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1. Introduction

Mixture models have seen increasing use over the last decade or two,
with many important applications in clustering and classification (examples
include: Hennig and Liao, 2013; Lee and McLachlan, 2013; Andrews and
McNicholas, 2014; Biernacki and Lourme, 2014; Browne and McNicholas,
2014b; Bouveyron and Brunet-Saumard, 2014; Lin, McNicholas, and Hsiu,
2014; Franczak et al., 2015; Wei and McNicholas, 2015; Anderlucci and
Viroli, 2015; O’Hagan et al., 2016, and McNicholas, 2016a,b). Arguably,
the most famous model-based clustering methodology is the Gaussian par-
simonious clustering models (GPCM) family (Celeux and Govaert, 1995),
which is supported by the mclust (Fraley and Raftery, 2002; Fraley et al.,
2012), mixture (Browne and McNicholas, 2015), and Rmixmod (Lebret
et al., 2015) packages for R (R Core Team, 2015). However, such models
do not typically account for dependencies via covariates. When there is a
clear regression relationship between some variables, important insight can
be gained by accounting for functional dependencies between those vari-
ables. For such data, traditional model-based clustering methods that fail to
incorporate such a relationship may not perform as well.

Some popular mixture-based methodologies that deal with regression
data are finite mixtures of regression (FMR: DeSarbo and Cron, 1988) and
finite mixtures of regression with concomitant variables (FMRC: Wedel,
2002), supported by the flexmix (Leisch, 2004; Grün and Leisch, 2008)
package for R. FMR only model the distribution of the response given the
covariates, whereas FMRC also model the mixing weights of the compo-
nents as a multinomial logistic model of some concomitant variables (which
are often the covariate variables). However, these methodologies do not ex-
plicitly use the distribution of the covariates for clustering, i.e., the assign-
ment of data points to clusters does not directly utilize any information from
the distribution of the covariates. Recently, finite mixtures of seemingly un-
related linear regressions have also been proposed (Galimberti, Scardovi,
and Soffritti, 2015).

A flexible framework for density estimation and clustering of data
with local functional dependencies is represented by the cluster-weighted
model (CWM: Gershenfeld, 1997), also called the saturated mixture regres-
sion model by Wedel (2002). CWMs were first investigated in a general sta-
tistical mixture framework by Ingrassia, Minotti, and Vittadini (2012). The
same paper presented theoretical and numerical properties, and discussed
the performance of the model under both Gaussian and t-distributional as-
sumptions (see also, Ingrassia, Minotti, and Punzo, 2014).

As opposed to FMR and FMRC, CWMs allow for assignment depen-
dence (cf. Hennig, 2000), i.e., the assignment of an observation to a cluster
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is also dependent on the distribution of the covariates. In such models, the
component covariate distributions can be distinct; for a discussion about the
difference between FMR, FMRC, and CWMs from a geometrical point of
view, see Ingrassia and Punzo (2016). Some extensions of this methodology
have dealt with non-linear local relationships (Punzo, 2014), high dimen-
sional covariates (Subedi et al., 2013, 2015), and various response types
(Ingrassia et al., 2015; Punzo and Ingrassia, 2013, 2015).

In this paper, a family of parsimonious Gaussian CWMs is presented.
It concerns multivariate responses, while CWMs have so far only dealt with
univariate responses. Note that parsimony is vital in real data applications
and this is the first time that CWMs are being used with eigen-decomposed
covariance structures. Regarding multivariate responses in the FMR and
FMRC framework, using multivariate responses is possible in flexmix but
the package currently does not account for correlated response variables, i.e.,
these models assume independence between the response variables. FMR
models that deal with correlated response variables have been recently pro-
posed (Soffritti and Galimberti, 2011; Galimberti and Soffritti, 2013), but
these models do not decompose the covariance structure nor do they use
information from the distribution of the covariates. Furthermore, these pa-
pers do not investigate FMRC models that deal with correlated responses.
Families of eigen-decomposed parsimonious FMR and FMRC models that
can account for correlated response variables have been recently proposed
(eFMR and eFMRC: Dang and McNicholas, 2015); however, these models
do not take into account the distribution of the covariates.

For the proposed multivariate response CWM, parsimonious models
are developed by constraining parts of an eigen-decomposition imposed on
the component covariance matrices of both the responses and the covariates.
This family of parsimonious models is referred to as the eigen-decomposed
multivariate response CWM (eMCWM). The Bayesian information crite-
rion (BIC: Schwarz, 1978) and the integrated completed likelihood (ICL:
Biernacki , Celeux, and Govaert, 2000) are considered for model selection
on this family. Comparisons to FMR, FMRC, eFMR, eFMRC, and GPCMs
are made. Note that, hereafter, FMR and FMRC models as implemented
in flexmix will simply be referred to as the FMR and FMRC models,
respectively.

The remainder of the paper is organized as follows. In Section 2,
basic ideas on CWMs are summarized. In Section 3, we recall an eigen-
decomposition of a covariance matrix. Identifiability is treated in Section 4.
An expectation-maximization (EM) algorithm for maximum likelihood pa-
rameter estimation is presented in Section 5. Moreover, issues of model
selection, algorithm initialization, convergence criterion, and performance
assessment are also discussed. In Section 6, results of numerical studies
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based on both real and simulated data are presented. Finally, in Section 7,
some conclusions and ideas for future research are discussed.

2. Cluster-Weighted Models

Multivariate correlated responses can be conveniently accounted for
in a CWM framework. Let X and Y be random vectors defined on Ω with
joint probability distribution p(x,y). Here, the response vector Y has val-
ues in R

d and the vector of covariates X has values in R
p. Let Ω be par-

titioned into G disjoint groups, such that Ω = Ω1 ∪ · · · ∪ ΩG. Then, in a
CWM framework, the joint probability p(x,y) can be decomposed as

p(x,y) =

G∑
g=1

p(y|x,Ωg)p(x|Ωg)πg, (1)

where p(y|x,Ωg) is the conditional density of the multivariate response Y
given the covariates X and Ωg, p(X |Ωg) is the probability density of X
given Ωg, and πg = p(Ωg) are the mixing weights, where πg > 0 and∑G

g=1 πg = 1, g = 1, . . . , G. Here, X|Ωg is assumed to be normally dis-
tributed with mean μXg and covariance matrix ΣXg , and Y |(X = x,Ωg)
is assumed to be normally distributed with conditional mean μY (x|Bg),
given by some linear transformation of X , and covariance matrix ΣY g,
g = 1, . . . , G. Here, μY (x|Bg) = B′

gx
∗ is used where Bg ∈ R

(1+p)×d

and x∗ = (1,x′)′. Hence, Y (X) is a matrix ofN observations on d (p) re-
sponse variables (covariates) while B for a specific component g is a p + 1
by d matrix of regression coefficients with one column for each response
variable. Then, model (1) can be rewritten as

p (x,y|ϑ) =
G∑

g=1

φd (y|x,μY (x|Bg),ΣY g)φp

(
x|μXg,ΣXg

)
πg, (2)

where φd (φp) represents the density of a d-variate (p-variate) Gaussian ran-
dom vector and ϑ denotes the set of all parameters.

