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exploration operators outperform the highest performance.
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1. Introduction

In the last decades, evolutionary computations, which are a subfield
of computational intelligence that involves optimization problems, have re-
ceived much attention for different applications. Evolutionary algorithms
have been inspired by creating a relation between the power of natural evo-
lutionary mechanisms and the nature of the solving problem. In literature,
there are many different variants of evolutionary algorithms such as genetic
algorithms (GA) (Holland, 1992) and particle swarm optimization (PSO) al-
gorithms (Sheikhpour, Sarrama, and Sheikhpour, 2016). The common idea
behind all these algorithms is that, given a population of objects or individ-
uals, the environmental pressures, causes natural selection, which causes a
rise in the fitness of the population. Evolutionary algorithms implement their
structures in different ways according to population intialization, candidate’s
evaluation, termination condition, selection method, recombination and mu-
tation. The main blocks of the evolutionary algorithms family are popu-
lation initialization method, termination criteria, fitness function, mutation
method, selection method and crossover/recombination method. An evolu-
tionary algorithm may implement these blocks in different ways (Özkaynak,
2015). Regardless of their different structures, these algorithms usually cre-
ate a random population and evolve it over a predefined number of genera-
tions. Selection, reproduction, mutation, and recombination operators per-
form the evolutionary process. Evolutionary algorithms divide the search
process into two phases: exploration and exploitation. For the optimization
parameters of each evolutionary algorithm, each one has its own defect such
as low classification accuracy, weak generalization ability, slow convergence
speed, and so on. Moreover, evolutionary algorithms require some random-
ness to proceed. To overcome all these problems, many approaches in the
literature have been used to improve the performance of evolutionary algo-
rithms. One of the most common mathematical methods that recently has
been applied to improve both exploration and exploitation is chaos theory.
Chaos theory can study the behavior of systems that are highly sensitive to
their initial conditions and can generate a more variable range of numbers
instead of random numbers. The behavior of chaotic systems appears to
be random; therefore, chaotic systems can be used for the needed random-
ness by evolutionary algorithms. Chaos theory has provided effectiveness
in different fields of sciences, such as chaos control (Strogatz, 1994), syn-
chronization (Sprott, 2010), optimization research (Abdullah, Enayatifa, and
Lee, 2012; Emary, Zawbaa, and Hassanien, 2016) and so on. In recent years,
the applications of chaos in various disciplines, including optimization re-
search problems, have attracted more attention. Based on chaos theory, the
chaotic optimization algorithm (COA) (Wang, Liu, and Liu, 2001) utilizes
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the nature of chaotic sequence, including the quasi-stochastic property and
ergodicity. Currently, chaotic systems are an active area of research in the
last few years and have been applied in different sciences research and en-
gineering fields (Hosseinpourfard and Javidi, 2015; Wang et al., 2014).

Feature selection methods provide a way for identifying the impor-
tant features and removing irrelevant (redundant) ones from the datasets.
The main purposes are data dimensionality reduction and improving pre-
diction performance. In real world applications, data representation usually
uses many features with redundancy of features. This means that important
features may be removed, while unnecessary features remain. Moreover,
the relevant features have an influence on the output and contain important
information that will be obscured if any of them are removed. There are var-
ious heuristic techniques that mimic the behavior of biological and physical
systems in the nature. These techniques have been proposed as methods for
global optimizations of the problems. A new meta-heuristic optimization
algorithm called WOA (Hosseinpourfard and Javidi, 2015) which mimic the
hunting behavior of humpback whales is applied for features selection of
different datasets. Optimization results demonstrated that WOA is a very
competitive and promising algorithm compared to the state-of-the-art opti-
mization algorithms (Mirjalili and Lewis, 2016). However, a main problem
that still exists when applyingWOA for feature selection is determining how
to choose the optimal feature subset of the target dataset. In addition, clas-
sification problems usually involve a number of features and not all these
features are equally important for classification. Some features may be re-
dundant or even irrelevant, and if they are not eliminated from classifica-
tion process, it could result in increasing computational time complexity or
decreasing classification accuracy. In order to achieve better performance,
feature selection or reduction is a necessary step for a complex dataset in
classification. Feature selection is proposed in Ebrahimi and Khamehehi
(2016) to be an NP-hard combinatorial problem and requires efficient solu-
tion algorithms. In this paper, we propose a novel optimization algorithm
for feature selection based on chaos theory and WOA and is called chaotic
whale optimization algorithm (CWOA). Therefore, WOA is employed with
ten chaotic maps for achieving an improved performance of feature selection
from ten different datasets. The proposed new algorithm chaotic whale op-
timization algorithm (CWOA) showed better performance over the classical
algorithms such as WOA for feature selection. Chaotic maps adapted WOA
work better than the traditional WOA in terms of the quality of the solution
and obtaining faster convergence. In order to evaluate the proposed new al-
gorithm, some benchmark functions are utilized. The experimental results
showed that the proposed algorithm in this paper improved the performance
of evolutionary algorithms for feature selection in various datasets.
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The outline of the paper is as follows. In Section 2, we demonstrate
the problems of chaos based evolutionary algorithms in the literature. Sec-
tion 3 introduces the basics of WOA and chaotic maps for feature selection.
In Section 4, we describe the proposed new hybrid optimization algorithm
in details. Section 5 presents experimental results and analysis. Finally, we
introduce concluding remarks and future work in Section 6.

2. Related Work

There are many studies in the literature that focus on improving the
performance of evolutionary algorithms. Based on the analysis and results
of these studies, we found that chaos theory played an effective role in im-
proving the performance of evolutionary algorithms. As mentioned in the
previous section, the problem of evolutionary algorithms, such as GA and
PSO, is their premature convergence; where the used algorithm perhaps get
stuck in the local optimum (minimum or maximum). One of the prominent
algorithms based on hybridizing chaotic optimization algorithm (COA) and
particle swarm optimization (PSO) algorithm is introduced in Gadat and
Younes (2007) to improve the classification accuracy of data. This algo-
rithm (CPSO) solved the time-consuming problem and introduced a small
sample learning ability of LS-SVM. The simulation results showed that the
proposed CPSO algorithm could effectively optimize the parameters of LS-
SVM model. GA is one of the important algorithms in evolutionary algo-
rithms, and it has been applied in many applications in the literature. To
improve the performance of this algorithm, Liu and Zhou (2015) presented
a new system to prove that the chaos algorithm has the capability to improve
the performance of GA.

Chaos theory describes erratic behavior in nonlinear systems and for
this purpose, it uses chaotic maps. Chaotic maps are visualized and can
travel as particles in a limited range of nonlinear, dynamic, and nonlinear
systems with no definite regularity-traveling path of these particles. Chaotic
maps have been employed in Yang and Chen (2002) to manipulate the muta-
tion probability to increase the exploitation of GA. Therefore, a new hybrid
method was proposed in Abdullah et al. (2012) to combine GA and chaotic
theory for image encryption. Chaotic logistic maps are used in this method
for the initial image encryption and hence GA is applied to improve the ef-
ficiency of the encryption process of the image. An improved logistic map,
namely a double bottom map, was used in Santos et al. (2012) with a PSO
algorithm for production optimization problems. Eight chaotic maps for pa-
rameter adaptation are used in Alatas, Akin, and Ozer (2000). Their exper-
imental results showed that the proposed algorithm improved the solution
quality and sometimes improved the global search capacity. Biogeography-
based optimization (BBO) is an optimization algorithm that has been applied
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in the literature in some application such as ecosystems. Chaotic maps are
used in Saremi, Mirjalili, and Lewis (2014a) to improve the performance
of BBO. Ten chaotic maps are integrated with the BBO algorithm with the
objective to improve the exploration and the exploitation of the BBO algo-
rithm. The Firefly Algorithm (FA) is a new bio-inspired algorithm, which
simulates the behavior of fireflies. To solve the problems of low accuracy
and local convergence in FA, chaos theory is introduced into the evolution-
ary process of FA. The comparison of firefly algorithm with chaotic maps is
performed in Shoubao, Yu, and Mingjuan (2014), showing that convergence
quality and accuracy are improved, with FA and chaos. All these hybrid so-
lutions are used to indicate the great impact of embedding chaotic maps. As,
evolutionary algorithms have sensitive dependence on their initial condition
and parameters, improving these parameters can have a substantial effect.
Chaotic systems are widely used to express the optimization parameters and
in the creation of the initial population. Thus, replacing random sequences
with chaotic sequences during the evolutionary process can improve the per-
formance of evolutionary algorithms.

Feature selection is an important technique that can be extremely use-
ful in reducing the dimensional data to be processed by the classifier, reduc-
ing the execution time and enhancing the recognition rate of the classifier.
Several researchers have addressed the feature selection problem as an op-
timization problem where the fitness function is the accuracy of the given
classifier that may be maximized by the selected features. Nature inspired
meta-heuristic algorithms are now among the most widely used algorithms
for solving optimization problems. To overcome the challenges of parame-
ter optimization and feature selection in the classification process, a feature
selection and parameter optimization approach based on GA has been pro-
posed (Huang and Wang, 2006). Recently, chaos embedded methods have
been applied in parameter optimization of SVM for feature selection (Li et
al., 2012a,b; Liu Wang, and Jin, 2005). A new PSOmethod that uses chaotic
mappings for parameter adaptation of wavelet v-support vector machine is
proposed in Wu (2015). In Saremi et al. (2014b), a new chaotic differential
evolution optimization approach based on the Ikeda map was proposed to
optimize kernel function parameters of SVM. In this approach, a chaotic se-
quence has also been used in the feature selection process. The analysis of
the experimental results of the studies in the literature show that chaotic se-
quences have an effective potential for optimization of input feature subsets.
Although SVM classification performance has been improved significantly
in the last years, there are still some outstanding problems. Therefore, a
hybridized chaotic search and gravitational search algorithm (GSA) with
SVM and a new chaos embedded GSA-SVM (CGSASVM) hybrid system
are presented in Chaoshun, Xueli, and Ruhai (2015). In addition, two kinds
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of chaotic maps, namely logistic maps and tent maps were embedded in PSO
to handle feature selection problems Chuang, Yang, and Li (2011). To the
best of our knowledge, there is no in literature CWOA is used for feature
selection and improving the performance of evolutionary algorithms. This
paper proposes a new hybrid optimization algorithm CWOA based on chaos
theory and whale bio-inspired algorithm.

3. Basics and Background

3.1 Whale Optimization Algorithm

A. Inspiration Analysis

Whales are extravagant animals and they are considered as the biggest
mammals among all animals. A grown-up whale can grow up to 30 meters
long and weigh 180 tons. There are several types of whale such as killer,
humpback, finback, and blue. Whales never sleep because they need to
breathe from the surface of seas and oceans. Moreover, only half of the
brain can sleep (Rattenborg, Amlaner, and Lima, 2000). Unlike fish, whales
do not have gills for extracting oxygen from the water, so they must come
to the surface to get the oxygen or they would drown. Thus, when whales
rest they remain partially conscious to obtain the necessary air and to react
to the danger. The body of whales is designed to allow them to hold their
breath for extended periods while minimizing the amount of energy they use
when swimming. Whales live alone or in groups. Some types (such as killer
whales) can live in a family all their life period. Humpback whales are one
of the biggest whales and their favorite prey is krill and small fish species.

