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Abstract: This paper introduces a novel mixture model-based approach to the si-
multaneous clustering and optimal segmentation of functional data, which are curves
presenting regime changes. The proposed model consists of a finite mixture of piece-
wise polynomial regression models. Each piecewise polynomial regression model is
associated with a cluster, and within each cluster, each piecewise polynomial com-
ponent is associated with a regime (i.e., a segment). We derive two approaches to
learning the model parameters: the first is an estimation approach which maximizes
the observed-data likelihood via a dedicated expectation-maximization (EM) algo-
rithm, then yielding a fuzzy partition of the curves into K clusters obtained at conver-
gence by maximizing the posterior cluster probabilities. The second is a classification
approach and optimizes a specific classification likelihood criterion through a dedi-
cated classification expectation-maximization (CEM) algorithm. The optimal curve
segmentation is performed by using dynamic programming. In the classification ap-
proach, both the curve clustering and the optimal segmentation are performed simul-
taneously as the CEM learning proceeds. We show that the classification approach
is a probabilistic version generalizing the deterministic K-means-like algorithm pro-
posed in Hébrail, Hugueney, Lechevallier, and Rossi (2010). The proposed approach
is evaluated using simulated curves and real-world curves. Comparisons with al-
ternatives including regression mixture models and the K-means-like algorithm for
piecewise regression demonstrate the effectiveness of the proposed approach.
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1. Introduction

Probabilistic modeling approaches are known for their well-established
theoretical background and the associated efficient estimation tools in many
problems such as regression, classification or clustering. In several sit-
uations, such models have interpretation to generalize deterministic algo-
rithms. In this paper, we focus on model-based clustering approaches, that
is, the use of mixtures (McLachlan and Peel 2000; Titterington, Smith, and
Makov 1985) in cluster analysis. One can cite the following papers, among
many others from the broad literature on model-based clustering: Wolfe
(1970), Ganesalingam and McLachlan (1978, 1979), McLachlan and Bas-
ford (1988), Celeux and Govaert (1995), Fraley and Raftery (2002), Mel-
nykov and Maitra (2010), Samé, Chamroukhi, Govaert, and Aknin (2011),
Ingrassia, Minotti, and Vittadini (2012), Lee and McLachlan (2013), Bou-
veyron and Brunet (2014), Andrews and McNicholas (2014), Lee and Mc-
Lachlan (2014), Murray, Browne, andMcNicholas (2014), Lee andMcLach-
lan (2015), Ingrassia, Punzo, Vittandini, and Minotti (2015), Tang, Browne,
and McNicholas (2015), Govaert, Ingrassia, and McLachlan (2015), and
Melnykov (2016). In particular, in model-based clustering, that is, the use
of mixtures in cluster analysis, for example, the K-means clustering algo-
rithm is well-known to be equivalent to clustering with the Gaussian mix-
ture model (GMM) with the same mixing proportions and identical isotropic
covariance matrices when the data are assigned in a hard way after the E-
step of the expectation-maximization (EM) algorithm (Dempster, Laird, and
Rubin 1977; McLachlan and Krishnan 2008), that is, when using the clas-
sification expectation-maximization (CEM) algorithm version (see for ex-
ample Celeux and Govaert 1992, 1993), rather than in a soft way, as in the
EM algorithm. We note that the approach based on the CEM algorithm is
the same as the so-called classification maximum likelihood as described
earlier in McLachlan (1982), and dates back to Scott and Symons (1971).

Most of these statistical analyses in model-based clustering are mul-
tivariate, as they involve vectors with reduced dimensionality as the obser-
vations (inputs). However, in many application domains, these observations
are functions (e.g., curves), and the statistical methods for analyzing such
data are functional as they belong to the functional data analysis (FDA) ap-
proaches (Ramsay and Silverman 2005). FDA is therefore the paradigm of
that data analysis for which the basic unit of information is a function rather
than a finite dimensional vector. The flexibility, ease of interpretation, and
efficiency of mixture model-based approaches to classification, clustering,
segmentation, etc., in multivariate analysis, has lead to a growing investi-
gation for adapting them to the framework of FDA, in particular for curve
analysis as in Gaffney and Smyth (1999); Liu and Yang (2009), Gui and
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Figure 1. A two-class data set of simulated curves. Each cluster is composed of five noisy
constant/linear regimes. The clusters are colored according to the true partition, and the
dashed lines represent the true segmentation of each cluster. For the color version of this
figure, the reader is referred to the web version of this article.

Li (2003), Shi and Wang (2008), Xiong and Yeung (2004), Chamroukhi,
Samé, Govaert, and Aknin (2010), Samé et al. (2011), and Chamroukhi,
Hervé, and Samé (2013).

In the present paper, we consider the problem of model-based func-
tional data clustering and segmentation. The considered data are heteroge-
neous curves which may also present regime changes. The observed curves
are univariate and are the values of functions available at discretized input
time points. This type of curve can be found in several application domains,
including diagnosis application (Chamroukhi, Samé, Govaert, and Aknin
(2010), Chamroukhi et al. (2011), bioinformatics (Gui and Li 2003; Picard,
Robin, Lebarbier, and Daudin 2007), electrical engineering (Hébrail et al.
2010), etc.

1.1 Problem Statement

Let ((x1,y1), . . . ,(xn,yn)) be a set of n independent curves where each
curve (xi,yi) consists of m measurements (observations) yi = (yi1, . . . ,yim)
regularly observed at the (time) points xi = (xi1, . . . ,xim) with xi1 < .. . <
xim. Let (c1, . . . ,cn) be the unknown cluster labels of the curves, with ci ∈
{1, . . . ,K}, K being the number of clusters. Figure 1 shows an example from
a two-class situation of simulated curves which are mixed at random and
each cluster contains five regimes. The aim is to perform curve clustering.
As can be seen, each cluster is itself very structured, as it is a succession of
non-overlapping segments, which we call regimes. Each regime has its own
characteristics and is active for a certain period of time. As can be seen in
each of these two clusters, the change of the characteristics of the regimes
may include a change in its mean, its variance, its linearity, etc. Thus, in
order to precisely infer the hidden structure of the data, it is crucial that
the clustering method takes into account the structure of the data which are
composed of several regimes, instead of treating them as simple vectors in
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R
m. This can be achieved by including a segmentation procedure to capture

the various regime changes. This is the regime change problem.
In such a context, basic regression models (e.g., linear, polynomial)

are not suitable. The problem of regime changes has been considered as a
multiple regime change point detection problem, namely by using Bayesian
approaches as in Fearnhead (2006) by usingMCMC sampling, and in Fearn-
head and Liu (2007) with sequential MCMC for online change point detec-
tion. However, these approaches only concern inference from a single curve,
and do not concern curve clustering, as they only perform single curve seg-
mentation. An alternative approach in this curve clustering context may con-
sist of using cubic splines to model each class of curves (James and Sugar
2003), but this requires setting the knots a priori. Generative models have
been developed by Gaffney and Smyth (1999, 2004), consisting of cluster-
ing curves with a mixture of regression models or random effect models.
In Liu and Yang (2009), the authors proposed a clustering approach based
on random effect regression splines where the curves are represented by B-
spline functions. However, the first approach does not address the problem
of regime changes and the second one requires setting the spline knots so
as learn the model. Another approach based on splines is the clustering
sparsely sampled curves in James and Sugar (2003). All these generative
approaches use the EM algorithm to estimate the model parameters. Re-
cently, in Hugueney, Hébrail, Lechevallier, and Rossi (2009) and in Hébrail
et al. (2010), there has been proposed a distance-based approach based on
a piecewise regression model. It allows fitting several constant (or poly-
nomial) models to the curves and performs simultaneous curve clustering
and optimal segmentation using a K-means-like algorithm (Hugueney, et al.
2009; Hébrail et al. 2010). The K-means-like algorithm simultaneously per-
forms curve clustering and optimal segmentation using dynamic program-
ming. It minimizes a distance function in the curve space as the learning
proceeds. The curve segmentation is carried out using dynamic program-
ming.

