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1. Introduction

In a typical classification application, some of the observations are
unlabelled and the objective is to predict the labels of the unlabelled points,
for details see McNicholas (2016a). In such situations, classification is
generally semi-supervised or supervised (also called discriminant analysis).
These two species of classification differ in whether any weight is given to
the unlabelled points in the prediction of their labels. In semi-supervised
classification, the labelled and unlabelled points are given equal weight;
however, in supervised classification, the unlabelled points are given zero
weight. Furthermore, it is possible to either give all the weight to the unla-
belled points or treat all the points as unlabelled. This third, and well known,
species of classification is called unsupervised classification or cluster anal-
ysis. These three species of classification are well established; yet, in any
given scenario, it might be the case that labelled or unlabelled observations
are more important when building a classifier.

Vrbik and McNicholas (2015) introduce a general approach, called
fractionally-supervised classification (FSC), where classification can be car-
ried out with a fractional amount of weight—anything between none and
all—being given to the unlabelled points. This approach allows for an inter-
mediate solution between the three different species of classification. More-
over, although it was conceived in the model-based paradigm with the use
of Gaussian mixture models and weighted likelihood, discussed in detail in
Section 2, it is more generally applicable and will be illustrated herein for
t-mixtures.

Vrbik and McNicholas (2015) show that FSC oftentimes improves
classification performance when compared to the three different species of
classification; however, the problem over how to choose the appropriate
amount of weight to give the unlabelled points remains unanswered. Vr-
bik and McNicholas (2015) discussed a few different options to choose the
appropriate weight but all of these procedures were deemed undesirable.
Vrbik and McNicholas (2015) ultimately decided to use the adjusted Rand
index (ARI; Hubert and Arabie, 1985) to choose the weight; however, while
this approach was sufficient to illustrate that FSC can be very effective, it
is not viable in practice because it assumes knowledge of the labels that are
treated as unknown in the analysis. The main contribution of the present
work is to determine a weight selection criterion that can be used in real
problems, where there are genuinely unlabelled points. The secondary con-
tribution of this paper is the demonstration of FSC for non-Gaussianmixture
models, in particular mixtures of multivariate t-distributions.

The remainder of this paper is laid out as follows. In Section 2, a de-
tailed discussion of mixture models, FSC and weighted likelihood, as well
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as a brief discussion of the multivariate t-distribution, is presented. Then,
FSC with the multivariate t-distribution is laid out (Section 3) and a de-
tailed discussion on weight selection criteria is presented (Section 4). In
Section 5, simulations and demonstrations using real data are presented and
we conclude with a discussion and suggestions for future work (Section 6).

2. Background

2.1 Finite Mixture Models and Model-Based Clustering

McNicholas (2016a) traces the relationship between mixture models
and clustering back as far as Tiedeman (1955). The first use of finite mix-
ture models for model-based clustering is generally regarded to be by Wolfe
(1965) and, in the intervening years, model-based clustering has become a
popular approach for clustering (a recent review is given by McNicholas,
2016b). A finite mixture model assumes that an observation x comes from
a population with G subgroups. The density function of x is given by

f(x | ϑ) =
G∑

g=1

πgfg(x | θg), (1)

where πg > 0, with
∑G

g=1 πg = 1, are called the mixing proportions, fg(·)
are the component densities, and ϑ = (π1, π2, . . . , πG,θ1,θ2, . . . ,θG).

Because of its mathematical tractability, the Gaussian mixture model
has been looked at extensively in the literature. In addition to Wolfe (1965),
other examples of earlier work in the area of model-based clustering using
Gaussianmixtures include Baum et al. (1970), Scott and Symons (1971) and
Orchard and Woodbury (1972). For more details on the history of model-
based clustering, see McNicholas (2016a). More recently, there has also
been a fair amount of work using non-Gaussian mixtures such as the t-
distribution (e.g., Peel and McLachlan, 2000; Andrews and McNicholas,
2011a,b, 2012; Steane et al., 2012; Lin et al., 2014) and skewed distribu-
tions (Lin, 2010; Vrbik and McNicholas, 2012, 2014; Lee and McLachlan,
2013, 2014; Franczak et al., 2014, 2015; Dang et al., 2015; Lin et al., 2016;
Murray et al., 2014a,b, 2017a,b). Related to this work, an interesting vein
of work has been carried out on cluster-weighted models (CWMs; e.g., In-
grassia et al., 2012; Subedi et al., 2013; Ingrassia et al., 2015; Subedi et al.,
2015; Punzo and McNicholas, 2017).

2.2 Three Species of Classification

Let theN ×D matrix X = (x′
1,x

′
2, . . . ,x

′
N )′ be a data matrix, where

the xi are D-dimensional vectors and N is the number of data points. We
can then splitX into two sub-matricesX1 andX2, whereX1 = (x′

11,x
′
12, . . . ,
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x′
1n1

)′ are data points with known labels, andX2 = (x′
21,x

′
22, . . . ,x

′
2n2

)′ are
observations with unknown labels. Then write X = (X1,X2)

′. Also, define
Z = (Z1,Z2)

′ to be a matrix of indicator vectors. Specifically, we define

Z1 = (z
(1)′

1 , z
(1)′

2 , . . . , z
(1)′
n1 )′, were z(1)i are G-dimensional vectors with el-

ements 0 or 1. For convenience, we will denote element g of z(1)j by z
(1)
jg

where

z
(1)
jg =

{
1 if x1j is in group g,
0 otherwise.

We can likewise define Z2 in the same manner. Furthermore, z(2)jg for j =

1, 2, . . . , n2 are analogous to z
(1)
jg for the unlabelled observations. Define

Do = {X,Z1} to be our set of observed data, and DC = {X,Z} to be our
complete-data. We can furthermore denote the observed data corresponding
to labelled observations by DL = {X1,Z1}, and the data corresponding to
unlabelled observations byDU = {X2}.

Using the above notation, we can now describe the three species of
classification. The first species is discriminant analysis, which makes use of
only labelled data to build a classifier. The likelihood function in the case of
a discriminant analysis can be written as

LDA(ϑ | DL) =

n1∏
j=1

G∏
g=1

[πgfg(x1j | θg)]
z
(1)
jg . (2)

The second species is cluster analysis, and can take on one of two
forms. The first form is the one that we will primarily consider, and makes
use of only unlabelled data points and ignores the labelled points. In this
case, the likelihood function is given by

Lclust(ϑ | DU) =

n2∏
j=1

G∑
g=1

πgfg(x2j | θg). (3)

The second form of the cluster analysis utilizes both labelled and unlabelled
points, but treats the labelled points as unlabelled.

