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1. Introduction

Cross-validation is an important part of constructing a behavioral pre-
dictive model. A failure to cross-validate may lead to inflated and overly-
optimistic results, as Meehl and Rosen (1955) noted some sixty years ago:
“If a psychometric instrument is applied solely to the criterion groups from
which it was developed, its reported validity and efficiency are likely to
be spuriously high” (p. 194). The Classification of Violence Risk (COVR;
Monahan et al., 2001) assessment tool is an actuarial device designed to pre-
dict the risk of violence in psychiatric patients. The COVR is a computer-
implemented program based on a classification tree construction method that
has been praised for its “ease of administration” (McDermott, Dualan, and
Scott, 2011, p. 4). When constructed, however, the COVR was not cross-
validated; thus, the results from the construction sample may be overly op-
timistic (for example, see McCusker, 2007).

The research presented in this paper reanalyzes data from the Mac-
Arthur Violence Risk Assessment Study (VRAS) used to develop the COVR.
We begin by describing a widely-applied method for cross-validation, com-
monly called K-fold cross-validation. Data are then presented from the
MacArthur VRAS. Several classification tree models are built from the
VRAS dataset demonstrating the importance of cross-validation. In addi-
tion, we show how differing cutscores (see Appendix A in Supplementary
Material online) implicitly affect the costs associated with false negatives
and positives. The COVR implicitly assumes that false negatives (incorrect
classifications of violent individuals) are more costly than false positives
(incorrect classifications of nonviolent individuals).

2. A Brief Introduction to Cross-Validation

Cross-validation is an important tool for prediction, allowing the re-
searcher to estimate the accuracy of a prediction tool in practice. Assessing
the accuracy of a model with the same data used to create the model will give
overly optimistic estimates of accuracy because a model is typically fit by
minimizing some measure of inaccuracy; thus, the model reflects both the
true data pattern as well as error. Cross-validation is a strategy to separate
these two entities.

Assume we have a dataset (X, y), where X is an n X p matrix contain-
ing n observations measured across p predictor variables, and y is an n X 1
vector containing n observations measured on a single outcome variable (for
example, the outcome of whether an act of violence was committed). In this
scenario, the outcome variable is known, and the construction of a model to
predict the known values of y is typically referred to as supervised learning.
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In prediction, interests generally center on modeling y as a function
of X, where it is assumed that for some function f,

y=[fX)+e

here, € represents an n X 1 vector of random error terms, assumed to have
mean O, finite variance, and be uncorrelated with the set of predictor vari-
ables. The primary goal is to estimate f(X) so that a practical classification
function,

y = f(X),
is constructed. The total error in prediction, y — ¥, can be divided into two

types of components: reducible error and irreducible error. Decomposing
the mean-squared error gives

Elly -9 = E[(f(X)+e- f(X))?]
= E[(f(X)— f(X))?| + 2B | (/(X) - f(X))e| + E(e?)
= E|(X)-fX)] + Vi),

N~

-~ -
irreducible error

reducible error

where E(-) and V() represent the expected value and variance, respectively.
These two types of error determine the accuracy of predictions. Typically
V(e) is unknown and hence cannot be reduced; the reducible error can
be minimized, which is of course the goal of predictive modeling. When
the predicted function perfectly matches the true function, the total mean
squared error equals V(e); thus, V(&) represents a lower bound for the total
error. In practice, f(X) is not known, so one can only strive to get close to
this lower bound by constructing predictive models that produce the smallest
total error values.

In constructing a predictive model, there are several available mea-
sures for assessing how well the model fits the data (for example, the mean
squared error, the coefficient of determination [R?], the proportion of pre-
dictions correct). It is important to note that this assessment of error is often
made with the sample used to construct the model and not on predictions
with an independent sample. When a model is constructed for purposes of
prediction, the model’s predictive accuracy on new data is most relevant.
Suppose there is a given measure of accuracy, say vy, for assessing the model
and this measure is obtained with the same data used to construct the model.
A way of evaluating a model’s predictive ability is to collect new data and
measure how accurate the predictions are; that is, a new accuracy measure
~' is obtained. The difference between ~y and ' represents the drop in how
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well the model predicts (assuming that a larger v is associated with better
accuracy, typically, ¥ — v > 0); this drop is known as shrinkage. Rather
than assessing predictive accuracy with the same data relied on to build the
model, the original data can be randomly split into two parts: the training
data and the testing data. The training data is for constructing the model;
the testing data is for estimating the predictive accuracy of the model. This
process is typically more efficient in terms of time and cost than collecting
new data after the model is developed, and can help prevent overfitting.

2.1 K-fold Cross Validation

Given n observations, cross-validation involves splitting the data so
that a specified proportion, say ¢, of the data is present in the training set
and the rest of the observations are in the testing set (that is, gn observations
are in the training set and (1 — ¢)n are in the testing set). This can be carried
out multiple times, choosing a different training and testing set each time.

K -fold cross validation is one of the more popular cross-validation
strategies and will be the only one discussed. K -fold cross-validation in-
volves splitting the data into K subsets; the training set consists of the union
of K —1 subsets, and the testing set is defined by the remaining observations.
This process is repeated so that each subset acts once as the testing sample.
Because each replication of this process will produce results that vary, it is
common to compute an average across all replications. The simplest form
of K -fold cross validation is to let K = 2: the training set contains half
of the observations, and the testing set the other. The most computation-
ally costly form is to let X = n, so that each observation acts as the test-
ing sample; this is commonly known as leave-one-out cross-validation. In
addition to the computational costs, another disadvantage of leave-one-out
cross-validation is that the variance of the estimate can be relatively large
compared to other estimates—it is, however, approximately unbiased; set-
ting K < n provides an estimate of the test error with less variance but more
bias (see Hastie, Tibshirani, and Friedman, 2009, pp. 242-243). A reason-
able choice for K is commonly considered to be ten (Breiman and Spector,
1992). Appendix B (in Supplementary Material online) presents a thorough
discussion of what is known as the “bias-variance trade-off” in prediction,
and how cross-validation can help determine the equilibrium point that si-
multaneously minimizes both the bias and the variance of a model.