As indicated by (Hof and Van, 2007), whales have basic cells in spe-
cific regions of their brains like those of humans, which are called spindle
cells. These cells are in charge of judgment, feelings and emotions, and
the behavior of humans. Whales have twice number of these cells than an
adult human. Whales can think, learn, judge, communicate, and become
emotional just as a human does, but with a lower level of smartness than
humans. Whales are able to develop their own dialect as well. The special
hunting technique of humpback whales is considered their primary point of
interest. This method is called bubble-net feeding method as described by
Watkins and Schevill (1979), where they create distinctive bubbles along a
circle or ’9’ behavior-shaped path as shown in Figure 1.

By the end of 2011, this behavior was discussed and surveyed accord-
ing to observations from the surface of the sea or ocean. Moreover, authors
in Chuang et al. (2011) investigated the behavior of these whales by us-
ing tags sensors. In this work, about 300 tags-derived bubble-net feeding
events of 9 individual humpback whales have been captured. In addition,
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Figure 1. Bubble-net feeding behavior of humpback whales

the authors found that two maneuvers associated with bubble and named
them upward-spirals and double- loops. Humpbackwhales dive around 12m
down and then start to create bubbles in a spiral shape around the prey and
swim up toward the surface of the sea or ocean. The latter maneuver in-
cludes three different stages: coral loop, lob tail, and capture loop. Detailed
information about these behaviors of, humpback whales and others are dis-
cussed in more detail in Goldbogen et al. (2013).

B. Mathematical Model of WOA

This part highlights the mathematical model, including encircling prey,
spiral bubble-net feeding maneuver, and search for prey (Hosseinpourfard
and Javidi, 2015).

B1. Encircling prey

Humpback whales can perceive the area of prey and enclose it. The
position of the optimal design in the hunt or search space is not known from
earlier positions, the WOA optimization algorithm supposes that the present
best candidate solution is the objective prey or is near to the optimum. In
this case, the humpback whales have defined the best search agent; the other
search agents then will try to change their positions towards the best agent
of search. This behavior can be described by the following equations:

D = |C · �X∗(t)− C �Xi(t)| , (1)

�Xi(t+ 1) = �X∗(t)−A ·D , (2)
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where t indicates the current iteration, A and C are coefficient numbers. ·
indicates an element-by-element multiplication. �X is the position matrix of
the ith whale with size number of search agents (population size)× number
of dimensions. �X∗ is the position vector of the optimal solution (best search
agent position) with size 1 × number of dimensions which can obtained
so far, || is defined as the absolute value. It is important to notice that �X∗
should be updated for each iteration if there exists a better solution. The
coefficients A and C can be mathematically formulated according to the
following equations:

A = 2a · r − a , (3)

C = 2 · r , (4)

where a is decreased linearly from 2 to 0 over the course of iterations. It is
defined in equation (5), where t is the iteration number and Maxiter is the
maximum number of iterations. r is a random number in [0,1]. The hump-
back whales can attack the prey with the bubble-net method.

a = 2− t× 2

Maxiter
. (5)

B2. Bubble-Net Attacking Method (Exploitation Phase)

Two approaches are designed here to modelmathematically the bubble-
net behavior of humpback whales:

Shrinking encircling mechanism: This method is achieved by decreasing
the value of a in equation 12. A is a random value in the interval
where a is decreased from 2 to 0 over the course of iterations. By
setting random values for A in [-1, 1], the new position of a search
agent can be defined anywhere in between the original position of the
agent and the position of the current best agent.

Spiral-updating position : A spiral equation is then created between the
position of whale and prey to mimic the helix-shaped movement of
humpback whales as follows:

�Xi(t+ 1) = D · eblcos(2Πl) + �X∗(t) , (6)

where D = | �X∗(t) − �Xi(t)| indicates the distance of the ith whale
to the prey (best solution obtained so far). b is the logarithmic spiral
shape constant, l is a random number in [-1, 1], and is an element-by-
element multiplication.
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During the optimization phase, where humpback whales swim around
the prey in a shrinking circle and along a spiral-shaped path simulta-
neously assuming that the probability of 50 percent to choose between
either the shrinking encircling mechanism or the spiral model to up-
date the position of whales. Therefore, the mathematical model of this
behavior can be expressed as follows:

�Xi(t+ 1) =

{
�X∗(t)−A ·D if p < 0.5

D · ebl · cos(2Πl) + �X∗(t) if p ≥ 0.5 ,
(7)

where p is a random number in [0,1]. In addition to the bubble-net
method, the humpback whales search for prey randomly. The mathe-
matical model of the search is as follows.

B3. Search for Prey (Exploration Phase) :

The same approach based on the variation of the A parameter can be
applied to search for prey. Humpback whales search randomly according to
the position of each other. We useAwith the random values greater than 1 or
less than 1 to force search agents to move far away from a reference whale.
In contrast to the exploitation phase, we update the position of a search
agent in the exploration phase, according to a randomly chosen search agent
instead of the best search agent found so far. This mechanism and |A| >
1 emphasize exploration and can allow the WOA algorithm to perform a
global search. The mathematical model can be described is as follows:

D = C · �Xrand − �X , (8)

�Xi(t+ 1) = �Xrand −A ·D , (9)

where �Xrand is a random position vector with size 1 multiplied by the num-
ber of dimensions, which has been chosen from the current population. The
WOA algorithm starts with a set of random solutions. At each iteration,
search agents update their positions with respect to either a randomly cho-
sen search agent or the best solution obtained so far. The a parameter is
decreased from 2 to 0 in order to provide exploration and exploitation, re-
spectively. A random search agent is chosen when |A| > 1 while the best
solution is selected when |A| < 1 for updating the position of the search
agents. Depending on the value of p, WOA is able to switch between either
a spiral or circular movement. Finally, the WOA algorithm is terminated by
the satisfaction of a termination criterion.
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3.2 Chaotic Maps for Feature Selection

Chaos is unstable dynamic behavior that provides sensitive depen-
dence on the initial conditions and includes infinite unstable periodic mo-
tions in nonlinear systems. Chaos has a fine internal structure and three
important dynamic characteristics; ergodicity, the sensitive dependence on
initial conditions, and the quasi-stochastic property. Ergodic property is the
most important one and can search all nodes or states in the search plane by
its formulas within certain range.

Chaos strategy is applied to avoid being trapped in local optima and
improve the quality of searching global optimum. Therefore, chaos has been
employed in numerous optimization applications. Considering that the fea-
ture selection problem is an optimization problem with searching range of
[0, 1], chaos can be used to optimize this problem. A chaotic map with n
dimensions is a discrete-time dynamical system that can be expressed by the
following equation:

cu
(k+1)
i = f(cu

(k)
i ), i = 1, 2, 3, ..., n . (10)

By defining the initial state of cu(0)i , a chaotic sequence can be evalu-
ated by running the system function, where chaotic sequences can be defined
in the form of cu(k)i , k = 0, 1, 2, .

In this paper, ten chaotic maps (Abdullah et al., 2012) are adopted to
represent the selection of features of ten benchmark datasets. These chaotic
maps names and its mathematical forms are described in Table 1.

4. Chaos Maps for Whale Optimization Algorithm

In this section, chaotic maps are considered to improve the perfor-
mance of WOA in terms of avoiding being trapped at the local optima and
improving the convergence speed. Ten chaotic maps are used in this pa-
per. These chaotic maps are employed to manipulate the random parameters
values of WOA. As the initial values of chaotic maps may have significant
effects on the fluctuation pattern, we set the initial point of all chaotic maps
to 0.7 while the rest of parameters (e.g. c and d) are initialized as shown in
Table 1. These parameters are found to be the best based on trial and error.
In WOA, the parameters A, C , P , PI and l are considered the key factors
affecting WOA’s Convergence behavior. A, C , P and l are affecting bubble-
net attacking method (exploitation phase), A and C for shrinking encircling
mechanism, while l for the spiral model. The parameter P is the probability
to choose between either the spiral model or shrinking encircling mechanism
to update the whales’ positions during the optimization. Also PI affects the
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Table 1. The adapted chaotic maps

No. Chaotic Map Mathematical Form Range/Interval

1 Chebyshev ui+1 = cos(icos−1(ui)) (-1,1)
2 Circle ui+1 = mod(ui + d − ( c

2π )sin(2πui), 1) , c = 0.5 and d = 0.2 (0,1)

3 Guass/mouse ui+1 =

{
1, ui = 0

1
mod(ui,1)

, otherwise
(0,1)

4 Iterative ui+1 = sin( cπ
ui

) , c = 0.7 (-1,1)

5 Logistic ui+1 = cui(1 − ui) (0,1)

6 Piecewise ui+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ui
p , 0 ≤ ui < p
ui−p

0.5−p , p ≤ ui < 0.5
1−p−ui
0.5−p , 0.5 ≤ ui < 1 − p

1−ui
p , 1 − p ≤ ui < 1

, P = 0.2 (0,1)

7 Sine ui+1 = c
4 sin(πui), c = 4 (0,1)

8 Singer ui+1 = μ(7.86ui − 23.31u2
i + 28.75u3

i − 13.302875u4
i ) , μ = 1.07 (0,1)

9 Sinusoidal ui+1 = cu2
i sin(πui) , c = 2.3 (0,1)

10 Tent ui+1 =

{
ui
0.7 , ui < 0.7

10
3 (1 − ui), ui ≥ 0.7

(0,1)

updating position in the exploration phase. We evaluate the performance
of each of these parameters along with different chaotic maps singly and in
combination of them over WOA. Figure 2 shows the general architecture of
the chaotic whale optimization algorithm (CWOA), where the highlighted
boxes represent the parts of WOA where chaos maps are applied.

The proposed CWOA is used as a feature selection algorithm that se-
lects the optimal feature subset in a wrapper mode. The CWOA feature
selection algorithm starts with randomly initialized search agents with a set
of solutions which are feature subsets in our case. Each feature subset has
a different combination of features with different size. At each iteration,
each search agent updates its position based on a predefined fitness func-
tion. Classification performance is used as the fitness function where 5-
nearest neighbor is the used classifier. The best feature subset is one which
maximizes the classification accuracy and minimize the selected features.
The mathematical formula of the fitness function is defined as follows.

Fnt = maximize(Acc + wf ∗ (1− Lf

Lt
) , (11)

where Acc is the classification accuracy calculated as the the number of
classified instances divided by total number of instances, wf is the weighted
factor which has value in [0, 1], Lf is the length of selected features subset
and Lt is the total number of features. In this paper, a comparative study
between different chaotic operators is provided. In addition to, the combi-
nation of all of these operators (WOA with chaotic shrinking/spiral/P /PI
operators) is provided and benchmarked.
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Figure 2. Chaotic whale optimization algorithm architecture (see online version for color)
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4.1 Chaotic Maps for Shrinking Circle Mechanism (CWOA-SC)

As mentioned before,A andC are parameters for shrinking the encir-
cling mechanism. In this work, chaotic maps are employed in defining both
of them, where the random variable r is substituted by the obtained values
from the chaotic map as follows.

