the null hypothesis the
overwhelming majority of estimated attribute patterns are identical to the true attribute
patterns. Finite test length and sample size properties are studied in the following simulation
studies, and type I error rate power rates are summarized.

Table 1 Correctly specified Q-matrix (K = 5)

Item Attribute

k1* k2* k3* k4 k5

1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4** 0 0 0 1 0
5** 0 0 0 0 1
6 1 1 0 1 1
7 1 0 0 1 0
8 0 1 0 1 0
9 0 0 1 1 0
10 0 1 0 1 0
11 1 1 0 0 0
12 1 1 0 0 1
13 1 0 0 1 1
14 0 1 0 1 1
15 0 0 1 1 0
16 1 0 0 1 0
17 0 1 0 0 1
18 0 0 1 0 0
19 1 0 0 1 0
20 1 0 0 1 1

*Attributes used for the three-dimensional Q-matrix. **For the three-dimensional Q-matrix, the attribute pattern
for item 4 was 101; for item 5, the attribute pattern was 011
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5 Simulation Study

To investigate the performance of the MH statistic, a variety of simulation conditions were
studied by crossing the number of examinees, the length of tests, the number of attributes, and
the distribution of α under the nonparametric cognitive diagnosis model.

6 Simulation Design

For each condition, item response data of sample sizes I = 500, or 2000, were drawn from a
discretized multivariate normal distribution MVN(0K,Σ), where the covariance matrix Σ has
unit variance and common correlation ρ = .3, or .6 (e.g., Chiu et al. 2009). The K-dimensional
continuous vector θi = (θi1, θi2,⋯, θiK)′ were dichotomized by

aik ¼ 1; ifθik ≥Φ−1 k
K þ 1ð Þ

� 	
;

0; otherwise

8<
: ð7Þ

Test lengths J = 20 or 40 were studied with attribute vectors of length K = 3 or 5. The correctly
specified Q-matrix for J = 20 is presented in Table 1. The Q-matrix for J = 40 was obtained by
duplicating the matrix. Item response data sets were generated from the DINA model and its
item parameters were drawn from the uniform (0, .3) distribution. The Hamming distance–
based nonparametric cognitive diagnosis model (Lim and Drasgow 2017) was used for the
estimation of latent attributes. The main advantage with this proposed method is that it can be
applied to parametric models because only class information is necessary.

Table 2 Type I error study: correctly specified Q-matrix

I K = 3 K = 5

α with ρ = .3 α with ρ = .6 α with ρ = .3 α with ρ = .6

J = 20 J = 40 J = 20 J = 40 J = 20 J = 40 J = 20 J = 40

With estimated latent attribute profiles
500 .032 .044 .044 .046 .035 .046 .030 .046
2000 .057 .044 .052 .047 .051 .049 .053 .051
With true latent attribute profiles
500 .048 .049 .049 .049 .049 .049 .050 .049
2000 .049 .049 .050 .049 .051 .049 .050 .049

Table 3 Power study: underspecified Q-matrices with true K = 5 and fitted K= 3

I qj for both items underspecified qj for one item underspecified

α with ρ = .3 α with ρ = .6 α with ρ = .3 α with ρ = .6

J = 20 J = 40 J = 20 J = 40 J = 20 J = 40 J = 20 J = 40

500 .481 .519 .512 .513 .271 .200 .236 .186
2000 .653 .659 .754 .729 .430 .367 .472 .336
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6.1 Results

For each condition, sets of item response vectors were simulated for 100 replications. The
proposed MH statistics and their corresponding p values were computed for all J × (J − 1)/2
item pairs in an individual replication. Of 100 trials, the proportion of times the p value of each
item pair was smaller than the significance level .05, which was recorded and summarized in
the tables.

Type I Error Study In this simulation study, the correctly specified Q-matrices (K = 5, or K =
3) were used to fit the data to examine type I error rates. Table 2 shows that most type I error
rates were around the nominal significance level .05. The MH statistic appears consistent
under all conditions when J = 40, confirming asymptotic consistency. In the condition K = 5,
J = 20, and I = 2000, the type I error rate was slightly increased.