The third species is semi-supervised classification. This makes use of
all of the observed dataDo and treats labelled and unlabelled points equally
when building a classifier. The likelihood function for semi-supervised clas-
sification is given by the product of LDA(ϑ | DL) and Lclust(ϑ | DU) to give

Lsemi(ϑ | Do) =

n1∏
j=1

G∏
g=1

[πgfg(x1j | θg)]
z
(1)
jg

n2∏
j=1

G∑
g=1

πgfg(x2j | θg). (4)
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2.3 Fractionally-Supervised Classification

Introduced by Vrbik and McNicholas (2015), FSC allows for a solu-
tion intermediate to the three species of classification. This is achieved by
introducing the weight α1 = α to labelled observations, and α2 = 1− α to
unlabelled observations, where 0 ≤ α ≤ 1. Using these weights, the most
natural form of the weighted observed likelihood can be written as

LFSC(ϑ | Do, α) = [LDA(ϑ | DL)]
α[Lclust(ϑ | DU)]

1−α

=

⎡
⎣ n1∏
j=1

G∏
g=1

[πgfg(x1j | θg)]
z(1)
jg

⎤
⎦
α ⎡

⎣ n2∏
j′=1

H∑
h=1

πhfg(x2j′ | θh)

⎤
⎦
1−α

,

(5)

where z(1)jg is the gth element of z(1)j . AlthoughH does not necessarily have
to equal G, we will make the assumption that H = G. We can then write
the complete-data log-likelihood function as

�(ϑ | Dc) =

2∑
i=1

ni∑
j=1

G∑
g=1

αiz
(i)
jg [log(πg) + log(fg(xij | θg))] . (6)

The expectation-maximization (EM) algorithm (Dempster et al., 1977)
can then be used to maximize (6). The EM algorithm is an iterative algo-
rithm that, on each iteration, consists of a conditional expectation (E-) step
and the subsequent maximization of this expectation (M-step). We first ini-
tialize the parameters, and we denote this by ϑ(0). Iteration t+ 1 of the EM
algorithm proceeds as follows.

E-Step: Calculate Q
(
ϑ | ϑ(t)

)
= EZ2|X

[
� (ϑ | Dc) | Do,ϑ

(t)
]

(7a)

M-Step: Find arg
ϑ

max Q
(
ϑ | ϑ(t)

)
(7b)

Check for convergence. If the convergence criterion was not met, set

t = t+ 1 and return to (7a). (7c)

As was shown in Vrbik and McNicholas (2015), in the case of a Gaussian
mixture model, steps (7a) and (7b) simplify to the following.

E-Step: Update

ẑ
(2)
jg =

π
(t)
g φ(x2j | μ(t)

g ,Σ
(t)
g )∑G

g=1 π
(t)
g φ(x2j | μ(t)

g ,Σ
(t)
g )

.

Because the z(1)jg are known, we set ẑ(1)jg = z
(1)
jg .
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M-Step: Update the estimates of πg, μg andΣg by calculating

π(t+1)
g =

Sg∑G
g=1 Sg

, μ(t+1)
g =

∑2
i=1

∑ni

j=1 αiẑ
(i)
jg xij

Sg
,

Σ(t+1)
g =

∑2
i=1

∑ni

j=1 αiẑ
(i)
jg (xjg − μ

(t+1)
g )(xjg − μ

(t+1)
g )′

Sg
,

where Sg =

2∑
i=1

ni∑
j=1

αiẑ
(i)
jg .

This simplified form of the EM algorithm will prove useful when we dis-
cuss the EM algorithm in the case of a FSC with mixture of multivariate
t-distributions (Section 3).

We note that the three different species of classification fall out nat-
urally as special cases of FSC. If α = 1, then all of the weight is given to
the labelled observations, and the unlabelled observations are ignored. In
this case, we are performing discriminant analysis. If α = 0.5, then the la-
belled and unlabelled observations are given equal weight, and we are then
performing semi-supervised classification. Finally, if α = 0, then no weight
is given to the labelled observations, and thus we are performing a cluster
analysis (on the unlabelled observations). As mentioned in Section 1, the
main unresolved issue with FSC is the selection of the weight α.

2.4 The Multivariate t-Distribution

The p-dimensional t-distribution with ν degrees of freedom, location
parameter μ and scale matrix Σ, arises as a special case of a normal scale
mixture (Peel and McLachlan, 2000). Specifically, we can write the normal
scale mixture as

εφ(x | μ,Σ) + (1− ε)φ(x | μ, νΣ), (8)

where φ(·) denotes the multivariate Gaussian density with mean μ and co-
variance matrix Σ, and ε is small. We can then rewrite (8) as∫

φ(x | μ, νΣ)dH(w),

where

H(w) =
1

Γ
(
ν
2

) (
ν
2

) ν

2

w
ν

2
−1 exp

{
−2w

ν

}
, (9)
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w > 0 and Γ(·) is the gamma function. Note that (9) is the probability den-
sity function of a gamma(ν/2, ν/2) random variable. The resulting density
for the multivariate t-distribution is

ft(x | μ,Σ, ν) =
Γ

(ν+p
2

) |Σ|− 1

2

(πν)
1

2
pΓ

(
ν
2

) [
1 + δ(x,μ,Σ)

ν

] 1

2
(ν+p)

, (10)

where δ(x,μ,Σ) = (x − μ)′Σ−1(x − μ) is the squared Mahalanobis dis-
tance. Maximum likelihood estimation for t-mixtures, in the context of
model-based clustering, utilizes the introduction of latent variablesWig such
that

Wig | zig = 1 ∼ gamma (νg/2, νg/2) .

2.5 Parsimonious Models

The eigen-decomposition of a matrix is widely used in both mathe-
matics and multivariate statistics. In the context of mixture models, we can
write a covariance, or scale, matrix in the form Σg = λgΛgDgΛg

′, where
λg is a constant,Dg is a diagonal matrix with entries that are proportional to
the eigenvalues, andΛg is a matrix of eigenvectors. We can then impose the
following constraints: λg = λ, Λg = Λ, Λg = I, Dg = D, Dg = I,
where I is the identity matrix (Banfield and Raftery, 1993; Celeux and
Govaert, 1995). Celeux and Govaert (1995) employ combinations of the
above constraints to the covariance matrices in a Gaussian mixture model
to form a family of 14 Gaussian parsimonious clustering models (GPCMs).
Of these 14 models, 12. are extended to the t-distribution by Andrews and
McNicholas (2012), with the result known as the tEIGEN family. These 12
models, together with the option to constrain νg = ν, leads to 24 different
models in the tEIGEN family. The current form of the tEIGEN package (An-
drews et al., 2016) in R (R Core Team, 2016) supports all 14 GPCM scale
structures and hence a family of 28 tEIGEN models, which are summarized
in Table 3 (Appendix A).