A = 2a · C(t)− a , (12)

C = 2 · C(t) , (13)

where C(t) is the obtained value of chaotic map in the t− th iteration.

4.2 Chaotic Maps for Spiral Shaped Mechanism (CWOA-SS)

Parameter l has great influence on spiral updating position of hump-
backs whale. Figure 3 shows the behavior of l for 500 iterations. We em-
ployed chaotic maps in the spiral equation as follows.

�Xi(t+ 1) = D · ebC(t)cos(2ΠC(t)) + �X∗(t) , (14)

where D = | �X∗(t) − �Xi(t)| indicates the distance of the ith whale to the
prey, b is a constant and C(t) is the obtained value of chaotic map in the tth
iteration.

4.3 Chaotic Maps for P Parameter (CWOA-P)

In this subsection, the probability of choosing between either the spi-
ral or shrinking mechanism to update the position of whales during opti-
mization is substituted with C(t).

4.4 Chaotic Maps for Choosing Search Agent PI (CWOA-PI)

As |A| > 1 has a great impact on updating position of whale during
searching for prey (exploration phase), chaotic maps are applied to select
the search agent. The mathematical model is defined as follows.

D = C · �XPI − �Xi (15)

�Xi(t+ 1) = �XPI −A ·D , (16)

where �XPI is a chosen position vector from the current population with size
1 multiplied by number of dimensions, C(t) is the chaotic map at the tth
iteration.
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Figure 3. Visualization of Chaotic Maps for l
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4.5 Chaotic Maps for Changing All Parameter (CWOA-All)

All the parameters from previous sections are used together in order
to improve the performance of WOA. All of these parameters are substituted
with the obtained value of chaotic map C(t).

5. Implementation and Results

5.1 Datasets Description

Ten benchmark datasets are used to evaluate the performance of each
version of CWOA. The datasets are collected from the UCI dataset repos-
itory (Bache and Lichman). A brief description of these datasets are pre-
sented in Table 2. Also, we note that some data sets contain missing values
(information) in some records. All these missing values for a given feature
are replaced by the median value of all known values of this feature in the
class. Equation (17) shows the median method for dealing the missing value
xi,j for jth feature for a given kth class C .

xi,j = mediani:xi,j∈Ck
xi,j (17)

5.2 Parameters Initialization and Comparative Setting

The initial parameters settings for WOA versions are presented at
Table 3. The performance of different versions of CWOA are compared on
ten benchmark datasets with the original WOA and ten other optimization
algorithms. The parameter settings for each algorithm used in all experi-
ments are shown in Table 4. All of these algorithms were adopted with their
default parameters that proposed in literature, since our main concern is to
boost the performance of only whale optimization algorithm.

5.3 Performance Metrics

In this subsection, five different measurements are used to evaluate
CWOA algorithms. These measurements are the worst, best, mean fitness
value, standard deviation and average features selection size (ASS). They
are mathematically defined as following:

Std =

√∑M
i=1(Qi − μ)2

M
, (18)

BestF itness = maxMi=1Qi , (19)
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Table 2. Datasets Description

No. of Attributes No. of Instances No. of Classes Missing Values

Wisconsin Diagnosis Breast
Cancer (WBCD)

32 596 2 No

Mice Protein Expression
Dataset (MPED)

82 1080 8 Yes

Parkinson’s Disease Detection
Dataset (PDD)

23 197 2 No

Cardiotocography 23 2126 3 No

Hepatitis 19 155 2 Yes

Lung Cancer 56 32 3 Yes

Single Proton Emission
Computed Tomography

(SPECT)
44 267 2 No

Thoracic Surgery 17 470 2 No

Statlog (Heart) 13 270 2 No

Indian Liver Patient Dataset 10 583 2 No

Table 3. Parameters Settings for All WOA Versions

Parameter Value
Number of Search Agents (Population) 30

Lower Bound 1
Upper Bound Same as Total Number of Features in

The Original Dataset
Number of Iterations (Generation) 50

Dimension Same as Total Number of Features in
The Original Dataset

WorstF itness = minM
i=1Qi , (20)

MeanFitness =
1

M

M∑
i=1

Qi , (21)

ASS =
1

M

M∑
i=1

length(Qi)

L
, (22)

whereM is the maximum number of iterations, Q is the best score obtained
so far at each time, and L is number of features in the original dataset.
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Table 4. Comparative- based algorithms: A parameters settings, where (PSO) =
Particle Swarm Optimization (Kennedy and Eberhart, 1995), ABC = Artificial Bee
Colony (Karaboga, 2005), CSO = Chicken Swarm Optimization (Meng et al., 2014),
BBO - Biogeography-Based Optimization (Simon and Cleveland, 2008), EHO =
Elephant Herding Optimization (Gai-Ge et al., 2015), KH = Krill Herd (Gandomi
and Alavi, 2012), BSA = Bird Swarm Algorithm (Meng et al., 2016), FPA=Flower
Pollination Algorithm (Yang, 2012), MFO= Moth-Flame Optimization Algorithm
(Mirjalili, 2015) and GWO = Grey Wolf Optimizer (Mirjalili, Seyed, and Lewis, 2014).

↓ Algor- Parameter Value(s)
ithms

PSO
An inertial weight = 1, A inertia weight damping ratio = 0.9, Personal learning coefficient = 1.5 and Global
learning coefficient = 2.0

ABC A number of colony size = 10, A number of food source = 5 and A number of limit trials = 5

CSO
A number of chicken updated = 10, The percent of roosters population size = 0.15, The percent of hens popu-
lation size = 0.7and The percent of mother hens population size = 0.05

BBO

A number of keeping best habitats = 2, A lower bound for immigration probability per gene = 0, A upper bound
for immigration probability per gene =1, The step size used for numerical integration of probabilities = 1, max
immigration rate for each island = 1, max emigration rate, for each island = 1 and max species count for each
island = 30

EHO
A number of keeping best elephants = 2, A number of genes in each population member = number of features,
A mutation probability = 0.3, A clan operator = 50, and number of elephants in each clan = 10

KH
A number of runs = 3, A number of krill = number of features and Foraging motion operators (vf = 0.02, Dmax
= 0.003, Nmax = 0.01, Sr = 0)

BSA
The frequency of birds’ flight behaviours = 10, A Cognitive accelerated coefficient = 1.5, A Social accelerated
coefficient = 1.5, The two parameters which are related to the indirect and direct effect on the birds’ vigilance
behaviours = 1

FPA The probability switch = 0.6

MFO
A number of dimension = number of features, The maximum generation = 30, Search agent number = 50, lower
bound = 1 and upper bound = size of features

GWO
A number of dimension = number of features, The maximum generation = 30, Search agent number = 50, lower
bound = 1 and upper bound = size of features

In addition, p-Values from Wilcoxon’s rank sum test (nonparametric
statistical test) with 5% significance level are adopted (Wilcoxon, 1945).
The statistical test is needed to indicate that the proposed algorithm pro-
vides a significant improvement compared to the other algorithms (Derrac
et al., 2011). Wilcoxon’s rank sum test is more sensitive than the t-test as it
assumes proportionality of differences between two paired samples. More-
over, it is safer than t-tests as it does not assume the normal distribution.
Additionally, the outliers affect the Wilcoxon test less than the t-test (Der-
rac et al., 2011). The best values of p when p-value < 0.05 which can
be considered sufficient evidence against the null hypothesis. All the ex-
periments were implemented in MATLAB-R2012 on a computer with Intel
Core 2 GHz and 2GB memory.

5.4 Statistical Analysis for the Datasets

Tables 5, 6, 7, 8 and 9 present the statistical results obtained for all
used datasets with ten chaos maps in terms of best fitness, worst fitness,
mean fitness, standard deviation and average selection size. All of these
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measurements are calculated on average. Best fitness, worst fitness and
mean fitness are used to evaluate the performance of the selected features
which maximizing the classification accuracy and minimizing the number
of selected features. Average feature selection size is used to evaluate the
number of selected feature obtained per time. In order to evaluate the stabil-
ity, the standard deviation is adopted. In these tables, we show how embed-
ding chaotic maps in searching iterations of the algorithm can significantly
boost the performance of WOA. For example, the mice protein expression
dataset contains many attributes, which significantly influence the classi-
fication performance. The dataset consists of the expression levels of 77
proteins/protein modifications, which produced detectable signals in the nu-
clear fraction of cortex. 72 mice were included in the experiment, where 38
control mice and 34 trisomic mice (Down syndrome). The eight classes of
mice are described based on features such as genotype, behavior and treat-
ment. According to genotypes, mice can be control or trisomic. According
to behavior, some mice have been stimulated to learn (context-shock) and
others have not (shock-context), and in order to assess the effect of the drug
meantime in recovering the ability to learn in trisomic mice, some mice have
been injected with the drug and others have not. Feature selection plays an
important role in identifying subsets of proteins discriminating between the
classes. Thus, it can be used to assess associative learning.

Table 5 shows statistical results for the WDBC and MPED datasets.
As it can be seen in this table for WDBC dataset, iterative, circle and piece-
wise maps outperform the other chaos maps, which owns the highest sta-
bility while iterative, sinusoidal, circle, and chebyshev maps do for MPED
dataset. Moreover, the highest mean fitness value (best score) is obtained
by piecewise and circle map, while circle has the highest stability. These
results indicate the performance of circle map is superior in selecting the
minimum number of features with good classification performance. Addi-
tionally it can be observed that CWOA with modification of PI obtains the
best results compared with the original WOA and other version of CWOA,
and CWOAwith the modification of all parameters obtains the worst results.
Furthermore, it can be observed that the circle map used only 8% of the to-
tal number of features (81 features) and acquired the highest classification
accuracy and highest stability. Thus, it can be concluded that the circle map
is superior to the other maps.