The main focus of the present paper is to provide a well-established
latent data model to simultaneously perform curve clustering and optimal
segmentation. We propose a probabilistic generative model for curve clus-
tering and optimal curve segmentation. It combines both a mixture model
to achieve the clustering, and a polynomial piecewise regression model to
optimally segment each set (cluster) of homogeneous curves into a finite
number of segments using dynamic programming. We show that the pro-
posed probabilistic model generalizes a recently proposed distance-based
approach, viz., the K-means-like algorithm of Hébrail et al. (2010). More
specifically, the proposed model is a mixture of piecewise regression mod-
els. We provide two algorithms for learning the model parameters. The first
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one is a dedicated EM algorithm to find a fuzzy partition of the data and
an optimal segmentation by maximizing the observed-data log-likelihood.
The EM version is the natural way to the maximum likelihood estimation
of a mixture model, including the proposed piecewise regression mixture
model. The second algorithm maximizes a specific classification likelihood
criterion by using a dedicated CEM algorithm in which the curves are par-
titioned and optimally segmented simultaneously as the learning proceeds.
In this CEM-based classification approach, the curves are partitioned in a
hard way in contrast to the fuzzy classification approach. The K-means-like
algorithm of Hébrail et al. (2010) is shown to be a particular case of the
proposed CEM algorithm if some constraints are imposed for the piecewise
regression mixture. For the two algorithms, the optimal curve segmentation
is performed by using dynamic programming.

This paper is organized as follows. We first briefly recall the two
main approaches for model-based clustering, and their extension to curve
clustering. Then, Section 2 provides a brief account of related work on
model-based curve clustering approaches using polynomial regression mix-
tures (PRM) and spline regression mixtures (SRM) (Gaffney and Smyth
1999; Gaffney 2004) and recalls the K-means-like algorithm for curve clus-
tering and optimal segmentation based on polynomial piecewise regression
(Hébrail et al. 2010). Section 3 introduces the proposed piecewise regres-
sion mixture model (PWRM) and its unsupervised learning by deriving both
the estimation approach and the classification approach, and the dedicated
EM and CEM algorithms. Lastly, Section 6 deals with the experimental
study carried out on simulated curves and real-world curves to assess the
proposed approach by comparing it to the regression mixtures, the K-means-
like algorithm, and the standard GMM clustering.

1.2 Model-Based Clustering

Model-based clustering is the unsupervised classification approach
which uses mixture models (McLachlan and Peel 2000; Titterington et al.
1985). Earlier references on the mixture likelihood approach to the unsuper-
vised classification of a sample include, for example, Wolfe (1970), Gane-
salingam and McLachlan (1978, 1979), andMcLachlan and Basford (1988).
One can also cite the pertinent papers of Banfield and Raftery (1993) and
Celeux and Govaert (1995) on the use of parsimonious mixtures for clus-
tering, as well in model-based clustering, discriminant analysis, and den-
sity estimation in Fraley and Raftery (2002). An account of the subject
as well as additional references to the broad literature on the subject can
also be found in the survey paper of Melnykov and Maitra (2010) or in the
more recent one of Bouveyron and Brunet (2014). Also, the recent special
issue edited by Govaert, Ingrassia, and McLachlan (2015) is dedicated to
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the subject. Among the very recent contributions to model-based clustering
and classification, one can cite the following papers as examples. Andrews
andMcNicholas (2014) develop an effective variable selection technique for
model-based clustering and classification. Bouveyron (2014) contributes a
very interesting paper on adaptive mixture discriminant analysis. There has
also been a plethora of work on clustering using non-Gaussian mixtures and
one can cite some relevant papers, e.g., Lee and McLachlan (2013, 2014);
Murray, Browne, and McNicholas (2014), and Lee and McLachlan (2015).
Ingrassia et al. (2015) contribute another to a nice series of papers on cluster-
weighted models, e.g., Ingrassia, Minotti, and Vittadini (2012). There has
also been recent work in other areas including model-based clustering of
high-dimensional binary data (Tang, Browne, and McNicholas 2015) and
model-based clustering of clickstream data (Melnykov 2016). In the finite
mixture approach for cluster analysis, the data probability density function
is assumed to be a finite mixture density, each component density being as-
sociated with a cluster. The problem of clustering therefore becomes the
one of estimating the parameters of the supposed mixture model. In this
way, two main approaches are possible, as follows.

1.2.1 The Mixture Approach

In the mixture (or estimation) approach, the parameters of the mixture
density are estimated by maximizing the observed-data likelihood. This is
generally achieved via the expectation-maximization (EM) algorithm (Demp-
ster, Laird, and Rubin 1977; McLachan and Krishnan 2008). After per-
forming the model estimation, the posterior probabilities of the component
membership, which represent a fuzzy partition of the data, are then used
to determine the cluster memberships through the Bayes allocation rule by
assigning each observation to the component (cluster) with the highest pos-
terior probability.

1.2.2 The Classification Approach

The classification approach, also referred to as the maximum likeli-
hood classification approach, consists in optimizing the complete-data like-
lihood. This maximization can be performed by using the classification ver-
sion of the EM algorithm, known as the classification EM (CEM) algorithm
(Celeux and Govaert 1992). The CEM algorithm inserts a classification step
between the E and the M steps of the EM algorithm, which computes the
cluster memberships in a hard way by using the Bayes optimal allocation
rule.

Note that the outright assignment of the data points to the components
of the mixture model after the calculation of the estimate of the parameter
vector in the mixture model by acting according to the Bayes’ optimal allo-
cation rule was earlier considered by McLachlan (1992, p. 8).
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1.3 Model-Based Curve Clustering

Model-based clustering of curves or functional data is a subfield within
the broader field of model-based clustering. It is one of several areas of
ongoing research in the field of mixture model-based clustering and clas-
sification. Mixture model-based curve clustering approaches have been in-
troduced so as to generalize the standard multivariate mixture model to the
case of the analysis of functional data where the individuals are presented
as curves rather than vectors. Indeed, when the data are curves which are
in general very structured, relying on standard multivariate mixture analy-
sis may lead to unsatisfactory results in terms of classification accuracy or
modeling accuracy (Chamroukhi, Samé, Govaert, and Aknin 2009b; Cham-
roukhi 2010; Chamroukhi et al. 2010). However, addressing the problem
from the perspective of functional data analysis, that is, formulating func-
tional mixture models, allows overcoming this limitation (Chamroukhi et
al. 2009b; Chamroukhi 2010; Chamroukhi et al. 2010; Samé et al. 2011;
Gaffney and Smyth 1999; Gaffney 2004; Gaffney and Smyth 2004; Liu and
Yang 2009). In the case of model-based curve clustering, one can distin-
guish the regression mixture approaches (Gaffney and Smyth 1999; Gaffney
2004), including polynomial regression and spline regression, or random
effects polynomial regression as in Gaffney and Smyth (2004) or spline re-
gression as in Liu and Yang (2009). Another approach based on splines is
concerned with clustering sparsely sampled curves (James and Sugar 2003).
All these approaches use the mixture (estimation) approach with the EM
algorithm to estimate the model parameters. Another approach, which con-
cerns the mixture-model based clustering of multivariate functional data, is
that of Jacques and Preda (2014), in which the clustering is performed in the
space of reduced functional principal components. This approach uses an
EM-like algorithm.