2.6 Model Selection Criteria

We now discuss a couple of criteria that are commonly used to se-
lect an appropriate parsimonious model. The most common approach is the
Bayesian information criterion (BIC; Schwarz, 1978), which is given by

BIC = 2�obs(ϑ | Do)− p logN,

where �obs is the maximized observed likelihood, p is the number of free
parameters, and N is the total number of data points. The BIC has been
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frequently used for parsimonious model selection, e.g., Fraley and Raftery
(1998) andMcNicholas andMurphy (2008). Another criterion that is widely
used is the integrated completed likelihood (ICL; Biernacki et al., 2000),
which penalizes the BIC for classification uncertainty. The ICL can be ap-
proximated using the BIC:

ICL ≈ BIC+ 2

ng∑
i=1

G∑
g=1

MAP(ẑig) log ẑig,

where

MAP(ẑig) =

{
1 if argmaxh=1,...,G{ẑih} = g,
0 otherwise.

3. FSC for t-Mixtures

Before we discuss FSC for t-mixtures, we note that there is an alter-
native form of the weighted likelihood; for completeness, this is discussed
in Appendix B. The main complication when using t-mixtures, compared
to using Gaussian mixtures, is the update for the degrees of freedom. This
update, unfortunately, has no closed form and has to be calculated using nu-
merical methods. The incomplete weighted observed likelihood when using
multivariate t component densities is

Lobs(ϑ | Do, α) =

⎡
⎣ n1∏
j=1

G∏
g=1

[πgft(x1j | μg,Σg, νg)]

⎤
⎦
α

×
⎡
⎣ n2∏
j′=1

G∑
g=1

πgft(x2j′ | μg,Σg)

⎤
⎦
1−α

,

where ft(·) is the density for the multivariate t-distribution defined in (10).
To find argmaxθ Lobs, we use a multicycle ECM algorithm similar to An-
drews andMcNicholas (2012). After initializing z(i)jg andw(i)

jg , iteration t+1
of the multicycle ECM algorithm would proceed as follows:

On Fractionally-Supervised Classification 239



E-Step: Update

ẑ
(2)
jg =

π̂gft(x2j | μ̂(t)
g , Σ̂

(t)
g , ν̂

(t)
g )

G∑
g=1

π̂gft(x2j | μ̂(t)
g , Σ̂

(t)
g , ν̂

(t)
g )

, (11a)

ŵ
(i)
jg =

ν̂
(t)
g + p

ν̂
(t)
g + δ(xij , μ̂

(t)
g , Σ̂

(t)
g , ν̂

(t)
g )

. (11b)

First CM-Step: Update π̂g, μ̂g and ν̂g. The updates for π̂g and μ̂g are

given in closed form as

π̂(t+1)
g =

2∑
i=1

ni∑
j=1

αiẑ
(i)
jg

2∑
i=1

ni∑
j=1

G∑
g=1

αiẑ
(i)
jg

and μ̂(t+1)
g =

2∑
i=1

ni∑
j=1

αiẑ
(i)
jg ŵ

(i)
jg xij

2∑
i=1

ni∑
j=1

αiẑ
(i)
jg ŵ

(i)
jg

.

The updates for the degrees of freedom νg, as mentioned before, do not

have a closed form and have to be calculated using numerical methods.

In the unconstrained case, one has to solve (11c) for ν̂new
g :

− Ψ

(
1

2
ν̂new
g

)
+ log

(
1

2
ν̂new
g

)
− Ψ

(
ν̂g + p

2

)
− log

(
ν̂g + p

2

)
+ 1

+
1

mg

2∑
i=1

ni∑
j=1

αiẑ
(i)
jg

(
log ω̂

(i)
jg − ω̂

(i)
jg

)
= 0

(11c)

where

mg =

2∑
i=1

ni∑
j=1

αiẑ
(i)
jg

and Ψ(·) is the digamma function. Then, set ν̂(t+1)
g = ν̂new

g . Note that we

used the uniroot function in R to solve (11c).

E-Step: Update ẑ(2)jg and ŵ(i)
jg using (11a) and (11b) with current parameter

estimates.

Second CM Step: UpdateΣg. In the completely unconstrained case, the

update is

Σ̂(t+1)
g =

1

mg

2∑
i=1

ni∑
j=1

G∑
g=1

αiẑ
(i)
jg ω̂

(i)
jg (xij − μ̂(t+1)

g )(xij − μ̂(t+1)
g )′.
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We take this time to note that, except for the inclusion of the weights, the
multicycle ECM algorithm described here is exactly the same as that de-
scribed in Andrews and McNicholas (2012).

We perform k-means clustering (MacQueen, 1967) with 50 random
starts to initialize the ECM algorithm, and use the Aitken acceleration (Aitken,
1926) procedure described in McNicholas et al. (2010) as our convergence
criteria. Because of the updates for the degrees of freedom, fitting FSC with
a t-mixture becomes more computationally expensive than fitting a Gaus-
sian mixture. However, because of the heavier tails of the t-distribution, the
t-mixture is more robust to outlying observations.

4. Weight Selection Criteria

The ARI compares two different partitions of a dataset and, in the
classification paradigm, a value of 1 corresponds to perfect classification,
whereas a value of 0 indicates that the classification solution is as would
be expected if the labels were randomly assigned. In Section 1, we point
out that Vrbik and McNicholas (2015) use the ARI as a weight selection
criteria for FSC. However, this is only useful when exploring the overall
performance of FSC in simulations and datasets where all the labels are
known (but some are treated as unknown). In a real classification scenario,
not all the labels will be known and hence the ARI could not be used to
select the weight α. We, therefore, try other criteria for weight selection.

The first criteria we consider are the BIC and ICL. The results are
not shown here but suffice it to say that various analyses revealed both of
these criteria to be monotone in α and a boundary point was always chosen.
Three different classification-based criteria are considered: the entropy, an
alternative form of the entropy (Celeux and Soromenho, 1996), and the U
criterion (Bensmail et al., 1997).