3. Decision Trees

Decision trees, commonly referred to as Classification and Regres-
sion Trees (Breiman et al., 1984), are popular statistical learning techniques
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generally used for prediction. Consider an n X p data matrix, X, containing
n observations measured across p predictor variables, and an n x 1 vec-
tor y containing n observations measured across a single outcome variable.
The outcome variable contained in y is the variable of interest with respect
to prediction. When the outcome variable is continuous, regression trees
are constructed; when categorical, classification trees are constructed. For
violence prediction in general, the outcome variable is binary (that is, cate-
gorical with two classes) representing the presence or absence of an act of
violence; because of this specification, our focus is solely on classification
trees.

Classification trees are constructed by first splitting the data into two
disjoint subsets based on one of the p predictor variables. Within each sub-
set, further partitioning of the data is done, and within the resulting sub-
sets this process continues until some user-specified stopping criterion is
reached; the complete procedure is known as recursive partitioning. Re-
cursive partitioning is a fop-down greedy algorithm: top-down because the
algorithm begins with a tree with no splits and works “down” to a tree with
many splits (and once a split is made, it remains); greedy because each split
made is the “best” conditioned on the given splits (and not on possible future
splits). An observation that falls into a subset with no further splits (called a
terminal node) is classified based on all the observations within that subset,
which is typically the modal observation (that is, the most prevalent outcome
within the node), but other choices are possible, as will be discussed shortly.

The first split occurs at the root node of the tree; extending branches
from the root node lead to subsample nodes, called leaves. As mentioned,
the splits continue until a specified criterion is met, such as a constraint on
the minimum number of observations in a given leaf, or a criterion based on
significance testing. After a tree is constructed, it can be pruned to reduce
the number of branches, eliminating those that add less to the tree’s predic-
tive ability. The notion behind pruning is to create a subtree that has better
predictive accuracy on new data, and thus, the level of pruning is commonly
determined by cross-validation.

The data are subjected to splitting with the goal of grouping the obser-
vations so as to minimize the number of observations incorrectly classified.
There are several ways to assess goodness of fit in classification, one being
the Gini index (Breiman et al., 1984; Gimli, 1912). Given R classes for an
outcome variable, the Gini index for a group of observations is given by

R R
G= Zgr(l_gr) = 1_2937
r=1 r=1

where g, (r = 1,..., R) is the proportion in the group from the rth class.
The Gini index can be thought of as a measure of impurity. Note that when
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gr = 1,1 —g¢g, = 0, and G = 0 indicating perfect purity. When g; =
.-+ = gr = 1/R (that is, the proportion of observations are evenly divided
among the R classes), the index is maximal at G = 1 — ]1%. The Gini index
is commonly used for determining the splits of the trees, where the split
minimizing the Gini index is chosen at each step of the partitioning.

Decision trees are popular because they are easy to interpret, but they
are not the best statistical learning method in terms of predictive accuracy.
Predictive accuracy can be enhanced by various ensemble methods such as
tree bagging and random forests (Breiman, 2001; these are more generally
known as random subspace methods). Bagging (the term bag is a short-hand
phrase for bootstrap aggregation; see Breiman, 1996) is an ensemble learn-
ing method designed to avoid the overfitting of a model and is commonly
used with classification trees (that is, tree bagging). Suppose a dataset, X,
contains n observations on p predictors. Similar to the bootstrap method, B
training sets of size L are generated, where 1 < L < n, by randomly sam-
pling (with replacement) from X; each training set is fit by the model and,
after aggregating, an average over the B replications provides a predicted
response for each observation.

Note that some of the observations in the ith training set, B(), may be
duplicate. The larger L is, the more likely there will be at least one duplicate
observation; the probability of such an eventis 1 — . (:'_ INE The probabil-

1

ity that any given observation is not selected is (1 — n)L. If L = n and as
n — oo, the probability approaches e~! ~ .37. For a large enough n and
when the training sample is equal to n, it would be expected that on aver-
age, about 63% of the bootstrap sample consists of unique observations. The
63% represents a probabilistic lower bound; for L < n, one would expect
more than 63% of the sample to be unique (for example, in the trivial case
where L = 1, there are no duplicate observations). The approximately 37%
of the observations not used in fitting the model on the ith replication are
called out-of-bag (OOB); thus, the OOB observations are the testing set and
can be used to assess predictive accuracy. For any given observation, by ag-
gregating over the subset of B replications—where the observation was not
used to fit the model—the average OOB prediction accuracy can be calcu-
lated and compared to the cross-validated error; this comparison gives us the
average OOB error difference. The OOB errors can also be used to assess
the importance of predictors by randomly permuting the OOB data across
variables one at a time, and estimating the OOB error after permutation—a
large increase in the OOB error indicates the variable’s importance in the
model.

Random forests (Breiman, 2001) are tree bagging methods that ran-
domly select a subset of predictors to be used at each split. The advantage
here is that it can “decorrelate” the trees by preventing a single variable from
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dominating the analysis; for instance, if one predictor is very strong, it will
likely be the root node for a majority of the trees constructed; the subsequent
nodes will be similar as well (that is, the trees will be highly correlated). By
convention (and default in statistical software such as R), ,/p predictors are
randomly selected at each node for classification trees.