Table 6 shows statistical results for the PDD and cardiotocography
datasets. As it can be seen in the table for the PDD dataset, the highest
stability is obtained by circle, iterative, sinusoidal and singer chaotic maps,
while singer, iterative and circle do for the cardiotocography dataset. The
highest results are obtained from CWOA with modification of shrinking,
spiral and choosing random position PI , while CWOA with modification
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Table 5. Statistical Analysis for WDBC and MPED datasets (continued on next page, see
online version for color)

Data sets → WDBC MPED

Measures → Mean Std. Best Worst ASS Mean ⇓ Std. Best Worst ASS

WOA ⇓ Map function 1.64 0.06 1.66 1.28 0.35 1.69 0.07 22 1.34 0.54

Chebyshev 1.65 0.05 1.68 1.34 0.28 1.67 0.06 1.70 1.33 0.19
Circle 1.66 0.05 1.71 1.27 0.12 1.70 0.05 1.72 1.33 0.11
Gauss/mouse 1.64 0.05 1.65 1.32 0.09 1.64 0.05 1.66 1.33 0.20
Iterative 1.66 0.06 1.68 1.27 0.25 1.68 0.05 1.69 1.34 0.13
Logistic 1.66 0.05 1.69 1.33 0.28 1.73 0.06 1.75 1.38 0.10
Piecewise 1.66 0.05 1.69 1.29 0.05 1.70 0.05 1.72 1.35 0.13
Sine 1.64 0.05 1.68 1.33 0.05 1.72 0.06 1.76 1.36 0.14
Singer 1.64 0.05 1.66 1.33 0.08 1.68 0.06 1.74 1.35 0.14
Sinusoidal 1.66 0.05 1.69 1.30 0.12 1.73 0.05 1.75 1.34 0.11

CWOA-SC

Tent 1.66 0.06 1.68 1.32 0.04 1.67 0.06 1.69 1.35 0.16

Chebyshev 1.62 0.06 1.65 1.26 0.06 1.66 0.06 1.70 1.34 0.26
Circle 1.66 0.06 1.70 1.30 0.13 1.70 0.05 1.73 1.33 0.11
Gauss/mouse 1.62 0.06 1.64 1.31 0.10 1.69 0.05 1.71 1.30 0.43
Iterative 1.64 0.04 1.65 1.37 0.10 1.68 0.04 1.71 1.30 0.66
Logistic 1.64 0.06 1.66 1.27 0.91 1.62 0.05 1.63 1.31 0.28
Piecewise 1.64 0.05 1.66 1.32 0.11 1.70 0.05 1.73 1.29 0.13
Sine 1.64 0.06 1.67 1.32 0.37 1.64 0.05 1.70 1.32 0.37
Singer 1.64 0.05 1.66 1.33 0.07 1.65 0.05 1.67 1.33 0.31
Sinusoidal 1.66 0.05 1.69 1.32 0.30 1.70 0.04 1.72 1.39 0.13

CWOA-SS

Tent 1.64 0.06 1.65 1.30 0.14 1.70 0.06 1.71 1.34 0.62

Chebyshev 1.66 0.05 1.69 1.32 0.11 1.75 0.04 1.76 1.31 0.09
Circle 1.67 0.04 1.69 1.32 0.04 1.74 0.04 1.76 1.31 0.08
Gauss/mouse 1.65 0.06 1.68 1.33 0.07 1.74 0.05 1.76 1.33 0.19
Iterative 1.66 0.06 1.69 1.29 0.04 1.72 0.06 1.73 1.34 0.10
Logistic 1.66 0.05 1.68 1.31 0.05 1.72 0.07 1.76 1.32 0.12
Piecewise 1.66 0.04 1.68 1.37 0.07 1.73 0.06 1.75 1.30 0.11
Sine 1.65 0.05 1.67 1.32 0.08 1.72 0.07 1.75 1.32 0.11
Singer 1.66 0.06 1.68 1.28 0.05 1.69 0.05 1.70 1.33 0.17
Sinusoidal 1.64 0.05 1.66 1.27 0.11 1.65 0.04 1.67 1.36 0.13

CWOA-PI

Tent 1.64 0.05 1.65 1.26 0.07 1.72 0.06 1.74 1.34 0.15

Chebyshev 1.64 0.06 1.66 1.28 0.08 1.73 0.07 1.76 1.32 0.17
Circle 1.64 0.05 1.68 1.28 0.22 1.73 0.05 1.75 1.32 0.09
Gauss/mouse 1.66 0.05 1.68 1.34 0.32 1.72 0.05 1.74 1.35 0.12
Iterative 1.67 0.06 1.70 1.31 0.09 1.72 0.06 1.75 1.33 0.11
Logistic 1.60 0.07 1.64 1.33 0.15 1.68 0.06 1.72 1.37 0.14
Piecewise 1.62 0.06 1.65 1.31 0.08 1.73 0.07 1.75 1.35 0.12
Sine 1.63 0.06 1.66 1.30 0.39 1.66 0.05 1.67 1.31 0.09
Singer 1.66 0.06 1.69 1.31 0.17 1.68 0.07 1.73 1.32 0.37
Sinusoidal 1.65 0.06 1.68 1.29 0.15 1.68 0.06 1.71 1.30 0.14

CWOA-P

Tent 1.67 0.08 1.70 1.28 0.24 1.69 0.07 1.74 1.35 0.35
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Table 5. Statistical Analysis for WDBC and MPED datasets (continued from previous page,
see online version for color)

Data sets → WDBC MPED

Measures → Mean Std. Best Worst ASS Mean ⇓ Std. Best Worst ASS

WOA ⇓ Map function 1.64 0.06 1.66 1.28 0.35 1.69 0.07 22 1.34 0.54

Chebyshev 1.54 0.12 1.63 1.35 0.41 1.59 0.13 1.69 1.36 0.34
Circle 1.60 0.13 1.69 1.30 0.29 1.60 0.13 1.68 1.34 0.42
Gauss/mouse 1.56 0.13 1.68 1.32 0.30 1.59 0.13 1.68 1.36 0.29
Iterative 1.58 0.13 1.67 1.31 0.34 1.61 0.15 1.73 1.35 0.32
Logistic 1.55 0.13 1.68 1.30 0.40 1.60 0.14 1.72 1.34 0.38
Piecewise 1.60 0.15 1.68 1.32 0.28 1.60 0.14 1.70 1.32 0.36
Sine 1.60 0.11 1.68 1.31 0.28 1.59 0.14 1.73 1.31 0.39
Singer 1.58 0.13 1.68 1.29 0.30 1.60 0.14 1.69 1.34 0.38
Sinusoidal 1.55 0.12 1.65 1.35 0.30 1.59 0.15 1.70 1.31 0.36

CWOA-All

Tent 1.57 0.14 1.68 1.31 0.32 1.58 0.14 1.68 1.34 0.36

of all parameters failed to improve the performance of WOA. These results
are consistent with the obtained results in Table 5. Again, the circle map in
most cases has the best mean, and the best and worst fitness value with a
small number of features.

Table 7 shows the statistical results for hepatic and lung cancer. As
can be seen for hepatic, the classification performance and average selec-
tion size for WOA and CWOA with spiral, shrinking and PI operator are
almost same. Whereas, CWOA-P and CWOA-All provide the worst results.
Additionally, circle and sinusoidal has the best results in terms of classifica-
tion performance, stability and average selection size. For the lung cancer
dataset, almost all versions of CWOA, except CWOA-All, provide better
results compared with original version of WOA in terms of classification
performance including worst, best and mean fitness value and average se-
lection size, whereas CWOA-All has the highest stability quality. The re-
sults indicate the ability of chaotic to enhance the performance of WOA not
only exploration but also exploitation. Again the circle map, in most cases,
provides the highest classification performance.

Statistical results obtained for SPECTF heart and thoracic surgery are
shown at Table 8. As can be seen, the highest stability is obtained from
iterative and sinusoidal maps for SPECTF, while circle, piecewise, cheby-
shev and sinusoidal maps perform best for thoracic surgery. Additionally, it
can be observed that CWOA outperforms the WOA in terms of stability and
average selection size. Also circle and sinusoidal again obtained the high-
est classification performance with a high stability and a small number of
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Table 6. Statistical Analysis for PDD and Cardiotocography datasets (continued on next
page, see online version for color)

Data sets → PDD Cardiotocography

Measures → Mean Std. Best Worst ASS Mean Std. Best Worst ASS

WOA ⇓ Map function 1.57 0.06 1.59 1.24 0.38 1.57 0.05 1.59 1.27 0.23

Chebyshev 1.59 0.05 1.60 1.26 0.05 1.56 0.04 1.58 1.31 0.23
Circle 1.59 0.04 1.64 1.36 0.10 1.58 0.04 1.59 1.31 0.17
Gauss/mouse 1.59 0.05 1.61 1.23 0.06 1.58 0.04 1.59 1.26 0.19
Iterative 1.59 0.04 1.61 1.30 0.06 1.57 0.04 1.59 1.25 0.19
Logistic 1.58 0.05 1.60 1.25 0.05 1.55 0.04 1.56 1.26 0.24
Piecewise 1.58 0.05 1.60 1.20 0.08 1.59 0.04 1.60 1.30 0.14
Sine 1.59 0.05 1.61 1.24 0.10 1.58 0.04 1.59 1.33 0.15
Singer 1.59 0.05 1.61 1.19 0.10 1.58 0.04 1.59 1.30 0.14
Sinusoidal 1.59 0.04 1.61 1.31 0.07 1.59 0.04 1.60 1.33 0.15

CWOA-SC

Tent 1.58 0.05 1.59 1.28 0.23 1.58 0.04 1.59 1.28 0.14

Chebyshev 1.58 0.05 1.60 1.30 0.22 1.58 0.05 1.59 1.26 0.23
Circle 1.62 0.04 1.64 1.40 0.20 1.58 0.03 1.59 1.33 0.10
Gauss/mouse 1.59 0.05 1.62 1.24 0.26 1.58 0.04 1.59 1.31 0.11
Iterative 1.58 0.05 1.60 1.23 0.06 1.58 0.04 1.59 1.26 0.21
Logistic 1.59 0.06 1.61 1.22 0.16 1.57 0.04 1.58 1.29 0.23
Piecewise 1.59 0.06 1.61 1.24 0.60 1.56 0.04 1.57 1.32 0.33
Sine 1.60 0.05 1.61 1.29 0.14 1.56 0.04 1.57 1.32 0.15
Singer 1.59 0.05 1.61 1.26 0.10 1.57 0.04 1.59 1.31 0.13
Sinusoidal 1.59 0.04 1.61 1.30 0.16 1.56 0.05 1.58 1.32 0.16

CWOA-SS

Tent 1.65 0.08 1.67 1.20 0.74 1.56 0.04 1.57 1.27 0.19

Chebyshev 1.61 0.05 1.62 1.24 0.14 1.58 0.04 1.59 1.29 0.15
Circle 1.64 0.04 1.65 1.28 0.06 1.58 0.04 1.59 1.29 0.11
Gauss/mouse 1.64 0.06 1.65 1.26 0.06 1.56 0.05 1.58 1.25 0.07
Iterative 1.59 0.06 1.61 1.20 0.49 1.58 0.03 1.59 1.35 0.10
Logistic 1.59 0.05 1.60 1.27 0.05 1.58 0.05 1.59 1.30 0.12
Piecewise 1.60 0.05 1.62 1.27 0.06 1.58 0.04 1.59 1.34 0.11
Sine 1.63 0.06 1.65 1.29 0.06 1.58 0.05 1.57 1.26 0.20
Singer 1.58 0.04 1.60 1.26 0.06 1.58 0.05 1.59 1.26 0.15
Sinusoidal 1.59 0.04 1.60 1.31 0.05 1.57 0.05 1.59 1.29 0.15

