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1. Introduction

Item non-response is a frequent issue in item response theory (IRT)
studies (Baker and Kim, 2004), where categorical items (also known as
multi-item scales) are used to operationalize a latent trait of interest: e.g.
in surveys designed to measure students’ competencies in specific areas,
people’s opinions, attitudes, abilities or psychological constructs. The IRT
framework links a person’s responses to categorical items to an underlying
continuous latent trait defining the probability that a certain category of an
item will be selected as a function of the item itself and of a person’s latent
trait value. More specifically, IRT investigates how the probability of re-
sponses to an item varies as function of (i) the item-category position along
the latent trait (item-category location parameter), (ii) the item capability
to discriminate between individuals with different latent trait values (item
discrimination parameter), and (iii) the individual’s intensity of the latent
trait (person parameter). Such probability is usually modelled using a logis-
tic distribution. The main advantage of the IRT modeling approach is that
item-category location parameters and person parameters are measured on
the same metric. The probability to endorse a category of response in an
item is positively related to the person parameter (θ) and the item discrim-
ination parameter (λ) and negatively related to the item-category location
(β) parameter. Many extensions of the approach have been advanced in
the literature (Baker and Kim, 2004). The main differences across them
is in the possibility to impose constraints to the item-category parameters,
item slopes, and in the way the logistic function for multinomial responses
(Agresti, 2002) is specified (Baker and Kim, 2004).

There are different types of missing responses that can be observed in
the analysis of multi-item scales. It can happen that respondents skip one or
more items unintentionally or that they do not have enough time to fill in all
the responses. Or, it may be the case that respondents simply do not know
how to answer, they do not have a clear awareness of what has been asked
in the question, or that they do not want to report their opinion on a specific
topic.

The typology of missing data generating processes, and the related
implication thereof in terms of the reliability of the inferential results, seems
to be strictly linked to the variety of reasons for missingness. See Schafer
and Graham (2002), Sijtsma and Van Der Ark (2003), Enders (2004) and
Finch (2008) for an exhaustive discussion on the topic.

In multi-item scales it is a common practice to handle missing values
by filling in the empty holes in the data matrix with plausible values which
are generated on the basis of deterministic or stochastic approaches (Rubin,
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1976). The main rationale for imputation approaches in IRT framework is
that the built in linking mechanism (Edelen and Reeve, 2007) at the basis of
IRT models ensures that the set of items which define a scale of measure-
ment for the underlying latent trait are calibrated to the same scale. This
makes observed responses informative of non responses. Furthermore, im-
putation procedures are generally preferred to other missing data handling
methods since they make it possible to proceed in further analysis with a
complete data matrix.

The main strength of these imputation procedures is that the missing
data problem is established before starting any analysis and standard sta-
tistical tools are used on data sets which contain imputed values instead of
empty observations.

Multiple imputation procedures differ from single imputation meth-
ods because they generate more plausible values for each missing value,
creating multiple versions of the same data set which can be analyzed sep-
arately (Rubin, 1976). This way of handling missing information takes into
account the uncertainty related to the unknown real values while summariz-
ing the results observed on multiple data sets in a single overall statement;
this is the characteristic that makes this class of imputation methods more
appealing in comparison to the others.

This paper discusses a multiple imputation procedure which relies on
latent class analysis (LCA) for categorical items (dichotomous, multinomial
or Likert-type) to handle with missing data in multi-item Likert scales.

The effectiveness of the proposed procedure was determined on two
data sets: a multi-item Likert-type scale often used in surveys on students’
evaluation of teaching and a multi-item Likert-type scale that it is used in
the Progress in International Reading Literacy Study – PIRLS – survey 2011
(Mullis et al., 2012) for measuring students’attitude towards reading: in both
simulation studies the observations were set as missing according to several
missing data schemes. The study aimed to assess under which conditions
the proposed procedure will have greater efficiency in the framework of IRT
than do other missing data imputation methods, i.e. those that are chosen on
the basis of their effectiveness in similar studies or/and due to their easy ap-
plicability for non-practitioners. Specifically, these other methods include,
among the others, Multiple Imputation based on Multivariate Normal Dis-
tribution (MI), Multiple Imputation by Stochastic Regression (MISR), Mul-
tiple Imputation by Chain Equation (MICE) and Correct Mean Substitution
(CMS) (Raaijmakers, 1999; Vermunt et al., 2008; Sulis and Porcu, 2008;
Sulis, 2013).

Two main tasks have been simultaneously pursued in the study: (i)
to validate the effectiveness of the proposed procedure in the estimation of
IRT parameters under different missing data generating processes and with
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increasing rates of missingness; (ii) to evaluate the accuracy of the proposed
methods compared to other widely used imputation procedures.

The structure of this paper is as follows. Section 2 presents a dis-
cussion of the missing data generating processes in the framework of IRT.
Section 3 examines the rationale behind multiple imputation and the justifi-
cation for adopting the proposed procedure in the framework of IRT. Section
4 is a detailed discussion on how the procedure works and briefly intro-
duces the other four imputation procedures that will be adopted for compar-
ative purposes. Section 5 describes the simulation study, advances a variety
of accuracy measures to compare the effectiveness of the procedures, and
presents the main results therein. The main findings which arise from the
analysis are discussed in Section 6. The functions implemented in order to
use the procedure with a data matrix of categorical (Likert-type) items and
to simulate data affected by missingness under different missing data gen-
erating processes were implemented in the R language and are available in
the supplementary online materials. The Tables containing detailed results
of the simulation study are listed in the supplementary online materials.

2. Missing Data Classification. Focus on IRT Models

The method chosen to deal with missing information may cause bias,
inefficiency or both in the estimation of key parameters, depending
on whether or not the process which generates missing values can be ig-
nored as well as on the treatment of the rate of missing observations (Rubin,
1976; Schafer, 1997). Rubin (1976) defines a taxonomy of missing values
according to the process which generates unobserved responses in a data
matrix Y . Let’s denote Yo as the observed values of the data matrix and
Ym as the missing one. Define as R a missingness matrix composed of J
(j = 1, . . . , J ) dummy variables, where each Rij takes a value of 1 if the
observation i (i = 1, . . . , n) is missing and 0 otherwise. An analysis of the
conditional distribution ofR given Y , allows us to identify the missing data
generating process: Missing Completely at Random (MCAR), Missing at
Random (MAR) or Missing not at Random (MNAR) (Rubin, 1976). Unob-
served responses are MCAR if the probability of observing a missing value
depends solely on the probability distribution of R (i.e., it is not dependent
on the observed and/or the missing values): the P (R|Yo, Ym) = P (R).
Under MCAR conditions, we can say that no particular causes are related
to missingness. If we assume there to be a MCAR process, deleting any
unit with incomplete values from the analysis, i.e. by performing a so called
Complete Case Analysis (CCA), in general should not bias the final results
even though the reduction of sample size causes a loss in efficiency (Schafer
and Graham, 2002). Missing data are consideredMAR when their probabil-
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ity distribution depends only on observed data P (R|Yo, Ym) = P (R|Yo).
Thus, missing responses are usually predictable using Yo (Little and Rubin,
2002; Schafer and Graham, 2002). Under MAR using a CCA can have
different consequences depending on the parameter of interest: e.g. re-
gression coefficients estimated using CCA are in general unbiased, whereas
the parameters of the marginal distribution are in general biased, as well
as the correlation coefficient between two variables (Schafer and Graham,
2002). Finally, the missing process is said to be MNAR if the probability
of observing a missing value depends on the observed and unobserved units
P (R|Yo, Ym) = P (R|Yo, Ym); thus the missing data process is not ignor-
able and a CCA will produce a bias in the estimates of the parameters. Un-
der MNAR unobserved values are not predictable using classic imputation
methods on the basis of the observed units (Little and Rubin, 2002; Schafer
and Graham, 2002). An appealing aspect for using imputation procedures
in IRT is that items in the same scale share a certain degree of homogeneity
because they are supposed to measure different segments of an underlying
unidimensional latent trait.

In the IRT framework, the missing data process should be considered
MCAR if the propensity to observe a missing value in an item is unrelated
(i) to the value of the item itself and to the values of other items, (ii) to the
latent trait values, and (iii) to any other measured variables in the analysis
(Little and Rubin, 2002; Sijtsma and Van Der Ark, 2003; Enders, 2004). If
missing observations in an item are related to other variables such as respon-
dents’ characteristics or responses to another item, the missing data process
is said to be MAR. This is what occurs, for example, in a survey on students’
evaluation of teaching (the first data on which our procedure has been val-
idated) if the propensity for missing data depends on other student-related
variables, as for instance to belong to groups of students with different lev-
els of achievement or with different levels of interest towards the discipline
(Sijtsma and Van Der Ark, 2003; Sulis and Porcu, 2008; Baraldi and En-
ders, 2010). Lastly, whenever the probability to observe a missing value is
directly related to the latent trait values the mechanism is MNAR. In the
survey of students’ evaluation of teaching this is observed if students with
different values of the satisfaction with respect to the university teaching
have different propensity to skip responses to the items.