The advantage of ensemble tree models is that they tend to reduce
the variance found in single decision tree models, leading to more accurate
results by aggregating over a number of single decision trees. For more in-
formation on decision trees and other statistical learning models, the reader
is referred to Kuhn and Johnson (2013), Hastie et al. (2009), James et al.
(2013); the latter two references are freely available online.

Here, a classification tree was first developed similar to that done in
Monahan et al. (2001); next random forests were built to create better clas-
sification tree models with better predictive accuracy. All classification tree
models were constructed in R (R Core Team, 2014). Before proceeding
to the results, however, it is necessary to discuss how a classification tree
classifies observations and how this process is related to the costs of false
positives and negatives.

4. Misclassification Costs

In general, there are two types of misclassifications that are of con-
cern: false positives and false negatives. A false negative incorrectly pre-
dicts the absence of whatever the model is designed to predict (for example,
predicting nonviolence in a violent individual); a false positive incorrectly
predicts the presence (for example, predicting violence in a nonviolent indi-
vidual). These two types of misclassifications can have drastically different
consequences, and one may assign differing costs to each.

Suppose in a given terminal node there are n observations, of which
n, are from class r (r = 1,..., R). An observation is classified into class r
based on the modal class at that given terminal node; thus, if n,, > n,. for all
r # ', all observations within the terminal node are classified as belonging
to class 7. The empirical posterior probability for each class can be defined
as the number of observations in the terminal node coming from a partic-
ular class divided by the total number of observations; thus, the estimated
posterior probability is

~ Ny
Plrx) =",
where x is a vector of predictor variables associated with the observation.
Given this definition, an observation is classified as coming from class r
when P(r|x) > P(r'|x) for all » # 1.

As an addition to the classification process, costs can be assigned to

misclassifications; the cost function is labeled C(r) and represents the cost
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of classifying an observation into class s when it truly belongs in class r
(note that C.(r) = 0). By including a cost function, an observation is clas-
sified into class r by minimizing

R A
> P(rix)Cs(r)
r=1

across all s. Note that when C(r) is the same for all » = 1,..., R (that is,
the costs are equal across all classes), the previous situation obtains and an
observation is classified based on the modal class.

Given two classes (that is, » = 1,2, where 1 could represent nonvi-
olent individuals and 2, those who are violent), an observation is classified
into class r = 2 when

P(2[x)C1(2) > P(1|x)Ca(1).

With respect to classification of nonviolent and violent individuals, C(2)
and C(1) are, respectively, the costs associated with a false negative and a
false positive. Alternatively, the above inequality can be written as

P(1]x)
> . .
P(2[x)
P(1|x)
X P(2]x)
cause P(2|x) = 1 — P(1|x); for example, the odds in favor of an individual
not being violent, given the data.
If C1(2) = Ca(1), an observation is classified as coming from class 2

when P(2|x) > P(1|x), or equivalently,

The lower bound, , 1s the conditional odds in favor of the event 1 be-

Bayes Theorem allows this to be rewritten as

P(xp)ﬁ(z) N R
P _ P2)P@2)
PxDP(1)  P(x|1)P(1 '
o (x[1)P(1)

Considering P(x|2) and P(x|1) fixed, the classification cutscore can be
changed by adjusting P(1) and P(2); these probabilities are the sample
base rates (note that for r = 1,2, P(2) = 1 — P(1)). Thus, adjusting the
prior probabilities is an equivalent way of adjusting costs.
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As will be discussed shortly, Monahan et al. (2001) suggested the
cutscore for classification of high-risk individuals as twice the sample base
rate of violence (approximately .37). This implies that an individual is
classified as violent when the individual belongs to a terminal node where
P(2|x) > .37, and implicitly assigns unequal costs to false positives and
negatives. Explicitly, let P(2|x) = .37 (and consequently, P(1|x) = .63)
SO

C1(2)  P(1]x) .63
Ca(1)  P(2x) 37

By lowering the cutscore to .37 for classification of violence, the authors
imply that, given the specified prior probabilities, incorrectly classifying an
individual as nonviolent (a false negative) is 1.67 times worse than incor-
rectly classifying an individual as violent (a false positive).

Most authors of actuarial measures for violence risk assessment are
reluctant to discuss the costs of false positives versus false negatives (Moss-
man , 2006, 2013: Vrieze and Grove, 2008); an exception to this is Richard
Berk. In his book, Criminal Justice Forecasts of Risk: A Machine Learning
Approach (Berk, 2012), he suggests that

= 1.67.

the costs of forecasting errors need to be introduced at the very begin-
ning when the forecasting procedures are being developed [original
emphasis]. Then, those costs can be built into the forecasts them-
selves. The actual forecasts [original emphasis] need to change in
response to relative costs. (p. 20)

In the examples that Berk provides (regarding parole release), he suggests
that the ratio of false negatives to false positives be as high as twenty to
one (also, see Berk, 2011). The reasoning for such an extreme ratio, as
justified by Berk (2012), is that the agency the model was built for was “very
concerned about homicides that could have been prevented” (p. 5). Thus,
the “agency” was willing to accept that a large number of potentially non-
violating parolees were not granted parole; the proportion of those predicted
to fail that actually did was only about .13 for the sample data used in the
text (see Table 1.1 in Berk, 2012)).