CWOA-PI

Tent 1.63 0.06 1.65 1.27 0.06 1.57 0.05 1.59 1.29 0.74

Chebyshev 1.62 0.06 1.66 1.26 0.11 1.56 0.04 1.57 1.29 0.19
Circle 1.57 0.07 1.61 1.19 0.23 1.57 0.05 1.59 1.25 0.16
Gauss/mouse 1.57 0.07 1.61 1.36 0.37 1.59 0.05 1.60 1.32 0.15
Iterative 1.59 0.07 1.61 1.25 0.21 1.58 0.04 1.59 1.32 0.10
Logistic 1.64 0.07 1.67 1.27 0.10 1.55 0.04 1.57 1.29 0.23
Piecewise 1.55 0.08 1.61 1.25 0.21 1.56 0.04 1.57 1.27 0.15
Sine 1.58 0.06 1.60 1.24 0.11 1.55 0.04 1.57 1.33 0.47
Singer 1.62 0.07 1.65 1.29 0.09 1.58 0.03 1.59 1.26 0.15
Sinusoidal 1.63 0.07 1.65 1.28 0.07 1.58 0.05 1.59 1.30 0.11

CWOA-P

Tent 1.63 0.06 1.65 1.27 0.07 1.54 0.04 1.58 1.33 0.36
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Table 6. Statistical Analysis for PDD and Cardiotocography datasets (continued from previ-
ous page, see online version for color)

Data sets → PDD Cardiotocography

Measures → Mean Std. Best Worst ASS Mean Std. Best Worst ASS

WOA ⇓ Map function 1.57 0.06 1.59 1.24 0.38 1.57 0.05 1.59 1.27 0.23

Chebyshev 1.54 0.16 1.65 1.22 0.31 1.44 0.06 1.50 1.32 0.29
Circle 1.56 0.13 1.66 1.26 0.30 1.49 0.08 1.54 1.29 0.38
Gauss/mouse 1.55 0.15 1.65 1.30 0.28 1.42 0.07 1.48 1.26 0.31
Iterative 1.55 0.15 1.65 1.22 0.34 1.46 0.07 1.52 1.30 0.39
Logistic 1.55 0.16 1.65 1.20 0.28 1.45 0.07 1.50 1.33 0.30
Piecewise 1.55 0.15 1.66 1.29 0.27 1.44 0.09 1.50 1.29 0.31
Sine 1.55 0.16 1.65 1.22 0.32 1.49 0.06 1.53 1.35 0.35
Singer 1.55 0.16 1.66 1.24 0.30 1.47 0.09 1.53 1.30 0.43
Sinusoidal 1.55 0.15 1.65 1.23 0.32 1.43 0.06 1.47 1.29 0.32

CWOA-All

Tent 1.56 0.14 1.66 1.28 0.32 1.46 0.10 1.53 1.30 0.35

features for both datasets. Also CWO with modification of PI provides the
higher results compared with originalWOA and other versions of CWOA. In
addition, it can be seen that obtained results that the CWOA-All algorithm is
still performing the worst. The statistical results for statlog heart and Indian
liver patient datasets are presented in Table 9. The minimum standard devi-
ation values representing the highest stability are highlighted. The highest
stability for the statlog dataset is provided from chebyshev, while iterative,
sinusoidal and logistic provide the most stability for the Indian liver patient
dataset. However, in most cases, circle map provided the best stability with
high classification performance and a small number of features. Addition-
ally, it can be observed for statlog dataset, all versions of the CWOA algo-
rithm except CWOA-All provide superior results compared to the original
WOA. For the Indian liver dataset, it can be observed that the classifica-
tion performance of CWOA versions is very similar to WOA; however, the
CWOA algorithms (except the CWOA-All version) enhance the stability of
WOA.

5.5 ConvergenceCurvesAnalysis of the Data Sets with Different Chaotic
Maps

Figures 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13 evaluate the stability of the al-
gorithms in terms of convergence rate through visualizing the best-obtained
fitness value during the course of iterations. In addition, these figures are
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Table 7. Statistical Analysis for Hepatitis and Lung Cancer datasets (continued on next page,
see online version for color)

Data sets → Hepatitis Lung Cancer

Measures → Mean Std. Best Worst ASS Mean Std. Best Worst ASS

WOA ⇓ Map function 1.78 0.09 1.80 1.23 0.06 1.80 0.17 1.85 1.00 0.05

Chebyshev 1.78 0.08 1.80 1.31 0.07 1.82 0.15 1.85 1.08 0.03
Circle 1.79 0.07 1.81 1.26 0.06 1.80 0.12 1.85 1.04 0.03
Gauss/mouse 1.77 0.08 1.80 1.27 0.08 1.83 0.12 1.85 1.06 0.03
Iterative 1.77 0.08 1.80 1.39 0.07 1.81 0.14 1.85 1.00 0.04
Logistic 1.78 0.07 1.80 1.26 0.06 1.81 0.15 1.85 0.98 0.04
Piecewise 1.78 0.07 1.80 1.32 0.06 1.81 0.15 1.85 1.00 0.04
Sine 1.76 0.08 1.80 1.37 0.10 1.82 0.13 1.85 0.96 0.03
Singer 1.77 0.09 1.80 1.27 0.07 1.81 0.16 1.85 0.94 0.03
Sinusoidal 1.79 0.05 1.80 1.37 0.05 1.82 0.13 1.85 1.02 0.08

CWOA-SC

Tent 1.77 0.08 1.80 1.29 0.07 1.82 0.13 1.85 1.02 0.03

Chebyshev 1.77 0.08 1.80 1.36 0.08 1.81 0.14 1.85 0.97 0.04
Circle 1.78 0.07 1.80 1.37 0.08 1.82 0.13 1.85 0.99 0.04
Gauss/mouse 1.77 0.09 1.80 1.27 0.08 1.82 0.13 1.85 1.04 0.04
Iterative 1.76 0.12 1.80 1.24 0.09 1.81 0.15 1.85 0.98 0.04
Logistic 1.78 0.08 1.80 1.36 0.06 1.80 0.16 1.85 1.03 0.07
Piecewise 1.78 0.07 1.80 1.35 0.06 1.81 0.15 1.85 1.05 0.04
Sine 1.77 0.08 1.80 1.31 0.08 1.82 0.13 1.85 1.04 0.03
Singer 1.79 0.10 1.80 1.31 0.14 1.82 0.14 1.85 0.95 0.03
Sinusoidal 1.78 0.08 1.80 1.30 0.06 1.73 0.24 1.85 1.05 0.12

CWOA-SS

Tent 1.78 0.08 1.80 1.25 0.07 1.81 0.16 1.85 1.04 0.04

Chebyshev 1.78 0.06 1.80 1.35 0.11 1.82 0.16 1.85 0.96 0.04
Circle 1.78 0.08 1.80 1.24 0.07 1.82 0.13 1.85 0.98 0.04
Gauss/mouse 1.77 0.09 1.80 1.27 0.07 1.80 0.19 1.85 1.01 0.05
Iterative 1.78 0.07 1.80 1.29 0.06 1.80 0.16 1.85 1.10 0.05
Logistic 1.78 0.07 1.80 1.29 0.06 1.81 0.17 1.85 0.96 0.05
Piecewise 1.78 0.08 1.80 1.28 0.07 1.82 0.13 1.85 1.02 0.03
Sine 1.78 0.07 1.80 1.29 0.06 1.82 0.13 1.85 1.08 0.03
Singer 1.79 0.06 1.80 1.31 0.06 1.82 0.14 1.85 1.06 0.04
Sinusoidal 1.77 0.08 1.80 1.28 0.07 1.82 0.14 1.85 0.98 0.03

CWOA-PI

Tent 1.78 0.07 1.80 1.30 0.06 1.82 0.14 1.85 0.98 0.03

Chebyshev 1.75 0.10 1.80 1.29 0.07 1.78 0.19 1.85 0.98 0.08
Circle 1.77 0.10 1.80 1.27 0.08 1.82 0.14 1.85 1.02 0.04
Gauss/mouse 1.77 0.09 1.80 1.31 0.08 1.81 0.17 1.85 0.90 0.04
Iterative 1.72 0.15 1.80 1.30 0.23 1.81 0.15 1.85 1.00 0.04
Logistic 1.77 0.08 1.80 1.36 0.08 1.80 0.17 1.85 1.03 0.05
Piecewise 1.76 0.09 1.80 1.27 0.09 1.80 0.18 1.85 0.09 0.04
Sine 1.77 0.09 1.80 1.26 0.07 1.78 0.17 1.85 0.92 0.09
Singer 1.77 0.09 1.80 1.29 0.07 1.77 0.18 1.85 0.98 0.06
Sinusoidal 1.76 0.10 1.80 1.35 0.11 1.82 0.13 1.85 1.05 0.04

CWOA-P

Tent 1.74 0.13 1.80 1.20 0.11 1.78 0.18 1.85 0.88 0.06
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Table 7. Statistical Analysis for Hepatitis and Lung Cancer datasets (continued from previous
page, see online version for color)

Data sets → Hepatitis Lung Cancer

Measures → Mean Std. Best Worst ASS Mean Std. Best Worst ASS

WOA ⇓ Map function 1.78 0.09 1.80 1.23 0.06 1.80 0.17 1.85 1.00 0.05

Chebyshev 1.53 0.10 1.60 1.30 0.25 1.24 0.05 1.27 1.03 0.92
Circle 1.50 0.15 1.60 1.22 0.30 1.32 0.12 1.43 1.08 0.32
Gauss/mouse 1.53 0.10 1.60 1.29 0.31 1.20 0.04 1.22 0.99 0.85
Iterative 1.60 0.13 1.69 1.37 0.34 1.27 0.10 1.36 1.03 0.28
Logistic 1.52 0.11 1.60 1.26 0.24 1.20 0.03 1.24 1.00 0.88
Piecewise 1.56 0.10 1.60 1.34 0.32 1.28 0.11 1.44 0.94 0.42
Sine 1.51 0.12 1.60 1.32 0.28 1.31 0.08 1.41 1.04 0.28
Singer 1.51 0.12 1.60 1.28 0.27 1.15 0.04 1.19 0.96 0.90
Sinusoidal 1.55 0.07 1.60 1.32 0.23 1.23 0.06 1.26 0.92 0.30

CWOA-All

Tent 1.51 0.10 1.59 1.35 0.37 1.26 0.11 1.36 1.02 0.30

used to evaluate the ability of WOA and CWOA algorithms to search ex-
tensively promising regions in the search space and the ability to converge
faster toward the optimum. As can be observed from these figures, in the
early stages of the optimization process, the search agents change abruptly
and then gradually converge. Figure 4 shows the convergence curves of all
chaos maps with different version of WOA. The results of both CWOA with
modification spiral method and with PI are comparable, however, in most
cases COWA-PI obtains the highest scores as in Table 5. Additionally, the
circle is the most stable map and have the fastest convergence rate while
singer and sine maps have the lowest convergence rate. CWOA-All has the
worst convergence rate. Considering the obtained results at Table 5 and Fig-
ure 4, it is shown that the circle map can improve the performance of WOA
in terms of both exploitation and exploration.