In our case, the entropy E can be written

E =

2∑
i=1

ni∑
j=1

G∑
g=1

MAP(ẑ(i)jg ) log ẑ
(i)
jg =

n2∑
j=1

G∑
g=1

MAP(ẑ(2)jg ) log ẑ
(2)
jg , (12)

where

MAP(ẑ(i)jg ) =

{
1 if ẑ(i)jg = maxh=1,2,...,G(ẑ

(i)
jh ),

0 otherwise,

and taking 0 log 0 = 0. The entropy in (12) is always negative, unless there
is no uncertainty in the clustering solution, in which case it is 0. When using
this criterion, we choose the optimal weight to correspond to the maximum
value of E.
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An alternative form of the entropy is sometimes used that eliminates
the MAP. The resulting criterion, in our case, is given by

A =

n2∑
j=1

G∑
g=1

ẑ
(2)
jg log ẑ

(2)
jg .

Once again, we choose the optimal weight to correspond to the maximum
value of A. The third, and final, classification-based criterion that we con-
sider is the U criterion. In our case, this is given by

U =

2∑
i=1

ni∑
j=1

min
g=1,2,...,G

(1− ẑ
(i)
jg ) =

n2∑
j=1

min
g=1,2,...,G

(1− ẑ
(2)
jg ).

We observe that U is always positive and, if there is no uncertainty in the
classification solution, then U = 0. Again, we choose the optimal weight to
correspond to the maximum value of U .

In addition to these three classification-based criteria, we consider two
non-parametric criteria. Before the BIC became popular, the sum of squares
matrix was used as a basis for criteria to choose the number of groups in a
model (see Gordon, 1981, Sec. 3.3, for discussion). Assuming that our data
matrixX has been partitioned into G groups, we can define the total sum of
squares matrix to be

S =

G∑
g=1

ng∑
i=1

(xig − x̄)(xig − x̄)′,

where ng is the number of points classified into group g and x̄ is the grand
mean. Using a decomposition of S we can write

S = W +B,

whereW is the within cluster sum of squares matrix defined as

W =

G∑
g=1

ng∑
i=1

(xig − x̄g)(xig − x̄g)
′,

where x̄g is the sample mean of group g, and B is the between cluster sum
of squares matrix defined as

B =

G∑
g=1

ng(x̄g − x̄)(x̄g − x̄)′.
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Although the principle of using the sum of squares matrix was considered all
the way back in the 1960s (e.g., Edwards and Cavalli-Sforza, 1965; Fried-
man and Rubin, 1967), it is still visible within the modern literature (e.g.,
Andrews and McNicholas, 2014). Herein (Section 5.5), two different crite-
ria that use the within cluster sum of squares matrix W are tried. The first
criterion is based on minimizing the trace ofW, i.e., tr(W), and the second
criterion is based on minimizing the determinant ofW, i.e., det(W).

5. Analyses

5.1 Specifying the Number of Groups

For the purposes of our simulations and data analyses, we assume
that the number of groups is equal to the number of components or classes
present in the labelled points. However, this could be potentially problem-
atic. For one, there could be a group present in the population that is not
represented in the labelled data—this may be more likely if only a small
proportion of the data points are labelled. Although perhaps less likely, it
is also possible for the true number of groups to be less than that indicated
by the labels. The former problem can be handled by fitting FSC with a
different number of groupsH ≥ G in the cluster analysis component of the
likelihood, and then using a criterion such as the BIC or ICL to choose the
number of groups. The latter case, however, would need to be treated more
carefully; likely in conjunction with a subject matter (data) expert.

5.2 Simulations

Simulations are performed, similar to those in Vrbik and McNicholas
(2015), to demonstrate FSC with the multivariate t-distribution. In all, 100
datasets are simulated, each with 200 data points and two groups. The first
group follows a t2(0,Σ1, ν1) distribution, where ν1 = 3, and

Σ1 =

[
1 0.7
0.7 1

]
.

The second group is taken from a t2(Δ,Σ2, ν2) distribution, where Δ =
[0,Δ]′, ν2 = 70, and

Σ2 =

[
1 0
0 1

]
.

In this case, one group has a multivariate t-distribution, while the other
group is approximately Gaussian, i.e., ν2 is quite large. This time, we take
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Figure 1. Typical datasets for (a)Δ = 1,(b) Δ = 2,(c) Δ = 3,(d) Δ = 4,(e) Δ = 5.

Δ ∈ {1, 2, 3, 4, 5} and percentage of labelled data p ∈ {10%, 20%, . . . ,
80%, 90%}. In Figure 1, we show example datasets for eachΔ.

To choose the weights for FSC, we consider 11 candidate values of α;
specifically, α ∈ αARI, where αARI = {0, 0.1, 0.2, . . . , 1}. Then, the ARI is
calculated for each of these weights for the 100 datasets and the average ARI
is computed for each weight. The weight with the highest average ARI is
chosen. The resulting FSC solution for each weight α is denoted by FSCα.
Furthermore, for the FSC solution with the chosen weight resulting from
the highest average ARI, the notation FSCARI is used. Finally, in the special
cases corresponding to the three species of classification α = 0, 0.5, 1, the
FSC solution is denoted by FSCclust, FSCclass and FSCDA, respectively.

In Figure 2, we give line plots for the case whenΔ = 1, where the av-
erage ARI is plotted against the percentage of labelled data p for each candi-
date weight. Further, a black dotted line is used to show the result for FSCARI

with the corresponding chosen weight shown above each point. The left plot
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Figure 2. For Δ = 1: a) FSCα and FSCARI for α ∈ αARI, b) FSCclust,FSCclass, FSCDA and
FSCARI.

shows the results when using all the weights and the right plot singles out
the three different species of classification and FSCARI. The standard errors
are calculated by taking the ARI for all 100 datasets of the chosen weight
of FSCARI and calculating one (darker grey) and two (lighter grey) standard
deviations from the mean ARI.

For Δ = 1, we notice that the line for FSCclust does not appear be-
cause the average ARI for each percentage of labelled data is quite small in
comparison to the other weights (see Figure 2). Furthermore, for all other
values of Δ, FSCclust has the worst performance at higher percentages of la-
belled data, which is somewhat expected. We also see that all of the chosen
weights correspond to a non-species solution. Furthermore, it is interesting
to point out that, for lower percentages of labelled data, more weight is given
to the labelled points and, at higher percentages, with the exception of 80%,
less weight is given to the labelled observations. Similar results are given
in Figures 3–6, where similar plots are shown for the other values of Δ.
For the remaining values of Δ, of the 36 different cases, the chosen weight
corresponds to a species of classification only nine times. Of these nine oc-
currences, eight of them correspond to semi-supervised classification, one
corresponds to a discriminant analysis, and none of them correspond to a
cluster analysis.