5. The MacArthur Violence Risk Assessment Study

The Classification of Violence Risk (COVR; Monahan et al., 2006)
is an assessment instrument developed from the MacArthur Violence Risk
Assessment Study (VRAS). The COVR is computer-implemented and de-
signed to estimate the risk of violence in psychiatric patients; given the ap-
propriate credentials, it is available for purchase from Psychological As-
sessment Resources (http://www.parinc.com). The COVR assigns patients
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Table 1. The five risk categories for the Classification of Violence Risk (COVR) assessment
tool along with point estimate risks (in probabilities) and respective confidence intervals (CI)
(Monahan et al., 2006).

Category Risk Point Estimate ~ 95% CI

5 Very High 76 (.65, .86]
4 High 56 (.46, .65]
3 Average .26 [.20, .32]
2 Low 08 .05, .11]
1 Very Low .01 [.00,.02]

to one of five risk groups defined by the “likelihood that the patient will
commit a violent act toward another person in the next several months”
(Monahan et al., 2006, p. 728). Table 1 gives the five risk groups defined
by their best point estimates and 95% confidence intervals.

The development of the COVR is detailed in Monahan et al. (2001)
(also see Steadman et al., 2000, Monahan et al., 2000, and Banks et al.,
2004 for less detailed reviews). The COVR was based on a sample of
939 recently-discharged patients from acute inpatient psychiatric facilities in
three locations within the United States: Pittsburgh, Pennsylvania; Kansas
City, Missouri; and Worcester, Massachusetts. Patients were restricted to
those who were white, African-American, or Hispanic; English-speaking;
between the ages of 18—40; and charted as having thought, personality, or
affective disorder, or engaged in substance abuse.

According to the original MacArthur study (Monahan et al., 2001),
violence is defined as “acts of battery that resulted in physical injury; sex-
ual assaults; assaultive acts that involved the use of a weapon; or threats
made with a weapon” (p. 17). A second category of violent incidents was la-
beled as “other aggressive acts” (Monahan et al., 2001, p. 17) including non-
injurious battery; verbal threats were not considered. The outcome variable
of violence is dichotomous—either the patient committed an act of violence
or did not. It does not consider the number of violent acts or their severity.
The patients were interviewed once or twice during the twenty weeks after
discharge. Of the 939 patients, 176 were considered violent; thus, the base
rate for violence in this sample is .187.

The authors identified 134 potential risk factors, listed in detail in
Monahan et al. (2001). Using SPSS’s CHAID (chi-squared automatic in-
teraction detection) algorithm (SPSS, Inc., 1993), the authors developed a
classification tree based on the given risk factors. The final classification
model was constructed by an iterative classification tree (ICT) process: after
an initial classification tree was developed, those who were still unclassi-
fied (that is, those within .09 to .37 estimated probabilities of committing
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violence according to the model) were reanalyzed using the same CHAID
algorithm. After four iterations, 462 patients were classified as low risk (less
than .09 probability of committing violence), 257 were classified as high risk
(greater than .37 probability of committing violence), and 220 remained un-
classified. The cutoffs of .09 and .37 were chosen because they represent,
respectively, one half and twice the base rate of violence in the sample.

The authors’ goal was to create an actuarial tool that was “clinically
feasible”; thus, it was to include only risk factors that could be computed
easily. Of the 134 original risk factors, 28 were eliminated that “would
be the most difficult to obtain in clinical practice” (Monahan et al., 2001, p.
108), as determined by the length of the instrument measuring the risk factor
(more than twelve items was considered too long), or the risk factor not
being readily or easily ascertainable by mental health professionals. After
doing so, the same ICT method was applied to the 106 remaining risk factors
using three iterations.

The correlation between the predictions made by the clinically-feasible
and original ICT models was .52; the authors noted the low correlation:

The fact that these [two] prediction models are comparably associated
with the criterion measure, violence (as indicated by the ROC anal-
ysis), but only modestly associated with each other [as indicated by
the correlation coefficient], suggested to us that each model taps into
an important, but different, interactive process that relates to violence.
(p. 117)

The authors then constructed nine additional ICT models using the 106
clinically-feasible variables; for each of the nine trees the authors “forced
a different initial variable” (p. 118; that is, the root nodes for the ten trees
differed). The ten models led to ten classifications for each individual (high,
average, or low) and each individual was assigned a score corresponding to
their risk level (1, 0, or —1, respectively); the scores were then summed to
create a composite score ranging from —10 to 10. The authors remarked,
“As two models predict violence better than one, so ten models predict vio-
lence better than two (that is, the area under the ROC curve was .88 for ten
models compared to .83 for two models)” (p. 122).

The authors questioned whether ten models were necessary; to de-
termine this empirically, they performed stepwise logistic regression and
concluded that only five of the ten were needed, leading to composite scores
ranging from —5 to 5 (the AUC remained the same, .88). The composite
scores were divided into five distinct groups based on the following ranges:
[—5,-3], [-2,—1], [0, 1], [2, 3], and [4, 5] (these five groups correspond to,
respectively, the very-low, low, average, high, and very-high risk groups
found in Table 1; the probabilities represent the proportion of those violent
within each group).
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The authors did not cross-validate their model. As Monahan et al.
(2001) state on page 106, “Dividing the sample leaves fewer cases for the
purpose of model construction” and, quoting Gardner et al. (1996), “wastes
information that ought to be used estimating the model.” When their ICT
models were constructed in the late 1990s and early 2000s, computing power
was not what it is now, but cross-validation on a dataset of 939 was certainly
possible (although possibly not in the version of SPSS relied on). With to-
day’s computing power there is little reason not to cross-validate a model
or to argue that cross-validation “wastes” data. As will be shown, cross-
validated error can be drastically different from what is called the resubsti-
tution error for the initially constructed model.