2. Related Work

In this section, we first describe the model-based curve clustering
based on regression mixtures and the EM algorithm (Gaffney 2004; Gaffney
and Smyth 2004) as in Chamroukhi et al. (2010) and Chamroukhi et al.
(2011). We note that other related papers include Nguyen, McLachlan,
and Wood (2015) on regression mixtures for surfaces, as well as Ingrassia,
Minotti, and Vittadini (2012) and Ingrassia et al. (2015) on cluster-weighted
models. Then we describe the piecewise regression approach to curve clus-
tering and optimal segmentation of Hébrail et al. (2010) and the associated
K-means-like algorithm.
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2.1 Regression Mixtures and the EM Algorithm for Curve Clustering

Regression mixtures for curve clustering, namely polynomial regres-
sion mixture models (PRM) and polynomial spline regression mixtures
(PSRM) (Gaffney 2004; Gaffney and Smyth 2004), assume that each curve
is drawn from one of K clusters of curves with mixing proportions (α1, . . . ,
αK). Each cluster of curves is modeled by either a polynomial regression
model or a spline regression model. Thus, the mixture density of the ith
curve (i = 1, . . . ,n) can be written as

p(yi|xi;Ψ) =
K

∑
k=1

αk N (yi;Xiβ k,σ
2
k Im), (1)

where the αk’s defined by αk = p(ci = k) are the mixing proportions, with
αk > 0 for each k and ∑K

k=1αk = 1; β k is the coefficient vector and σ2
k the

noise variance of the kth regression model; and Xi the design matrix whose
construction depends on the adopted model (i.e., polynomial, or polynomial
spline, etc). The regression mixture model is therefore fully described by
the parameter vector Ψ = (α1, . . . ,αk,Ψ1, . . . ,ΨK) with Ψk = (β k,σ2

k ). The
unknown parameter vector Ψ can be estimated by maximizing the observed-
data log-likelihood, which is given by

L (Ψ) =
n

∑
i=1

log
K

∑
k=1

αk N (yi;Xiβ k,σ
2
k Im) (2)

via the EM algorithm (Gaffney 2004; Dempster, Laird, and Rubin 1977).
The EM algorithm for the regression mixture models and the corresponding
updating formula can be found in Gaffney and Smyth (1999) and Gaffney
(2004). Once the model parameters have been estimated, a partition of the
data into K clusters can then be computed by maximizing the posterior clus-
ter probabilities (Bayes allocation rule).

The regression mixture model however does not address the problem
of regime changes within the curves. Indeed, it assumes that each cluster
presents a stationary behavior described by a single polynomial mean func-
tion. This approach is therefore not well adapted to handle the problem of
segmenting curves with regime changes. An alternative is to use polynomial
spline regression rather than polynomial regression as in Gaffney (2004),
James and Sugar (2003), and Liu and Yang (2009) where the curves are
represented by using a combination of several polynomial bases at differ-
ent time range locations rather than a single polynomial basis. Splines are
indeed based on constrained piecewise polynomial fitting with predefined
piecewise locations. Therefore, it should be noticed that in spline regression
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models, the placement of the knots is generally either fixed by the user or
uniform over the range of the input xi. The optimization of the locations
of the knots, which are assumed to be related to the locations of the regime
changes (the transition points) in this case of curve segmentation, requires
relaxing the regularity constraints for the splines. This leads to the piece-
wise polynomial regression model (McGee and Carleton 1970; Brailovsky
and Kempner 1992; Chamroukhi 2010) in which the placement of the knots
can be optimized using dynamic programming (Bellman 1961; Stone 1961).

The piecewise regression model can be used to perform simultaneous
curve clustering and optimal segmentation. In Hugueney et al. (2009) and
Hébrail et al. (2010), there is proposed a K-means-like algorithm involv-
ing a dynamic programming procedure for simultaneous curve clustering
and optimal segmentation based on the piecewise regression model. The
idea proposed in the present paper is in the same spirit. But it provides a
general probabilistic framework to address the problem. In our proposed
approach, the piecewise regression model is included in a mixture frame-
work to generalize the deterministic K-means-like approach. Both fuzzy
clustering and hard clustering techniques are possible. We note that another
possible approach to this task of curve clustering and segmentation is to pro-
ceed as in the case of sequential data modeling, in which it is assumed that
the observed sequence (in this case a curve) is governed by a hidden process
which enables switching from one configuration to another among K con-
figurations. The process usually used in general is a K-state homogeneous
Markov chain. This leads to the mixture of hidden Markov models (Smyth
1996) or mixture of hidden Markov model regressions (Chamroukhi et al.
2011).

2.2 Curve Clustering and Optimal Segmentation with K-Means-Like
Algorithm

Hébrail et al. (2010) proposes a K-means-like algorithm to simulta-
neously perform curve clustering and optimal segmentation of each cluster
of curves. This is achieved by minimizing a Euclidean distance criterion,
as in the standard K-means for multivariate data clustering, while in their
functional approach the computations are performed in the space of curves.
The curves are partitioned into K clusters and each cluster k is modeled by
a piecewise constant regression model and segmented into Rk regimes. The
segmentation is performed optimally by using dynamic programming thanks
to the additivity of the distance criterion over the set of segments for each
cluster. In the following, we recall this technique in order to later show the
differences with our proposed approach.
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2.2.1 The Optimized Distance Criterion

The clustering and segmentation algorithm proposed in Hugueney et
al. (2009) and Hébrail et al. (2010) simultaneously minimizes the following
error (distance) criterion:

E (c,{Ikr},{μkr}) =
K

∑
k=1

∑
i|ci=k

Rk

∑
r=1

∑
j∈Ikr

(yi j −μkr)
2 (3)

with respect to the partition defined by the cluster labels c, and the piece-
wise cluster parameters {μkr} and {Ikr}, where Ikr = (ξkr,ξk,r+1] represent
the element indices of segment (regime) r (r = 1, . . . ,Rk) for cluster k and
μkr its constant mean, Rk being the corresponding number of segments. The
m×1 piecewise constant mean curve gk = (gk1, . . . ,gkm) where gk j = μkr if
j ∈ Ikr for all j = 1, . . . ,m (i.e., the jth observation yi j belongs to segment
r of cluster k) can be seen as the mean curve or the “centroid” of cluster k
(k = 1, . . . ,K). Thus the criterion (3) can be seen as the optimized distor-
tion criterion by the standard K-means for multivariate data clustering, and
can then be iteratively minimized by the following K-means-like algorithm
(Hébrail et al. 2010).

2.2.2 The K-Means-Like Algorithm

After starting with an initial cluster partition c(0) (e.g., initialized ran-
domly), the K-means-like algorithm alternates between the two following
steps, at each iteration q, until convergence.

Relocation Step. This step consists in finding the optimal piecewise constant
prototype for a given cluster k as follows. Based on the current partition c(q),
q being the current iteration number, find the segmentation of each cluster k
into Rk regimes by minimizing the following additive criterion:

Ek(c
(q),{Ikr},{μkr}) =

Rk

∑
r=1

∑
i|c(q)i =k

∑
j∈Ikr

(yi j −μkr)
2 (4)

w.r.t the segment boundaries {Ikr} and the constant means {μkr} for each
segment. Since (4) is additive over the segments r, the segmentation can
be performed in an optimal way by using dynamic programming (Bellman
1961; Stone 1961; Hébrail et al. 2010). Then, each cluster representative is
relocated to the piecewise constant prototype g(q)k representing the mean of
all data points assigned to it.

Assignment Step. This step updates the partition of the curves, c, by assign-
ing each observation yi to the nearest piecewise constant prototype g

(q)
k in the

sense of the Euclidean distance, that is: c(q+1)
i = argmin1≤k≤K ‖ yi−g(q)k ‖2 .
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However, this approach is not probabilistic. It can be seen as deter-
ministic as it does not define a density model on the data. As will be shown
in Section 3, it represents a particular case of a more general probabilistic
model, the one which we propose. A probabilistic formulation has numerous
advantages and relies on a sound statistical background. It is indeed more
advantageous to formulate a probabilistic generative approach for ease of
interpretation and to help understand the process governing the data gener-
ation. In addition, for this clustering task, formulating a latent data model
allows considering the clustering naturally within the missing data frame-
work. Furthermore, as we will see, the general probabilistic framework will
still be better adapted to the structure of the data, rather than the K-means-
like approach which may fail if some constraints on the structure of the data
are not satisfied. Another advantage is that the probabilistic approach allows
performing soft clustering, which is not generally the case in deterministic
approaches. In addition, in probabilistic model-based clustering, we have
the possibility of naturally incorporating prior knowledge on the model pa-
rameters through prior distributions.

Thus, in the next section we present the proposed piecewise regres-
sion mixture model (PWRM) and its unsupervised learning by using two
variants of parameter estimation: The first one uses a dedicated EM al-
gorithm and the second one uses a dedicated classification EM (CEM) al-
gorithm. We show how the CEM algorithm used for clustering and op-
timal segmentation constitutes a probabilistic version of the deterministic
approach recalled previously.