The MH statistic with known true class membership α was also examined because it is not
confounded by possible estimation errors due to the specific algorithm used to estimate latent
attributes. The rejection rates were very close to the nominal significance level .05 for all
conditions.

Power Study with UnderspecifiedQ-matrices A data set was generated with the Q-matrix
(K = 5) in Table 1. The data was fitted with the embedded Q-matrix (K = 3) in each
replication (Table 3). One dimension (a total of 9 items) or two dimensions (4 items)
were underspecified. The average power rate of the item pairs where both items were
underspecified in the same dimension was .572 with power relatively consistent across
all conditions. The average rejection rate across item pairs where either item was
underspecified was .124. Taking this finding into account, like the other statistics, the
MH test is sensitive to Q-underspecification and has moderately high power, particularly
for the larger sample size.

Table 4 T-matrix: testlet specification (M = 2)

Testlet Item

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

Table 5 Testlet-dependent data with Q-matrix (K = 3)

I Both items were in a testlet One item was in a testlet

α with ρ = .3 α with ρ = .6 α with ρ = .3 α with ρ = .6

J = 20 J = 40 J = 20 J = 40 J = 20 J = 40 J = 20 J = 40

500 .922 .959 .941 .975 .051 .049 .048 .047
2000 .997 .998 .994 .998 .088 .051 .062 .053
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Power Study with Testlet-Dependent Data For this simulation study, the fixed T-matrix in
Table 4 was utilized to generate the testlet-dependent data. The entry tmj of the T-matrix
indicates whether the mth testlet, for m = 1, 2, ...M, includes the jth item. For each replication,
the transpose of T-matrix was combined with the Q-matrix (K = 3) embedded in Table 1, to
simulate item responses. A model was fitted only with the Q-matrix (K = 3). The T-matrix for
J = 40 was obtained by duplicating the matrix.

As shown in Table 5, high rejection rates for testlet-dependent item pairs were obtained
(i.e., .922 or above). The power rates were moderately consistent across conditions. The
rejection rates of the MH statistic for item pairs in which only either item was testlet dependent
were low (i.e., .088 or below). This implies that the MH test can play an important role only in
detecting testlet-dependent items.

7 Fraction Subtraction Data

Fraction subtraction data (e.g., Tatsuoka 1983) were analyzed to investigate the performance of
the MH statistic in practice. The data include the item responses to 20 items with 8 necessary
attributes from 536 examinees. In this study, the Q-matrix (see Table 6) that appeared
originally in de la Torre and Douglas (2004) was used. The specified attributes are interpreted
as (1) convert a whole number to a fraction, (2) separate a whole number from fraction, (3)
simplify before subtracting, (4) find a common denominator, (5) borrow from whole number
part, (6) column borrow to subtract the second numerator from the first, (7) subtract numer-
ators, and (8) reduce answers to simplest form.

Table 6 Q-matrix for fraction subtraction data

Item K = 8 Item K = 8

1 0 0 0 1 0 1 1 0 11 0 1 0 0 1 0 1 0
2 0 0 0 1 0 0 1 0 12 0 0 0 0 0 0 1 1
3 0 0 0 1 0 0 1 0 13 0 1 0 1 1 0 1 0
4 0 1 1 0 1 0 1 0 14 0 1 0 0 0 0 1 0
5 0 1 0 1 0 0 1 1 15 1 0 0 0 0 0 1 0
6 0 0 0 0 0 0 1 0 16 0 1 0 0 0 0 1 0
7 1 1 0 0 0 0 1 0 17 0 1 0 0 1 0 1 0
8 0 0 0 0 0 0 1 0 18 0 1 0 0 1 1 1 0
9 0 1 0 0 0 0 0 0 19 1 1 1 0 1 0 1 0
10 0 1 0 0 1 0 1 1 20 0 1 1 0 1 0 1 0