As noted, Monahan et al. (2001) cited the Gardner et al. (1996) source
when they made their remark claiming cross-validation wastes information,
so this reasoning did not necessarily originate with them. Looking at the
Gardner, Lidz, Mulvey, and Shaw (1996) article referenced in the quote
above, a footnote on page 43 states that a bootstrap cross-validation was
performed on the authors’ logistic regression model, a perfectly reason-
able alternative. Although Monahan et al. performed a bootstrap analysis
to estimate the variability of the predictions (and where 1,000 bootstrap
samples helped estimate 95% confidence intervals for the probability-of-
violence point estimates given in Table 1), the base predictive model was
not cross-validated.

5.1 VRAS Dataset

To illustrate the process of cross-validation, we used the data from the
MacArthur Violence Risk Assessment Study (Monahan et al., 2001) to con-
struct several decision-tree models. As noted, the data were obtained from
939 patients discharged from inpatient psychiatric facilities based in Pitts-
burgh, Kansas City, and Worcester, MA. The ages of the patients range from
18 to 40 (Mean = 29.9; Median = 30.0). Of the 939 patients, 538 (57%)
were male; 645 (69%) were White, 273 (29%) were African-American, and
21 (2%) were Hispanic.

The response variable (Violence)is a binary outcome variable rep-
resenting whether an act of violence took place within the follow up period
(Violence = 1 if an act of violence occurred; Violence = 0 if not).
Thirty-one predictor variables were included based on the results from the
main effects logistic regression and iterative classification tree models in
Monahan et al. (2001). The data are available for download through the
MacArthur Research Network website (http://www.macarthur.virginia.edu/
risk.html); the dataset for the present analysis was obtained directly from the
MacArthur researchers—it is a “cleaned-up” version from the statistician on
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Table 2. Pearson product-moment correlations of predictor variable with response variable,
Violence, in reanalyzed dataset (r) and reported correlations in Monahan et al. (2001) (r').

Variable r 7’ Variable r r’
Age —.07 —-.07 HeadInj .03 .06
BISnp .05 .05 LegalStatus 11 A1
BPRSa —.08 —.08 NASb A7 .16
BPRSh .08 .08 NegRel .05 .06
BPRSt —-.04 —-.04 PCL .26 .26
ChildAbuse 14 14 PCS .03 .03
Consc .09 .10 PriorArr .24 .24
DadArr .15 15 PropCrime A1 A1
DadDrug 14 .16 RecViol2 14 .14
DrugAbuse .16 A7 Schiz -—-.12 —.12
Emp —.05 —.05 SNMHP —.10 -—.10
FantEsc 13 13 SubAbuse .18 .18
FantSing .10 .10 Suicide —.01 —-.01
FantTarg 12 12 tco —.09 -.10
Function —-.01 —.01 Threats .06 .06
GranDel —.01 —-.01

the project. The best attempt was made for preprocessing the data to match
that in the Monahan et al. analysis. All software code, including the prepro-
cessing as well as variable descriptions, can be found in the Supplementary
Material appended to our report online.

As a way of comparing how close our variables match those of the
MacArthur authors, Pearson product-moment correlation coefficients be-
tween the predictor variables and Violence were compared to those found
in Chapter 5 of Monahan et al. (2001; see Tables 5.2, 5.3, and 5.5). Table
2 displays the estimated correlations for each predictor variable with the
response variable as well as the reported correlations from Monahan et al.
Although not a foolproof method for confirming that the variables were pre-
processed in a similar manner, it certainly does indicate discrepancies that
may exist. There is a lot of agreement (at least to two decimal places), but
it is not complete. Seven of the 31 correlations disagree, six only by one
percent. The largest discrepancy is between prior head injury (r = .03 vs.
r’ = .06).

6. VRAS Classification Tree Model

The number of observations at each node in a classification tree is
referred to as the leaf size; the minimum leaf size is a constraint provided by
the modeler (the default in R is 7; the minimum leaf size set by Monahan
et al., 2001 was 50). Rather than using the default setting, we determined
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the minimum leaf size using cross validation. The minimum leaf size is
plotted against the leave-one-out cross-validated error, shown in Figure 1
(solid line). Several minimum leaf sizes give a cross-validated error less than
the base rate, implying that the expected error on new data is less than the
error when simply predicting all individuals to be nonviolent (that is, what
is often called “base-rate prediction”; see Appendix A in Supplementary
Material online for further details); the minimum cross-validated error of
.179 was obtained at the minimum leaf size of 48. As a comparison, the
dotted line in Figure 1 gives the resubstitution error at each minimum leaf
size (that is, the misclassification error on the same data used to construct
the model); as the tree becomes less complex, or less flexible, (that is, the
minimum leaf size increases), the resubstitution error increases toward the
base rate. Trees with a resubstitution error equal to the base rate represents
those without any branches (that is, trees with only a root node so that no
partitions are being made). The observation that the resubstitution error
increases as the trees become less complex, and that the cross-validated error
decreases and then increases, is an example of the trade-off between bias and
variance in predictive models (see Appendix B in Supplementary Material
online; also Hastie et al., 2009).

Based on a minimum leaf size of 48, the initial classification tree con-
structed is shown in Figure 2. The resubstitution error (with a cutscore of
.50) was .181, implying the misclassification of 170 observations; the cross-
validated error was slightly lower, .179. Both measures indicate the model
was outperforming base-rate prediction (the base rate for violence in the
sample was .187 so base-rate prediction would be to predict all individu-
als to be nonviolent resulting in a misclassification error of .187; see Ap-
pendix A in Suppementary Marterial online for more details). Based on a
.50 cutscore, 48 individuals were classified as violent (27 of whom were)
and the rest nonviolent.