3. Parsimonious Models

For a single q × q covariance matrix, the number of free parameters
increases quadratically with the dimensionality q. In model-based cluster-
ing, parsimony is usually necessary for real applications. Parsimony can be
introduced by constraining parts of a particular decomposition of a covari-
ance matrix (Celeux and Govaert, 1995; McNicholas et al., 2010; Punzo,
Browne, and McNicholas, 2016). An eigen-decomposition of such a matrix
(cf. Celeux and Govaert, 1995) yields
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Table 1. Geometric interpretation and the number of free parameters in the eigen-decomposed
covariance structures.

Model Volume Shape Orientation Σg Free Cov. Parameters
EII Equal Spherical - λI 1
VII Variable Spherical - λgI G

EEI Equal Equal Axis-Aligned λΔ q
VEI Variable Equal Axis-Aligned λgΔ G+ q − 1
EVI Equal Variable Axis-Aligned λΔg Gq − (G− 1)
VVI Variable Variable Axis-Aligned λgΔg Gq

EEE Equal Equal Equal λΓΔΓ′ q (q + 1) /2
VEE Variable Equal Equal λgΓΔΓ′ q(q + 1)/2 + (G− 1)
EVE Equal Variable Equal λΓΔgΓ

′ q(q + 1)/2 + (G− 1)(q − 1)
EEV Equal Equal Variable λΓgΔΓ′

g Gq(q + 1)/2− (G− 1)q
VVE Variable Variable Equal λgΓΔgΓ

′ q(q + 1)/2 + (G− 1)q
VEV Variable Equal Variable λgΓgΔΓ′

g Gq(q + 1)/2− (G− 1)(q − 1)
EVV Equal Variable Variable λΓgΔgΓ

′
g Gq(q + 1)/2− (G− 1)

VVV Variable Variable Variable λgΓgΔgΓ
′
g Gq (q + 1) /2

Σg = λgΓgΔgΓ
′
g,

for g = 1, . . . , G, where λg = |Σg|1/q is a constant,Δg is a diagonal matrix
with entries (sorted in decreasing order) proportional to the eigenvalues of
Σg with the constraint |Δg| = 1, and Γg is a q × q orthogonal matrix of the
eigenvectors (ordered according to the eigenvalues) of Σg. Geometrically,
λg determines the volume, Δg the shape, and Γg the orientation of the gth
component. By constraining λg, Γg, and Δg to be equal or variable across
groups, a family of fourteen models (Table 1) is obtained. This family can
be further split into three subfamilies. Here, the EII and VII models belong
to the spherical family, the models with an axis-aligned orientation belong
to the diagonal family, while the rest of the models belong to the general
family.

Here, the covariance matrices ΣXg and ΣY g in (2) are decomposed.
Constraining λg , Γg, andΔg on these decompositions in Equation (2) leads
to 14 different covariance structures for both X and Y , resulting in a total
of 14 × 14 = 196 models. This is the eMCWM family. Note that for
the purposes of notation, an eMCWM with a VEV covariance structure for
Y |X = x and an EII covariance structure forX will be denoted as a VEV-
EII model.

4. Identifiability

Identifiability is important for parameter inference and for the usual
asymptotic theory to hold for maximum likelihood estimation of the model
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parameters (cf. Section 5). Proof of the identifiability of univariate and
multivariate finite Gaussian mixture distributions is provided by Teicher
(1963) and Yakowitz and Spragins (1968), respectively, while general condi-
tions for identifiability of mixtures of linear models can be found in Hennig
(2000). Proof of the identifiability of the generalized linear Gaussian CWM
has recently been provided by Ingrassia et al. (2015). Here, identification
conditions are provided for the multivariate response (Gaussian) CWM de-
fined in (2).

Generally speaking, identifiability for mixture models can be defined
as follows. Consider a parametric class of density (probability) functions
F = {f(z|ψ) : z ∈ Z , ψ ∈ Ψ}. Then, the class of finite mixtures of
functions in F is

H =

{
h(z|ϑ) : h(z|ϑ) =

G∑
g=1

f(z|ψg)πg, with πg > 0 and
G∑

g=1

πg = 1,

f(·|ψg) ∈ F , g = 1, . . . , G,ψg �= ψj for g �= j, G ∈ N, z ∈ Z , ϑ ∈ Θ

}
.

This class is identifiable if for any two members

h(z|ϑ) =
G∑

g=1

f(z|ψg)πg and h(z|ϑ̃) =
G̃∑

s=1

f(z|ψ̃s)π̃s

of H, h(z|ϑ) = h(z|ϑ̃) implies that G = G̃, and for each g ∈ {1, . . . , G}
there exists s ∈ {1, . . . , G} such that πg = π̃s and ψg = ψ̃s.

In Theorem 1, a sufficient identification condition is provided for the
most general eMCWM (i.e., the VVV-VVV model). In particular, a suffi-
cient condition for the identifiability of the class C is established where

C =

{
p(x,y|ϑ) : p(x,y|ϑ) =

G∑
g=1

φd (y|x,μY (x|Bg) ,ΣY g)φp(x|μXg,ΣXg)πg,

with πg > 0,

G∑
g=1

πg = 1, (Bg,ΣY g) �= (Bj ,ΣY j)

for g �= j, (x,y) ∈ R
p+d ,

ϑ = {Bg,ΣY g,μXg,ΣXg, πg; g = 1, . . . , G} ∈ Θ, G ∈ N

}
. (3)
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Roughly speaking, the theorem proves that the class C is identifiable for
almost all x ∈ R

p and for all y ∈ R
d.

Theorem 1. Let C be the class defined in (3) and assume that there exists
a set X ⊆ R

p having probability equal to one according to the p-variate
Gaussian distribution such that the mixture of regression models

G∑
g=1

φd (y|x,μY (x|Bg) ,ΣY g)αg (x) , y ∈ R
d, (4)

is identifiable for each fixed x ∈ X , where α1(x), . . . , αG(x) are positive
weights summing to one for each x ∈ X . Then, the class C is identifiable in
X × R

d.

Proof. The proof is given in Appendix A.
�

5. Inference

5.1 Parameter Estimation for eMCWM

Parameter estimation, via the EM algorithm of Dempster et al. (1977),
is described here for the unconstrained VVV-VVVmodel from the eMCWM
family. Details on alternative algorithms to find maximum likelihood esti-
mates of a mixture distribution can be found in Böhning (1995, 2003). Let
S = {(x1,y1), . . . , (xN ,yN )} be a sample of N independent observations
from model (2). Then, the incomplete-data likelihood function is

L (ϑ|S) =

N∏
i=1

p(xi,yi|ϑ)

=

N∏
i=1

⎡⎣ G∑
g=1

φd(yi|μY (xi|Bg),ΣY g)φp(xi|μXg,ΣXg)πg

⎤⎦ .

Note that S is considered incomplete in the context of the EM algorithm.
The complete-data are Sc = {(x1,y1,z1), . . . , (xN ,yN ,zN )}, where the
missing variable zi is the component label vector such that zig = 1 if (xi,yi)
belongs to the gth component and zig = 0 otherwise. Now, the correspond-
ing complete-data likelihood is

Lc (ϑ|Sc) =

N∏
i=1

G∏
g=1

[φd(yi|μY (xi|Bg),ΣY g)φp(xi|μXg,ΣXg)πg]
zig .
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The complete-data log-likelihood function can be decomposed as

lc (ϑ|Sc) =

N∑
i=1

G∑
g=1

zig [log φd(yi|μY (xi|Bg),ΣY g)+

log φp(xi|μXg,ΣXg) + log πg
]
.