3. Rationale for Multiple Imputation

The debate on the effectiveness of ad hoc missing data imputation
methods for multi-item scales has increased over the last few decades
(Bernaards and Sijtsma, 1999; Raaijmakers, 1999; Huisman, 1999; Sijtsma
and Van Der Ark, 2003; Enders, 2004; Finch, 2008, 2011; Carpita and Man-
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isera, 2011). Many deterministic imputation methods have been advanced
in IRT framework; they replace missing observations of a specific item with
values set as a weighted or unweighted function of the responses of the per-
son to the other items or/and as weighted or unweighted function of the
responses provided to item affected by missingness by the other respon-
dents. Other methods impute values on the basis of the responses provided
for the item by individuals with similar response patterns (who, thereby act
as donors). For an overview of possible options and their potentiality, we re-
fer the interested reader to, among others, Raaijmakers (1999), Sijtsma and
Van Der Ark (2003), Finch (2008) and Carpita and Manisera (2011). We
can assert that in an IRT framework, discarding all partially observed units
is not generally recommended (the default solution automatically adopted
by many statistical packages) even when the missing data mechanism is
ignorable (i.e., MCAR and MAR), whereas there is a general agreement
on considering it a more efficient solution to impute the partially observed
records with plausible values (Little and Rubin, 2002). As has been high-
lighted by many authors (Raaijmakers, 1999; Sijtsma and Van Der Ark,
2003; Bernaards and Sijtsma, 1999), deterministic imputation procedures
(e.g. relative mean substitution), based on the weighting function of item
and person responses can be considered valid alternatives to model-based
approaches when the missing data mechanism is ignorable, when the rate of
missingness is trivial, and where there is lack of expertise in implementing
or in dealing with more complex procedures. This is the main reason why
single imputation procedures based on weighted methods have been widely
applied in IRT literature (Raaijmakers, 1999; Bernaards and Sijtsma, 1999;
Sijtsma and Van Der Ark, 2003; Finch, 2008). Simulation studies highlight
that they are usually superior to listwise deletion, mean imputation, random
imputation and other hot-deckmethods that fill in missing values with values
from observed respondents. Differences among the statistical performances
of the above mentioned imputation methods decrease as the percentage of
missing values decreases, as the sample size increases, and as the level of
association between variables decreases (Raaijmakers, 1999).

The value added in using a Multiple Imputation Analysis (MIA) (Lit-
tle and Rubin, 2002) to deal with missingness in data analysis is that the
method takes account of the uncertainty related to the unknown real values
by imputing M plausible values for each unobserved response in the data
set. In this way, the M imputed versions of the data set are identical for the
non-missing data entry but differ in their imputed values. The M multiple
imputed data sets are then analyzed separately using standard methods as
if they were complete data sets. As a result of the analysis carried out on
theM data sets, theM estimates of each parameter and the related standard
errors [θ̂(m);

√
V (m)] are pooled in a single statement using Rubins’ rules
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(Rubin, 1976). Specifically, denoting the overall estimate with θ̄, the mean
of parameter estimates taken over the M data sets is

θ̄ = M−1
M∑

m=1

θ̂m. (1)

The total uncertainty is a weighted sum of the average within imputation
variance (W ) and the between-imputation variance (B): T = W + (1 +

M−1)B. The within variance (W =
M∑

m=1

V m) is considered the variance

that we would observe if there were not missing values in the data set, while

the between variance (B = (M − 1)−1
M∑

m=1
(θ̂(m) − θ̄)2) accounts for the

uncertainty on the true value of θ due to multiple imputation.
Multiple imputation methods for dealing with multi-item scales are in

general borrowed from multiple imputation procedures developed for cate-
gorical data. These approaches for imputing multivariate categorical data in-
clude joint and conditional modelling methods (Van Buuren and Oudshoorn,
2011; Wu, Jia, and Enders, 2015): e.g. MI, MICE, SRI, MILCA (Raghu-
nathan et al., 2001; Sulis and Porcu, 2008; Vermunt et al., 2008; Van Buuren
and Oudshoorn, 2011; Sulis, 2013.) Sulis (2013) carried out a small simula-
tion study in IRT framework to provide a first insight on MICE and MILCA
accuracy in the estimation of item parameters. Results highlight that the two
procedures provide similar results under ignorable missing data mechanisms
when the rate of missing data ranges from 5% up to 30%. Finch (2010)
investigates the accuracy of imputation methods for imputing missing cat-
egorical data using an ordinal logistic regression model. He compares SRI
with (i) MI1 (a well established multiple imputation method for continuous
variables based on the assumption that variables have a multivariate normal
probability distribution ) and (ii) an ad hoc multiple imputation method for
missing categorical data based on the Multinomial distribution (MIC). Re-
sults suggest that MI and SRI are competing approaches under ignorable
missing data generating processes and both are superior to MIC in repro-
ducing the parameters of the ordered logistic model. SRI displays a slight
greater bias in the estimation of parameters than MI under MCAR and sim-
ilar bias under MAR. In both cases SRI provides lower standard errors than
MI. Finch’s (Finch, 2008) study designed to assess the accuracy of a wide
range of missing data handling methods on the estimates of a three parame-
ter IRTmodel for dichotomous items (Birnbaum, 1968) with several missing
data generating processes concludes that no one method stands as superior

1. MI was adapted to deal with ordered items by rounding non integer values to conform to
the features of the data.
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in all cases (with regard to the estimation of all parameters), although MI
is frequently associated with slightly lower estimation bias, particularly un-
der MAR condition. Moreover, among the procedures under comparisons,
MI produces estimates of the proportion of correct cases which are the clos-
est to the real values. MI appears as preferable to other approaches also
in a further validation design study (Finch, 2011) which focuses on the as-
sessment of the impact of missing data handling methods on the detection
of nonuniform differential item functioning. Researchers highlight that the
performance of multiple imputation methods decreases when model for nor-
mal data are fitted to ordinal data and that MI can perform differently with
different type of items or IRT models (Ake, 2005; Finch, 2011).

Hereafter, we restrict the attention in the simulation study to the com-
parison of MILCA with other model-based multiple imputation procedures
which displayed some features in terms of effectiveness with categorical
items (or which have not been yet validated in IRT framework for ordered
data). MI has been selected since it is recommended as championed ap-
proach in many previous studies (Finch, 2008, 2010, 2011). SRI has been
selected since (i) it proves good performances in dealing with categorical
data under medium-low rate of missingness and MAR (Sulis and Porcu,
2008), (ii) its potential in IRT models for ordered data has not been exam-
ined in previous studies and (iii) it is a competitor of MI in the estimation
of parameters in the logistic regression framework (Finch, 2010). MICE
has been selected since in a previous explorative study carried out by Sulis
(2013) it shows performances similar to MILCA under ignorable missing
data mechanisms (Sulis, 2013) (none of the two methods emerge as superior
under all conditions) but the two methods have not been compared under non
ignorable missing data generating process. Indeed, we also considered in the
simulation study the Relative Mean Substitution (RMS), a deterministic no
model-based imputation method. It has been selected for the purpose of
making comparison considering its ease of implementation for a non practi-
tioner and because it has been specifically designed for dealing with Likert-
type scales. Moreover, simulation studies in the IRT framework (Bernaards
and Sijtsma, 1999) have detected that it is superior to random imputation,
mean imputation and pairwise deletion techniques (Schafer and Graham,
2002; Huisman, 1999). In the following section we pursue two aims: (i)
to assess the performance of MILCA (Sulis, 2013) in the IRT framework
for ordered data and to ascertain its potential under several conditions, such
as when the ignorability assumption does not hold; (ii) to provide recom-
mendations on which imputation method to use under the possible scenarios
described in the simulation study. An advantage of the imputation methods
proposed is that they can be adopted even with large scales of items.
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4. Multiple Imputation by Latent Class Analysis

Multiple Imputation by Latent Class Analysis (MILCA) (Sulis, 2013)
is a model-based multiple imputation technique which relies on Latent Class
Analysis (LCA) to generate plausible values for missing observations. LCA
has great potential in dealing with missingness since units clustered in the
same class share the same expected values for providing responses in the
categories of the items composing the scale. Vermunt et al. (2008) show
that LCA is a sound modeling approach which overcomes many limits of
imputation procedures applied in IRT for the following reasons: i) it con-
siders responses to items as draws from Multinomial distributions; ii) it can
detect complex higher order interaction among items; iii) it can be applied
to scales with any pattern of missing values and any number of items; iv)
it provides reliable estimates of the parameters even under severe rates of
missingness; v) it allows us to deal with the uncertainty of parameter values
by drawing multiple plausible values. For a comprehensive discussion on
the potential of LCA in imputation contexts see Vermunt et al. (2008). In
the following, we briefly introduce LCA analysis and then we discuss how
the MILCA procedure works using the poLCA function implemented in R
to carry out LCA (Linzer and Lewis, 2011).

4.1 Latent Class Analysis

LCA is a multivariate statistical analysis technique which allows us
to identify a number of categorical unordered latent classes from a multi-
way table that contains the cross classification of responses to several items.
Thus, respondents are classified into R (r = 1, . . . , R) latent classes on
the basis of their joint response pattern to a set of J (j = 1, . . . , J ) items.
Specifically, each latent class is identified by two sets of parameters: the la-
tent class membership probability, namely pr, which denotes the proportion
of respondents classified in class r, and the item response probability con-
ditional upon the latent class membership, namely πrjk for k = 1, . . . ,K ,
which defines the probability that respondents in class r select category k of
item j. Let us denote with yijk the indicator variable which takes value 1
if respondent i (i = 1, . . . , n) selects category k (k = 1, . . . ,Kj the cate-
gories) of item j, the joint probability density function of yi is specified as
function of πrjk and pr

P (yi|p ,π) =
R∑

r=1

pr

J∏

j=1

K∏

k=1

(πrjk)
yijk ; (2)

individuals are then classified into classes on the basis of their posterior class
membership probabilities (using Bayes’ rule).
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Table 1. Example of data matrix affected by missingness

unit items
� y1 y2 y3 y4 y5 y6 y7 y8

1 2 2 3 2 2 · 3 ·
2 3 3 3 3 · 2 · 3
3 3 3 3 · 3 2 4 3
4 4 4 · · 3 4 3 ·
5 1 2 2 2 1 · 2 1
...