3. The Piecewise Regression Mixture (PWRM)

In the proposed approach, the piecewise regression model is stated in
a probabilistic framework for model-based curve clustering and optimal seg-
mentation, rather than in a deterministic approach as described previously.
First, we present the extension of the standard piecewise regression model
for modeling a homogeneous set of independent curves rather than a single
curve. Then we derive our piecewise regression mixture model (PWRM).

3.1 Piecewise Regression for Curve Modeling and Optimal Segmenta-
tion

As stated in Chamroukhi et al. (2010), piecewise polynomial regres-
sion (McGee and Carleton 1970; Brailovsky and Kempner 1992; Ferrari-
Trecate andMuselli 2002; Hébrail et al. 2010; Picard et al. 2007) is a model-
ing and segmentation method that can be used to partition a curve or curves
into R regimes (segments). Each segment is characterized by its constant
or polynomial mean curve and its variance. The model parameters can be
estimated in an optimal way by using a dynamic programming procedure
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(Bellman 1961; Stone 1961) thanks to the additivity of the optimized crite-
rion over the regimes (Brailovsky and Kempner 1992; Picard et al. 2007;
Hébrail et al. 2010; Hugeuney et al. 2009; Chamroukhi 2010). In the
following section, we present the piecewise polynomial regression model,
which is generally used for a single curve, in the context of modeling a set
of curves. We also describe the algorithm used for parameter estimation by
maximizing the likelihood.

3.1.1 Piecewise Regression for Modeling and Optimal Segmentation of a
Set of Curves

Piecewise polynomial regression, generally used to model a single
curve, (McGee and Carleton 1970; Brailovsky and Kempner 1992; Ferrari-
Trecate and Muselli 2002; Chamroukhi, Samé, Govaert, and Aknin 2009a),
can be easily used to model a set of curves with regime changes (Cham-
roukhi et al. 2010; Chamroukhi 2010). The piecewise polynomial regres-
sion model assumes that the curves (y1, . . . ,yn) incorporate R polynomial
regimes defined on R intervals I1, . . . , IR; the indices of their bounds can be
denoted by ξ = (ξ1, . . . ,ξR+1)where Ir = (ξr,ξr+1]with ξ1 = 0< ξ2 < .. . <
ξR+1 = m. This defines a partition of the set of curves into R segments of
lengths m1, . . . ,mR: {yi j| j ∈ I1}, . . . ,{yi j| j ∈ IR}, i = 1, . . . ,n. The piecewise
polynomial regression model for the set of curves, in the Gaussian case, can
therefore be defined as follows. For r = 1, . . . ,R:

yi j = β�
r xi j +σrε j if j ∈ Ir (i = 1, . . . ,n; j = 1, . . . ,m), (5)

where the ε j are independent zero mean and unit varianceGaussian variables
representing additive noise. The model parameters which can be denoted
by (θ ,ξ ) where θ = (β 1, . . . ,β R,σ2

1 , . . . ,σ2
R) are composed of the regres-

sion parameters and the noise variance for each regime, and are estimated
by maximizing the observed-data likelihood. We assume that, given the
regimes, the data of each curve are independent. Thus, according to the
piecewise regression model (5), the conditional density of a curve is given
by:

p(yi|xi;θ ,ξ ) =
R

∏
r=1

∏
j∈Ir

N
(

yi j;β�
r x j,σ2

r

)
, (6)

and the log-likelihood of the model parameters (θ ,ξ ) given an independent
set of curves (y1, . . . ,yn) is given by:

L (θ ,ξ ) = log
n

∏
i=1

p(yi|xi;θ ,ξ )

= −1
2

R

∑
r=1

[ 1
σ2

r

n

∑
i=1

∑
j∈Ir

(yi j −β T
r xi j)

2+nmr logσ2
r

]
+c, (7)
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where mr is the cardinality of Ir (the indices of the points belonging to
regime r) and c is a constant term independent of (θ ,ξ ). Maximizing this
log-likelihood is equivalent to minimizing the following criterion

J (θ ,ξ ) =
R

∑
r=1

[ 1
σ2

r

n

∑
i=1

∑
j∈Ir

(
yi j −β T

r xi j

)2
+nmr logσ2

r

]
. (8)

This can be performed by a using dynamic programming procedure thanks
to the additivity of the criterion J over the segments r over the segments
(Bellman 1961; Stone 1961). Thus, thanks to dynamic programming, the
optimal segmentation can be found. The next section shows how the param-
eters θ and ξ can be estimated by using dynamic programming to minimize
the criterion J given by (8).

3.1.2 Parameter Estimation of the Piecewise Regression Model by Dynamic
Programming

A dynamic programming procedure can be used to minimize the ad-
ditive criterion (8) with respect to (θ ,ξ ) or equivalently to minimize the
following criterion (9) with respect to ξ :

C(ξ ) = min
θ

J (θ ,ξ )

=
R

∑
r=1

min
(β r ,σ2

r )

[ 1
σ2

r

n

∑
i=1

ξr+1

∑
j=ξr+1

(
yi j −β T

k xi j

)2
+nmr logσ2

r

]

=
R

∑
r=1

[ 1
σ̂2

r

n

∑
i=1

ξr+1

∑
j=ξr+1

(yi j − β̂
T
r xi j)

2+nmr log σ̂2
r

]
, (9)

where β̂ r and σ̂2
r are the solutions of a polynomial regression problem for

segment r and are given by

β̂ r = argmin
β r

n

∑
i=1

ξr+1

∑
j=ξr+1

(yi j −β T
r xi j)

2

=
[ n

∑
i=1

ξr+1

∑
j=ξr+1

xi jx
�
i j

]−1 n

∑
i=1

ξr+1

∑
j=ξr+1

xi jyi j, (10)

and

σ̂2
r = argmin

σ2
r

1
σ2

r

n

∑
i=1

ξr+1

∑
j=ξr+1

(yi j − β̂
T
r xi j)

2+nmr logσ2
r

=
1

nmr

n

∑
i=1

ξr+1

∑
j=ξr+1

(yi j − β̂
�
r xi j)

2. (11)
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The matrix form of these solutions can be written as:

β̂ r =
[ n

∑
i=1

X�
irXir

]−1 n

∑
i=1

Xiryir, (12)

σ̂2
r =

1
nmr

n

∑
i=1

||(yir −Xirβ̂ r)||2, (13)

where yir is the segment (regime) r of the ith curve, that is, the observations
yi j, j = (ξr + 1, . . . ,ξr+1), and Xir is its associated design matrix with rows
xi j, j = (ξr +1, . . . ,ξr+1) for i = 1, . . . ,n.

It can be seen that the criterionC(ξ ) given by Equation (9) is additive
over the R segments. Thanks to its additivity, this criterion can be opti-
mized globally using a dynamic programming procedure (Bellman 1961;
Stone 1961; Brailovsky and Kempner 1992). The piecewise approach pro-
vides therefore an optimal segmentation of a homogeneous set of curves into
R polynomial segments, each segment being associated with a regime. To
handle non-homogeneous sets of curves and at the same time benefit from
the efficient segmentation provided by piecewise regression, the model can
therefore be integrated in a mixture framework, where each component den-
sity will represent a set of curves with a specified number of regimes. This
results in the piecewise regression mixture model presented in the next sec-
tion.