The convergence curves of chaos maps for the MPED dataset are de-
picted at Figure 5. This figure shows that circle, guassian/mouse and sinu-
soidal maps have the fastest convergence rate, while singer, sine and logis-
tics have the slowest convergence rate. In addition, CWOA-PI converges
faster than the others. While CWOA-All again is the worst one, and it can
be observed that the best score increases faster and may converge around
iteration number 15. These results indicate the performance of WOA can be
boosted by circle CWOA-PI .

The convergence curves of all chaotic maps for the PDD dataset are
depicted in Figure 6. This figure shows that circle, iterative, logistic and si-
nusoidal have the fastest convergence rates. However, the circle maps show
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Table 8. Statistical Analysis for SPECTFHeart and Thoracic Surgery Datasets (continued on
next page, see online version for color)

Data sets → SPECTF Heart Thoracic Surgery

Measures → Mean Std. Best Worst ASS Mean Std. Best Worst ASS

WOA ⇓ Map function 1.77 0.13 1.80 1.14 0.05 1.63 0.09 1.71 1.39 0.53

Chebyshev 1.77 0.12 1.81 1.26 0.04 1.61 0.07 1.71 1.34 0.25
Circle 1.78 0.10 1.81 1.15 0.04 1.61 0.04 1.62 1.33 0.12
Gauss/mouse 1.78 0.12 1.81 1.13 0.04 1.57 0.04 1.61 1.30 0.10
Iterative 1.78 0.11 1.81 1.16 0.04 1.58 0.04 1.61 1.44 0.13
Logistic 1.78 0.11 1.81 1.13 0.04 1.58 0.05 1.61 1.33 0.08
Piecewise 1.78 0.11 1.81 1.12 0.04 1.59 0.02 1.61 1.39 0.08
Sine 1.78 0.11 1.81 1.13 0.04 1.55 0.03 1.56 1.37 0.06
Singer 1.78 0.10 1.81 1.14 0.04 1.62 0.06 1.71 1.38 0.26
Sinusoidal 1.79 0.10 1.81 1.15 0.03 1.66 0.08 1.71 1.37 0.19

CWOA-SC

Tent 1.78 0.10 1.81 1.14 0.04 1.58 0.05 1.61 1.34 0.16

Chebyshev 1.79 0.10 1.81 1.15 0.03 1.58 0.04 1.61 1.39 0.68
Circle 1.79 0.11 1.81 1.17 0.03 1.66 0.02 1.71 1.37 0.11
Gauss/mouse 1.79 0.10 1.81 1.11 0.03 1.55 0.03 1.56 1.40 0.17
Iterative 1.79 0.09 1.81 1.13 0.03 1.66 0.06 1.71 1.43 0.40
Logistic 1.78 0.12 1.81 1.17 0.05 1.61 0.04 1.62 1.39 0.36
Piecewise 1.79 0.11 1.81 1.23 0.03 1.61 0.03 1.62 1.43 0.94
Sine 1.77 0.12 1.81 1.13 0.04 1.55 0.03 1.57 1.43 0.08
Singer 1.77 0.13 1.81 1.18 0.05 1.68 0.06 1.71 1.38 0.26
Sinusoidal 1.78 0.12 1.81 1.15 0.04 1.55 0.02 1.56 1.38 0.09

CWOA-SS

Tent 1.77 0.12 1.81 1.13 0.04 1.56 0.03 1.57 1.39 0.34

Chebyshev 1.79 0.11 1.81 1.11 0.04 1.73 0.07 1.76 1.38 0.13
Circle 1.79 0.12 1.81 1.12 0.04 1.71 0.07 1.74 1.33 0.07
Gauss/mouse 1.79 0.10 1.81 1.15 0.03 1.59 0.03 1.61 1.39 0.06
Iterative 1.77 0.14 1.81 1.12 0.05 1.71 0.10 1.76 1.33 0.08
Logistic 1.79 0.11 1.81 1.13 0.03 1.59 0.05 1.61 1.34 0.11
Piecewise 1.75 0.14 1.81 1.16 0.05 1.70 0.07 1.76 1.41 0.20
Sine 1.77 0.13 1.81 1.18 0.04 1.74 0.06 1.76 1.39 0.47
Singer 1.78 0.11 1.81 1.16 0.03 1.56 0.03 1.57 1.38 0.08
Sinusoidal 1.79 0.09 1.81 1.15 0.03 1.61 0.03 1.62 1.38 0.26

CWOA-PI

Tent 1.77 0.12 1.81 1.19 0.04 1.61 0.04 1.62 1.39 0.52

Chebyshev 1.76 0.13 1.81 1.13 0.05 1.55 0.02 1.56 1.42 0.07
Circle 1.78 0.13 1.81 1.11 0.04 1.71 0.08 1.76 1.38 0.49
Gauss/mouse 1.74 0.15 1.81 1.13 0.10 1.63 0.06 1.67 1.37 0.90
Iterative 1.72 0.14 1.81 1.14 0.05 1.71 0.08 1.76 1.32 0.13
Logistic 1.70 0.12 1.78 1.15 0.09 1.54 0.05 1.57 1.39 0.21
Piecewise 1.76 0.14 1.81 1.12 0.05 1.68 0.07 1.71 1.39 0.18
Sine 1.67 0.23 1.81 1.10 0.19 1.56 0.09 1.62 1.36 0.45
Singer 1.76 0.14 1.81 1.14 0.06 1.53 0.05 1.57 1.39 0.36
Sinusoidal 1.74 0.13 1.81 1.14 0.04 1.72 0.07 1.76 1.39 0.13

CWOA-P

Tent 1.75 0.12 1.81 1.11 0.13 1.68 0.06 1.71 1.37 0.49
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Table 8. Statistical Analysis for SPECTF Heart and Thoracic Surgery Datasets (continued
from previous page, see online version for color)

Data sets → SPECTF Heart Thoracic Surgery

Measures → Mean Std. Best Worst ASS Mean Std. Best Worst ASS

WOA ⇓ Map function 1.77 0.13 1.80 1.14 0.05 1.63 0.09 1.71 1.39 0.53

Chebyshev 1.46 0.15 1.57 1.14 0.28 1.54 0.04 1.57 1.38 0.26
Circle 1.44 0.16 1.57 1.17 0.26 1.51 0.08 1.57 1.37 0.20
Gauss/mouse 1.48 0.16 1.61 1.08 0.31 1.52 0.07 1.57 1.36 0.30
Iterative 1.46 0.14 1.56 1.16 0.28 1.52 0.08 1.58 1.38 0.29
Logistic 1.47 0.15 1.57 1.13 0.30 1.52 0.08 1.57 1.36 0.31
Piecewise 1.44 0.14 1.54 1.13 0.36 1.52 0.08 1.57 1.37 0.28
Sine 1.43 0.16 1.53 1.17 0.28 1.52 0.08 1.57 1.39 0.27
Singer 1.43 0.16 1.56 1.14 0.29 1.51 0.10 1.58 1.34 0.29
Sinusoidal 1.46 0.17 1.57 1.14 0.30 1.53 0.07 1.58 1.37 0.28

CWOA-All

Tent 1.47 0.16 1.59 1.18 0.28 1.51 0.10 1.57 1.33 0.31

the overall fastest convergence rate where the most of CWOA versions con-
verge around iteration 10. Also CWOA with modification PI outperforms
than other CWOA versions and the original WOA. This indicates that the
WOA’performance can be boosted by the circle PI operator. Figure 7 shows
the convergence curves for all WOA versions with 10 chaos maps. As can be
observed, there is no distinguishing convergence behavior of the algorithms;
almost all CWOAs convergence behavior are very close to the obtained re-
sults from Table 6.

Figure 8 shows the convergence curves for the hepatic dataset. This
figure shows there is no superiority for any algorithms except CWOA-All
algorithm; the classification performance and convergence speed are very
close to each other. However, CWOA-P algorithm is in second place of
convergence speed after CWOA-All algorithm. The same observations are
found in Figure 9, where all algorithms except CWOA-All obtains similar
classification performance. These results are consistent with the obtained
results from Table 7.

Figure 10 compares the convergence curves of the SPECTF heart
dataset for all chaotic maps for different versions of WOA algorithms. As
can be observed, the highest convergence speeds are obtained from checby-
shev, piecewise, circle and sinusoidal maps, however circle map outperform
other chaotic maps. In addition, it can be noticed that the classification per-
formance of all algorithms are close to each other, which is consistent with
the results of Table 8. Finally, CWOA-PI converges faster than the others
in most cases and CWOA-All has the slowest convergence rate.
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Table 9. Statistical Analysis for Statlog Heart and Indian Liver Patient Datasets (continued
on next page, see online version for color)

Data sets → Statlog Heart Indian Liver Patient

Measures → Mean Std. Best Worst ASS Mean Std. Best Worst ASS

WOA ⇓ Map function 1.38 0.05 1.39 1.08 0.20 1.38 0.06 1.40 1.05 0.18

Chebyshev 1.44 0.04 1.46 1.15 0.78 1.40 0.04 1.40 1.12 0.29
Circle 1.40 0.04 1.42 1.30 0.31 1.39 0.04 1.40 1.10 0.20
Gauss/mouse 1.41 0.05 1.45 1.15 0.40 1.40 0.03 1.41 1.22 0.10
Iterative 1.41 0.07 1.45 1.02 0.43 1.40 0.02 1.41 1.18 0.10
Logistic 1.43 0.06 1.45 1.13 0.19 1.40 0.04 1.41 1.12 0.11
Piecewise 1.42 0.06 1.45 1.06 0.23 1.39 0.03 1.40 1.15 0.10
Sine 1.42 0.07 1.46 1.05 0.18 1.40 0.05 1.41 1.04 0.11
Singer 1.44 0.03 1.45 1.20 0.17 1.39 0.04 1.41 1.12 0.11
Sinusoidal 1.41 0.06 1.45 1.18 0.62 1.40 0.02 1.41 1.12 0.11

CWOA-SC

Tent 1.41 0.07 1.45 1.08 0.27 1.40 0.04 1.41 1.28 0.10

Chebyshev 1.39 0.02 1.41 1.23 0.22 1.39 0.05 1.40 1.12 0.15
Circle 1.37 0.04 1.39 1.16 0.31 1.40 0.04 1.40 1.13 0.11
Gauss/mouse 1.43 0.06 1.45 1.18 0.20 1.40 0.05 1.41 1.10 0.66
Iterative 1.45 0.04 1.46 1.14 0.28 1.39 0.04 1.41 1.17 0.11
Logistic 1.44 0.05 1.46 1.16 0.18 1.39 0.04 1.41 1.18 0.26
Piecewise 1.43 0.04 1.16 1.28 0.24 1.40 0.03 1.40 1.14 0.10
Sine 1.42 0.04 1.44 1.14 0.22 1.40 0.04 1.42 1.11 0.11
Singer 1.37 0.04 1.39 1.11 0.44 1.39 0.05 1.41 1.10 0.11
Sinusoidal 1.41 0.07 1.46 1.02 0.83 1.39 0.05 1.40 1.04 0.27