...
...

...
...

...
...

...
...

The poLCA function requires to substitute labels of the categories with subsequent numbers

P̂(ri|yi) =
p̂rf(yi; π̂r)∑R
r=1 f(yi; π̂r)

r = 1, . . . , R;

which for each unit i is a function of the observed response pattern (yi) and
of the parameter estimates π̂rjk and p̂r.

The poLCA package (Linzer and Lewis, 2011) maximizes the Log-
likelihood function with respect to π̂rjk and p̂r using an Expectation-Maxi-
mization algorithm.

4.2 How the MILCA Procedure Works

The MILCA procedure uses the poLCA function implemented in R
language to apply LCA to a data set of categorical items (Y ) with K cat-
egories of responses. The missing response in any of the items is consid-
ered as a possible response category and it is replaced with a label, namely
‘K + 1’. In the following we use the data matrix depicted in Table 1 as an
example to illustrate how the procedure works step by step:

1. Missing values are recoded in the category ‘K +1’ (i.e. category 5 in
Table 2);

2. LCA is applied to the data matrix described in Table 2;

3. The main results provided by LCA are the estimates of the vector
of latent class membership probabilities (p̂r) and the item response
probabilities conditional upon the class membership (π̂jrk) (e.g., for
a model with three classes, the parameters related to the data matrix
described in Table 2 are listed in Table 3);

4. On the basis of both the observed vector of responses (yi) and the
parameter estimates (π̂rjk and p̂r), the posterior class membership
probabilities P̂ (yi|r) of each unit i are calculated using Bayes’ rule
(see Table 4);
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5. Units (individuals) are classified in one of the R classes on the basis
of their modal posterior probability (see last column of Table 4);

6. For each unit i a missing value in item j (for j = 1, . . . , J ) is re-
placed by generating a random draw from a Multinomial distribution
with the vector of parameters equal to the estimated vector of item
response probabilities of the class where the unit has been classified
in Step 5: π̂jr(π̂jr1, . . . , π̂jr(K+1)) (see Table 3); for instance for
respondent i = 1, classified in latent class r = 2, the missing ob-
servation in item y8 is imputed by generatingM valid random values
from a Multinomial distribution with the vector of probabilities equal
to the estimated vector of item response probabilities for item y8 in
class r = 2, namely: Multinomial(0.158, 0.094, 0.264, 0.413, 0.071)
(see Table 3). The generated value (category) is valid if it is different
from the missing category, namely ‘K + 1’;

7. If a random generated value is equal to the code of the missing cat-
egory (K + 1) (e.g., identified by value 5 in Table 2), the value is
not considered as plausible for imputation purposes and it is rejected.
The procedure is iterated until a new value different from the code for
missing is generated. Let us suppose that the M = 6 random draws
for imputing a missing value in an item with four category are equal
to ‘3’, ‘3’, ‘4’, ‘5=missing’, ‘4’ and ‘2’. The value ‘5’ is not consid-
ered a valid draw because it corresponds to the code of the missing
category. Thus a new value is drawn. The procedure is iterated until
M valid draws are generated for each missing value in the data.

8. TheM values are used to generateM imputed data sets (Y 1, . . . , Y M )
that are identical for the non-missing data entry but differ in their im-
puted values

9. TheM datasets are analyzed using MIA.

MILCA explicitly takes into account the information on missingness
in defining the latent class parameters by considering the empty observation
as a response category. In standard Latent Class Analysis, models are se-
lected according to the parsimony criterion by minimising the Akaike Infor-
mation Criterium (AIC) or the Bayesian Information Criterium (BIC). The
latter is preferred to the former when the latent class membership probability
is not specified as a function of covariates, as it is in the MILCA procedure
(Linzer and Lewis, 2011). The number of LCs in MILCA is selected by
applying the LCA models with a different number of LCs to the data matrix
in which missing values are recorded in the category (K +1) (see Step 2 of
the MILCA procedure and Table 2) and selecting the model which provides
the lowest value of the indexes (Nylund, Asparouhov, and Bengt, 2007). In
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Table 2. Missing values recoded in the first step of MILCA

unit items
� y1 y2 y3 y4 y5 y6 y7 y8

1 2 2 3 2 2 5 3 5
2 3 3 3 3 5 2 5 3
3 3 3 3 5 3 2 4 3
4 4 4 5 5 3 4 3 5
5 1 2 2 2 1 5 2 1
...

...
...

...
...

...
...

...

The poLCA function requires to substitute labels of the categories with subsequent numbers

Table 3. LCA estimates – example from fitting a 3 latent classes model

Classes π̂rj1 π̂rj2 π̂rj3 π̂rj4 π̂rj5

y1
r = 1 0.0029 0.0265 0.3822 0.5435 0.0450
r = 2 0.4941 0.3623 0.0660 0.0149 0.0627
r = 3 0.0331 0.2870 0.5512 0.0865 0.0423

y2
r = 1 0.0037 0.0000 0.1292 0.8144 0.0526
r = 2 0.2090 0.3366 0.2830 0.0982 0.0731
r = 3 0.0100 0.1101 0.5724 0.2617 0.0457

...
...

...
...

...
...

y8
r = 1 0.0031 0.0000 0.0475 0.8919 0.0574
r = 2 0.1580 0.0945 0.2637 0.4132 0.0706
r = 3 0.0070 0.0308 0.2626 0.6508 0.0487

Estimated class population shares p̂r
r1 = 0.314 r2 = 0.228 r3 = 0.457

Predicted class memberships by modal posterior
r1 = 0.316 r2 = 0.227 r3 = 0.457

Table 4. Posterior membership probabilities and modal assignment: P̂ (yi|r)
� P̂ (r = 1) P̂ (r = 2) P̂ (r = 3) Modal class
1 0.00 0.96 0.00 r = 2
2 0.00 0.00 1.00 r = 3
3 0.00 0.00 1.00 r = 3
4 0.99 0.00 0.01 r = 1
5 0.00 1.00 0.00 r = 2
...

...
...

...
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one of the simulation studies a sensitivity analysis is carried out to assess the
influence of the criterium adopted on the final result.

For the purposes of comparisons, in the the following we will present
a short description of the other imputation methods that are used in the sim-
ulation studies.

4.3 Multivariate Imputation

The Multivariate Imputation (MI) model is based on the assumption
that the probability model underlying a set of variables (the Y matrix) is
multivariate normal. The method works by iterating two steps (Shafer, 1997;
Shafer and Graham, 2002; Wu, Jia, and Enders, 2015):

1. In the Posterior Step,M random values of the parameters θ[θ1, . . . , θp]
of the multivariate normal distributions are drawn from their posterior
distribution, namely θ ∼ P (θ|Yobs, Ymiss)

2. In the Prediction Step M missing values are generated as random
draws from the predictive distribution of Ymiss, namely Ymiss ∼
P (Ymiss|Yobs,θ)

3. The two steps described at point 1 and 2 are iterated until the posterior
distribution of the parameters is stabilized

4. The M predicted values are used to generate M imputed data sets
(Y 1, . . . , Y M ) that are identical for the non-missing data entry but
differ in their imputed values

5. The non integer values are rounded to be adapted to the scale of the
items

6. TheM datasets are analyzed using MIA.

4.4 Simple Imputation Methods: Relative Mean Substitution

The Relative Mean Substitution (RMS) (Raaijmakers, 1999; Finch,
2008) replaces a missing value yij by weighting the mean of the item cal-
culated on non missing responses (Total Mean Substitution – TMS.j) with
the ratio between the intra-individual mean of the respondent i for all non
missing items (Valid Mean Substitution – VMSi.) and the sample mean of
the other respondents (excluding respondent i) for the same items (GMS−i)

RMS(yij) =
VMSi.

GMS−i
TMS.j. (3)

The ratio indicates the relative position of the mean of the responses
provided by individual i to the non missing items with respect to the overall
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mean for all other respondents for the same items. The weight is larger than
1 for respondents with scores higher than the average.

This method has the advantage of being easily computed whenever
missing scores are observed on several items; it handles Likert-scales as
metrical, thus it assigns subsequent numbers to adjacent categories.

4.5 Sequential Regression Imputation Methods

Imputation methods based on fully conditional approaches give enor-
mous flexibility in predicting missing values in large datasets whenever sev-
eral variables are affected by missingness (Raghunathan et al., 2001; Little
and Rubin, 2002; Sulis and Porcu, 2008; Van Buuren and Oudshoorn, 2011).
This class of methods solves the multivariate imputation model for a matrix
Y of items affected by missingness using a variable by variable imputa-
tion approach (Van Buuren and Oudshoorn, 2011). The approach consists
in specifying a set of sequential and univariate conditional densities, where
plausible values for each item yj are generated conditional upon the remain-
ing items (denoted as Y −j). The system of equations is sequentially iter-
ated and at each iteration new plausible values are drawn and the imputed
values are updated. Several adaptations of sequential multiple imputation
have been advanced in the literature (Raghunathan et al., 2001; Sulis and
Porcu, 2008; Van Buuren and Oudshoorn, 2011). Here, we consider MICE
and SRI. Both procedures have been implemented with specific functions in
R (Sulis and Porcu, 2008; Van Buuren and Oudshoorn, 2011).