3.2 Piecewise Regression Mixture Model (PWRM) for Curve Cluster-
ing and Optimal Segmentation

In this section, we integrate the piecewise polynomial regressionmodel
presented previously into a mixture model-based curve clustering frame-
work. Thus, the resulting model is a piecewise regression mixture model
which will be abbreviated as PWRM. According to the PWRM model, each
curve (xi,yi) (i = 1, . . . ,n) is assumed to be generated by a piecewise re-
gression model among K models defined by (6), with a prior probability αk.
The distribution of a curve is given by the following piecewise polynomial
regression mixture (PWRM) model:

p(yi|xi;Ψ) =
K

∑
k=1

αk

Rk

∏
r=1

∏
j∈Ikr

N (yi j;β�
krxi j,σ2

kr), (14)

where Ikr is the set of elements indices of polynomial segment (regime) r
for the cluster k, β kr is the (p+ 1)-dimensional vector of its polynomial
coefficients, and the αk are the mixing proportions defined as previously.
The parameters of the PWRM model can therefore be denoted by

Ψ = (α1, . . . ,αK ,θ 1, . . . ,θ K ,ξ 1, . . . ,ξ K),
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where θ k = (β k1, . . . ,β kRk
,σ2

k1, . . . ,σ
2
kRk

) and ξ k = (ξk1, . . . ,ξk,Rk+1) are re-
spectively the set of polynomial coefficients and noise variances, and the set
of transition points which correspond to the segmentation of the cluster k.

The proposed mixture model is therefore suitable for the clustering
and optimal segmentation of complex shaped curves. More specifically,
by integrating the piecewise polynomial regression into a mixture frame-
work, the resulting model is able to perform curve clustering. The problem
of regime changes within each cluster of curves will be addressed as well
thanks to the optimal segmentation provided by dynamic programming for
each piecewise regression component model. These two simultaneous out-
puts are clearly not provided by the standard generative curve clustering ap-
proaches, namely the regression mixture and spline regression mixtures. On
the other hand, the PWRM is a probabilistic model and as it will be shown
in the following, generalizes the deterministic K-means-like algorithm for
curve clustering and optimal segmentation.

With the model defined, we now have to estimate its parameters from
the data and show how it is used for clustering and optimal segmentation.
We present two approaches to estimate the model parameters. The first is
an estimation approach and is based on maximizing the observed-data log-
likelihood via a dedicated EM algorithm. The second is a classification ap-
proach and maximizes the completed-data log-likelihood using a specific
CEM algorithm. In the next section we derive the first approach and then
we present the second one.

4. Maximum Likelihood Estimation via a Dedicated EM Algorithm

As seen in the Introduction, in the estimation (maximum likelihood)
approach, the parameter estimation is performed bymaximizing the observed-
data (incomplete-data) log-likelihood. Assumewe have a set of n i.i.d curves
(y1, . . . ,yn) regularly sampled at the time points xi. According to the model
(14), the log-likelihood of Ψ given the observed data can be written as:

L (Ψ) = log
n

∏
i=1

p(yi|xi;Ψ) =
n

∑
i=1

log
K

∑
k=1

αk

Rk

∏
r=1

∏
j∈Ikr

N
(

yi j;β�
krxi j,σ2

kr

)
. (15)

The maximization of this log-likelihood can not be performed in a closed
form. The EM algorithm (Dempster, Laird and Rubin 1977; McLachlan
and Kirshman 2008) is generally used to iteratively maximize it similarly
to the case of standard mixtures. In this framework, the complete-data log-
likelihood for a particular partition c = (c1, . . . ,cn), where ci is the cluster
label of the ith curve, is given by

388 F. Chamroukhi



Lc(Ψ,c) =
n

∑
i=1

K

∑
k=1

zik logαk +
n

∑
i=1

K

∑
k=1

Rk

∑
r=1

∑
j∈Ikr

zik logN (yi j;β�
krxi j,σ2

kr),

(16)
where zik is an indicator binary-valued variable such that zik = 1 iff ci = k
(i.e., if the ith curve is generated by cluster k). The next paragraph shows
how the observed-data log-likelihood (15) of the proposed model is max-
imized by the EM algorithm to perform curve clustering and optimal seg-
mentation.

4.1 The EMAlgorithm for Piecewise Regression Mixture (EM-PWRM)

The EM algorithm for the polynomial piecewise regression mixture
model (EM-PWRM) starts with an initial solution Ψ(0) (e.g., computed from
a random partition and uniform segmentation) and alternates between the
two following steps until convergence: (e.g., when there is no longer any
change in the relative variation of the log-likelihood):

E-Step. The E-step computes the expected complete-data log-likelihood
given the observed curves D = ((x1,y1), . . . ,(xn,yn)) and the current value
of the model parameters denoted by Ψ(q), q being the current iteration num-
ber:

Q(Ψ,Ψ(q))

= E
[
Lc(Ψ;D ,c)|D ;Ψ(q)]

=
n

∑
i=1

K

∑
k=1

E
[
zik|D ;Ψ(q)]

logαk +
n

∑
i=1

K

∑
k=1

Rk

∑
r=1

∑
j∈Ikr

E
[
zik|D ;Ψ(q)] logN (yi j;β�

krxi j,σ2
kr)

=
n

∑
i=1

K

∑
k=1

τ (q)
ik logαk+

n

∑
i=1

K

∑
k=1

Rk

∑
r=1

∑
j∈Ikr

τ (q)
ik logN (yi j;β�

krxi j,σ2
kr), (17)

where

τ (q)
ik = p(ci = k|yi,xi;Ψ(q))

=
α (q)

k ∏Rk
r=1 ∏

j∈I(q)kr
N

(
yi j;β

T (q)
kr xi j,σ

2(q)
kr

)

∑K
k′=1α (q)

k′ ∏
Rk′
r′=1 ∏

j∈I(q)
k′r′

N (yi j;β
T (q)
k′r′ xi j,σ

2(q)
k′r′ )

(18)
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is the posterior probability that the ith curve belongs to component k. This
step therefore only requires the computation of the posterior cluster proba-
bilities τ (q)

ik (i = 1, . . . ,n) for each of the K clusters.

M-Step. The M-step computes the parameter update Ψ(q+1) by maximiz-
ing the Q-function (17) with respect to Ψ, that is:

Ψ(q+1) = argmax
Ψ

Q(Ψ,Ψ(q))· (19)

To perform this maximization, it can be seen that the Q-function can be
decomposed as

Q(Ψ,Ψ(q)) = Qα(α1, . . . ,αK ,Ψ(q))+
K

∑
k=1

QΨk

({Ikr,β kr,σ
2
kr}Rk

r=1,Ψ
(q)),
(20)

where

Qα(α1, . . . ,αK ,Ψ(q)) =
n

∑
i=1

K

∑
k=1

τ (q)
ik logαr, (21)

and

QΨk({Ikr,β kr,σ
2
kr}Rk

r=1,Ψ
(q))

=
Rk

∑
r=1

n

∑
i=1

∑
j∈Ikr

τ (q)
ik logN

(
yi j;β T

rkxi j,σ2
rk

)
. (22)

The maximization of Q(Ψ,Ψ(q)) can therefore be performed by separate
maximizations of Qα (21) with respect to the mixing proportions αk’s and
QΨk (22) with respect to the parameters of each piecewise polynomial re-

gression model Ψk = {Ikr,β kr,σ2
kr}Rk

r=1 for k = 1, . . . ,K, as follows. The
function Qα(α1, . . . ,αK ,Ψ(q)) is maximized with respect to (α1, . . . ,αK) ∈
[0,1]R subject to the constraint ∑K

k=1αk = 1 using Lagrange multipliers and
the updates are given by:

α (q+1)
k =

∑n
i=1 τ (q)

ik

n
, (k = 1, . . . ,K). (23)

The maximization of (22) corresponds to finding the new update of
Ψk, that is the piecewise segmentation {Ikr} of cluster k and the correspond-
ing piecewise regression representation through {β kr,σ2

kr}, (r = 1, . . . ,Rk),
to the fuzzy cluster k which is composed of the n curves weighted by their
posterior probabilities relative to cluster k. Thus, one can observe that
each of the maximizations of (22) corresponds to a weighted version of the
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piecewise regression problem for a set of curves given by Equation (7), the
weights being the posterior cluster probabilities τ (q)

ik . Optimizing QΨk there-
fore simply consists of solving a weighted piecewise regression problem
where the curves are weighted by the posterior cluster probabilities τ (q)

ik .
The optimal segmentation of each cluster k, represented by the parameters
{ξ kr} is performed by running a dynamic programming procedure similarly
to that of Section 3.1 Equation (9) by weighting the optimization problem.
The updating rules for the regression parameters for each cluster of curves
correspond to weighted versions of (10) and (11), and are given by