The E-step involves calculating the expected complete-data log-likelihood

Q
(
ϑ|ϑ(k)

)
= Eϑ(k) {lc (ϑ|Sc)}

=

N∑
i=1

G∑
g=1

ẑ
(k)
ig

[
Q1

(
Bg,ΣY g|ϑ(k)

)
+

Q2

(
μXg,ΣXg|ϑ(k)

)
+ log π(k)

g

]
,

where

ẑ
(k)
ig = Eϑ(k){Zig|xi,yi} =

φd(yi|μY (xi|B(k)
g ),Σ

(k)
Y g)φp(xi|μ(k)

Xg,Σ
(k)
Xg)π

(k)
g

G∑
j=1

φd(yi|μY (xi|B(k)
j ),Σ

(k)
Y j)φp(xi|μ(k)

Xj ,Σ
(k)
Xj)π

(k)
j

provides the current value of zig on the kth-iteration and

Q1

(
Bg,ΣY g|ϑ(k)

)
=

1

2
[−d log (2π)−

log |Σ(k)
Y g| −

(
yi −B

′(k)
g x∗

i

)′
Σ

(k)(−1)
Y g (yi −B

′(k)
g x∗

i )

]
,

Q2

(
μXg,ΣXg|ϑ(k)

)
=

1

2

[
−p log (2π)− log |Σ(k)

Xg|−(
xi − μ

(k)
Xg

)′
Σ

(k)(−1)
Xg

(
xi − μ

(k)
Xg

)]
.

The M-step on the (k+1)th iteration of the EM algorithm involves the max-
imization of the conditional expectation of the complete-data log-likelihood
with respect to ϑ. The update for π(k+1)

g is

π̂(k+1)
g =

1

N

N∑
i=1

ẑ
(k)
ig . (5)
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The updates for μ(k+1)
Xg andΣ(k+1)

Xg , g = 1, . . . , G, are

μ̂
(k+1)
Xg =

∑N
i=1 ẑ

(k)
ig xi∑N

i=1 ẑ
(k)
ig

, (6)

Σ̂
(k+1)
Xg =

∑N
i=1 ẑ

(k)
ig

(
xi − μ̂

(k+1)
Xg

)(
xi − μ̂

(k+1)
Xg

)′
∑N

i=1 ẑ
(k)
ig

. (7)

These closed form updates can also be found in McLachlan and Peel (2000).
The updates for B

(k+1)
g and Σ

(k+1)
Y g (see Appendix B for details), g =

1, . . . , G, are

B̂
(k+1)′

g =

(
N∑
i=1

ẑ
(k)
ig yix

∗′
i

)(
N∑
i=1

ẑ
(k)
ig x∗

ix
∗′
i

)−1

(8)

when
∑N

i=1 ẑ
(k)
ig x∗

ix
∗′
i is non-singular, and

Σ̂
(k+1)
Y g =

∑N
i=1 ẑ

(k)
ig

(
yi − B̂

(k+1)′

g x∗
i

)(
yi − B̂

(k+1)′

g x∗
i

)′

∑N
i=1 ẑ

(k)
ig

, (9)

respectively. Equations (5) through (9) are the parameter updates for the
VVV-VVVmodel of the eMCWM family. For the other models of this fam-
ily, the M-step updates vary only with respect to the component covariance
matrices ΣXg and ΣY g; these updates are similar to those of the GPCM
family of Celeux and Govaert (1995).

5.2 Model Selection

For choosing the “best” fitted model among a family of models, a
likelihood-based model selection criterion is conventionally used, and the
BIC is the most popular for Gaussian mixture models. Even though mixture
models generally do not satisfy the regularity conditions for the asymptotic
approximation used in the development of the BIC (Keribin, 1998, 2000), it
has performed well in practice and has been used extensively since the work
of Dasgupta and Raftery (1998) and Fraley and Raftery (2002). The BIC
can be calculated as

BIC = 2l(ϑ̂)−m logN,

where l(ϑ̂) is the incomplete-data log-likelihood at the maximum likelihood
estimates andm is the number of free parameters. The ICL is another com-
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monly used information criterion that additionally makes use of the esti-
mated mean entropy, i.e., it takes into account the uncertainty of the classi-
fication of an observation to a component and can be computed as

ICL ≈ BIC+ 2

N∑
i=1

G∑
g=1

MAP(ẑig) log ẑig.

Here, MAP(ẑig) is the maximum a posteriori probability and equals 1 if
maxh(ẑih), h = 1, . . . , G, occurs at component h = g, and 0 otherwise.

5.3 Initialization

The EM algorithm is noted to be heavily dependent on starting values
(Baudry and Celeux, 2015). Singularities and convergence to local maxima
are well documented, and Gaussian mixture models are known to have un-
bounded likelihood surfaces (Titterington, Smith, and Makov, 1985). Con-
straining eigenvalues can alleviate some of these issues (Ingrassia and Rocci,
2007; Browne, Subedi, and McNicholas 2013), as can employing determin-
istic annealing (Zhou and Lange, 2010). Initializing the EM algorithm mul-
tiple times using k-means (MacQueen, 1967; Hartigan and Wong, 1979) or
random initializations and choosing the initial values of zig from the run
picked using the highest log-likelihood value can also help.

Here, the EM algorithm is initialized as follows. The EEE-EEEmodel
is run 10 times for eachG: 9 times using a random initialization for the zig,
and once with a k-means initialization. Note that, for the k-means initial-
ization, the initial ẑig are selected from the best k-means clustering results
from ten random starting values as implemented in the kmeans function in
R. From these models, the model with the highest log-likelihood value is
chosen; then, the associated MAP(ẑig) is used to initialize the families of
models. In our simulations, this procedure performed well.

5.4 Convergence Criterion

A common criterion to stop the EM algorithm is when the difference
between the log-likelihood values on consecutive iterations is less than some
ε. Here, the Aitken stopping criterion (Aitken, 1926) is used to determine
convergence. Use of the aforementioned lack of progress criterion can result
in the EM converging earlier than with the Aitken stopping criterion, result-
ing in estimates that might not be as close to the maximum likelihood esti-
mates (McNicholas et al., 2010). At each iteration of the EM algorithm, the
Aitken acceleration procedure is used to compute an estimated asymptotic
value. Based on this, a decision can be made regarding whether or not the
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algorithm has reached convergence, i.e., whether or not the log-likelihood
is sufficiently close to its estimated asymptotic value. See Böhning et al.
(1994), Lindsay (1995), and McNicholas et al. (2010) for details.

5.5 Performance Assessment

The adjusted Rand index (ARI: Hubert and Arabie, 1985) can be used
to judge performance of a model relative to the true classification (when
known). The predicted group memberships at the maximum likelihood esti-
mates of the model parameters are given by MAP(ẑig).The Rand index (RI)
can be used to compare these partitions (Rand, 1971). These predicted clas-
sifications from the best fitted model can be cross-tabulated against the true
(known) group memberships. Denote the predicted partition of N observa-
tions by T and the known partition (grouping) by V . Now, define a as the
number of pairs of observations in the same cluster in T and in the same
cluster in V , b as the number of pairs of observations in the same cluster in
T but not in the same cluster in V , c as the number of pairs of observations
in the same cluster in V but not in the same cluster in T , and d as the num-
ber of pairs of observations in different clusters in both T and V . Then, the
Rand index is calculated as

a+ d

a+ b+ c+ d
.