Estimation

In addition to classification performance, we also consider the accuracy of
the parameter estimates. Parameter estimates for FSCARI from our most re-
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Figure 3. For Δ = 2: a) FSCα and FSCARI for α ∈ αARI, b) FSCclust,FSCclass, FSCDA and
FSCARI.
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Figure 4. For Δ = 3: a) FSCα and FSCARI for α ∈ αARI, b) FSCclust,FSCclass, FSCDA and
FSCARI.
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Figure 5. For Δ = 4: a) FSCα and FSCARI for α ∈ αARI, b) FSCclust,FSCclass, FSCDA and
FSCARI.
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Figure 6. For Δ = 5: a) FSCα and FSCARI for α ∈ αARI, b) FSCclust,FSCclass, FSCDA and
FSCARI.
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Table 1. Average parameter estimates for Δ = 3 for 20%, 50% and 80% of points labelled
with component wise standard deviations in brackets

ν1 (sd) μ1 (sd) Σ1 (sd) ν2 (sd) μ2 (sd) Σ2 (sd)
20%

(α = 0.6)

3.21
(0.766)

[ −0.00698
−0.00352

]
([

0.100
0.100

])
[
1.01 0.703
0.7031.01

]
([

0.2000.154
0.1540.184

]) 63.2
(57.0)

[
0.00535
2.99

]
([

0.0772
0.0845

])
[
0.988 -0.00720
-0.007200.978

]
([

0.133 0.0881
0.08810.138

])

50%
(α = 0.6)

3.19
(0.742)

[
0.00186
0.00476

]
([

0.0956
0.0913

])
[
1.03 0.716
0.7161.03

]
([

0.1950.143
0.1430.170

]) 67.3
(57.4)

[ −0.00270
3.00

]
([

0.0760
0.0799

])
[
0.990 0.000940
0.0009400.980

]
([

0.127 0.0811
0.08110.140

])

80%
(α = 0.4)

3.20
(0.716)

[ −0.00242
0.00122

]
([

0.0951
0.0906

])
[
1.02 0.712
0.7121.02

]
([

0.1940.149
0.1490.170

]) 67.1
(52.7)

[ −0.00254
3.00

]
([

0.0730
0.0737

])
[
0.995 -0.00215
-0.002150.978

]
([

0.124 0.0804
0.08040.120

])

cent simulation are considered, for p =20%, 50%, and 80% of points la-
belled and Δ = 3. The results (Table 1) show that the estimates are very
close to the actual values in all cases. We note that there is a lot of variability
in the estimate for ν2—this is to be expected because the second component
is approximately Gaussian.

5.3 Simulation with Three Groups

Finally, we perform a simulation with three groups. We follow the
same procedure as the simulations previously discussed, this time with 100
observations in each group for a total of 300 observations for each of the 100
datasets, once again all from bivariate t-mixtures. The first two groups are
simulated from exactly the same distributions as the previous simulations
with Δ = 2. For the third group, we took μ3 = (2, 2), ν3 = 10 and

Σ3 =

[
1 −0.7

−0.7 1

]
.

A typical dataset is shown in Figure 7, where the three groups are moderately
well separated but there this is still some overlap. In Figure 8, we show line
plots, as before, and see that one of the three species is selected in only two
of the nine cases.

M.P.B. Gallaugher and P.D. McNicholas248



−5

0

5

10

−5 0 5 10
x

y

Group

1

2

3

Figure 7. Typical dataset for simulation with three groups.

0.6
0.5

0.8 0.7
0.3 0.8 0.6

1
0.2

0.6
0.5

0.8 0.7
0.3 0.8 0.6

1
0.2

0.40

0.45

0.50

0.55

0.60

0.40

0.45

0.50

0.55

0.60

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

Percentage Labelled Percentage Labelled

A
ve

ra
ge

 A
R

I

A
ve

ra
ge

 A
R

I

FSCari +/− SE FSCari +/− 2*SE

FSCclust

0.1

0.2

0.3

0.4

FSCClass

0.6

0.7

0.8

0.9

FSCDA

FSCari

FSCari +/− SE FSCari +/− 2*SE

FSCclust FSCClass FSCDA FSCari

a b

Figure 8. For the simulation with three groups: a) FSCα and FSCARI for α ∈ αARI, b)
FSCclust,FSCclass, FSCDA and FSCARI.
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5.4 Application to Datasets

We now look at a few datasets and compare the performance of FSC
using a t-mixture and FSC with a Gaussian mixture. We took 100 random
splits for each dataset for each percentage of labelled data, p ∈ {10%, 20%,
. . . , 80%, 90%}. We used the same criterion as in the simulations, i.e., the
ARI, to choose the optimal weight. As with the simulations we use a com-
pletely unconstrained model for both the covariance structure and, in the
case of the t-mixtures, the degrees of freedom. For completeness, we note
that we are not necessarily able to perform a discriminant analysis when the
percent labelled is low or a cluster analysis when the percent labelled is high.

Iris Data

The Anderson Iris data contains four different attributes of three different
species of iris and is available in the R package datasets. The measure-
ments (in centimetres) are the sepal length and width, and the petal length
and width. The results are depicted in Figure 9. On the left hand side, we
show the results for the t-mixture, and on the right hand side we show the
results for the Gaussian mixture. Comparing these two plots, we see that the
overall classification performance is similar between the t-mixture and the
Gaussian mixture. Moreover, except at p = 60%, the weights chosen for
both the t and Gaussian mixtures are very similar if not exactly the same.

Crabs Data

The crabs dataset consists of 5 measurements on four different types of rock
crabs (two species, male and female in each species) and are available in the
R package MASS (Venables and Ripley, 2002). These measurements are the
frontal lobe size, carapace length and width, and the rear length and width.
The results (Figure 10) show that, as for the iris data, the classification per-
formance for the t and Gaussian mixtures are similar. Moreover, the weights
chosen are very similar. It is interesting to note that almost all the weights
are around 0.5

Wine Data

The wine dataset from the R package gclus (Hurley, 2004) considers 13
characteristics of three different classes of wine. One interesting aspect of
the results (Figure 11) is that, until one gets to the higher proportions of la-
belled data, the t-mixture performs slightly better than the Gaussianmixture.
Another thing to note is that, similar to the crabs data, the cluster analysis
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Figure 9. FSCα for α ∈ αARI and FSCARI for the iris data for: a) the t-mixture and b) for
the Gaussian mixture. FSCclust,FSCclass, FSCDA and FSCARI for c) the t-mixture, and d) the
Gaussian mixture.