β (q+1)
kr =

[ n

∑
i=1

τ (q)
ik X�

irXir

]−1 n

∑
i=1

Xiryir, (24)

σ2(q+1)
kr =

1

∑n
i=1∑

j∈I(q)kr
τ (q)

ik

n

∑
i=1

τ (q)
ik ||(yir −Xirβ

(q+1)
kr )||2, (25)

where yir is the segment (regime) r of the ith curve, that is, the observations
{yi j| j ∈ Ikr} and Xir is its associated design matrix with rows {xi j| j ∈ Ikr}.
Thus, the proposed EM algorithm for the PWRM model provides a fuzzy
partition of the curves into K clusters through the posterior cluster proba-
bilities τik, each fuzzy cluster being optimally segmented into regimes with
indices {Ikr}. When the EM algorithm has converged, a hard partition of
the curves can then be deduced by assigning each curve to the cluster which
maximizes the posterior probability (18), that is:

ĉi = arg max
1≤k≤K

τik(Ψ̂), (i = 1, . . . ,n). (26)

where ĉi denotes the estimated class label for the ith curve.
To summarize, the proposed EM algorithm computes the maximum

likelihood (ML) estimate of the PWRM model. It simultaneously updates a
fuzzy partition of the curves into K clusters and an optimal segmentation of
each cluster into regimes. At convergence, we obtain the model parameters
that include the segments boundaries and the fuzzy clusters. A hard parti-
tion of the curves into K clusters is then deduced according to the Bayes’
allocation rule by maximizing the posterior probabilities of the component
membership.

We note that a similar algorithm for segmentation clustering has been
proposed in Picard et al. (2007). This approach uses a dynamic program-
ming procedure with the EM algorithm to segment the temporal gene ex-
pression data and the clustering is performed on the segments to assign each
set of homogeneous segments to a cluster relative to the spatial behavior of
such data. The PWRM model proposed here is quite different from its mix-
ture formulation in the sense that here the curves are supposed to be mixed
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at random rather than the segments, so that each cluster is composed of a set
of homogeneous temporal curves segmented into heterogeneous segments.

As mentioned in the Introduction, we will propose another scheme
to achieve both the model estimation (including the segmentation) and the
clustering by using a dedicated Classification EM (CEM) algorithm. In the
next section we present the classification approach with its corresponding
classification likelihood criterion, and derive the CEM algorithm to maxi-
mize it.

5. Maximum Classification Likelihood Estimation via a Dedicated
Classification EM Algorithm

The maximum classification likelihood approach simultaneously per-
forms the clustering and the parameter estimation, which includes the curve
segmentation, by maximizing the completed-data log-likelihood given by
Equation (16) for the proposed PWRM model. The maximization is per-
formed through a dedicated Classification EM (CEM) algorithm.

5.1 The CEM Algorithm for Piecewise Regression Mixture
(CEM-PWRM)

The CEM algorithm (Celeux and Govaert 1992) was initially pro-
posed for model-based clustering of multivariate data. We adopt it here in
order to perform a model-based curve clustering with the proposed PWRM
model. The resulting CEM simultaneously estimates both the PWRM pa-
rameters and the classes’ labels by maximizing the complete-data log-
likelihood given by Equation (16) w.r.t. the model parameters Ψ and the
partition represented by the vector of cluster labels c, in an iterative man-
ner as follows. After starting with initial mixture model parameters Ψ(0)

(e.g., computed from a randomly chosen partition and a uniform segmen-
tation), the CEM-PWRM algorithm alternates between the two following
steps at each iteration q until convergence (e.g., when there is no longer
any change in the partition or in the relative variation of the complete-data
log-likelihood):

Step 1. The first step updates the cluster labels for the current model de-
fined by Ψ(q) by maximizing the complete-data log-likelihood (16) w.r.t. to
the cluster labels c, that is:

c(q+1) = argmax
c

Lc(c,Ψ(q)). (27)

Step 2. Given the estimated partition defined by c(q+1), the second step up-
dates the model parameters by maximizing the complete-data log-likelihood
w.r.t. to the PWRM parameters Ψ:
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Ψ(q+1) = argmax
Ψ

Lc(c(q+1),Ψ). (28)

Equivalently, the CEM algorithm therefore consists in inserting a classifi-
cation step (C-step) between the E- and the M- steps of the EM algorithm
presented previously. In the case of the proposed PWRM model, the ded-
icated CEM-PWRM algorithm runs as follows. It starts with initial model
parameters Ψ(0) and then alternates between the three following steps at
each iteration q until convergence.

E-Step. The E-step computes the posterior probabilities τ (q)
ik (i= 1, . . . ,n),

given by Equation (18), that the ith curve belongs to cluster k, for i= 1, . . . ,n
and for each of the K clusters.

C-Step. The C-step computes a hard partition of the n curves into K clus-
ters by estimating the cluster labels through the Bayes allocation rule:

c(q+1)
i = arg max

1≤k≤K
τ (q)

ik (i = 1, . . . ,n). (29)

M-Step. The M-step, given the estimated cluster labels c(q+1), updates the
model parameters by computing the parameter vector Ψ(q+1) which maxi-
mizes the complete-data log-likelihood (16) with respect to Ψ. By rewriting
the complete-data log-likelihood given the current estimated partition as

Lc(Ψ,c(q+1))

=
K

∑
k=1

∑
i|c(q)i =k

logαk +
K

∑
k=1

Rk

∑
r=1

∑
i|c(q)i =k

∑
j∈Ikr

logN (yi j;β�
krxi j,σ2

kr), (30)

we can see that this function can be optimized by separately optimizing the
two terms of the r.h.s. of (30). More specifically, the mixing proportions
αk’s are updated by maximizing the function ∑n

i=1 ∑K
k=1 z(q+1)

ik logαk w.r.t.
(α1, . . . ,αK) ∈ [0,1]K subject to the constraint ∑K

k=1 αk = 1. This is per-
formed by using Lagrange multipliers and gives the following updates:

α (q+1)
k =

1
n

n

∑
i=1

z(q)ik (k = 1, . . . ,K). (31)

The regression parameters and the segmentation, which are denoted by {Ψk}
= {(θ k,ξ k)} for each of the K clusters, are updated by maximizing the sec-
ond term of the r.h.s. of (30) similarly as in the case of the EM-PWRM
algorithm presented in the previous section. The only difference is that the
posterior probabilities τik in the case of the EM-PWRM algorithm are re-
placed by the cluster label indicators zik when using the CEM-PWRM, the
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curves being assigned in a hard way rather than in a soft way. This step
consists therefore in estimating a piecewise polynomial regression model
for the set of curves of each of the K clusters separately. Each polynomial
regression model estimation for each cluster of curves is performed using a
dynamic programming procedure as in seen in Section 3.1.

5.2 The CEM-PWRM Algorithm as a Generalization the K-Means-
Like Algorithm

In this section we show how the proposed PWRM estimated by the
CEM algorithm provides a general framework for the K-means-like algo-
rithm of Hébrail et al. (2010) seen in Section 2.2.

Proposition 5.2.1 The complete-data log-likelihood (16) optimized by the
proposed CEM algorithm for the piecewise regression mixture model is equiv-
alent to the distance criterion (3) optimized by the K-means-like algorithm
of Hébrail et al. (2010) if the following constraints are imposed:

• αk =
1
K ∀K (identical mixing proportions)

• σ2
kr = σ2 ∀r = 1, . . . ,Rk and ∀k = 1, . . . ,K (isotropic and homoskedas-

tic model)

• piecewise constant approximation of each segment of curves rather
than a polynomial fitting.

Therefore, the proposed CEM algorithm for piecewise polynomial regres-
sion mixture is the probabilistic version for hard curve clustering and opti-
mal segmentation of the K-means-like algorithm (c.f., Section 2.2). It has a
better ability to handle data with nonequivalent population proportions and
easily takes into accounts within-cluster variances.