The RI takes a value between 0 and 1 (the latter indicative of perfect agree-
ment). However, the RI has a positive expected value under random assign-
ment, which leads to difficulty in interpreting small RI values.

The ARI calculates the agreement between true and predicted clas-
sification by correcting the RI to account for chance. Hence, an ARI of 1
corresponds to perfect clustering whereas the expected value of the ARI un-
der random classification is 0. Furthermore, the ARI can be negative and
such values are indicative of classification that is worse than would be ex-
pected by random assignment. The reader is advised to consult Steinley
(2004) for discussion and further details about the ARI.

6. Experiments and Illustrations

The eMCWM family is implemented in R. Simulations are presented
to illustrate parameter recovery for a host of different models. Clustering
performance of the eMCWM family is compared to that of FMR, FMRC,
eFMR, eFMRC, and GPCMs on benchmark data. Although the objective
was to develop a mixture model that can incorporate linear dependencies on
covariates, the models’ performance is also compared to the GPCM fam-
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ily as implemented in the mixture package. Note that GPCMs are con-
structed on different assumptions and are not meant to account for regres-
sion structures. However, GPCMs remain the most commonly used mod-
els in the literature for model-based clustering and, hence, a comparison
to these models is relevant. As mentioned earlier, these models are sup-
ported by the mclust, mixture, and Rmixmod packages. In particular,
mixturemakes use of a majorization-minimization algorithm for the EVE
and VVE models (Browne and McNicholas, 2014a), which works better in
higher dimensions than the Flury procedure (Flury and Gautschi, 1986) used
in Rmixmod. Note that, for the M-step for the different covariance struc-
tures in Table 1, the mixture package (Browne and McNicholas, 2015) is
used. The eMCWM family is also compared to the eFMR and eFMRC fam-
ilies of Dang and McNicholas (2015). The flexmix FMR and FMRC al-
gorithms allow for specification of a user-defined initialization matrix; thus,
all algorithms run on a specific data sample are initialized with the same set
of MAP(ẑig) values to facilitate comparison of the performance of the algo-
rithms from the same starting values (Section 5.3). The performance of the
eMCWM family is illustrated on artificial and real data sets in Sections 6.1
and 6.2, respectively.

6.1 Analyses on Simulated Data

6.1.1 Simulation 1

Here, data of size N = 250 and with p = d = 2 are generated
from a two-component VEE-VII model (Figure 1). The data set will be
referred to as Simulation 1 hereafter. A two-component mixture is simu-
lated with the sample sizes for each group sampled from a binomial distri-
bution with success probability 0.35. The responses are generated using a
VEE covariance structure and the covariates using a VII covariance struc-
ture. Covariates are generated from a bivariate Gaussian distribution with
mean μX1 = (3, 2.5)′ and μX2 = (1.1,−4)′ for components 1 and 2, re-
spectively. The covariance matrices of the covariates for the two groups are(
1 0
0 1

)
and

(
0.5 0
0 0.5

)
, respectively. Under the VII decomposition, this cor-

responds to λX1 = 1 and λX2 = 0.5 for component 1 and component 2,
respectively. The regression coefficient matrices used for the two groups
are

(
2 −0.5 −1
−2 1.5 2

)′
and

(
0 2.2 −1
1 2 1.5

)′
, respectively. Lastly, the error matrices

for the two groups using a VEE covariance structure are
(
0.92 0.56
0.56 1.40

)
and(

1.725 1.050
1.050 2.625

)
, respectively. This corresponds to λY 1 = 0.8, λY 2 = 1.5, and

ΓY 1ΔY 1Γ
′
Y 1 = ΓY 2ΔY 2Γ

′
Y 2 =

(
1.15 0.70
0.70 1.75

)
.

One hundred samples are generated. The eMCWM family is run us-
ing all 196 models forG ∈ {1, . . . , 4}, resulting in a total of 784 models for
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Figure 1. Scatter plots showing an example of a generated data set for Simulation 1.

Table 2. True parameter values along with mean and standard deviations of the parameter
estimates (rounded off to two decimals) for the VEE-VII model from the 100 runs for
Simulation 1.

Parameter True values Mean estimates Standard deviations
π1 0.35 0.35 0.03
π2 0.65 0.65 0.03
µX1 (3.00, 2.50)′ (2.99, 2.51)′ (0.10, 0.13)′

µX2 (1.10,−4.00)′ (1.09,−4.00)′ (0.05, 0.05)′

λX1 1.00 0.98 0.11
λX2 0.50 0.50 0.04

B′
1

(
2.00 −0.50 −1.00
−2.00 1.50 2.00

)(
1.97 −0.49 −1.00
−1.99 1.52 1.97

)(
0.49 0.11 0.12
0.58 0.14 0.13

)

B′
2

(
0.00 2.20 −1.00
1.00 2.00 1.50

) (−0.07 2.18 −1.02
1.09 1.98 1.52

)(
0.68 0.15 0.15
0.79 0.20 0.18

)

ΣY 1

(
0.92 0.56
0.56 1.40

) (
0.91 0.54
0.54 1.37

) (
0.12 0.10
0.10 0.18

)

ΣY 2

(
1.73 1.05
1.05 2.63

) (
1.67 1.00
1.00 2.53

) (
0.15 0.13
0.13 0.26

)

each sample. Both the BIC and the ICL chose the same model each time.
The VEE-VII model is chosen 91 out of 100 times. The selected model
fit the correct number of components and resulted in perfect classification
99 out of 100 times (with one misclassification on the remaining sample).
True and estimated parameters for the two-component VEE-VII model are
reported in Table 2. Clearly, the parameter estimates are close to the true
values.
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Figure 2. Scatter plots showing an example of a generated data set for Simulation 2.

6.1.2 Simulation 2

A two-component mixture is simulated with 450 observations with
two-dimensional Gaussian responses and three-dimensional Gaussian co-
variates. The VVV covariance structure is used to simulate the data for both
the responses and the covariates (Figure 2). The sample sizes for each group
are sampled from a binomial distribution with success probability 0.40. As
in Simulation 1, 100 samples are generated. The eMCWM family is again
run forG ∈ {1, . . . , 4}. While both the BIC and the ICL chose a two compo-
nent model each time, the ICL chose a different model from the BIC eight
out of 100 times. True and estimated parameters for the two-component
VVV-VVV model are given in Table 3. Clearly, the parameter estimates
are close on average to the true parameters. As compared to Simulation 1,
where the generating model was selected by the model selection criteria in
a majority of runs, more parsimonious models are usually picked here as
opposed to the VVV-VVV model (which is selected only fifteen times out
of one hundred). The estimated ARI values for the selected models range
between 0.94 and 1.00 with a median (mean) value of 0.98 (0.98) over the
100 runs.

6.1.3 Simulation 3

Parameter recovery is also illustrated on higher dimensional data gen-
erated from an EEE-EEE model. One hundred samples of a two-
component mixture model are simulated with nine-dimensional covari-
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Table 3. True parameter values along with mean and standard deviations of the parameter
estimates (rounded off to two decimals) for the VVV-VVV model from the 100 runs for
Simulation 2.