The same analyses were repeated but the cost matrix was set so the
cutscore for classifying individuals was twice the baserate (that is, .37); thus,
false negatives were considered to be about 1.67 times more costly than
false positives. The minimum leaf size was determined to also be 48 (in a
similar fashion to that done using equal costs); this led to the same tree being
produced.

If we adhered to Berk’s (2012) 20:1 false negative to false positive
ratio, the resubstitution error (with a minimum leaf size of 30) is .570 and
the cross-validated error is .586. Because of these results and the fact that
it is difficult to justify a 20:1 ratio for the VRAS definition of violence, this
cost ratio is not considered in the remaining analyses.

Suppose one decided not to empirically determine a minimum leaf
size but let the minimum leaf size be one, the default setting in some soft-
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Min Leaf Size vs. Misclassification Error

Misclassification Error
3

=}
&

Zb '1‘0
Minimum Leaf Size

Error —— cross-validated ----- resubsitution

Figure 1. Determining the minimum leaf size for a classification tree with leave-one-out
cross-validation error. The dotted line displays the resubstitution error; the solid line, the
cross-validated error. The minimum leaf size was determined to be 48.

Total Sample
n =939, 18.7% Violent
PCL = 0 PCL =
748,13.9% 191, 377%
SNMHP 2 .16 SNMHP < .16
48,208% 143,43.4%
PCS 2 PCS < .5
95, 36. 8% 48,56.2%

Figure 2. Classification tree with a minimum leaf size of 48 and equal costs. The bold box
represents the node where predictions of violence are made. Note that PCL is the Psychopa-
thy Checklist (Hare, 1980); SNMHP is the proportion of social network members who are

also mental health professionals; and PCS is the Perceived Coercion Scale (Monahan et al.,
2001).
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ware (for example, MATLAB). In doing so, the resubstitution error for such
a tree was .009; only 8 of the 939 patients were misclassified. The sensitiv-
ity of the model (that is, the proportion of violent individuals predicted to
be violent) was .966; the specificity (that is, the proportion of nonviolent in-
dividuals predicted to be nonviolent) was .997; the positive predictive value
(PPV; that is, the proportion of violent predictions that were correct) was
.988; the negative predictive value (NPV; that is, the proportion of nonvio-
lent predictions that were correct) was .992; the AUC (the area under the re-
ceiver operating characteristic curve) was .999. No method in the literature
for predicting violence comes close to these accuracy measures. Without
cross-validating this model, however, one blindly believes that an extremely
capable model for predicting violence has been found; the cross-validated
error was .296, providing strong evidence that the model overfit the data.
Based on a cutscore of .37 rather than .50, the model with a minimum leaf
size of one misclassified 12 individuals (resubstitution error of .013) but the
cross-validated error was .279. Again, this exemplifies the overfitting of a
model and the importance of cross-validation, and provides an example of
how a more flexible model (smaller minimum leaf size) performs well on
the data for which the model was fit but far worse on new data. A good fit
does not imply a good model (Roberts and Pashler, 2000).

7. VRAS Random Forest Model

Random forest models were next implemented for the VRAS dataset.
A subset of the VRAS dataset was randomly selected as the training sample
with the remaining observations representing the testing sample. The testing
sample contained 30% of the original data (282 observations); the training
data contained the remaining 657 observations (the base rate for violence in
the training sample was .181, and .202 in the testing sample). The random
forest model was fit to the training sample for B = 1000 trees and a mini-
mum leaf size of 10. After fitting 1000 trees, the random forest model was
used to predict violence in the training set (that is, the observations used for
fitting the model); the predictions were perfect. The 1000 trees generated
were aggregated to estimate the probability an individual will be violent by
computing the proportion of times the individual is classified as violent (an
individual was classified as violent if the predicted probability exceeded .50;
that is, costs were considered equal here).

The results discussed thus far are, as noted, based on the training data.
The greater concern is with how well violence can be predicted in new ob-
servations with the random forest model; this is evaluated with the testing
data. Of the 282 observations, two were predicted—one incorrectly—to be
violent (see Table 3). The cross-validated error was .202, equal to the base
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Table 3. Predicting violence with a random forest model using the testing data. If a patient
had a predicted probability greater than .50, a prediction of violence was made; otherwise a
prediction of no violence was made.

Violence ~
Yes (A) No(A) Row Totals
.. Yes (B) 1 1 2
Prediction No (B) 56 224 280
Column Totals 57 225 282

Table 4. Predicting violence with a random forest model. If a patient had a predicted proba-
bility greater than twice the base rate (.37), a prediction of violence was made; otherwise a
prediction of no violence was made.

Violence -
Yes (A) No(A) Row Totals
. Yes (B) 15 8 23
Prediction 5 (B) £ 217 259
Column Totals 57 225 282

rate. The sensitivity and specificity were, respectively, .018 and .996; the
positive and negative predictive values were, respectively, .500 and .800.

The next analysis was the same as the previous one except that the cost
ratio of false negatives to false positives was set to 1.67. At the individual
tree level an observation was classified as violent when it belonged to a
terminal node where the proportion of violent individuals was greater than
.37; at the aggregate level (that is, across all 1000 trees) an individual was
predicted to be violent when classified as violent in more than 37% of the
trees. The results for the training data were again perfect; for the testing
data, the results can be found in the bottom of Table 4.