Proof. The complete data log-likelihood (16) can be rewritten as

Lc(Ψ,c) =
K

∑
k=1

∑
i|ci=k

logαk − 1
2

K

∑
k=1

∑
i|ci=k

Rk

∑
r=1

∑
j∈Ikr

[(yi j −β�
krxi j

σ2
kr

)2

+ log(2πσ2
kr)

]
. (32)

Now, if we consider the constraints in Proposition 5.2.1 for the proposed
PWRM model, the maximized complete-data log-likelihood takes the fol-
lowing form:

Lc(Ψ,c)

=
K

∑
k=1

∑
i|ci=k

log
1
K
− 1

2

K

∑
k=1

∑
i|ci=k

Rk

∑
r=1

∑
j∈Ikr

[(yi j −μkr

σ2

)2
+ log(2πσ2)

]
.(33)
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Maximizing this function is therefore equivalent to minimizing the follow-
ing criterion w.r.t the cluster labels c and the segments indices Ikr and the
segments’ constant means μkr:

J
(
c,{μkr, Ikr}

)
=

K

∑
k=1

Rk

∑
r=1

∑
i|ci=k

∑
j∈Ikr

(
yi j −μkr

)2
, (34)

which is exactly the distortion criterion optimized by the K-means-like al-
gorithm of Hébrail et al. (2010) (cf. Equation (3)).
�
5.3 Model Selection

The problem of model selection here is equivalent to choosing the
optimal number of clusters K, number of regimes R, and polynomial de-
gree p. The optimal value of the triplet (K,R, p) can be computed by us-
ing some model selection criteria such as the Bayesian Information Crite-
rion (BIC) (Schwarz 1978), as in Liu and Yang (2009) or the Integrated
Classification Likelihood criterion (ICL) (Biernacki, Celeux and Govaert
2000), etc. Let us recall that the BIC is a penalized log-likelihood crite-
rion which can be defined as a function to be maximized that is given by:
BIC(K,R, p) =L (Ψ̂)− νΨ log(n)

2 , whereas the ICL is a penalized complete-
data log-likelihood and can be expressed as follows: ICL(K,R, p)=Lc(Ψ̂)−
νΨ log(n)

2 , whereL (Ψ̂) andLc(Ψ̂) are respectively the incomplete (observed)
data log-likelihood and the complete data log-likelihood, obtained at con-
vergence of the (C)EM algorithm, νΨ = ∑K

k=1 Rk(p+ 3)− 1 is the number
of free parameters of the model and n is the sample size. The number of
free model parameters includes K − 1 mixing proportions, ∑K

k=1 Rk(p+ 1)
polynomial coefficients, ∑K

k=1 Rk noise variances and ∑K
k=1(Rk − 1) transi-

tion points.

6. Experimental Study

In this section, we assess the proposed PWRM with both the EM
and CEM algorithms in terms of curve clustering and segmentation. We
study the performance of the developed PWRM model by comparing it to
the polynomial regression mixture models (PRM) (Gaffney 2004), the stan-
dard polynomial spline regression mixture model (PSRM) (Gaffney 2004;
Gui and Li 2003; Liu and Yang 2009) and the piecewise regression model
used with the K-means-like algorithm (Hébrail et al. 2010). We also include
comparisons with standard model-based clustering of multivariate data us-
ing Gaussian mixture models (GMM). For all the compared generative ap-
proaches we consider both the EM and the CEM algorithms. Thus, the ten
compared approaches can be summarized as follows: EM-GMM, EM-PRM,
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EM-PRM, EM-PSRM, K-means-like, EM-PWRM and CEM-PWRM. All
algorithms have been implemented in Matlab. The aim of including the
standard multivariate data clustering with Gaussian mixtures models and
the EM algorithm is to show that it is necessary to adapt them to curve clus-
tering approaches as they do not take into account the functional structure
of the data. The algorithms are evaluated using experiments conducted on
both synthetic and real curves.

6.1 Evaluation Criteria

The algorithms are evaluated in terms of curve classification and ap-
proximation accuracy. The evaluation criteria used are the classification er-
ror rate between the true simulated partition and the estimated partition, and
the intra-cluster inertia ∑K

k=1 ∑i|ĉi=k ||yi − ŷk||2, where ĉi indicates the esti-
mated class label of the ith curve from the sample and ŷk = (ŷk j) j=1,...,m
is the estimated mean curve of cluster k. Each point of the mean curve of
cluster k is given by

• ŷk j = β̂
�
krxi j if j ∈ Îkr for the proposed approach (EM-PWRM, CEM-

PWRM) and the K-means-like approach of Hébrail et al. (2010),

• ŷk j = β̂
�
k xi j for both the polynomial regression mixture (PRM) and

the spline regression mixtures (PSRM),

• ŷk j =
∑n

i=1 ẑikyi j

∑n
i=1 ẑik

for the standard model-based clustering with GMM.

6.2 Experiments with Simulated Curves

6.2.1 Simulation Protocol and Algorithms Setting

The simulated data consisted of curves generated from a mixture of
two classes, each class being simulated as a piecewise linear function cor-
rupted by Gaussian noise. More specifically, the simulated curves consisted
of n = 100 curves of m = 160 regularly sampled observations at the discrete
time points t = (1, . . . ,m). The curves are mixed in proportion randomly
with mixing proportions αk, (k = 1,2). We first considered uniform mixing
proportions (α = [0.5,0.5]) and then varied the proportions between the two
classes so as to have non-uniformly mixed classes. In the simulated curves,
we consider variation in mean, variance, and regime shape (constant, linear).
Table 1 shows the simulation parameters used to generate each observation
yi = (yi j)

m
j=1 and Figure 1 shows an example of simulated curves for this

situation.

6.2.2 Algorithms Setting

The algorithms are initialized from a random partition for the clus-
tering. For the segmentation, the models performing segmentation are ini-

396 F. Chamroukhi



Table 1. Simulation parameters: σkr represents the noise standard deviation for regime r
of cluster k, ξ k the transition points within cluster k, and e j ∼N (0,1) are zero-mean unit-
variance Gaussian variables representing an additive noise.

regime cluster k = 1 cluster k = 2
r=1 [5+σ11ei j]1[1,20] σ11 = 0.8 [5+σ11 ei j]1[1,20] σ21 = 0.8
r=2 [0.125 j+2.5+σ12ei j]1]20,60] σ12 = 0.8 [0.1 j+3+σ22ei j]1]20,70] σ22 = 0.8
r=3 [10+σ13ei j]1]60,115] σ22 = 0.6 [10+σ23ei j]1]70,90] σ22 = 0.8
r=4 [10+σ14ei j]1]115,140] σ22 = 0.8 [10+σ24ei j]1]90,140] σ22 = 0.6
r=5 [6+σ15ei j]1]140,160] σ22 = 0.8 [5.5+σ25ei j]1]140,160] σ22 = 0.8

ξ 1 = [1,20,60,115,140,160] ξ 2 = [1,20,70,90,140,160]

Table 2. Intra-class inertia for the simulated curves

EM-GMM EM-PRM EM-PSRM K-means-like EM-PWRM CEM-PWRM

19639 25317 21539 17428 17428 17428

tialized from random contiguous segmentations, including a uniform seg-
mentation. The algorithms are stopped when the relative variation of the
optimized criterion between two iterations is less than a predefined thresh-
old (10−6). For the same model parameters, the results are computed for
20 different data sets, and for each data set, we performed 10 runs of each
algorithm EM and the solution providing the best value of the optimized
criterion was chosen. Each run of the EM algorithm is initialized using the
best partition selected from 20 repeated runs of standard K-means, that is,
the partition corresponding to the lowest distortion. The obtained clusters of
curves are then segmented randomly to initialize the regression parameters.
Note that here the number of EM repetitions (10) was chosen as in Section
4.1 of Biernack, Celeux and Govaert (2003), where the authors performed
x = 10 repetitions. The number of K-means repetitions (20) for each EM
run is standard in EM clustering using mixtures and has been revealed to
be sufficient for our experiments. The initial guess of parameters provides
quite stable EM solutions. For the use of only K-means in clustering, the
reader can see Steinley and Brusco (2007) for further details on strategies
to obtain stable solutions. For our context of clustering using mixtures and
the EM algorithm, the reader is referred to the paper of Biernacki, Celeux
and Govaert (2003) on strategies for choosing starting values for the EM
algorithm.