Para- True values Mean estimates Standard deviations
meter
π1 0.40 0.40 0.02
π2 0.60 0.60 0.02
µX1 (0.00, 0.00, 0.00)′ (−0.00,−0.01,−0.00)′ (0.09, 0.10, 0.12)′
µX2 (2.00, 4.00,−2.00)′ (2.00, 4.00,−2.00)′ (0.09, 0.05, 0.06)′

ΣX1

⎛
⎝ 1.72 −0.18 0.27

−0.18 1.89 0.27

0.27 0.27 2.89

⎞
⎠

⎛
⎝ 1.70 −0.15 0.27

−0.15 1.88 0.27

0.27 0.27 2.90

⎞
⎠

⎛
⎝0.19 0.17 0.16

0.17 0.23 0.17

0.16 0.17 0.29

⎞
⎠

ΣX2

⎛
⎝ 2.33 −0.52 −0.06

−0.52 0.88 −0.34

−0.06 −0.34 1.04

⎞
⎠

⎛
⎝ 2.35 −0.52 −0.08

−0.52 0.88 −0.34

−0.08 −0.34 1.03

⎞
⎠

⎛
⎝0.21 0.10 0.11

0.10 0.07 0.06

0.11 0.06 0.09

⎞
⎠

B′
1

(−2.00 0.75 1.00 0.50

1.00 0.50 1.00 −2.00

) (−2.00 0.74 1.00 0.49

0.99 0.49 1.00 −2.00

) (
0.09 0.07 0.06 0.06

0.09 0.08 0.07 0.06

)

B′
2

(
0.50 1.75 0.25 1.00

1.00 1.00 1.00 1.00

) (
0.51 1.75 0.24 1.00

1.03 1.00 1.00 1.00

) (
0.25 0.03 0.06 0.05

0.38 0.05 0.09 0.08

)

ΣY 1

(
1.34 0.47

0.47 1.66

) (
1.32 0.47

0.47 1.63

) (
0.13 0.11

0.11 0.17

)

ΣY 2

(
0.50 0.04

0.04 1.50

) (
0.50 0.03

0.03 1.47

) (
0.04 0.06

0.06 0.14

)

ates and ten- dimensional responses. Group sample sizes are sampled from
a binomial distribution with success probability 0.3 and an overall sample
size of 1000. Covariates for the first component are simulated from a nine-
dimensional Gaussian distribution with zero mean. Covariates for the sec-
ond component are simulated with mean (1, 2,−1,−2, 0, 0, 1, 2,−1)′ . The
ten by ten matrix of regression coefficients for the two groups is simulated
using a standard Gaussian distribution and fixed for all 100 runs (see Ap-
pendix C for the coefficient values). The common covariance matrix for the
covariates is generated using⎛⎝1.00 0.80 0.60

0.80 1.20 0.40
0.60 0.40 0.80

⎞⎠⊗ I3,

where I3 denotes a 3-dimensional identity diagonal matrix. Similarly, the
common covariance matrix for the responses is generated using(

1.50 0.60
0.60 2.00

)
⊗ I5,

where I5 denotes a 5-dimensional identity diagonal matrix. The recovered
parameter estimates for the EEE-EEE model are found to be close on aver-
age to the generating parameters. Due to space constraints and the high
dimensionality, the Frobenius norms of the biases of the parameter esti-
mates from the EEE-EEE models are reported in Table 4, similar to Murray,
Browne, and McNicholas (2014).
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Table 4. Frobenius norms of the biases of the parameter estimates (rounded off to two deci-
mals) for the EEE-EEE model from the 100 runs for Simulation 3.

Parameter ‖Bias‖
π1 0.00
π2 0.00
µX1 0.01
µX2 0.01
ΣX1 = ΣX2 0.03
B′

1 0.13
B′

2 0.11
ΣY 1 = ΣY 2 0.12

Note that while the purpose of this simulation is to investigate param-
eter estimation in higher dimensions, clustering performance is also evalu-
ated. Two-, three-, and four-component models were selected 46, 29, and 25
times, respectively. Interestingly, selection of the three- and four-component
models seem to result from spurious clusters. Spurious clusters are well
known in the mixture modelling literature (Ingrassia, 2004; Ingrassia and
Rocci, 2007) and are commonly associated with low variance of a mixture
component, leading to a spike in the log-likelihood (McLachlan and Peel,
2000; Ingrassia, 2004; Ingrassia and Rocci, 2007). In this simulation, the
above is true for every run where a two-component model was not selected
in the current simulation by the BIC. Such cases have been dealt with by
imposing bounds on the eigenvalues of the covariance matrix of interest
during parameter estimation (Ingrassia, 2004; Browne et al., 2013). This,
in effect, imposes a bound on the variance along the principal axes. Here,
a simple post-hoc procedure is implemented. If either of the covariates or
responses covariance matrices for a model possess any eigenvalues less than
a conservative bound, ε = 10−20, that model is removed from the results.
This procedure has the effect of disregarding all models with spurious clus-
ters in our simulation. As a result, a two-component model is selected all
100 times; specifically, the EEE-EEE (EEE-VEE) model was selected 99
(1) times. The estimated ARI values for the selected models range between
0.996 and 1.00 with a median (mean) value of 1.00 (1.00).

6.2 Analysis of Real Data Sets

6.2.1 Australian Institute of Sports Data

The Australian Institute of Sports (AIS) data (Cook and Weisberg,
1994) contains measurements on 202 athletes (100 female and 102 male)
and is available in the R package sn (Azzalini, 2013). A subset of seven
variables that has recently been used in the mixtures of regression litera-
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Table 5. Comparison of the performance of the models applied to the AIS data.

Algorithm Model G ARI Parameters
eMCWM VVI-VVE 2 0.92 59
eFMR VI 1 0 18
eFMRC VI 1 0 18
FMR 1 0 18
FMRC 1 0 18
mixture EVE 3 0.60 63

*Note that, for a one-component model, the family comprises three covariance structures: VI (diagonal
with different entries), EI (diagonal with same entries), and VV (full covariance matrix).

Table 6. Cross-tabulation of true and estimated classifications for two methods applied to the
AIS data.

eMCWM mixture
1 2 1 2 3

Female 99 1 83 14 3
Male 3 99 0 86 16

ture (Soffritti and Galimberti, 2011) is analyzed here: red cell count (RCC),
white cell count (WCC), plasma ferritin concentration (PFC), body mass in-
dex, sum of skin folds, body fat percentage, and lean body mass. The blood
composition variables (RCC, WCC, and PFC) are selected as the response
variables with the biometrical variables being the predictors. All algorithms
are run for G ∈ {1, . . . , 4}. Table 5 summarizes the results from running
the eMCWM, eFMR, eFMRC, FMR, FMRC, and mixture GPCM algo-
rithms.

Both the BIC and the ICL chose a two-component model with the
VVI and VVE covariance structures for the response and covariates, respec-
tively. This model yielded an ARI of 0.92. The estimated classification for
the chosen eMCWM model is in Table 6. Note that the difference between
the chosen eMCWM model and the model with the second best BIC value
is small (≈ 0.3 BIC points). This latter model (VEI-VVE; 57 degrees of
freedom) picked two components and resulted in an ARI of 0.87. The cho-
sen (one-component) model from the eFMR and eFMRC families did not
perform well, and neither did the FMR and FMRC models. The mixture
software, on the other hand, selected a three-component solution but the
estimated classification does not reconcile as well with the known grouping.