4.5.1 Multiple Imputation by Chained Equation

The Multiple Imputation by Chained Equation (MICE) algorithm im-
plemented in R (Van Buuren and Oudshoorn, 2011; Wu, Jia, and Enders,
2015) is a fully conditional approach which consists of two steps that are
sequentially iterated for each of the J variables affected by missingness. At
each iteration t the algorithm works as follows:

1. In the Posterior Step the parameter vector θ(t)
j of the probability dis-

tribution of the imputation parameters of item ytj(yj.obs, yj.imp) are
generated conditional upon the values of the other items

θ
(t)
j ∼ P (θ

(t)
j |yj.obs, yt1, ...ytj−1, y

t−1
j+1, ...y

t−1
J ).

2. In the Prediction Step missing values for item y
(t)
j.imp are replaced by

draws from their conditional distribution

y
(t)
j.imp ∼ P (yj|yj.obs, yt1, ...ytj−1, y

t−1
j+1, ...y

t−1
J , θ

(t)
j ).

Sulis and Porcu340



3. Once convergence of the parameters θ is reached,M plausible values
are generated for each missing value in Y .

4. TheM values are used to generateM imputed data sets (Y 1, . . . ,Y M )
that are identical for the non-missing data entry but differ in their im-
puted values.

5. TheM datasets are analyzed using MIA.

The probabilistic model is selected according to the scale of variables. For
categorical variables the package invokes the polyreg function which spec-
ifies a multinomial logit model (Agresti, 2002). More details on how MICE
works are provided in Van Buuren and Oudshoorn (2011).

4.5.2 Multiple Imputation by Stochastic Regression

The Multiple Imputation by Stochastic Regression (MISR) procedure
(Sulis and Porcu, 2008) is a stochastic imputation procedure (implemented
in R language) which works as follows:

1. For each unit i the procedure stars building up the marginal distribu-
tion of responses in each of the K response categories (πi1, πi2, . . . ,
πiK). Missing values of unit i in any item are replaced by drawing
M values from a Multinomial distribution with parameters set equal
to the proportion of responses observed in each response category.

2. The M random draws generated for each missing value are used to
createM data sets (Y 1, . . . ,Y M ) that are identical for the non-missing
data entry but differ in their imputed values.

3. Next, in each of theM data sets, yj (for j = 1, . . . , J ) is modeled con-
ditional upon the remaining items, namely Y (−j), using an ordinal
logistic model. For each yij.imp the predicted vector of conditional
probability (i.e. π̂ij1(Y (−j)), . . . , π̂ijK(Y (−j))) is used to generate
a random draw from a Multinomial distribution.

4. The M values are replaced in M data sets (Y 1, . . . ,Y M ) that are
identical for the non-missing data entry but differ in their imputed
values.

5. TheM datasets are analyzed using MIA

5. A Simulation Study to Validate the Accuracy of MILCA
for IRT Models

5.1 IRT Models

The accuracy of the compared procedures in the estimation of item pa-
rameters was assessed using the most popular IRT model for ordinal items,
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the Graded Response Model (Samejima, 1969). The model specifies the
logit of the cumulative probability that unit i selects a category not lower
than k {γijk} of item yij in terms of item and person parameters

logit(γijk) = λj(ηi − βjk), (4)

where, βjk is the category-threshold parameter (of category kwith the lower),
λj is the discrimination parameter and ηi is a person parameter. Parameter
ηi is considered a random effect with probability distribution N (0, 1).

The total number of parameters is (K − 1)× (J) category-threshold
parameters and J discrimination parameters. Function Grm in the ltm pack-
age (Rizopoulos, 2006; Linzer and Lewis, 2011) from R uses Gauss-Hermite
quadrature to approximate the marginal likelihood and a Newton-Raphson
algorithm to maximize it.

5.2 Measuring the Accuracy in Estimation of Item and Person
Parameters

The accuracy in estimation was evaluated by calculating two mea-
sures of accuracy for each parameter (item-category and discrimination) of
the Graded ResponseModel; each measure considers the extent to which the
imputation procedures preserve the true value of the parameters (estimated
on the benchmark data) as well as the efficiency of the estimates.

The classic Mean Squared Error measure of a parameter θ

MSE(θ̂) = (θ̂ − θ)2 + V ar(θ̂) ∀ θ̂, θ �= 0.

evaluates the accuracy of the estimates making a tradeoff between bias and
efficiency which depends on absolute differences across parameters.

A second measure was introduced by the authors to consider the ex-
tent to which the estimates of the parameters differ from the true values in
relative terms, at the same time balancing for efficiency. The Relative Accu-
racy Index (RAI) was defined as

RAI(θ̂) = (
θ̂

θ
− 1)2 + V ar(θ̂) ∀ θ̂, θ �= 0.

To facilitate an assessment of the overall accuracy of the imputation
methods in terms of MSE and RAI, both indexeswere summarized by taking
the sum over the threshold and discrimination parameters. Specifically, the
following overall measures of accuracy of item-threshold and discrimination
parameters were defined for each model:
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1. The Model Overall Mean Squared Error of the threshold parameters

• threshold parameters

MOMSEβ =
∑

j

∑

k

MSE(βjk) (5)

• discrimination parameters

MOMSEλ =
∑

j

MSE(λj) (6)

• a pooled measure of both

MOMSEβ,λ = MOMSEβ +MOMSEλ (7)

2. The Model Overall Relative Accuracy Index of

• threshold parameters

MORAIβ =
∑

j

∑

k

RAI(βjk) (8)

• discrimination parameters

MORAIλ =
∑

j

RAI(λj) (9)

• a pooled measure of both

MORAIβ,λ = MORAIβ +MORAIλ (10)

For all the indexes, the higher their values the worse the overall estimation of
accuracy for the related imputation procedure. We suggest to use the over-
all MOMSEβ,λ and MORAIβ,λ indexes only as a first screening tools to
assess the overall size of the departure. Given that threshold and discrimi-
nation parameters are presumably on different scales, it is recommended to
look at the single components.

5.3 Simulation Design

TheMILCA procedure was validated developing two simulation stud-
ies on two complete data sets (without missing data) : (i) a data set from a
survey on students’ evaluation of teaching in a university containing a scale
addressed to measure students’ perceived quality and (ii) a data set from
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the PIRLS survey 2011 containing a scale addressed to measure students’
attitude towards reading (Mullis et al., 2012). The article aims to assess
MILCA accuracy and examines the extent to which the choice of the impu-
tation procedure influences the estimates of item parameters under different
missing data mechanisms and under two different scenarios in terms of num-
ber of items of the measurement instrument and sample size. Missing values
were generated in both complete datasets (used as banchmark) deleting ob-
servations from items according to three different missing data generating
processes: MCAR, MAR and NMAR. The three missing data mechanisms
were simulated using functions miss.CAR, miss.AR, miss.NAR written by
the authors in R language.

In both simulation studies (Simulation 1 and 2), missing values were
generated in the complete data set according to the three missing generat-
ing processes (MCAR, MAR, MNAR) and six rates of missingness (π=5%,
10%, 15%, 20%, 25%, and 30%). As a result for each complete data set
18 data sets affected by missingness were generated (6 for each missing
generating process) and imputed with the MILCA procedure, and, for com-
parative purposes, the results were compared with the other four imputation
methods, namely MI, RMS, MICE and MISR.

Taking a situation of MCAR an observation was set as missing if the
result of random draw from a Bernoulli with parameter π(π=5%, 10%, 15%,
20%, 25%, and 30%) was 1.

Under a MAR condition the probability of setting an observation as
missing depends on certain observed covariates (see function miss.CAR).
Under a MAR condition a unit i in the matrix was set as missing if the result
of a random draw from a Bernoulli with parameter estimated as function of
individual predictors (π̂i(x)) was 1 (see function miss.MAR), where

πi(x) =
exp(β′xi)

1 + exp(β′xi)
. (11)

The MNAR scenario was simulated by fixing the probability (πi) an
observation being set as missing according to the intensity of the individual
value on the latent trait. Specifically, individuals are clustered in four classes
on the basis of the quartiles of the distribution of an individual’s sum of
scores. Different degrees of probability of skipping an item were applied to
individuals’ belonging to each of the four quartiles (see function miss.NAR).

Simulation 1: The data set on students’ evaluation of teaching includes 8
items (y1 − y8) addressed to measure teaching quality in students’ percep-
tion, one to student’s attendance at lectures (A) and one to student’s interest
toward the topic taught (I) (see Table 5). The complete data set contains
1737 observations.
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Table 5. Item considered for the application

Item Contents
y1 Lecturer motivates students
y2 Lecturer highlights topics
y3 Lecturer answers questions during the class
y4 Lecturer clarifies goals of the course
y5 Lecturer clearly explains topics
y6 Lecturer suggests how to study
y7 Lecturer gives classes on schedule
y8 Global satisfaction
x1 = A Student’s attendance at classes
x2 = I Student’s interest toward the topics

All items are measured on a four-category Likert scale: Definitely
No,More No than Yes,More Yes than No, Definitely Yes. The probability of
skipping an item in the application is assumed to depend on two students’
covariates. Specifically, Students’ attendance at classes (1 = Always; 4 =
Very rarely) and Students’ interest toward the topic (1 = Definitely No; 4 =
Definitely Yes). In the complete data set, the cross-classification of units
according to these two covariates provides 16 groups of students. Values
have been set MAR by attaching to each of the 16 groups a different degree
of probability (π) of skipping an item using equation 11. The β parameter
vector estimates was defined attaching the lowest probability πi of skipping
an item to students who say they are interested (Definitely Yes) in the topic
and who have Always attended the classes; the highest πi(x) is attached to
students who say they are Definitely No interested and who have attended
classes Rarely. Values have been set MNAR by attaching the lowest proba-
bility to skip an item to the quartile with the lowest level of the latent trait,
the highest to the ones with the highest level.