As expected, more predictions of violence were made. For the testing
data, the model classified 8.2% of the sample as violent—compared to 0.4%
when costs were equal. The random forest model appears to be performing
fairly well on the testing data (cross-validated error: .177).

7.1 Out-of-Bag Prediction

Rather than splitting the data prior to fitting the ensemble method, the
entire dataset can be used and cross-validation error estimated from the OOB
observations; this maximizes sample size (that is, nothing is “wasted”) and
a cross-validated error is still obtained. The results produced by a cutscore
of .50 are displayed in the top of Table 5. The OOB error was .192, slightly
more than the baserate. The sensitivity of the model was .057; the specificity
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Table 5. Predicting violence with a random forest model on the entire sample. The top of
the table uses a cutscore of .50: If a patient had a predicted probability greater than twice the
base rate (.50), a prediction of violence was made; otherwise a prediction of no violence was
made. The bottom table uses a cutscore of .37.

.50 cutscore

Violence ~
Yes (A) No(A) Row Totals
. Yes (B) 10 14 24
Prediction No (B) 166 749 915
Column Totals 176 763 939
.37 cutscore
Violence -
Yes (A) No(A) Row Totals
. Yes (B) 13 15 28
Prediction No (B) 163 748 911
Column Totals 176 763 939

was .982; the positive predictive value was .417; the negative predictive
value was .819; and the AUC was .75.

Carrying out the same analysis but setting the classification cutscore
to .37 produced similar results. As the bottom of Table 5 shows, the model
classified 3.0% of individuals as violent. The sensitivity of the model was
.074; the specificity is .980; the positive predictive value is .464; the negative
predictive value is .821. The OOB error was .190 with an AUC of .75.

7.2 Variable Selection

Thus far the decision trees have included all thirty-one variables. Out-
of-bag observations allow the quantification of variable importance to the
classification trees. For each variable, the values are randomly permuted
and the increase (or decrease) in the OOB error calculated (that is, the dif-
ference in OOB error before and after permutation). This is carried out for
every tree and normalized with the standard deviations of the differences.
Variables with larger average differences can be quantified as more impor-
tant than variables with smaller averages. A dot plot displaying the variable
importance is given in Figure 3.

From Figure 3, several variables appear to be more important than
others (in particular PCL), and several actually decrease the OOB error after
permutation. It is interesting to note that Schiz is among the more impor-
tant variables but Age is not. The decision for removing variables is conser-
vative; only variables with average OOB error differences near and less than
zero are removed (PCS, Suicide, Consc, Age, DadArr, HeadInj, and
Threats); thus, the final model consists of twenty-four predictor variables.
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Variable Importance Plot
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Figure 3. Measure of importance for each of the thirty-one variables. The importance mea-
sure is the average of the differences in out-of-bag error before and after permutation across
all trees.

Table 6. Predicting violence with the final random forest model with equal costs.

Violence ~
Yes (A) No(A) Row Totals
. Yes (B) 17 16 33
Prediction No (B) 159 747 906
Column Totals 176 763 939

7.3 Final Model

The final model was estimated with 1000 trees omitting the variables
discussed in the previous section and with equal costs. The estimated cross-
validated error using OOB observations for the final model is .186, a slight
improvement upon the random forest model that included all thirty-one vari-
ables. The results are summarized in Table 6. The sensitivity of the model
is .097; the specificity is .979; the PPV is .515; and the NPV is .825. The
ROC plot is given in Figure 4; the AUC for the final model is .75.
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ROC Plot for Final Random Forest Model
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Figure 4. ROC plot for the final random forest model.

8. Conclusion

The results given in this paper reiterate the argument that predicting
violent behavior is extremely difficult. Unless unequal costs regarding false
positives and negatives are assumed—particularly when false negatives are
considered to be more costly than false positives—the models made a small
number of predictions of violence which consequently, led to very low sen-
sitivity. Therefore, unless the model explicitly states false negatives as more
costly than false positives, predictions of violence are infrequent and the
sensitivity is abysmally low. Even when false negatives were stated to be
1.67 times greater than false positives, the sensitivity was far from adequate
in the models. Harris and Rice (2013) claim “it can be reasonable for public
policy to operate on the basis that a miss (for example, failing to detain a
violent recidivist beforehand) is twice as costly as a false alarm (for exam-
ple, detaining a violent offender who would not commit yet another violent
offense)” (p. 106). Whether this is true, it is ethically questionable to as-
sume that costs are anything but equal unless public policy explicitly states
otherwise.

The analyses presented also demonstrate the importance of cross-
validation. Without cross-validating a model, results and conclusions re-
garding accuracy can be misleading and overly optimistic. Each type of
classification tree model constructed performed quite well when assessed
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on the data used to fit it, and almost always outperformed base-rate pre-
diction. But when cross-validation methods were implemented, the results
were dramatically different. Rarely did the model outperform base-rate pre-
diction on the testing sample, and the resubstitution error was often higher,
indicating that the models even failed to outperform base-rate prediction on
the training data.

The random forest model was chosen for two reasons: (a) it is a de-
cision tree model and the COVR is based on a decision tree model and (b)
random forests have been shown to be highly accurate models in real world
applications (Ferndndez-Delgado et al., 2014). To be sure, a logistic re-
gression model and linear and quadratic discriminant analysis models were
also fit for comparison (see the supplementary material for the full details).
The results were similar, but the logistic regression model performed best
and slightly outperformed the final random forest model in terms of cross-
validated error and AUC. But because of the reasons just given, the random
forest model was chosen to represent the final model. The final model also
did not incorporate unequal costs; as mentioned, unless public policy ex-
plicitly states that false negatives should be considered more costly than
false positives with respect to the type of violent behavior being predicted in
the VRAS sample, we feel that costs do not warrant adjustment. If costs are
considered unequal, they should be determined a priori and not from an opti-
mization based on the data; we agree with the quote from Berk (2012) when
he says, “the costs of forecasting errors need to be introduced at the very
beginning when the forecasting procedures are being developed.” Optimiz-
ing a model based on differing cost ratios could lead to unethical decision
making and unintended consequences.