0.7
0.6 0.5 0.6 0.6 0.4 0.5 0.4 0.6

0.7

0.8

0.9

1.0

10 20 30 40 50 60 70 80 90

Percentage Labelled

A
ve

ra
ge

 A
R

I

FSCari +/− SE FSCari +/− 2*SE

FSCclust

0.1

0.2

0.3

0.4

FSCClass

0.6

0.7

0.8

0.9

FSCDA

FSCari

a

0.7
0.6 0.6 0.6 0.5 0.6 0.4 0.6 0.7

0.7

0.8

0.9

1.0

10 20 30 40 50 60 70 80 90

Percentage Labelled

A
ve

ra
ge

 A
R

I

FSCari +/− SE FSCari +/− 2*SE

FSCclust

0.1

0.2

0.3

0.4

FSCClass

0.6

0.7

0.8

0.9

FSCDA

FSCari

b

0.7

0.6 0.5 0.6 0.6 0.4 0.5 0.4
0.6

0.7

0.8

0.9

1.0

10 20 30 40 50 60 70 80 90

Percentage Labelled

A
ve

ra
ge

 A
R

I

FSCari +/− SE FSCari +/− 2*SE

FSCclust FSCClass FSCDA FSCari

c

0.7

0.6 0.6 0.6 0.5 0.6 0.4 0.6 0.7

0.7

0.8

0.9

1.0

10 20 30 40 50 60 70 80 90

Percentage Labelled

A
ve

ra
ge

 A
R

I

FSCari +/− SE FSCari +/− 2*SE

FSCclust FSCClass FSCDA FSCari

d

Figure 10. FSCα for α ∈ αARI and FSCARI for the crabs data for: a) the t-mixture and b) for
the Gaussian mixture. FSCclust,FSCclass, FSCDA and FSCARI for c) the t-mixture, and d) the
Gaussian mixture.
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Figure 11. FSCα for α ∈ αARI and FSCARI for the wine data for: a) the t-mixture and b) for
the Gaussian mixture. FSCclust,FSCclass, FSCDA and FSCARI for c) the t-mixture, and d) the
Gaussian mixture.

does not perform well in comparison to the other values of α. Finally, the
chosen weights for the t- and Gaussian mixtures are fairly similar and tend
to choose larger weights for the labelled observations at all proportions.

Bankruptcy Data

The bankruptcy data, found in the R package MixGHD (Tortora et al., 2015),
consider the financial situation of 66 American firms: each firm was la-
belled as either bankrupt or financially sound. The results (Figure 12) show
a greater difference between the t- and Gaussian mixtures when compared
to the other datasets we have looked at. First, note the chosen weights. The
weights chosen using a t-mixture are very different than those chosen when
using the Gaussian mixture. The second item to note is that, similar to the
wine data, the t-mixture gives better classification performance at lower per-
centages of labelled points. Finally, we note the difference in variability. For
the Gaussian mixture, at lower percentages, we see a lot more variability in
the error bars than for the t-mixture. Also, in general, there is more vari-
ability between the different weights for the Gaussian mixture. This could
suggest that the selection of the weight should be treated a bit more care-
fully for the Gaussian mixture in this case, as the selection of a non-optimal
weight can result in decreased classification performance. This is especially
true, once again, at lower percentages of labelled points.
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Figure 12. FSCα for α ∈ αARI and FSCARI for the bankruptcy data for: a) the t-mixture and
b) for the Gaussian mixture. FSCclust,FSCclass, FSCDA and FSCARI for c) the t-mixture, and
d) the Gaussian mixture.

5.5 Weight Selection Criteria for Parsimonious Models

In Section 4, five different weight selection criteria are discussed. In
this section, we compare the performance of these criteria by considering
FSC on t-mixtures for the wine, bankruptcy, crabs and iris datasets. We take
50 different splits for each dataset, with 80% of data labelled and use a mix-
ture of multivariate t-distributions. We take the same candidate weights as
before (see Section 5.2). For each candidate weight, we choose the model—
i.e., the value of G and the covariance structure (Table 3, Appendix A)—
using the BIC, and then calculate each of weight selection criteria mentioned
earlier. We then choose the optimal weight, based on each of the selection
criteria, and calculate the ARI. Also, we consider the highest ARI of all the
weights after choosing the model to evaluate the overall performance of each
of the criteria. In Figure 13, we show box plots of the resulting ARI values
using each of the criteria, as well as the box plot for the distribution of the
highest ARI.

The distributions of the ARI values for the three classification-based
criteria show that the resulting ARI from the chosen weight is generally
much lower than if we were to use the highest ARI. Moreover, the variability
is generally much higher and especially so for the bankruptcy and crabs
data. On the other hand, tr(W) performs well in comparison to the three
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Figure 13. Distribution of ARI values for each of the criteria as well as the distribution of the
highest ARI for the four datasets. The BIC was used to choose the model.

classification-based criteria for the wine and bankruptcy data. Furthermore,
in the case of the bankruptcy data, it performs the best of all five criteria,
when comparing the medians, and has a distribution closest to that of the
highest ARI. However, in the case of the crabs data, it performs very poorly,
and has the worst performance of the five criteria. For the iris data, the
performance is similar to the alternative entropy and U criteria. Finally, we
see that det(W) performs well for all of the datasets. In the case of the wine
data, except for a couple of outliers, the distribution is very similar to that
for the highest ARI—this is quite remarkable when one considers that the
ARI assumes knowledge of the true labels. Furthermore, det(W) performs
the best of all of the proposed criteria in all of the datasets except for the
bankruptcy data. In this case, tr(W) performs better, but the inter-quartile
ranges are very similar. Therefore, we propose det(W) as a criterion to
select the weight α in FSC.
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Figure 14. Distribution of ARI values for (a) the first procedure and (b) the second procedure
for each of the four datasets.

The Determinant as a Model Selection Criterion

We have already seen that det(W) appears to be an effective selection
criterion for the weights in FSC. Now, we consider the possibility of using
this criterion for model selection in general. To further explore this idea, we
once again consider the four datasets and perform 50 random splits with 80%
of the data points having known labels. This time, we consider two different
procedures. In the first procedure, we proceed as before and choose the
model based on the BIC, and then the weight using det(W). In the second,
we choose the model based on det(W) and then the weight also based on
det(W). We once again take the ARI values after choosing the model and
the weight using one of these two procedures, and we take the maximum
ARI value amongst all of the weights. In Figure 14, we show box plots of
the distributions of the ARI values. In (a) we show the results for the first
procedure and, in (b), we show the results for the second procedure.