CWOA-SS

Tent 1.44 0.06 1.46 1.02 0.17 1.39 0.05 1.40 1.10 0.12

Chebyshev 1.44 0.04 1.45 1.18 0.29 1.39 0.05 1.41 1.13 0.13
Circle 1.44 0.05 1.46 1.10 0.16 1.40 0.04 1.41 1.12 0.10
Gauss/mouse 1.44 0.05 1.45 1.11 0.16 1.44 0.04 1.45 1.16 0.10
Iterative 1.44 0.05 1.46 1.09 0.23 1.43 0.04 1.45 1.15 0.11
Logistic 1.42 0.07 1.46 1.08 0.63 1.44 0.02 1.45 1.26 0.10
Piecewise 1.44 0.05 1.46 1.06 0.16 1.40 0.04 1.41 1.12 0.11
Sine 1.44 0.05 1.45 1.09 0.17 1.44 0.05 1.44 1.06 0.20
Singer 1.35 0.03 1.36 1.15 0.24 1.43 0.06 1.45 1.11 0.12
Sinusoidal 1.45 0.03 1.46 1.20 0.38 1.43 0.05 1.44 1.14 0.11

CWOA-PI

Tent 1.44 0.05 1.46 1.06 0.16 1.39 0.04 1.40 1.12 0.12

Chebyshev 1.44 0.05 1.46 1.22 0.18 1.38 0.05 1.41 1.15 0.22
Circle 1.44 0.04 1.46 1.14 0.16 1.38 0.04 1.40 1.19 0.13
Gauss/mouse 1.44 0.06 1.46 1.01 0.17 1.36 0.06 1.41 1.18 0.25
Iterative 1.41 0.08 1.45 1.01 0.38 1.43 0.04 1.44 1.17 0.11
Logistic 1.45 0.04 1.46 1.16 0.22 1.37 0.06 1.40 1.04 0.17
Piecewise 1.34 0.04 1.36 1.08 0.17 1.38 0.04 1.40 1.14 0.33
Sine 1.44 0.06 1.46 1.12 0.19 1.39 0.05 1.41 1.09 0.12
Singer 1.42 0.07 1.46 1.05 0.20 1.43 0.07 1.45 1.10 0.32
Sinusoidal 1.32 0.09 1.39 1.00 0.29 1.43 0.05 1.45 1.11 0.12

CWOA-P

Tent 1.42 0.04 1.44 1.17 0.61 1.36 0.07 1.40 1.15 0.37
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Table 9. Statistical Analysis for Statlog Heart and Indian Liver Patient Datasets (continued
from previous page, see online version for color)

Data sets → Statlog Heart Indian Liver Patient

Measures → Mean Std. Best Worst ASS Mean Std. Best Worst ASS

WOA ⇓ Map function 1.38 0.05 1.39 1.08 0.20 1.38 0.06 1.40 1.05 0.18

Chebyshev 1.34 0.13 1.45 1.12 0.42 1.38 0.10 1.44 1.08 0.36
Circle 1.40 0.07 1.44 1.07 0.41 1.39 0.10 1.44 1.12 0.34
Gauss/mouse 1.38 0.11 1.45 1.03 0.35 1.36 0.13 1.44 1.13 0.27
Iterative 1.30 0.04 1.34 1.20 0.33 1.37 0.12 1.44 1.11 0.29
Logistic 1.30 0.04 1.32 1.11 0.31 1.36 0.12 1.44 1.14 0.23
Piecewise 1.24 0.11 1.33 1.00 0.34 1.37 0.12 1.44 1.11 0.33
Sine 1.31 0.16 1.43 1.05 0.38 1.35 0.14 1.44 1.09 0.36
Singer 1.40 0.06 1.46 1.30 0.60 1.39 0.08 1.44 1.13 0.34
Sinusoidal 1.37 0.10 1.46 1.16 0.43 1.36 0.12 1.44 1.16 0.34

CWOA-All

Tent 1.37 0.11 1.45 1.06 0.31 1.37 0.11 1.44 1.11 0.34

Figure 13 shows the convergence curves for the thoracic surgery dataset.
As can be observed, the highest convergence speed is for CWOA with mod-
ification of spiral and PI operator algorithms. Additionally, circle map out-
performs other chaotic maps.

Figure 11 shows the convergence curves for the statlog dataset. As
can be observed the fastest convergence speed is obtained from the circle
map. Again CWOA-PI converges faster than the other algorithms. The
convergence curves for the Indian liver dataset are shown at Figure 12. As
can be seen, the classification performance of each algorithm are very close
with results from Table 9.

To sum up, the experimental results show that the iterative, circle, si-
nusoidal, piecewise, chebyshev, tent, singer, sine, logistic and Guas/mouse
can improve the original WOA. Also the results of CWOA-SS, CWOA-SC
and CWOA-PI are much better than CWOA-All, whereas CWOA-PI out-
perform other chaotic versions. This indicates the weakness of exploration
versus exploitation for WOA. In addition, the chaotic version of WOA with
modification of PI is able to alleviate this weakness. The results of the
CWOA using the circle map show that the majority of this map to improve
the performance of WOA in terms of highest stability quality, highest clas-
sification performance and small feature subset. The highest classification
performance and a small number of features are highly preferred in medicine
and biology. This is due to fewer experiments needed for a certain disease
or cancer, which may be difficult sometimes on patient and can cause side
effects (Zawbaa, Emary, and Grosan, 2016). Also, it can reduce the cost
involved for each experiment. Generally speaking, the results of the chaotic
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Figure 4. Convergence Curves forWDBC Dataset using Different Chaotic Maps (see online
version for color)
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Figure 5. Convergence Curves forMPED Dataset using Different Chaotic Maps (see online
version for color)
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Figure 6. Convergence Curves for PDD Dataset using Different Chaotic Maps (see online
version for color)
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Figure 7. Convergence Curves forCardiotocography Dataset using Different Chaotic Maps
(see online version for color)

A New CWOA for Features Selection 331  



10 20 30 40 50
10

0.1

10
0.2

Iteration

Be
st 

Sc
ore

Chebyshev Map

10 20 30 40 50

10
0.1

10
0.2

Iteration

Be
st 

Sc
ore

Circle Map

10 20 30 40 50
10

0.1

10
0.2

Iteration

Be
st 

Sc
ore

Gauss/mouse Map

10 20 30 40 50
10

0.1

10
0.2

Iteration

Be
st 

Sc
ore

Iterative Map

10 20 30 40 50
10

0.1

10
0.2

Iteration

Be
st 

Sc
ore

Logistic Map

10 20 30 40 50
10

0.1

10
0.2

Iteration

Be
st 

Sc
ore

Piecewise Map

10 20 30 40 50
10

0.1

10
0.2

Iteration

Be
st 

Sc
ore

Singer Map

10 20 30 40 50
10

0.1

10
0.2

Iteration

Be
st 

Sc
ore

Sine Map

10 20 30 40 50

10
0.1

10
0.2

Iteration

Be
st 

Sc
ore

Tent Map

10 20 30 40 50
10

0.1

10
0.2

Iteration

Be
st 

Sc
ore

Sinusoidal Map

Figure 8. Convergence Curves for Hepatitis Dataset using Different Chaotic Maps (see
online version for color)
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Figure 9. Convergence Curves forLung Cancer Dataset using Different Chaotic Maps (see
online version for color)
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Figure 10. Convergence Curves for SPECTF Heart Dataset using Different Chaotic Maps
(see online version for color)

G.I. Sayed, A.Darwish, and A.E. Hassanien334  



10 20 30 40 50
10

0.04

10
0.1

10
0.16

Iteration

Be
st 

Sc
ore

Chebyshev Map

10 20 30 40 50

10
0.04

10
0.1

10
0.16

Iteration

Be
st 

Sc
ore

Circle Map

10 20 30 40 50
10

0.01

10
0.16

Iteration

Be
st 

Sc
ore

Gauss/mouse Map

10 20 30 40 50
10

0.01

10
0.16

Iteration

Be
st 

Sc
ore

Iterative Map

10 20 30 40 50
10

0.04

10
0.1

10
0.16

Iteration

Be
st 

Sc
ore

Logistic Map

10 20 30 40 50
10

0.01

10
0.16

Iteration

Be
st 

Sc
ore

Piecewise Map

10 20 30 40 50
10

0.03

10
0.16

Iteration

Be
st 

Sc
ore

Singer Map

10 20 30 40 50
10

0.03

10
0.16

Iteration

Be
st 

Sc
ore

Sine Map

10 20 30 40 50
10

0.01

10
0.16

Iteration

Be
st 

Sc
ore

Tent Map

10 20 30 40 50
10

0.01

10
0.16

Iteration

Be
st 

Sc
ore

Sinusoidal Map

Figure 11. Convergence Curves for Stat-log Heart Dataset using Different Chaotic Maps
(see online version for color)
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Figure 12. Convergence Curves for Indian Liver Patient Dataset using Different Chaotic
Maps (see online version for color)
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Figure 13. Convergence Curves for Thoracic Surgery Dataset using Different Chaotic Maps
(see online version for color)
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Table 10. Comparison CWOAs with Other Optimization Algorithms in Terms of Average
Features Selection Siz, where D1-D10 are WDBC, MPED, PDD, Cardiotocography, hepati-
tis, Lung Cancer, SPECTF Heart, Thoracic Surgery, Statlog Heart and ILP datasetes

Data sets → D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

PSO 0.76 0.37 0.46 0.35 0.41 0.55 0.47 0.48 0.30 0.32

ABC 0.48 0.58 0.49 0.45 0.47 0.62 0.52 0.43 0.45 0.29

CSO 0.34 0.33 0.34 0.34 0.41 0.36 0.43 0.42 0.28 0.40

BBO 0.51 0.19 0.11 0.12 0.09 0.02 0.04 0.22 0.20 0.32

EHO 0.55 0.64 0.56 0.59 0.60 0.64 0.62 0.56 0.59 0.64

KH 0.16 0.45 0.10 0.10 0.05 0.03 0.03 0.08 0.31 0.10

BSA 0.31 0.19 0.37 0.40 0.46 0.34 0.12 0.47 0.38 0.29

FPA 0.14 0.21 0.18 0.18 0.16 0.15 0.17 0.22 0.25 0.12

MFO 0.80 0.75 0.79 0.80 0.73 0.56 0.80 0.53 0.76 0.73

GWO 0.47 0.53 0.53 0.44 0.51 0.59 0.51 0.50 0.51 0.41

WOA 0.35 0.54 0.38 0.23 0.06 0.05 0.05 0.53 0.20 0.18

CWOA SC 0.12 0.11 0.06 0.10 0.05 0.03 0.03 0.08 0.17 0.10

CWOA SS 0.10 0.13 0.20 0.10 0.08 0.04 0.03 0.11 0.22 0.10

CWOA PI 0.04 0.09 0.06 0.10 0.06 0.03 0.03 0.08 0.38 0.10

CWOA P 0.22 0.09 0.07 0.15 0.08 0.04 0.13 0.07 0.16 0.11

CWOA All 0.28 0.42 0.30 0.35 0.37 0.88 0.36 0.26 0.31 0.34

maps on all the used datasets follow the order of circle, sinusoidal, iterative,
piecewise, chebyshev, singer, logistic, gauss/mouse, tent and sine, respec-
tively. Finally, the results from convergence curves suggest the superior
exploration of the circle map does not have a negative impact on the ex-
ploitation.