Table 7 Proportion of conditionally dependent item pairs

Model

Non-P DINA DINO A-CDM Saturated LLM R-RUM

MH .084 .147 .174 .079 .137 .200 .194
xjj′ – .321 .489 .221 .068 .426 .687
rjj′ – .426 .584 .253 .111 .500 .573
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7.1 Results

The data were analyzed with seven different cognitive diagnosis models: the nonparametric
model, the DINA model, the DINO model, the A-CDM, the saturated model, the log linear
model, and the R-RUM. Additional fit statistics, the chi-squared statistic xjj′ (Chen and Thissen
1997) and absolute deviations of observed and predicted corrections rjj′ (Chen et al. 2013),
were used for the evaluation of model-data fit. The average rejection rates of 190 item pairs are
summarized and reported in Table 7. Interestingly, the MH statistic indicates substantially
fewer model violations than the other two fit measures.

Table 8 reports the most frequently rejected four items for each of the statistics over all
model settings. The results of statistics were consistent with those of Lim and Drasgow (2017).
In their data-driven Q-matrix estimation study, the component-wise agreement rates between
the implemented Q-matrix in this study and a data-driven Q-matrix were obtained as shown in
Table 8. The items for which the q-vectors may have been incorrectly specified were the most
frequently rejected by the MH statistic. The disagreement across methods is especially
noticeable for item 8. This result may imply that this item was overspecified based on the
results of previous studies (e.g., Chen et al. 2013).

8 Discussion

The significance of this study lies in proposing a test of model fit for detecting Q-matrix
misspecifications and identifying testlet effects. The only requirement for this method is the
availability of an estimate of the latent attributes, which serves as the stratification variable in

Table 8 Most frequently rejected items

Frequently rejected items Agreement rate** Frequencies

MH xjj′ rjj′

5 0.750 25* 47 45
8 1.00 8 75* 76*
9 0.875 15 52* 61*
13 0.875 26* 50* 50
15 0.875 13 46 54*
16 1.00 20 51* 58*
19 0.875 28* 45 54*
20 0.875 26* 33 41

Items with single asterisk were ranked as top 1 to 4 most frequently rejected items over all models. ***Agree-
ment rates between the implemented Q and data-driven Q (Lim and Drasgow 2017)

Table 9 Mean of absolute difference of estimated and true DINA item parameters (α with ρ = .3)

I J = 40, K = 5* J = 40, K = 3** J = 20, K = 5* J = 20, K = 3**

Guess Slip Guess Slip Guess Slip Guess Slip

500 .015 .023 .073 .120 .021 .027 .081 .075
2000 .015 .020 .067 .069 .008 .012 .075 .131

*Correctly specified Q-matrix. **Underspecified Q-matrix
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the MH statistic. Several simulation studies investigated the usefulness and sensitivity of the
MH statistic in a variety of conditions. The primary findings were that the MH test could play
an important role in identifying underspecified q-vectors when the true model is unknown. It
performs reasonably well in detecting testlet-dependent items. These results are important
because ignoring such dependencies could possibly lead to inaccurate estimates of model
parameters as shown in Table 9 as well as misclassifications of examinees (e.g., Chen et al.
2015; Rupp et al. 2010).

The real data analysis illustrated how the MH test can be used with different cognitive
diagnosis models along with other model fit test statistics. The MH test found less misfit and
was less sensitive to the use of different models. For q-vector misspecifications, it can be
effective to identify problematic items. When it is used with the other test statistics, the results
can provide more detail—whether an item may be underspecified, or a different model is
needed for the data.

Whether the fit evaluation is to detect the Q-matrix underspecification, or testlet effects, the
MH test is simple, easy to implement, and theoretically supported. The results of the
simulations suggest that the MH is a reasonably efficient test of model fit. Nevertheless, some
consideration of other tests of model fit will always be desirable. Future research might include
more attributes as well as more complex models. At the present time, however, the MH test
appears to be a promising statistic for the detection of local dependence in cognitive diagnosis
models.
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