Simulation 2: The data set includes 13 items related to student’s attitude
to reading (y1 − y13), one item related to the number of books available at
home (Books) and gender (G: 1 Female, 0 Male) (see Table 6). The data
set contains 3608 observations.

All items are measured on a three-category Likert scale: Agree a lot,
Agree a little, Disagree. Under the MAR condition the probability of skip-
ping an item is considered to depend on the number of books at home Books
(from 1 = more than 200 to 5 = 0-10) andGender (1 = Female; 0 =Male).
The cross-classification of units according to these two covariates provides
10 groups of students; each with a different degree of probability (π(x)) of
skipping an item. The β parameter vector estimates was defined attaching
the lowest probability πi of skipping an item to female students with more
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Table 6. Item considered for the application

Item dir. Contents
y1 − I read only...
y2 + I like talking ...
y3 + I would be happy ...
y4 − I think reading ...
y5 + I would like to ...
y6 + I usually do ...
y7 + Reading is easy ...
y8 − Reading is harder ...
y9 + If a book is ...
y10 − I have trouble ...
y11 + My teacher tells ...
y12 − Reading is harder ...
y13 + I like to read ...
x1 = BOOKS number of books at home
x1 = GENDER

Items belong to sections G4, R7, R8 and R9 of PIRLS 2011 Student Questionnaire
Source: PIRLS 2011 User Guide for the International Database. Copyright c©2013
International Association for the Evaluation of Educational Achievement (IEA).
Publisher: TIMSS & PIRLS International Study Center,Lynch School of Education,
Boston College.
Negative items have been reversed
Response items Agree a lot=1 Agree a little=2 Disagree=3

than 200 books at home. Values have been set MNAR by attaching the the
lowest probability to skip an item to the quartile with the lowest level of the
latent trait, the highest to the one with the highest level.

5.4 Results

Results of the estimates of the item-threshold and item-discrimination
parameters for all the fitted models are listed in the supplementary online
materials (Tables S1–S5 Simulation 1 and S6–S8 Simulation 2). The Ta-
bles displayed the ratio between the estimates of the parameters obtained
by using a specific imputation procedure (the procedures are listed in the
columns) and the estimates observed on the benchmark data sets.

The eighteen datasets generated in each simulation study were im-
puted using MI, MICE, MISR, RMS and MILCA. The accuracy of the
methods was then evaluated using the MOMSE and MORAI measures to
overcome the difficulty of highlighting the accuracy of the five imputation
procedures in each of the 18 data sets (for each simulation study) by looking
at the single estimates of the item-category and discrimination parameters
(see Tables 8 and 9).
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5.4.1 Simulation 1

The MILCA function was applied by defining 4 different numbers
of LCs (ranging from 3 to 6) for each of the 18 datasets. We compare the
results obtained by selecting the number of LCs according to the BIC or
AIC criteria to identify which criterion identifies the imputation model with
the best parameter prediction accuracy. Furthermore, we also compared the
item parameter prediction accuracy provided by data sets imputed using the
MILCA procedure with a different number of LCs (ranging from 3 to 6) to
assess how the choice of the number of LCs affects the accuracy in estima-
tion (Vermunt et al., 2008; Sulis, 2013). Tables 8 and 9 list the MOMSE
and MORAI indexes for all missing imputation procedures considered in
this study, under the three missing data generating processes and the six
different percentages of missingness.

In Simulation 1, the analysis pursues two main tasks: (i) to high-
light which goodness of fit criterion is recommended in order to select the
number of LCs under the three missing data generating processes and the
different rates of missingness, (ii) to compare MILCA with the other impu-
tation procedures in order to assess under which conditions it has a greater
effectiveness.

Missing Completely at Random: Table 7 shows that for MCAR observations
the BIC index would recommend selecting 5 LCs when the percentage of
missingness is medium-low (5% or 10%), 4 LCs when it is medium-high
(15 and 25%), and 3 LCs when it is severe (about 30%). Following the
AIC criterion, 6 LCs are always recommended. The values of the MOMSE
indexes for the related models are listed in Table 8.

Looking at the MOMSEβ,λ index it emerges that until the rate of
missingness is approximately 20% the three procedures may be considered
equivalent; however, MILCA and MICE prove to be still good when the rate
of missingness increases. The RMS and MI seem to be a competitive alter-
native only for a low rate of missingness (10%). The values of the MOMSE
index calculated on datasets imputed using different numbers of LCs (see
Table 8) suggest that the MILCA procedure is weakly influenced by the
choice of LCs under the MCAR condition. By selecting the number of LCs
recommended under the BIC criterion it emerges that in 5 out 6 scenarios
(rates of missingness) MILCA provides values of the MOMSEβ,λ index
almost equal (4 out of 5 times) or better (1 out of 5 times) than MICE. The
selection of the number of LCs on the basis of the AIC criterion would lead
to a slightly weaker result in 4 out of 6 scenarios and to a slightly better one
in 2 out 6.

The closeness of the estimates using MILCA and MICE is confirmed
also by the comparison of the accuracy of the estimates in relative terms us-
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Table 7. Goodness of fit measures: Models with different number of LCs

5% 10% 15% 20% 25% 30%
MCAR

MILCA 3LC AIC(3): 31689.54 34011.16 35341.59 36241.71 36611.9 36536.37
BIC(3): 32224.55 34546.18 35876.60 36776.72 37146.91 37071.38
G2(3): 8197.89 9580.86 10378.70 10922.18 11110.87 10913.69

4LC AIC(4): 31326.47 33713.29 35051.47 36011.45 36429.80 36382.55
BIC(4): 32041.64 34428.46 35766.65 36726.62 37144.97 37097.73
G2(4): 7768.82 9216.989 10022.58 10625.92 10862.77 10693.88

5LC AIC(5): 31098.87 33516.45 34880.25 35862.05 36318.29 36293.77
BIC(5): 31994.20 34411.78 35775.58 36757.39 37213.62 37189.10
G2(5): 7475.22 8954.15 9785.36 10410.52 10685.26 10539.09

6LC AIC(6): 31007.93 33428.66 34809.18 35810.89 36270.61 36270.63
BIC(6): 32083.42 34504.15 35884.67 36886.38 37346.1 37346.12
G2(6): 7318.28 8800.36 9648.29 10293.36 10571.58 10449.95

MAR
MILCA 3LC AIC(3): 31371.68 33600.56 35238.48 35777.42 36168.94 36214.58

BIC(3): 31906.7 34135.58 35773.49 36312.43 36703.96 36749.59
G2(3): 8061.024 9547.661 10479.28 10768.06 10991.7 10982.63

4LC AIC(4): 31044.48 33293.08 34973.92 35538.18 35983.56 35891.20
BIC(4): 31759.65 34008.25 35689.1 36253.35 36698.73 36606.37
G2(4): 7667.821 9174.176 10148.72 10462.82 10740.32 10593.24

5LC AIC(5): 30815.19 33075.80 34811.32 35384.14 35756.24 35749.61
BIC(5): 31710.52 33971.13 35706.65 36279.47 36651.57 36644.94
G2(5): 7372.529 8890.89 9920.11 10242.78 10447.00 10385.65

6LC AIC(6): 30720.01 32983.18 34737.72 35239.43 35617.34 35637.54
BIC(6): 31795.50 34058.67 35813.21 36314.92 36692.83 36713.03
G2(6): 7211.35 8732.278 9780.52 10032.08 10242.09 10207.58

MNAR
MILCA 3LC AIC(3): 31584.32 33915.45 35135.73 35775.64 36159.53 35930.92

BIC(3): 32119.33 34450.47 35670.75 36310.65 36694.54 36465.94
G2(3): 7914.905 9156.421 9997.358 10403.05 10649.93 10433.19

4LC AIC(4): 31241.75 33573.45 34791.43 35439.81 35832.7 35610.96
BIC(4): 31956.92 34288.63 35506.61 36154.98 36547.87 36326.13
G2(4): 7506.339 8748.421 9587.059 10001.22 10257.1 10047.22

5LC AIC(5): 31107.13 33456.81 34647.77 35328.46 35741.65 35530.96
BIC(5): 32002.46 34352.14 35543.1 36223.8 36636.98 36426.29
G2(5): 7305.718 8565.775 9377.393 9823.879 10100.05 9901.226

6LC AIC(6): 30922.75 33292.2 34555.96 35250.11 35640.46 35430.66
BIC(6): 31998.24 34367.69 35631.45 36325.60 36715.95 36506.15
G2(6): 7055.341 8335.169 9219.585 9679.527 9932.862 9734.925