There are a few interesting items to note. First, for the wine dataset,
we see that when using det(W) to choose the model, the distribution of the
maximum ARI has a lot less variability. Also, these maximum ARI val-
ues are generally larger after using det(W) to choose the model. One final
note on the wine dataset is that the median ARI values using procedure 2 is
higher than those from procedure 1. For the bankruptcy data, we see that
the distribution of the maximum ARI is the same regardless of using the
BIC or det(W) to choose the model. However, after choosing the weight,
we see that the distribution of the ARI values for procedure 2 shows more
variability than procedure 1. In the case of the crabs data, we see that the
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Figure 15. Two different possible datasets with different organizations of labelled points with
the true classification.

distribution of the ARI for the selected model and weight are approximately
the same for both procedures; however, the maximum ARI is generally bet-
ter when using the BIC to choose the model. Finally, for the Iris data, all
of the distributions are very similar. The results are inconclusive in that nei-
ther procedure outperformed the other; however, the fact that the BIC did
not outperform det(W) for model selection is remarkable. In fact, the pos-
sibility of using det(W) for model selection in model-based clustering, as
alternative to the BIC, is worthy of further consideration.

5.6 Justification for a Cluster Analysis

If some of the points are labelled, it may not be immediately clear
as to why a cluster analysis should even be considered. However, there
are situations in which performing a cluster analysis is just as good, if not
better, than putting more weight on the labelled observations. In Figure 15,
we show two different situations where this would be the case. In Table 2,
we look at the ARI and det(W) for each of the weights for the two different
cases. In the first case, only 10% of the points are labelled, and all labelled
points are around the intersection of the two clusters. In this case, we see
from the ARI and determinant values that we would only want give very
little weight, or no weight, to the labelled observations.

In the first case, we see that a cluster analysis is actually better than
using higher weights, and just as good as using smaller weights. In the sec-
ond case, 90% of the points are labelled, and the unlabelled points lie on the
outside of the two clusters. From the ARI and det(W) values (Table 2), it is
clear that all weights give perfect classification, including a cluster analysis,
and thus a cluster analysis would perform just as well as the other weights
in this case.
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Table 2. ARI and determinant values for each candidate weight for both of the cases in Figure
15.

First Case Second Case
Weight ARI Det. ARI Det.
0 0.9341 81006 1 82849
0.1 0.9341 81006 1 82849
0.2 0.9341 81006 1 82849
0.3 0.9126 81984 1 82849
0.4 0.9126 81984 1 82849
0.5 0.9126 81984 1 82849
0.6 0.8914 84250 1 82849
0.7 0.8914 84250 1 82849
0.8 0.8914 84250 1 82849
0.9 0.0075 178858 1 82849
1 −0.0016 187192 1 82849

6. Conclusions and Future Work

Themajor contribution of this paper is to encourage the use of det(W)
as a weight selection criterion in FSC. Although based on old ideas, and
ideas that have not been fashionable for some time, this criteria is shown
to outperform alternatives such as the near-ubiquitous BIC for weight se-
lection. Furthermore, it performs comparably to the BIC in the model se-
lection stage. As a secondary contribution, the FSC approach is shown
to be mathematically tractable and effective for mixtures of multivariate
t-distributions. For example, in our simulations, the selected weight very
rarely corresponded to one of the three traditional species of classification.
Furthermore, in our real data analyses, the use of a mixture of multivariate
t-distributions was shown to either perform as well as or, in the case of the
wine and bankruptcy datasets, better than the mixture of multivariate Gaus-
sian distributions. This is likely due, at least in part, to the t-distribution be-
ing more robust to outliers than the Gaussian distribution. It is not unreason-
able to expect that the FSC will also perform well with other non-Gaussian
mixtures—the reader is referred to the recent review paper of McNicholas
(2016b) for some discussion of non-Gaussian mixtures.

Future work will investigate using det(W) as an alternative to the BIC
for model selection in model-based clustering and classification in general.
Using the FSC approach in a wider range of situations will also be explored.
For example, FSC could be applied in the area of item response theory.
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Appendix A: tEIGEN Models

Table 3. Model nomenclature and number of free covariance parameters of tEIGEN models
with constrained (C), unconstrained (U) and identity (I) elements.

Model λg = λΛg = ΛDg = D νg = ν No. of Free Covariance Parameters
CIIC C I I C 2
CIIU C I I U 1 +G
UIIC U I I C (G− 1) + 1
UIIU U I I U (G− 1) +G
CICC C I C C p+ 1
CICU C I C U p+G
UICC U U C C p+ (G− 1) + 1
UICU U I C U p+ (G− 1) +G
CIUC C I U C Gp− (G− 1) + 1
CIUU C I U U Gp− (G− 1) +G
UIUC U I U C Gp+ 1
UIUU U I U U Gp+G
CCCC C C C C [p(p+ 1)/2] + 1
CCCU C C C U [p(p+ 1)/2] +G
UCCC U C C C [p(p+ 1)/2] + (G− 1) + 1
UCCU U C C U [p(p+ 1)/2] + (G− 1) +G
CUCC C U C C G[p(p+ 1)/2]− (G− 1)(p) + 1
CUCU C U C U G[p(p+ 1)/2]− (G− 1)(p) +G
UUCC U U C C G[p(p+ 1)/2]− (G− 1)(p− 1) + 1
UUCU U U C U G[p(p+ 1)/2]− (G− 1)(p− 1) +G
CCUC C C U C [p(p+ 1)/2] + (G− 1)(p− 1) + 1
CCUU C C U U [p(p+ 1)/2] + (G− 1)(p− 1) +G
CUUC C U U C G[p(p+ 1)/2]− (G− 1) + 1
CUUU C U U U G[p(p+ 1)/2]− (G− 1) +G
UCUC U C U C G[p(p+ 1)/2] + (G− 1)p+ 1
UCUU U C U U G[p(p+ 1)/2] + (G− 1)p+G
UUUC U U U C G[p(p+ 1)/2] + 1
UUUUU U U U G[p(p+ 1)/2] +G

Appendix B: Alternative Form of the Likelihood

B.1 Alternative Likelihood

We have already seen that the observed weighted likelihood can be
written as in (5) and, analogous to (6), the associated complete-data weighted
likelihood can be written as

Lcomp(θ|DC, α) =

2∏
i=1

⎡
⎣ ni∏
j=1

G∏
g=1

[πgfg(xij |θ)]z
(i)
jg

⎤
⎦
αi

. (13)
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Dempster et al. (1977) state that when integrating the complete-data like-
lihood over the space of unknown quantities, in our case Z2, it is desired
that the result should be the observed likelihood. The observed likelihood
as given in (5), however, does not satisfy this property. Indeed,