5.5.1 Comparative Analysis Against Related Optimization Algorithms

Tables 10, 11 and 12 record the average best score, average features
selection size and standard deviation from 50 runs, respectively, where D1,
D2, D3, D4, D5, D6, D7, D8, D9 and D10 are WDBC, MPED, PDD, Car-
diotocography, hepatitis, Lung Cancer, SPECTF Heart, Thoracic Surgery,
Statlog Heart and ILP datasets. Table 12 compares the average best score
obtained during the runs. As can be seen, the performance of CWOAs and
KH are comparable. CWOAs algorithms perform better than other optimiza-
tion algorithms on seven (D1-2, D4-6, D8 and D10) of the ten benchmark
datasets while KH performs better for the rest of the datasets (D3, D7 and
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Table 11. Comparison CWOAs with Other Optimization Algorithms in Terms of Stability
Quality, where D1-D10 are WDBC, MPED, PDD, Cardiotocography, hepatitis, Lung Can-
cer, SPECTF Heart, Thoracic Surgery, Statlog Heart and ILP datasetes

Data sets → D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

PSO 0.04 0.05 0.05 0.05 0.09 0.05 0.03 0.03 0.03 0.03

ABC 0.03 0.02 0.04 0.04 0.12 0.03 0.03 0.12 0.03 0.06

CSO 0.06 0.05 0.07 0.04 0.06 0.14 0.07 0.03 0.04 0.03

BBO 0.08 0.10 0.04 0.04 0.04 0.10 0.08 0.04 0.05 0.02

EHO 0.07 0.01 0.01 0.01 0.01 0.00 0.01 0.02 0.02 0.02

KH 0.15 0.05 0.08 0.03 0.02 0.12 0.06 0.03 0.24 0.03

BSA 0.11 0.09 0.07 0.05 0.12 0.18 0.15 0.03 0.05 0.06

FPA 0.05 0.04 0.07 0.04 0.08 0.13 0.12 0.03 0.05 0.02

MFO 0.02 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00

GWO 0.04 0.02 0.04 0.04 0.08 0.15 0.04 0.03 0.03 0.04

WOA 0.06 0.07 0.05 0.05 0.09 0.17 0.13 0.09 0.05 0.06

CWOA SC 0.05 0.05 0.04 0.03 0.05 0.12 0.10 0.02 0.03 0.02

CWOA SS 0.04 0.04 0.04 0.03 0.07 0.13 0.09 0.02 0.02 0.03

CWOA PI 0.04 0.04 0.04 0.03 0.06 0.13 0.09 0.03 0.03 0.02

CWOA P 0.05 0.05 0.06 0.03 0.08 0.13 0.12 0.02 0.04 0.04

CWOA All 0.11 0.13 0.13 0.06 0.10 0.30 0.14 0.04 0.04 0.08

D9). WOA and BBO are found to be the second most effective algorithms,
while MFO and EHO, in most cases, obtained the worst results. In addition,
it can be observed CWOA-PI provides the best results for most cases. Table
11 compares the stability of CWOA algorithms with different optimization
algorithms. As can be observed, MFO and KH perform better than other
optimization algorithms. However, COWAs and GWO are in second place
and in the most cases, BSA provides the worst stability quality. Table 10
compares the average feature subset size of CWOAs and other optimization
algorithms. As can be seen, CWOA, especially CWOA-PI , outperforms
other optimization algorithms. KH and BBO are in second place, while
BSA obtains the worst results in the most cases.

In this work, we use a similar approach for evaluation as in Steinley
and Brusco (2007). A non-parametric statistical test, namely Wilcoxon’s
rank-sum test is adopted to evaluate and compare CWOA ofmodifiedPI pa-
rameter using circle chaotic maps (as it is found the optimal) with other algo-
rithms. Wilcoxon’s rank-sum test is adopted to judge whether the produced
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Table 12. Comparison CWOAs with Other Optimization Algorithms in Terms of Mean Best
Score, where D1-D10 are WDBC, MPED, PDD, Cardiotocography, hepatitis, Lung Cancer,
SPECTF Heart, Thoracic Surgery, Statlog Heart and ILP datasetes

Data sets → D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

PSO 1.43 1.49 1.40 1.42 1.47 1.15 1.21 1.42 1.27 1.25

ABC 1.37 1.33 1.34 1.37 1.42 1.10 1.22 1.46 1.09 1.28

CSO 1.46 1.50 1.40 1.44 1.40 1.36 1.27 1.44 1.24 1.19

BBO 1.55 1.62 1.63 1.52 1.79 1.81 1.80 1.58 1.35 1.39

EHO 1.38 1.33 1.33 1.31 1.36 1.12 1.21 1.39 1.19 1.14

KH 1.66 1.75 1.65 1.58 1.79 1.82 1.82 1.56 1.47 1.40

BSA 1.49 1.64 1.40 1.41 1.45 1.39 1.59 1.47 1.24 1.30

FPA 1.61 1.61 1.54 1.56 1.70 1.60 1.51 1.63 1.34 1.38

MFO 1.38 1.33 1.37 1.36 1.40 1.16 1.24 1.40 1.09 1.08

GWO 1.36 1.37 1.32 1.37 1.40 1.41 1.22 1.41 1.17 1.18

WOA 1.64 1.69 1.57 1.57 1.78 1.80 1.77 1.63 1.38 1.38

CWOA SC 1.66 1.73 1.59 1.58 1.79 1.83 1.79 1.59 1.44 1.40

CWOA SS 1.64 1.70 1.62 1.58 1.78 1.82 1.79 1.66 1.39 1.40

CWOA PI 1.67 1.75 1.64 1.58 1.79 1.82 1.79 1.61 1.45 1.44

CWOA P 1.66 1.73 1.63 1.58 1.77 1.82 1.75 1.55 1.44 1.43

CWOA All 1.60 1.60 1.56 1.49 1.55 1.20 1.44 1.54 1.30 1.39

Table 13. CWOA vs. other meta-heuristic algorithms in terms of P -value of Wilcoxon’s
rank-sum test

Data sets → D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

CWOA vs. PSO 1.61E-06 1.17E-06 2.01E-06 1.23E-07 9.35E-12 4.05E-11 4.65E-07 2.57E-04 1.89E-05 6.86E-04

CWOA vs. ABC 7.81E-07 3.19E-07 1.01E-05 1.54E-06 1.03E-09 2.14E-11 1.22E-10 1.90E-04 1.94E-05 2.70E-05

CWOA vs. CSO 1.79E-06 1.17E-06 4.36E-04 1.48E-07 2.12E-09 1.25E-09 2.23E-07 2.35E-03 1.80E-05 1.51E-05

CWOA vs. BBO 7.38E-03 1.13E-06 2.01E-03 2.23E-03 1.23E-05 8.00E-01 2.46E-01 1.23E+04 5.41E-04 1.24E-03

CWOA vs. EHO 7.72E-07 1.56E-07 1.60E-01 1.23E-06 2.56E-11 1.25E-07 1.24E-07 2.13E-03 2.92E-06 4.64E-05

CWOA vs. KH 1.75E-03 2.46E-03 2.01E-03 1.23E-02 5.41E-01 8.00E-01 1.23E-01 2.23E-03 4.24E-06 3.39E-01

CWOA vs. BSA 9.54E-07 1.24E-04 1.15E-05 2.26E-05 1.25E-06 1.23E-03 1.25E-06 1.46E-04 1.24E-06 2.35E-05

CWOA vs. FPA 2.05E-05 2.15E-06 2.01E-05 1.24E-05 1.27E-08 1.24E-07 2.34E-06 5.33E-03 2.33E-05 5.32E-04

CWOA vs. MFO 7.35E-07 1.22E-07 1.26E-06 1.88E-06 1.25E-09 1.29E-05 5.32E-08 1.25E-02 1.80E-06 1.25E-04

CWOA vs. GWO 7.79E-07 2.23E-06 1.23E-05 2.35E-06 1.24E-06 2.22E-05 5.35E-07 2.47E-03 5.41E-07 5.27E-05

CWOA vs. WOA 1.17E-04 2.35E-02 1.23E-03 1.25E-05 1.20E-04 2.35E-05 5.33E-03 1.24E-01 1.23E-05 3.15E-01
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results of the algorithms differ from each other in a statistically significant
way. Table 13 shows P -values of CWOA verse other ten meta-heuristic al-
gorithms. As it can be observed from this table, the P values acquired prove
that the superiority of CWOA is statistically significant. Moreover, it can be
observed that the performance of KH and BBO are close to CWOA. In ad-
dition, it can be seen that CWOA is statistically significant compared to the
original WOA. These results are consistent with the obtained results from
Tables 10 and 12.

From previous results, CWOAs algorithms showed for ten benchmark
datasets that they are capable of improving the performance of WOA in
terms of local optima avoidance and convergence speed. Thus demonstrat-
ing the capability of CWOAs to find optimal feature combinations, which
provides highest classification performance with a small number of features.
Additionally, it can be seen, CWOAs can solve feature selection problems
better than comparable algorithms.

Finally, it should be noted that, CWOA has another advantage, as
it needs fewer parameters to adjust compared with other population-based
optimization algorithms. As the algorithm’s performance relies mainly on
those parameters where it is more difficult to select the best parameter set-
tings for any optimization algorithm (Gandomi et al., 2013). Therefore, this
paper presents a new algorithm to deal with this problem by using chaotic
maps instead of these parameters. In CWOA, chaos theory is adopted to
adjust the key parameters of WOA.

6. Conclusion and Future Work

In this paper, a novel optimization algorithm based on chaotic and
whale optimization algorithms (CWOA) is proposed using ten chaotic maps
for global optimization of feature selection. The properties of the chaotic
systems are used, such as regularity and semi-stochastic, to improve the per-
formance of the WOA algorithm. Ten chaotic maps are adopted and com-
pared to improve the performance of the WOA algorithm. Ten benchmark
datasets collected from UCI repository are employed to compare the per-
formance of CWOA on enhancing exploration and exploitation in terms of
classification performance, stability quality, number of selected features and
convergence speed. In addition, the performance of CWOA is compared and
evaluated with originalWOA and ten other optimization algorithms. The ex-
perimental results show that tuned WOA with chaotic maps CWOA is able
to significantly improve the performance of WOA and enhance the quality
of the solutions. Moreover, the results of the comparative study of different
version of CWOA with different chaotic maps suggest that the circle map is
the best map. Also, chaotic WOA with modification of PI parameter ob-
tains the highest results. The results showed that chaotic version of WOA

A New CWOA for Features Selection 341  



with modification of all parameters is not able to improve significantly the
performance of the WOA. Finally, CWOA outperforms other comparative
optimization algorithms. In the future, it will be needed to evaluate CWOA
in solving several complex sciences and engineering optimization problems.
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