∗Classes selected with the BIC criterion
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Table 8. Model Overall Mean Square Error of GRM parameters
5% 10% 15% 20% 25% 30%

MCAR
MOMSEβ (a)

MI 1.078 1.133 1.246 1.482 1.515 1.728
MICE 1.065 1.059 1.061 1.045 1.072 1.102
MISR 1.065 0.981 0.980 0.938 1.000 1.131
RMS 1.353 1.681 2.240 2.546 3.495 4.796
MILCA 3LC 1.004 1.032 1.036 1.036 0.978 0.975

4LC 1.058 1.067 1.003 1.025 1.079 1.089
5LC 1.068 1.078 1.126 1.090 1.105 1.208
6LC 1.075 1.096 1.151 1.121 1.132 1.208

MOMSEλ (b)
MI 0.125 0.200 0.264 0.438 0.668 0.624
MICE 0.118 0.175 0.167 0.234 0.312 0.406
MISR 0.128 0.183 0.223 0.391 0.550 0.685
RMS 0.160 0.311 0.623 1.126 2.092 3.395
MILCA 3LC 0.137 0.256 0.361 0.401 0.553 0.479

4LC 0.122 0.149 0.226 0.269 0.349 0.326
5LC 0.123 0.164 0.190 0.325 0.326 0.283
6LC 0.118 0.135 0.153 0.231 0.305 0.237

MOMSEβ,λ (c)
MI 1.203 1.333 1.510 1.919 2.183 2.352
MICE 1.183 1.234 1.228 1.279 1.383 1.507
MISR 1.193 1.163 1.203 1.329 1.550 1.816
RMS 1.513 1.993 2.863 3.672 5.587 8.191
MILCA 3LC 1.141 1.287 1.397 1.437 1.531 1.454

4LC 1.180 1.216 1.229 1.294 1.428 1.415
5LC 1.192∗ 1.242 1.316 1.416 1.431 1.491
6LC 1.193 1.231 1.304 1.352 1.436 1.445

MAR
MOMSEβ (d)

MI 1.074 1.123 1.491 1.877 1.529 1.475
MICE 1.075 1.074 1.122 1.133 1.051 1.066
MISR 1.051 0.994 0.980 0.983 0.986 1.240
RMS 1.313 1.660 2.147 2.427 3.051 3.637
MILCA 3LC 1.030 1.015 1.257 1.131 1.047 0.918

4LC 1.074 1.059 1.172 1.277 1.190 1.097
5LC 1.092 1.076 1.233 1.071 0.947 1.162
6LC 1.083 1.099 1.217 1.127 0.975 0.961

MOMSEλ (e)
MI 0.126 0.157 0.242 0.274 0.379 0.369
MICE 0.120 0.141 0.176 0.179 0.206 0.169
MISR 0.118 0.143 0.230 0.301 0.330 0.458
RMS 0.157 0.322 0.782 1.101 1.769 2.623
MILCA 3LC 0.136 0.221 0.321 0.369 0.393 0.443

4LC 0.118 0.128 0.143 0.211 0.175 1.238
5LC 0.113 0.134 0.167 0.288 0.558 0.842
6LC 0.119 0.143 0.167 0.271 0.435 0.709

MOMSEβ,λ (f)
MI 1.199 1.279 1.733 2.151 1.908 1.845
MICE 1.195 1.216 1.298 1.312 1.257 1.235
MISR 1.170 1.137 1.210 1.285 1.316 1.698
RMS 1.470 1.982 2.929 3.528 4.821 6.260
MILCA 3LC 1.165 1.236 1.578 1.500 1.441 1.361

4LC 1.192 1.187 1.315 1.488 1.365 2.336
5LC 1.206 1.210 1.400 1.359 1.505 2.004
6LC 1.203 1.242 1.384 1.398 1.410 1.669

(continued on next page)
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Table 8. Model Overall Mean Square Error of GRM parameters (continued)
5% 10% 15% 20% 25% 30%

MNAR (g)
MOMSEβ

MI 1.046 1.266 1.578 1.670 1.930 2.225
MICE 1.037 1.067 1.126 1.085 1.145 1.146
MISR 1.016 1.019 1.039 0.999 0.960 0.992
RMS 1.248 1.872 2.704 3.416 5.072 8.856
MILCA 3LC 0.988 0.978 0.994 0.983 0.967 0.935

4LC 1.004 1.002 0.996 1.020 1.006 0.950
5LC 1.032 1.083 1.111 1.062 1.070 0.932
6LC 1.042 1.096 1.165 1.145 1.028 0.981

MOMSEλ (h)
MI 0.126 0.289 0.493 0.749 0.919 1.297
MICE 0.112 0.145 0.181 0.270 0.353 0.392
MISR 0.117 0.193 0.232 0.317 0.460 0.437
RMS 0.134 0.280 0.449 0.631 1.042 1.795
MILCA 3LC 0.134 0.238 0.252 0.361 0.524 0.607

4LC 0.128 0.172 0.232 0.259 0.317 0.405
5LC 0.128 0.210 0.228 0.211 0.276 0.272
6LC 0.115 0.170 0.220 0.264 0.217 0.215

MOMSEβ,λ (i)
MI 1.172 1.555 2.072 2.419 2.849 3.523
MICE 1.149 1.212 1.307 1.355 1.497 1.537
MISR 1.133 1.213 1.270 1.315 1.420 1.429
RMS 1.382 2.151 3.153 4.046 6.114 10.651
MILCA 3LC 1.121 1.216 1.247 1.345 1.491 1.543

4LC 1.132 1.174 1.229 1.279 1.322 1.354
5LC 1.160 1.293 1.338 1.272 1.346 1.204
6LC 1.157 1.265 1.385 1.409 1.245 1.197

∗Classes selected with the BIC criterion

ing the MORAIλ,β (see Table 9). However, these comparisons are slightly
in advantage of MICE if the number of LCs is chosen according to the BIC
criterion.

The trend of the overall MORAIλ,β does not indicate a clear domi-
nant criterion to fix the number of LCs. However, in relative terms, differ-
ences across models with different numbers of latent classes can also be con-
sidered not relevant: most of the results differ at the second decimal place. It
is interesting to highlight that if the focus of the analysis is on the accuracy
of the item-discrimination parameters, the MOMSEλ index clearly points
out that the MILCA procedure implemented with 6 LCs (according to the
AIC criterion) provides more accurate estimates compared with the choice
of a different number of classes and with the others imputation procedures
considered in the study (see Table 8(b)). This result also holds with compar-
isons between methods in relative terms, as Table 9(b) shows. This evidence
would advice to select the number of LCs (to set in the MILCA function)
according to the BIC criterion if the aim is to maximize the overall accuracy
in absolute terms, but to follow the AIC criterion whenever there is an inter-
est in maximizing the accuracy of the discrimination parameters.
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Table 9. Model Overall Relative Accuracy Indicator of GRM parameters
5% 10% 15% 20% 25% 30%

MCAR
MORAIβ (a)

MI 1.099 1.156 1.383 1.368 1.562 1.939
MICE 1.086 1.082 1.110 1.066 1.124 1.171
MISR 1.197 1.115 1.150 1.122 1.366 1.449
RMS 1.381 1.698 2.345 2.393 3.328 4.780
MILCA 3LC 1.026 1.029 1.063 1.073 1.308 1.293

4LC 1.068 1.112 1.068 1.096 1.114 1.225
5LC 1.112 1.152 1.290 1.152 1.143 1.578
6LC 1.087 1.220 1.401 1.237 1.177 1.419

MISR 1.077 0.986 1.021 0.973 1.168 1.236
MORAIλ (b)

MI 0.110 0.131 0.138 0.173 0.258 0.226
MICE 0.113 0.133 0.125 0.144 0.146 0.195
MISR 0.120 0.129 0.130 0.150 0.198 0.213
RMS 0.125 0.179 0.289 0.452 0.778 1.187
MILCA 3LC 0.115 0.140 0.149 0.163 0.174 0.165

4LC 0.113 0.120 0.134 0.134 0.182 0.165
5LC 0.113 0.121 0.141 0.140 0.155 0.161
6LC 0.111 0.115 0.126 0.137 0.155 0.164

M0RAIβ,λ (c)
MI 1.203 1.333 1.510 1.919 2.183 2.352
MICE 1.200 1.215 1.235 1.211 1.271 1.365
MISR 1.197 1.115 1.150 1.122 1.366 1.449
RMS 1.506 1.876 2.634 2.844 4.107 5.968
MILCA 3LC 1.140 1.169 1.212 1.236 1.483 1.458

4LC 1.181 1.232 1.202 1.230 1.296 1.390
5LC 1.225 1.273 1.431 1.292 1.298 1.739
6LC 1.199 1.335 1.527 1.374 1.332 1.583

MAR
MORAIβ (d)

MI 1.141 1.159 1.310 1.397 1.471 1.733
MICE 1.100 1.089 1.148 1.120 1.055 1.154
MISR 1.079 1.004 1.017 1.129 1.196 1.347
RMS 1.340 1.721 2.196 2.559 3.383 3.903
MILCA 3LC 1.037 1.009 1.374 1.250 1.025 1.065

4LC 1.118 1.068 1.117 1.135 1.245 1.440
5LC 1.164 1.095 1.215 1.093 1.079 1.190
6LC 1.127 1.205 1.413 1.183 0.997 1.035

MORAIλ (e)
MI 0.110 0.123 0.153 0.166 0.192 0.176
MICE 0.114 0.126 0.141 0.150 0.172 0.146
MISR 0.110 0.116 0.143 0.158 0.172 0.223
RMS 0.122 0.184 0.330 0.435 0.665 0.985
MILCA 3LC 0.114 0.134 0.155 0.162 0.159 0.209