6.2.2 Iris Data

The algorithms are also run on the famous Iris data set (Anderson,
1935; Fisher, 1936). This data set, available in the datasets package
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Table 7. Comparison of the performance of the models applied to the Iris data.

Algorithm Model G ARI Parameters
eMCWM VEV-VEV 3 0.90 40
eFMR VEI 2 0.14 16
eFMRC VVI 2 0.45 19
FMR 2 0.19 17
FMRC 2 0.45 19
mixture VEV 2 0.57 26

Table 8. Cross-tabulation of true and estimated classifications for three methods applied to
the Iris data.

eMCWM mixture eFMRC
1 2 3 1 2 1 2

setosa 50 50 50
versicolor 45 5 50 31 19
virginica 50 50 50

as part of R, provides measurements on sepal length and width as well as
petal length and width for 50 flowers from each of three species of Iris: se-
tosa, versicolor, and virginica. The width measurements are taken to be
the response variables with the other variables as the covariates. The al-
gorithms are run for G ∈ {1, . . . , 4} (Table 7). The selected eMCWM
model is a three-component model with an ARI of 0.90 (Table 8). Note
that the difference between the chosen eMCWM model and the model with
the second best BIC value is ≈ 1.25 BIC points. This latter model selected
a two-component model (VVV-VVV; 29 degrees of freedom) with an ARI
of 0.57. This model put datapoints from versicolor and virginica together in
one group. The model with the second best BIC value is the model that the
ICL chose: a two-component VVV model with an ARI of 0.57.

The eFMR and FMRmodels resulted in two-componentmodels yield-
ing poor ARI values. A two-component VVI model is selected from the
eFMRC family with an ARI of 0.45. This model clusters setosa and vir-
ginica perfectly with observations from versicolor assigned to the other two
clusters. Because the flexmix FMRC algorithm is, in essence, a VVI
model, unsurprisingly, it also chose a two-component model with an ARI
of 0.45. The GPCM family as implemented in mixture picked a two-
component model (ARI=0.57) with the data points from versicolor and vir-
ginica pooled together in one group (Table 8).

6.2.3 Crabs Data

The crabs data set contains five morphological measurements on each
of 50 crabs representing both sexes and colours (blue and orange) of the
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Table 9. Comparison of the performance of the models applied to the crabs data.

Algorithm Model G ARI Parameters
eMCWM EEE-EVE 4 0.82 59
eFMR VVI 2 0.40 25
eFMRC EEE 4 0.83 51
FMR 2 0.40 25
FMRC 3 0.69 42
mixture EEV 4 0.78 68

Table 10. Cross-tabulation of true and estimated classifications for four methods applied to
the crabs data.

eMCWM eFMRC mixture eFMR
1 2 3 4 1 2 3 4 1 2 3 4 1 2

BM 39 11 39 11 38 12 46 4
BF 50 50 49 1 4 46
OM 50 50 50 50
OF 4 46 3 47 5 45 2 48

“B”, “O”, “M”, and “F” refer to blue, orange, male, and female, respectively.

species Leptograpsus variegatus. These data were originally introduced in
Campbell and Mahon (1974) and are available as part of the MASS package
(Venables and Ripley, 2002) for R. The data are famous for having highly
correlated measurements on width of frontal region just anterior to frontal
tebercles (FL), width of posterior region (RW), carapace length (CL), cara-
pace width (CW), and body depth (BD). The variables CW, FL, and RW
reflect width measurements and are taken to be the response variables, with
CL and BD as the predictor variables. Based on the two binary variables, sex
and colour, there are four known classes within these data. The algorithms
are run for G ∈ {1, . . . , 9} and the results are summarized in Table 9. The
selected eMCWM model is a four-component model with an ARI of 0.82
(Table 10). Note that the difference between the chosen eMCWM model
and the model with the second best BIC value is ≈ 0.6 BIC points. This lat-
ter model (EEE-EEE; 56 degrees of freedom) also picked a four-component
model, with an ARI of 0.84.

The chosen eFMR model is a two-component VVI model with an
ARI of 0.40. Because the VVI model assumes independence between the
response variables, it is equivalent to the flexmix FMR model; thus, un-
surprisingly, the chosen FMRmodel is a two-component model with an ARI
of 0.40 (Table 10). Note that the estimated classification from the selected
two-component eFMR model leads to good separation between the sexes of
the crabs. If the class membership agreement is estimated based only on the
sexes of the crabs, an ARI of 0.81 is achieved. The selected FMRC model fit
three components (Table 10) with an ARI of 0.69. It basically pools together
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the blue males and blue females while putting the orange males and females
in different clusters. eFMRC picked a four-componentmodel with an ARI of
0.83. mixture picked a four-component model (Table 10) with an ARI of
0.78. Note that, even though the ARIs achieved from the selected eMCWM,
eFMRC, and mixture models are close, the mixture model estimates
more parameters than the models that utilize linear dependencies between
variables. Also, note that the performance of the eFMRC model should not
be surprising. Recall that, in an FMRC model, πg(x) are modelled by a
multinomial logit model (DeSarbo and Cron, 1988). Anderson (1972) noted
that this multinomial condition is satisfied if the covariate densities p(x)
are assumed to be multivariate Gaussian with the same covariance matrices,
i.e., the EEE model for the covariates (c.f. Ingrassia et al., 2010). Hence, the
eFMRC EEE model should give similar clustering results to the eMCWM
EEE-EEE model. As pointed out above, these four-component models yield
ARI values of 0.83 and 0.84, respectively.

7. Discussion

A novel family of cluster-weighted models called the eMCWM fam-
ily is presented. These models can account for heterogeneous regression
data with multivariate correlated responses. The distribution of the covari-
ates is also explicitly incorporated in the likelihood, which to the authors’
knowledge is also novel in multivariate response regression methodologies.
This allows for separate imposition of an eigen-decomposed structure on
the component covariance matrices of both the responses and the covariates.
Hence, eMCWM can handle data where X and Y |x might have different
covariance structures. For this family, identification conditions are also pro-
vided.

The eMCWM family is parsimonious. Note that the completely un-
constrained GPCM model (VVV) fits the same number of parameters as
the completely unconstrained eMCWM model (VVV-VVV). The family’s
performance is investigated on simulated and real benchmark data, where
the BIC and the ICL are found to mostly be in agreement. More gener-
ally, the eMCWM performed better in comparison to the FMR and FMRC
models because it explicitly uses the distribution of the covariates. Not us-
ing that information led to estimated clusters (from the eFMR and eFMRC
as well as the flexmix FMR and FMRC models) that did not agree with
the observed grouping of the data. In comparison to the GPCMs, taking
into account the regression structure by use of linear dependencies aided
in better clustering performance on some benchmark data sets. As imple-
mented in flexmix, FMR only models the distribution of the (assumed
independent) Y |x, while FMRC models the distribution of (assumed in-
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dependent) Y |x and uses a multinomial regression model for the mixture
weights. GPCMs and their analogues for other distributions (e.g., Andrews
McNicholas, 2012; Punzo and McNicholas, 2016; Vrbik and McNicholas,
2014; Dang, Browne and McNicholas, 2015) do not account for linear de-
pendencies and rely on modelling the data directly with an appropriate dis-
tribution. However, the eMCWM family models both linear dependencies
and the distribution of the covariates. This results in better clustering per-
formance when a clear regression relationship exists between the variables.
While the EM algorithm itself is stable, to prevent fitting small components
with low generalized variance (determinant of the covariance matrix) for the
eMCWM family, the component sizes are computed before eachM-step and
a preset minimum size of the clusters is used (cf. McLachlan and Peel, 2000;
Celeux and Diebolt, 1988; Grün and Leisch, 2008).