∫
Z2

Lcomp(ϑ|DC, α)dz2 =

∫
Z2

⎧⎨
⎩

n1∏
j=1

G∏
g=1

[πgfg(x1j |θg)]
z(1)
jg α ×

n2∏
j=1

G∏
g=1

[πgfg(x2j |θg)]
z(2)
jg (1−α)

⎫⎬
⎭ dz2

=

n1∏
j=1

G∏
g=1

[πgfg(x1j |θg)]
z(1)
jg α

n2∏
j=1

⎧⎨
⎩

∫
Z2

G∏
g=1

[πgfg(x2j |θg)]
z(2)
jg (1−α) dz2

⎫⎬
⎭

=

n1∏
j=1

G∏
g=1

[πgfg(x1j |θ)]z
(1)
jg α

n2∏
j=1

⎧⎨
⎩

∑
zj∈B

G∏
g=1

[πgfg(x2j |θ)]z
(2)
jg (1−α)

⎫⎬
⎭

=

n1∏
j=1

G∏
g=1

[πgfg(x1j |θ)]z
(1)
jg α

n2∏
j=1

⎧⎨
⎩

G∑
g=1

[πgfg(x2j |θ)](1−α)

⎫⎬
⎭ , (14)

where

B =
{
zj =

(
z
(2)
j1 , z

(2)
j2 ,

. . . , z
(2)
jG

) ∣∣∣ z(2)jg ∈ {0, 1},∀g ∈ {1, 2, . . . , G},
G∑

g=1

z
(2)
jg = 1

⎫⎬
⎭ .

Clearly, this is not the same as the form given in (5). Therefore, to maintain
the relationship between the complete and incomplete weighted likelihood
as presented in Dempster et al. (1977), we consider using the form of the
incomplete weighted likelihood given in (14) and denote this by Lalt.

Note that there are two extreme cases that should be considered sepa-
rately. The first extreme case is when α = 0:

∫
Z2

Lcomp(ϑ|DC, α = 0)dz2

=

∫
Z2

n2∏
j=1

G∏
g=1

[πgfg(x2j |θg)]
z
(2)
jg (1−α) dz2 =

n2∏
j=1

G∑
g=1

πgfg(x2j |θ),
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which is equivalent to (14) when α = 0. The second extreme case, which
turns out to be more interesting, is when α = 1:

Lalt(ϑ|Do) = Gn2

n1∏
j=1

G∏
g=1

[πgfg(x1j |θg)]
z(1)
jg = Gn2LDA(ϑ|DL). (15)

When α = 1 we are performing discriminant analysis; however, the result-
ing likelihood in (15) is not equal to LDA but is instead proportional to LDA.

For both the original and altered observed likelihoods, the complete-
data likelihood is identical. Therefore, if we were to take a Gaussian mixture
model, the updates in the M-step would be the same as those given in Vrbik
and McNicholas (2015), regardless of whether the original or alternative
likelihood were used. However, the updates for ẑ(2)jg in the E-step would
become

ẑ
(2)
jg =

[
π
(t)
g φ(x2j |μ(t)

g ,Σ
(t)
g )

](1−α)

G∑
g=1

[
π
(t)
g φ(x2j |μ(t)

g ,Σ
(t)
g )

](1−α)
.

B.2 Simulation Comparing the Original and Altered Likelihoods

We perform simulations to compare the performance of the original
and altered likelihoods. We simulate 100 datasets with 300 samples: 150
of these sample belong to one group which follows a N2(0,Σ1), and the
remaining 150 belong to another group which follows a N2(Δ,Σ2), where
Δ = [0,Δ]′ , and

Σ1 =

[
1 0.7
0.7 1

]
, Σ2 =

[
1 0
0 1

]
.

We takeΔ ∈ {1, 5} corresponding to different levels of clustering difficulty.
For each dataset, we consider p ∈ {10%, 20%, . . . , 80%, 90%}, where p is
the percentage of labelled data.

To choose the weights for FSC, we looked at 11 different values of α.
These values were taken to be α ∈ αARI, where αARI = {0, 0.1, 0.2, . . . , 1}.
We then calculate the ARI for each of these weights for the 100 datasets
and take the average ARI for each weight. We then choose the weight
that had the highest average ARI. We denote the resulting FSC solution
for each weight α by FSCα. Furthermore, denote by FSCARI the FSC so-
lution with the chosen weight resulting from the highest average ARI. Fi-
nally, in the special cases corresponding to the three species of classification
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Figure 16. For Δ = 1: (a) and (b) FSCα and FSCARI (α ∈ αARI) for the original and altered
likelihood respectively. (c) and (d) FSCclust, FSCclass, FSCDA and FSCARI for the original and
altered likelihood respectively.
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Figure 17. For Δ = 5: (a) and (b) FSCα and FSCARI (α ∈ αARI) for the original and altered
likelihood respectively. (c) and (d) FSCclust, FSCclass, FSCDA and FSCARI for the original and
altered likelihood respectively.
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α = 0, 0.5, 1, we denote the FSC solution by FSCclust, FSCclass and FSCDA,
respectively.

In Figures 16 and 17, we show different line plots for Δ = 1 and
Δ = 5, respectively. In each plot, the average ARI is plotted against the
percentage of labelled data p. A dotted black line is used to show the result
for FSCARI with the corresponding chosen weight shown above each point.
The first row in each plot shows the results when using all the weights, and
the second row singles out the three different species of classification and
FSCARI. The standard errors were calculated by taking the ARI for all 100
datasets of the chosen weight of FSCARI and calculating one (darker grey)
and two (lighter grey) standard deviations from the mean ARI.

In general, the overall classification performance between the altered
and original likelihoods are similar. The chosen weights for FSCARI, how-
ever, differ between the two forms of the likelihood. ForΔ = 1, this differ-
ence is less pronounced than for Δ = 5. More specifically, for Δ = 1, the
difference between the weights for all but 10%, 30% and 50% differ by at
most 0.1 if they are not exactly the same. For Δ = 5, however, the differ-
ences between the chosen weights are greater, and there are fewer propor-
tions for which the difference is small. We also see that at lower percentages
of labelled data, there is more variability in the average ARI between the
different weights.

In conclusion, although the choice of the weights is different between
the two likelihoods, the overall classification performance when using the
chosen weight in each case is very similar. Moreover, the altered form is
not strictly a likelihood. Accordingly, we use the original, and more natural
form, form of the likelihood for FSC.
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