4LC 0.112 0.119 0.126 0.184 0.155 0.289
5LC 0.108 0.117 0.144 0.150 0.195 0.229
6LC 0.113 0.128 0.137 0.157 0.164 0.205

MORAIβ,λ (f)
MI 1.251 1.282 1.463 1.563 1.663 1.909
MICE 1.214 1.215 1.289 1.270 1.226 1.300
MISR 1.189 1.120 1.160 1.287 1.368 1.570
RMS 1.462 1.905 2.526 2.994 4.048 4.888
MILCA 3LC 1.152 1.143 1.529 1.412 1.184 1.273

4LC 1.230 1.187 1.243 1.319 1.401 1.729
5LC 1.272 1.212 1.359 1.242 1.273 1.419
6LC 1.239 1.334 1.549 1.340 1.161 1.240

(continued on next page)
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Table 9. Model Overall Relative Accuracy Indicator of GRM parameters (continued)
5% 10% 15% 20% 25% 30%

NMAR
MORAIβ (g)

MI 1.205 1.735 2.284 3.217 4.249 5.734
MICE 1.071 1.157 1.212 1.355 1.631 1.915
MISR 1.040 1.169 1.158 1.430 2.224 2.970
RMS 1.345 2.045 2.750 3.732 5.539 9.397
MILCA 3LC 0.991 0.988 1.016 1.011 1.002 0.952

4LC 1.013 1.044 1.022 1.141 1.084 0.951
5LC 1.086 1.124 1.167 1.085 1.097 0.991
6LC 1.085 1.158 1.239 1.168 1.066 0.979

MORAIλ (h)
MI 0.113 0.150 0.199 0.246 0.274 0.351
MICE 0.110 0.115 0.134 0.140 0.155 0.188
MISR 0.111 0.134 0.130 0.153 0.162 0.173
RMS 0.111 0.154 0.205 0.257 0.375 0.569
MILCA 3LC 0.111 0.129 0.132 0.138 0.159 0.186

4LC 0.115 0.122 0.126 0.129 0.146 0.167
5LC 0.111 0.133 0.131 0.128 0.137 0.164
6LC 0.109 0.123 0.128 0.140 0.148 0.148

MORAIβ,λ (i)
MI 1.318 1.885 2.484 3.463 4.522 6.085
MICE 1.181 1.272 1.345 1.495 1.786 2.103
MISR 1.151 1.303 1.288 1.583 2.386 3.143
RMS 1.455 2.199 2.955 3.989 5.914 9.966
MILCA 3LC 1.102 1.117 1.148 1.149 1.160 1.138

4LC 1.128 1.166 1.147 1.270 1.229 1.117
5LC 1.197 1.257 1.297 1.213 1.234 1.155
6LC 1.193 1.281 1.367 1.309 1.214 1.127

Missing at Random: Under the MAR criterion the BIC mechanism would
recommend selecting 5LCs as long as the percentage of missingness
is medium-low (10%) and 4 LCs in the other cases (10% to 30%). Ac-
cording to the AIC criterion, 6 LCs are always recommended. According
to the BIC criterion, a model which provides the best accuracy in terms of
MOMSEλ,β is selected in just 3 out of 6 cases. The comparisons with
the results of the other missing data imputation methods show that: i) RMS
is not a valid alternative even when the rate of missingness is low (5%);
ii) MISR provides the best overall accuracy in absolute and relative terms
up to a certain percentage of missingness (respectively, 20% if the accu-
racy is measured in absolute terms using the MOMSE index and 15% if it
is measured in relative terms using MORAI). MICE and MILCA show bet-
ter performance with higher rates of missingness; specifically, MICE shows
the best accuracy when comparisons are made in absolute terms, whereas
MILCA performs better than MICE if comparisons are made in relative
terms.

Under MAR conditions, more divergences in the MOMSEλ,β val-
ues emerge relative to the choice of the Latent Classes. However, an ex-
amination of the values of the MORAIλ,β index reveals these differences
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to be not relevant when considered in relative terms. This evidence clearly
emerges if we compare the values of theMOMSEλ,β andMORAIλ,β for
MILCA 6 LC and if the rate of missingness is equal to 30% (Tables 8(f) and
9(f)). Thus, in absolute terms MICE seems to perform better than MILCA
(see MOMSE index) when the rate of missingness is 20% or 30%, but in two
out of these three cases MILCA performs better if comparisons are made in
relative terms (see the MORAI index).

A joint reading of the results of the MOMSEλ,β and MORAIλ,β
shows that the BIC criterion is recommended when the dataset is affected by
a low or medium level of missingness (20%) while the AIC is more suitable
for the highest rates of missingness. The choice of one or the other would
advocate the selection of the model with the best performances with respect
to MICE in relative terms MORAIλ,β in 5 out 6 scenarios. However, with
low rates of missingness the simulation study shows that MISR is the best
choice.

Missing Not at Random: The BIC index would recommend selecting 4 LCs
up to a percentage of missingness of 20% and 6 LCs for higher rates (25 and
30%). Also, with MNAR data the AIC index would recommend 6 LCs for
all rates of missingness. Under the considered rates of missingness, the BIC
criterion would suggest selecting the number of LCs that provides a better
accuracy in the estimation of item parameters by measuring the accuracy in
absolute or in relative terms. It is interesting to highlight that as the rate
of missingness rises up, there is an increase in the divergence between the
accuracy measures of MILCA compared to MICE (in favour of the first),
on both indexes (MOMSEλ,β, MORAIλ,β). MI is a valid alternative to
MICE and MILCA until the rate of missingness is up to 10%.

5.4.2 Simulation 2

The MILCA function was applied by selecting the number of LCs
which minimizes the BIC. Tables 10 and 11 list the MOMSE and MORAI
indexes under the three missing data generating processes and the six dif-
ferent percentages of missingness. Simulation 2 has been carried out with
the main aim to assess the generalizability of the results beyond data sets
used in Simulation 1. Therefore only similarities and departures from the
evidences provided by Simulation 1 will be highlighted and discussed.

Missing Completely at Random: Under MCAR condition, results confirm
the findings arose in Simulation 1 study. MICE and MILCA provide the
highest accuracy in estimation in absolute and in relative terms up to 20% of
missing values. MI and MISR are competitors of MICE and MILCA only
when the rate of missingness is up to 5%.
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Missing at Random: Under MAR the findings arose in Simulation 1 in terms
of MOMSE are confirmed by the results gained in Simulation 2 (see Table
10). Looking at the MORAI indexes (see Table 11) it arises that MICE pro-
vides better results in terms of relative accuracy under almost all scenarios.
This because comparisons in relative terms tend to highlight departures as
relevant also when in absolute terms they are pointless: e.g. if a parameter
is estimated 0.03 instead of 0.01, in relative terms its weight in the MORAI
function is 3.

Missing Not at Random: Under MNAR all the evidences arose in Simula-
tion 1 are confirmed. MILCA is selected as the best imputation method in
terms of absolute and relative accuracy for rates of missingness from 10%
up to 30% (see Table 11). Under the MNAR condition, the following three
pieces of evidences emerge from the simulation study (i) MILCA seems to
perform better than any other imputation procedure considered, whatever is
the criterion to measure the accuracy (absolute or relative) might be; (ii) the
BIC criterion ensures the selection of the number of LCs which provide the
best accuracy in estimation for both indexes (MOMSE and MORAI) and
for any rate of missingness; (iii) the RMS and MI method are not a valid
alternative even with low-medium rates of missingness (10-15%).

6. Discussion

This article assesses the performances of an ad hoc multiple imputa-
tion approach for categorical items based on LCA and measures its accu-
racy in the IRT framework with respect to other imputation methods. The
proposed procedure uses functions implemented for LCA to detect unob-
served categorical unordered latent classes characterised by different vectors
of item response probabilities and to assign each individual to one of them.
The vectors of parameters of each class is then used to sample plausible val-
ues for imputation purposes. As a result multiple datasets are created which
are then analyzed with standard MIA tools.