The framework presented lends itself to a straightforward extension to
model-based classification (e.g., McNicholas, 2010; Andrews, McNicholas,
and Subedi, 2011) and discriminant analysis (Hastie and Tibshirani, 1996).
In the case of the eMCWM family, each response variable is currently re-
gressed individually on a common set of predictor variables. This can be
extended to take advantage of correlations between the response variables to
improve predictive accuracy, in the fashion of the ‘curds and whey’ method
(Breiman and Friedman, 1997). Here, the Gaussian distribution is used for
both the distribution of the covariates and the response for the eMCWM fam-
ily. For heavier tailed data, mixtures of more robust distributions, such as
the multivariate t distribution (Andrews and McNicholas, 2012) or the mul-
tivariate power exponential distribution (that can also model lighter tailed
data; Dang et al., 2015) may be employed. The use of continuous distri-
butions may be restrictive and more work needs to be done to incorporate
mixed type data for both responses and covariates (see Punzo and Ingrassia,
2015, for the univariate case d = p = 1).
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Appendix

A Proof of Theorem 1

Proof. The proof builds upon results given in Hennig (2000) and Ingrassia
et al. (2015). Consider the class of models defined in (3). The equality

∑G
g=1 φd(y|x,μY (x|Bg),ΣY g)φp(x|μXg,ΣXg)πg

=
∑G̃

s=1 φd(y|x,μY (x|B̃s), Σ̃Y s)φp(x|μ̃Xs, Σ̃Xs)π̃s (10)
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will be proven to hold for almost all x ∈ R
p and for all y ∈ R

d if and only
if G = G̃, and for each g ∈ {1, . . . , G}, there exists s ∈ {1, . . . , G} such
that Bg = B̃s, μXg = μ̃Xs, ΣXg = Σ̃Xs, μY g = μ̃Y s, ΣY g = Σ̃Y s,
and πg = π̃s.

Integrating each side of (10) over Rd yields

G∑
g=1

φp(x|μXg,ΣXg)πg =

G̃∑
s=1

φp(x|μ̃Xs, Σ̃Xs)π̃s. (11)

Let

p(x|μX ,ΣX ,π) =

G∑
g=1

φp(x|μXg,ΣXg)πg

and

p(x|μ̃X , Σ̃X , π̃) =

G̃∑
s=1

φp(x|μ̃Xs, Σ̃Xs)π̃s,

where μX =
{
μXg; g = 1, . . . , G

}
, ΣX = {ΣXg; g = 1, . . . , G}, and

π = {πg; g = 1, . . . , G}. Analogous notation applies for μ̃X , Σ̃X , and π̃.
Based on Bayes’ theorem,

p(Ωg|x,μX ,ΣX ,π) =
φp(x|μXg,ΣXg)πg

p(x|μX ,ΣX ,π)
, (12)

for g = 1, . . . , G. Then, model (2) can be rewritten as

p(x,y|ϑ)

= p(x|μX ,ΣX ,π)

G∑
g=1

φd(y|x,μY (x|Bg),ΣY g)p(Ωg|x,μX ,ΣX ,π)

= p(x|μX ,ΣX ,π)p(y|x,ϑ), (13)

where

p(y|x,ϑ) =
G∑

g=1

φd(y|x,μY (x|Bg),ΣY g)p(Ωg|x,μX ,ΣX ,π), y ∈ R
d.

(14)
Now, the class of models defined by (14) for almost all x ∈ R

p, if the
equality ∑G

g=1 φd(y|x,μY (x|Bg),ΣY g)p(Ωg|x,μX ,ΣX ,π)

=
∑G̃

s=1 φd(y|x,μY (x|B̃s), Σ̃Y s)p(Ωs|x, μ̃X , Σ̃X , π̃)
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implies G = G̃, and for each g ∈ {1, . . . , G}, there exists s ∈ {1, . . . , G}
such that Bg = B̃s, ΣY g = Σ̃Y s, μXg = μ̃Xs, ΣXg = Σ̃Xs, and
πg = π̃s.

Recall from Section 2 that the expected value μY of Y |Ωg is related
to the covariatesX through the relation μY = B′

gx
∗, g = 1, . . . , G. Let

X =
{
x ∈ R

p : for each g, j ∈ {1, . . . , G}, and s, t ∈ {1, . . . , G̃} :

B′
gx

∗ = B′
jx

∗ ⇒ Bg = Bj,

B′
gx

∗ = B̃
′
sx

∗ ⇒ Bg = B̃s,

B̃
′
sx

∗ = B̃
′
tx

∗ ⇒ B̃s = B̃t

}
.

According to (3), (Bg,ΣY g) �= (Bj,ΣY j), g �= j; thus, it follows that the
quantities (B′

gx
∗,ΣY g), g = 1, . . . , G, are pairwise distinct for all x ∈ X

(indeed, the complement of X , i.e., Rp \ X , is formed by a finite set of
hyperplanes of Rp and, thus, Rp \ X has null measure).

For any fixed x ∈ X , according to (12),

{p(Ω1|x,μX ,ΣX ,π), . . . , p(ΩG|x,μX ,ΣX ,π)}
and

{p(Ω1|x, μ̃X , Σ̃X , π̃), . . . , p(ΩG̃|x, μ̃X , Σ̃X , π̃)}
are sets of positive numbers summing to one. It follows that, for eachx ∈ X ,
the density p(y|x,ϑ) given in (14) is a mixture of distributions of kind (4)
and then it is identifiable, due to the assumptions of the theorem. Thus,
G = G̃ and there exists s ∈ {1, . . . , G} such that

Bg = B̃s,ΣY g = Σ̃Y s and p(Ωg|x,μX ,ΣX ,π) = p(Ωs|x, μ̃X , Σ̃X , π̃).
(15)

Moreover, because p(Ωg|x,μX ,ΣX ,π) and p(Ωs|x, μ̃X , Σ̃X , π̃) are de-
fined according to (12), from (15) and (11), we get:

πg =

∫
X
πgφp(x|μXg,ΣXg)dx

=

∫
X

πgφp(x|μXg,ΣXg)∑G
g=1 φp(x|μXg,ΣXg)πg

⎛⎝ G∑
g=1

φp(x|μXg,ΣXg)πg

⎞⎠ dx

=

∫
X
p(Ωg|x,μX ,ΣX ,π)

⎛⎝ G̃∑
s=1

φp(x|μ̃Xs, Σ̃s)π̃s

⎞⎠ dx
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=

∫
X
p(Ωs|x,μX ,ΣX ,π)

⎛⎝ G̃∑
s=1

φp(x|μ̃Xs, Σ̃Xs)π̃s

⎞⎠ dx

=

∫
X

π̃sφp(x|μ̃Xs, Σ̃Xs)∑G̃
t=1 φp(x|μ̃Xt, Σ̃Xt)π̃t

⎛⎝ G̃∑
s=1

φp(x|μ̃Xs, Σ̃Xs)π̃s

⎞⎠ dx

=

∫
X
π̃sφp(x|μ̃Xs, Σ̃Xs)dx = π̃s.