Table 7 is from the VRAS study (derived from Table 6.7 in Mona-
han et al., 2001). When individuals who fall into the very high- and high-
risk groups are classified as violent and all others as nonviolent, the model
correctly classifies 86.0% of individuals, better than nearly every model
presented in the current analysis. At this cutscore the model has a sensi-
tivity and specificity of (4‘?{‘? 7 = 60 and (135+$zg+339) = .92, respec-
tively; the positive and negative predictive values are U857 _ 64 and

(634102)
gggigigigigi = .91, respectively. Recall that the COVR was a combina-

tion of ten ICT models, five of which were kept. The authors claim that this
“multiple model approach minimizes the problem of data overfitting that can
result when a single ‘best’ model is used” (p. 127). Because the authors did
not cross-validate, it is impossible to determine how much the model overfits
the data, but it certainly seems that it does. As McCusker (2007) says,

One could wonder whether the iterative classification tree methodol-
ogy (a technique that involves repetitive sifting of risk factors) that
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Table 7. COVR risk groups from Monahan et al. (2001, cf. Table 6.7, p. 125).

Violence
Yes No Row Totals Proportion Violent
Very High 48 15 63 .76
High 57 45 102 .56
Risk Group Average 48 135 183 .26
Low 19 229 248 .08
Very Low 4 339 343 .01
Column Totals 176 763 939 .19

was used to create the COVR ended up, in a sense, fitting the data in
the development sample too specifically. Perhaps as a very carefully
tailored garment will be expected to fit one individual perfectly but
most other people not as well, so the algorithms of the COVR ought
to be anticipated to classify other samples less exactly than they cate-
gorized the members of the development sample. (p. 682)

In November 2012, the journal Perspectives on Psychological Science
released a special issue dedicated to the lack of replicability in psychological
research. The issue begins with a question from the editors: “Is there cur-
rently a crisis of confidence in psychological science reflecting an unprece-
dented level of doubt among practitioners about the reliability of research
findings in the field?” (Pashler and Wagenmakers, 2012, p. 528); they im-
mediately follow their question with an answer: “It would certainly appear
that there is” (p. 528). The recent “replicability crisis” in psychology has
given many reasons to question and doubt the results published in psycho-
logical journals. Because of its important role in reducing predictive error,
cross-validation to construct predictive models can be expected to contribute
to improved replicability. Our results, when compared with cross-validation
studies of the COVR, provide an illustration of this assertion.

As important as cross-validation is for developing a model, the true
test lies in how well the model does with an independent sample; that is, can
the results be replicated? Therefore, the next step in validating the model
is to assess the accuracy with an independent sample. To date, five studies
have attempted to validate the COVR (Doyle et al., 2010; McDermott et al.,
2011; Monahan et al., 2005; Snowden et al., 2009; Sturup, Kristiansson, and
Lindqvist, 2011). Table 8 displays a summary of the original study, the five
validation studies, and the present study; many of the measures are more
closely represented by the results found in the cross-validated models pre-
sented here. For instance, the AUC from the original study (Monahan et al.,
2001) is .88 whereas the AUC for all validation studies are between .58 and
.77 (the AUC for our final random forest model is .75). The sensitivity in the
original study is .60; in four of the five validation studies the sensitivity is
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Table 8. Summary of COVR studies.

Study
Original  Present 1 2 3 4 5  Average
Violence Base Rate .19 .19 23 52 24 15 .06 .16
Violence Selection Ratio 17 .04 35 21 .05 .14 .03 .13
Reported AUC .88 75 0 73 .58 73 .T7 —
Sensitivity .60 .10 75 37 .00 41 21 .39
Specificity 92 .98 77 9 93 91 .98 92
PPV .64 .52 49 91 .00 45 .36 48
NPV 91 .82 91 59 75 90 .95 .89
Misclassification Error .14 .19 24 35 29 .16 .07 17

Note. Aside from Reported AUC, all statistics are calculated using data in the form of 2 x 2
contingency tables where a COVR score of 4 or 5 leads to a prediction of violence and all lower
scores do not.

Original: Monahan et al. (2001); Present: Results are based on the final random forest model
with equal costs (see Table 6; Study 1: Monahan et al. (2005); Study 2: Snowden, Gray, Tay-
lor, and Fitzgerald (2009); Study 3: Doyle, Shaw, Carter, and Dolan (2010); Study 4: McDer-
mott, Dualan, and Scott (2011); Study 5: Sturup, Kristiansson, and Lindqvist (2011); Average:
Weighted average of the five validation studies.

below .50 (for our final random forest model it is .10). The positive predic-
tive value for the construction study is .64 whereas four of the five validation
studies have a PPV below .50 (the PPV for the final random forest model is
52).

The results from Table 8 suggest that the five validation studies did
not replicate the findings of Monahan et al. (2001). Rather, the validation
results give more evidence of the results presented here; all measures pro-
vided in Table 8 are closer to the results from the final random forest model
than the original study’s model they are based on, aside from the sensitivity
and specificity which is a direct result of the choice to not apply unequal
costs in the final model. Thus, we conclude that the lack of cross-validation
in a prediction model should also be reason for skepticism.
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