The accuracy of the procedure was validated for the estimation of the
item parameters of Graded Response Models by simulating missing data ac-
cording to different mechanisms in two benchmark datasets. For this aim
two simulation studies have been carried out. Both simulation designs are
also devised to validate the effectiveness of MILCA with regard to other
single and multiple imputation methods, under ignorable and non ignorable
missing data generating processes and under increasing percentages of miss-
ingness. The procedure was validated by advancing a set of measures which
allow us to summarise the accuracy of the location and discrimination pa-
rameters in an overall index suitable to highlighting the procedure effective-
ness in absolute and relative terms.
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Table 10. Model OverallMean Square Error of GRM parameters
5% 10% 15% 20% 25% 30%

MCAR
MOMSEβ (a)

MI 0.853 0.962 1.118 1.300 1.361 1.672
MICE 0.839 0.873 0.888 0.906 0.875 0.929
MISR 0.841 0.851 0.843 0.860 1.085 1.269
RMS 1.101 1.590 2.017 2.697 3.591 4.964
MILCA 7 LC 0.870 0.895 0.901 0.916 0.959 0.979

MOMSEλ (b)
MI 0.057 0.080 0.102 0.142 0.206 0.292
MICE 0.049 0.061 0.086 0.091 0.099 0.105
MISR 0.050 0.065 0.091 0.161 0.323 0.460
RMS 0.127 0.381 0.672 1.232 2.054 3.095
MILCA 7 LC 0.052 0.064 0.071 0.080 0.115 0.123

MOMSEβ,λ (c)
MI 0.910 1.042 1.220 1.442 1.567 1.964
MICE 0.888 0.934 0.974 0.998 0.974 1.034
MISR 0.891 0.916 0.934 1.021 1.408 1.729
RMS 1.228 1.971 2.688 3.929 5.645 8.059
MILCA 7 LC 0.922 0.958 0.972 0.996 1.074 1.102

MAR
MOMSEβ (d)

MI 0.867 0.940 1.028 1.264 1.843 2.061
MICE 0.868 0.893 0.914 0.888 0.971 0.935
MISR 0.883 0.894 1.001 1.054 1.153 1.412
RMS 1.330 1.883 2.449 3.351 5.151 6.740
MILCA 7 LC 0.866 0.910 0.937 0.920 1.195 1.309

MOMSEλ (e)
MI 0.073 0.086 0.132 0.175 0.207 0.309
MICE 0.056 0.063 0.077 0.086 0.091 0.095
MISR 0.074 0.092 0.144 0.202 0.282 0.431
RMS 0.216 0.532 0.890 1.590 2.631 3.798
MILCA 7 LC 0.053 0.067 0.067 0.075 0.168 0.212

MOMSEβ,λ (f)
MI 0.939 1.026 1.160 1.439 2.050 2.370
MICE 0.924 0.956 0.992 0.974 1.062 1.030
MISR 0.958 0.986 1.144 1.256 1.435 1.844
RMS 1.547 2.415 3.339 4.940 7.782 10.537
MILCA 7 LC 0.919 0.977 1.005 0.995 1.363 1.521

MNAR (g)
MOMSEβ

MI 0.886 0.986 1.159 1.278 1.565 1.912
MICE 0.871 0.927 0.990 1.071 1.160 1.406
MISR 0.837 0.851 0.993 1.259 1.548 2.026
RMS 1.349 1.791 2.657 3.688 4.867 7.251
MILCA 7 LC 0.852 0.886 0.892 0.914 0.882 1.010

MOMSEλ (h)
MI 0.053 0.060 0.109 0.093 0.132 0.187
MICE 0.048 0.065 0.075 0.096 0.137 0.131
MISR 0.050 0.062 0.120 0.251 0.361 0.710
RMS 0.202 0.347 0.707 1.198 1.801 2.710
MILCA 7 LC 0.052 0.067 0.095 0.086 0.076 0.117

MOMSEβ,λ (i)
MI 0.939 1.047 1.269 1.372 1.698 2.099
MICE 0.919 0.992 1.066 1.167 1.297 1.537
MISR 0.887 0.913 1.113 1.510 1.910 2.736
RMS 1.551 2.138 3.364 4.886 6.668 9.961
MILCA 7 LC 0.904 0.953 0.988 0.999 0.958 1.128
Number of Latent Classes selected with the BIC criterion
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Table 11. Model Overall Relative Accuracy Indicator of GRM parameters
5% 10% 15% 20% 25% 30%

MCAR
MORAIβ (a)

MI 1.835 6.459 16.443 32.751 46.586 58.481
MICE 0.914 0.995 1.158 1.046 1.164 1.611
MISR 0.900 1.216 2.494 3.322 5.974 9.527
RMS 4.604 14.738 31.372 45.185 63.215 67.797
MILCA 7 LC 1.123 1.003 1.040 1.051 1.205 1.440

MORAIλ (b)
MI 0.054 0.069 0.093 0.120 0.142 0.197
MICE 0.049 0.058 0.079 0.085 0.090 0.091
MISR 0.050 0.056 0.071 0.112 0.209 0.296
RMS 0.143 0.434 0.796 1.482 2.444 3.610
MILCA 7 LC 0.051 0.056 0.066 0.069 0.101 0.107

M0RAIβ,λ (c)
MI 1.889 6.528 16.536 32.871 46.728 58.678
MICE 0.963 1.052 1.237 1.132 1.254 1.702
MISR 0.949 1.272 2.565 3.434 6.183 9.823
RMS 4.746 15.172 32.167 46.667 65.660 71.407
MILCA 7 LC 1.174 1.059 1.105 1.119 1.305 1.547

MAR
MORAIβ (d)

MI 3.120 7.660 20.805 41.683 67.534 88.869
MICE 1.043 1.697 2.510 1.309 1.249 1.473
MISR 1.154 3.302 4.987 7.229 11.535 22.372
RMS 6.303 14.755 25.686 37.168 48.754 67.337
MILCA 7 LC 1.076 3.350 3.055 2.721 3.271 1.466

MORAIλ (e)
MI 0.056 0.069 0.086 0.129 0.177 0.219
MICE 0.052 0.059 0.072 0.077 0.080 0.091
MISR 0.060 0.072 0.112 0.132 0.182 0.279
RMS 0.223 0.599 1.034 1.871 2.968 4.279
MILCA 7 LC 0.051 0.062 0.061 0.068 0.147 0.183

MORAIβ,λ (f)
MI 3.177 7.729 20.891 41.812 67.711 89.088
MICE 1.095 1.756 2.581 1.386 1.330 1.564
MISR 1.214 3.375 5.099 7.362 11.717 22.651
RMS 6.526 15.353 26.720 39.039 51.723 71.617
MILCA 7 LC 1.128 3.412 3.117 2.789 3.418 1.650

NMAR
MORAIβ (g)

MI 3.366 4.647 6.994 15.311 35.922 36.782
MICE 0.979 1.889 4.228 7.069 8.211 13.771
MISR 1.110 2.424 3.231 6.364 17.821 19.653
RMS 7.530 11.989 26.675 50.423 78.909 77.339
MILCA 7 LC 1.214 1.568 1.673 1.319 2.879 1.993

MORAIλ (h)
MI 0.051 0.057 0.088 0.075 0.104 0.143
MICE 0.048 0.061 0.068 0.087 0.109 0.126
MISR 0.048 0.054 0.090 0.181 0.262 0.519
RMS 0.217 0.404 0.836 1.422 2.180 3.208
MILCA 7LC 0.052 0.069 0.073 0.081 0.074 0.097

MORAIβ,λ (i)
MI 3.417 4.704 7.082 15.386 36.026 36.925
MICE 1.028 1.951 4.295 7.156 8.320 13.897
MISR 1.157 2.478 3.321 6.545 18.083 20.172
RMS 7.747 12.392 27.511 51.845 81.089 80.547
MILCA 7LC 1.266 1.637 1.747 1.400 2.953 2.090
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The two simulation studies show that the MILCA procedure is a valid
imputation method for carrying out analysis in Item ResponseTheory frame-
work whenever missing data arise according to different generating pro-
cesses. All the results agree in demonstrating that MICE and MILCA seem
to be competing imputation procedures if the aim is to maximize the accu-
racy in absolute and relative terms and if the data set is affected by a high
rate of missingness, whatever the missing data generating process might be.
None of the two imputation methods emerge as superior under all simu-
lated conditions under ignorable missing data processes. As regards the aim
of validating under which conditions MILCA’s performance is superior in
comparison with the other imputation methods, a special focus is devoted
in Simulation 1 to assess divergences in the accuracy of the results, by se-
lecting the optimal number of latent classes according to different goodness
of fit criteria. Furthermore, results show that MILCA performs quite well
when the missing data mechanism is not ignorable whatever the method to
measure the accuracy might be.

To sum up, the simulation study shows that MICE and MILCA seem
to be interchangeable procedures under MCAR conditions. Under MCAR
the BIC criterion proved to be the best index for selecting the optimal num-
ber of latent classes using MILCA. Under MAR conditions, the main dif-
ference which arises regarding the bias in relative terms (using the MORAI
index) is that in Simulation 1 MILCA seems to provide more accurate esti-
mates of the threshold and discrimination parameters when the rate of miss-
ingness is severe (20% or more), whereas in Simulation 2, MICE seems to
be superior. Specifically, also under MAR none of the two methods emerges
as superior in both simulation studies (Simulation 1 and Simulation 2) un-
der all the rates of missing values. The real advantage of using MILCA is
detectable with the MNAR scenario, given that in the latter scenario, the
accuracy of MILCA is higher than MICE when MCAR applies. This evi-
dence clearly emerges by comparing the values of the MOMSE andMORAI
indexes for item-category location and discrimination parameters listed in
Tables 8(g,h,i), 9(g,h,i), 10(g,h,i), 11(g,h,i).

The proposed method has the advantage of being easy to use with
any categorical set of item measured on dichotomous, nominal or Likert-
Type scales by using the function mipoLCA (available in the supplementary
materials online) which recalls scripts already implemented for LCA in R
and uses them for imputation purposes. Its good performances with respect
to the other missing data handling methods under non ignorable missingness
conditions make the procedure the most convenient choice to be adopted
even when the missing data mechanism is not detectable.
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Further research aim to extend the MILCA procedure in order to use
the information provided by individuals’ covariates to predict the latent class
membership probabilities and to assess the robustness of the procedure un-
der different missing data mechanisms. The implementation and validation
of a multiple imputation approach based on Latent Class Regression Anal-
ysis would allow us to maximize the use of the information available in the
dataset in order to predict non responses.
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