Moreover,

φp(x|μXg,Σg) =
p(Ωg|x,μXg,ΣXg,π)

πg

G∑
g=1

φp(x|μXg,ΣXg)πg

=
p(Ωs|x, μ̃X , Σ̃X , π̃)

π̃s

G̃∑
s=1

φp(x|μ̃Xs, Σ̃Xs)π̃s

= φp(x|μ̃Xs, Σ̃Xs).

From the identifiability of Gaussian distributions, again for the same pair
(g, s) in (15), it follows that

μXg = μ̃Xs and ΣXg = Σ̃Xs,

and this completes the proof.
�

B M-step

Derivation of B̂
(k+1)
g : For the estimate of the regression coefficients B̂

(k+1)

g ,
g = 1, . . . , G:

N∑
i=1

G∑
g=1

ẑ
(k)
ig

∂Q1

(
Bg,ΣY g|ϑ(k)

)
∂B′

g

= 0′,

which implies

∂

⎧⎨⎩
N∑
i=1

G∑
g=1

−ẑ
(k)
ig

2

[(
yi −B′

gx
∗
i

)′
Σ−1

Y g

(
yi −B′

gx
∗
i

)]⎫⎬⎭
∂B′

g

= 0′,
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yielding

∂

⎡⎣ N∑
i=1

G∑
g=1

−ẑ
(k)
ig

2

(
−y′

iΣ
−1
Y gB

′
gx

∗
i − x∗′

i BgΣ
−1
Y gyi + x∗′

i BgΣ
−1
Y gB

′
gx

∗
i

)⎤⎦
∂B′

g
= 0′.

Using properties of trace and transpose, we get

∂

⎧⎨
⎩

N∑
i=1

G∑
g=1

ẑ
(k)
ig

2

[
tr
(
y′
iΣ

−1
Y gB

′
gx

∗
i

)
+ tr

(
x∗′

i BgΣ
−1
Y gyi

)
− tr

(
x∗′

i BgΣ
−1
Y gB

′
gx

∗
i

)]⎫⎬
⎭

∂B′
g

= 0′

∂

⎧⎨
⎩

N∑
i=1

G∑
g=1

ẑ
(k)
ig

2

[
tr
(
B′

gx
∗
i y

′
iΣ

−1
Y g

)
+ tr

((
Σ−1

Y gyix
∗′
i

)′
B′

g

)
− tr

(
B′

gx
∗
i x

∗′
i BgΣ

−1
Y g

)]⎫⎬
⎭

∂B′
g

= 0
′
.

Taking the derivative, we obtain

N∑
i=1

ẑ
(k)
ig

2

{
Σ−1

Y gyix
∗′
i +Σ−1

Y gyix
∗′
i −

[(
Σ−1

Y g

)′
B′

gx
∗
ix

∗′
i +Σ−1

Y gB
′
gx

∗
i x

∗′
i

]}
= 0′,

and finally

B̂
(k+1)′

g =

(
N∑
i=1

ẑ
(k)
ig yix

∗′
i

)(
N∑
i=1

ẑ
(k)
ig x∗

ix
∗′
i

)−1

.

Derivation of Σ̂
(k+1)
Y g : For the estimate of the covariance matrix Σ̂

(k+1)
Y g ,

g = 1, . . . , G:

N∑
i=1

ẑ
(k)
ig

∂Q1

(
B

(k+1)
g ,ΣY g|ϑ(k)

)
∂Σ−1

Y g

= 0′,

leading to

∂

⎧⎨
⎩

N∑
i=1

G∑
g=1

ẑ
(k)
ig

2

[
log |Σ−1

Y g| − tr

((
yi −B

(k+1)′
g x∗

i

)′
Σ−1

Y g

(
yi −B

(k+1)′
g x∗

i

))]⎫⎬
⎭

∂Σ−1
Y g

= 0′,

∂

⎧⎨
⎩

N∑
i=1

G∑
g=1

ẑ
(k)
ig

2

[
log |Σ−1

Y g| − tr

(
Σ−1

Y g

(
yi −B

(k+1)′
g x∗

i

)(
yi −B

(k+1)′
g x∗

i

)′)]⎫⎬
⎭

∂Σ−1
Y g

= 0′.
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Taking the derivative, we get

N∑
i=1

ẑ
(k)
ig

2

{(
Σ−1

Y g

)−1′

−
[(

yi −B(k+1)′
g x∗

i

)(
yi −B(k+1)′

g x∗
i

)′]′}
= 0′,

and this results in

Σ̂
(k+1)
Y g =

N∑
i=1

ẑ
(k)
ig

(
yi − B̂

(k+1)′

g x∗
i

)(
yi − B̂

(k+1)′

g x∗
i

)′

N∑
i=1

ẑ
(k)
ig

.

C Regression Coefficients for Simulation 3

Regression coefficients used to generate data for group 1 for Simula-
tion 3:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.63 0.18 −0.84 1.60 0.33 −0.82 0.49 0.74 0.58 −0.31

1.51 0.39 −0.62 −2.21 1.12 −0.04 −0.02 0.94 0.82 0.59

0.92 0.78 0.07 −1.99 0.62 −0.06 −0.16 −1.47 −0.48 0.42

1.36 −0.10 0.39 −0.05 −1.38 −0.41 −0.39 −0.06 1.10 0.76

−0.16 −0.25 0.70 0.56 −0.69 −0.71 0.36 0.77 −0.11 0.88

0.40 −0.61 0.34 −1.13 1.43 1.98 −0.37 −1.04 0.57 −0.14

2.40 −0.04 0.69 0.03 −0.74 0.19 −1.80 1.47 0.15 2.17

0.48 −0.71 0.61 −0.93 −1.25 0.29 −0.44 0.00 0.07 −0.59

−0.57 −0.14 1.18 −1.52 0.59 0.33 1.06 −0.30 0.37 0.27

−0.54 1.21 1.16 0.70 1.59 0.56 −1.28 −0.57 −1.22 −0.47

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Regression coefficients used to generate data for group 2 for Simulation 3:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.62 0.04 −0.91 0.16 −0.65 1.77 0.72 0.91 0.38 1.68

−0.64 −0.46 1.43 −0.65 −0.21 −0.39 −0.32 −0.28 0.49 −0.18

−0.51 1.34 −0.21 −0.18 −0.10 0.71 −0.07 −0.04 −0.68 −0.32

0.06 −0.59 0.53 −1.52 0.31 −1.54 −0.30 −0.53 −0.65 −0.06

−1.91 1.18 −1.66 −0.46 −1.12 −0.75 2.09 0.02 −1.29 −1.64

0.45 −0.02 −0.32 −0.93 −1.49 −1.08 1.00 −0.62 −1.38 1.87

0.43 −0.24 1.06 0.89 −0.62 2.21 −0.26 −1.42 −0.14 0.21

2.31 0.11 0.46 −0.08 −0.33 −0.03 0.79 2.08 1.03 1.21

−1.23 0.98 0.22 −1.47 0.52 −0.16 1.46 −0.77 −0.43 −0.93

−0.18 0.40 −0.73 0.83 −1.21 −1.05 1.44 −1.02 0.41 −0.38

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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