6.2.3 Obtained Results

We applied the different models to the simulated curves, where for
the piecewise regression model we trained it with linear polynomial regimes
(p = 1). The polynomial regression mixture (PRM) was trained with a
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polynomial degree p = 10. For the polynomial spline regression mixture
(PSRM), we used cubic splines (of degree p = 3) with 20 uniformly placed
internal knots. In terms of the numerical results, Table 2 gives the obtained
intra-cluster inertias. For this situation, which is extremely difficult, all the
algorithms retrieved the actual partition (misclassification error of 0% for all
the algorithms). However, in terms of curve approximation, we can clearly
see that, on the one hand, the standard model-based clustering using the
GMM is not suited, as it does not take into account the functional structure
of the curves and therefore does not take into account the smoothness, they
rather compute an over-all mean curve. On the other hand, the proposed
probabilistic approach (EM-PWRM, CEM-PWRM) and that of Hébrail et
al. (2010) (which we denoted here by K-means-like), as expected, provide
the same results in terms of clustering and segmentation. This is to be at-
tributed to the fact that the K-means PWRM approach is a particular case of
our probabilistic approach. Figure 2 shows the different clustering and seg-
mentation results for the simulated curves given in Figure 1. It can be seen
that the best curve approximation are provided by the PWRM models. The
GMM mean curves are simply over-all means, and the PRM and the PSRM
models, as they are based on continuous curve prototypes, do not take into
account the segmentation, in contrast to the PWRM models which are well
adapted to perform simultaneous curve clustering and segmentation. We
note that in all the experiments, we included both the EM and the CEM al-
gorithm and the results are not significantly different. Hence, we chose to
give the results for only one of these two algorithms.

In the previous situation, the algorithms were mainly evaluated re-
garding the curve approximation while keeping the clustering task not very
difficult. Now, we vary the noise level in order to assess the models in terms
of curve clustering. This is performed by computing the misclassification
error rate for different noise levels. The curves were still simulated accord-
ing to the same parameters of Table 1 while varying the noise level for all
the regimes by adding a noise level variation s to the standard deviation σkr.

Figure 3 shows the misclassification error rates obtained for the dif-
ferent noise levels.For small variations in the noise level, the results are very
similar and comparable to those presented previously. However, as the vari-
ation in the noise level increases, the misclassification error rate increases
faster for the other models than for the proposed PWRM model. The EM
and the CEM algorithm for the proposed approach provide very similar re-
sults with a slight advantage for the CEM version.

For the previous situations, the data was simulated according to a mix-
ture with equal mixing proportions. Now we vary the parameters in order to
make the mixture with non-uniform mixing proportions (α1 = 0.2 α2 = 0.8)
and with a variance change less pronounced than before (namely we set
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Figure 2. Clustering results and the corresponding cluster prototypes obtained with EM-

GMM (spherical model), EM-PRM, EM-PSRM, and the corresponding cluster segmenta-

tions obtained with K-means-like and CEM-PWRM. For the color version of this figure, the

reader is referred to the web version of this article.

σ13 = 0.7 and σ14 = 0.6). Simulated curves according to this situation are
shown in Figure 4. The clustering results for this example are shown in Fig-
ure 5. The misclassification error for this situation is 7% for the K-means-
like approaches, and 3% for the proposed PWRM approach. For the other
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Figure 4. A two-class data set of simulated curves from a PWRM with non-uniform mixing
proportions (α1 = 0.2 ,α2 = 0.8): the clusters colored according to the true partition, and the
prototypes (left) and the true segmentation for cluster 1 (middle) and cluster 2 (right).For the
color version of this figure, the reader is referred to the web version of this article.

approaches, the misclassification error is around 10% for both the PRM and
the PSRM, while that for the GMM is of 20%. Another interesting point to
see here is that the K-means based approach can fail in terms of segmenta-
tion. As can be seen in Figure 5 (top, right), the third and the fourth regime
do not correspond to the actual ones (see Figure 4, middle). This is to be at-
tributed to the fact that the K-means-like approach for PWRM is constrained
in that it assumes the same proportion for each cluster, and does not suffi-
ciently take into account the heteroskedasticity within each cluster, as does
the proposed general probabilistic PWRM model.

6.2.4 Model Selection

In this section we give the results concerning the selection of the best
values of the triplet (K,R, p) by using the ICL criterion as presented in Sec-
tion 5.3. The values of (Kmax,Rmax, pmax) (respectively (Kmin,Rmin, pmin))
were (4,6,3) (respectively (1,1,0)). We note that for the K-means-like algo-
rithm, the complete-data log-likelihood is Lc =−1

2E up to a constant term
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Figure 5. Results for the curves shown in Figure 4: Clustering results and the corresponding
cluster prototypes and cluster segmentations obtained with K-means-like (top) and the pro-
posed CEM-PWRM (down). For the color version of this figure, the reader is referred to the
web version of this article.

(see Equation (33)), where E is the criterion minimized by this approach
which is given by Equation (3). The ICL criterion for this approach is there-
fore computed as ICL(K,R, p) = −E

2 − νΨ log(n)
2 , where νΨ = ∑K

k=1Rk(p+
2)−K is the number of free parameters of the model and n is the sample size.
The number of free model parameters in this case includes ∑K

k=1 Rk(p+ 1)
polynomial coefficients and ∑K

k=1(Rk −1) transition points, the model being
a constrained PWRM model (isotropic with identical mixing proportions).

For this experiment, we observed that the model with the highest per-
centage of selection corresponds to (K,R, p) = (2,5,1) for the proposed
EM-PWRM and CEM-PWRM approaches with respectively 81% and 85%
of selection. While for the K-means-like approach, the samemodel (K,R, p)=
(2,5,1) has a percentage of selection of only 72%. The number of regimes
is underestimated by only around 10% by the proposed approaches, while
the number of clusters is correctly estimated. However, the K-means-like
approach overestimates the number of clusters (K = 3) in 12% of the cases.
These results illustrate an advantage of the fully probabilistic approach com-
pared to that based on the K-means-like approach. We also note that the
models with K = 1,4 and those with R = 1,2 were not selected (percentage
of 0%) for all the models.

6.3 Application to Real Curves

In this section we apply the proposed approach to real curves issu-
ing from three different data sets, and compare it to the alternatives. The
studied curves are the railway switch curves, the Tecator curves and the
Topex/consist satellite data as studied in Hébrail et al. (2010). The curves of
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Figure 6. Railway switch curves.

these datasets are shown in Figure 6, Figure 8, and Figure 10. Note that the
true partition for the three data sets is unknown.

6.3.1 Railway Switch Curves

The first studied curves are the railway switch curves issuing from
a railway diagnosis application of the railway switch. Roughly, the rail-
way switch is the component that enables (high speed) trains to be guided
from one track to another at a railway junction, and is controlled by an elec-
tric motor. These curves are the signals of the consumed power during the
switch operations. These curves present several changes in regime due to
the successive mechanical motions involved in each switch operation (see
Figure 6). The diagnosis task can be achieved through the analysis of these
curves to identify possible faults. However, the large amount of data makes
the manual labeling task onerous for the experts. Therefore, the main con-
cern of this task is to propose a data preprocessing approach that allows au-
tomatically identifying homogeneous groups (without defects or with pos-
sible defects). The database used is composed of n = 146 real curves of
m = 511 observations. We assume that in the database we have two clus-
ters (K = 2). The first contains curves corresponding to an operating state
without defect and the second contains curves corresponding to an operating
state with a possible defect. The number of regression components was set
to R = 6 in accordance with the number of electromechanical phases of a
switch operation and the degree of the polynomial regression p was set to
3 which is appropriate for the different regimes in the curves. However, we
note that no ground truth for this data set is available, neither regarding the
classifications nor regarding the segmentation. This study could provide a
preliminary result to help experts in labelling the data.
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Table 3. Intra-cluster inertia for the switch curves.

EM-GMM EM-PRM EM-PSRM K-means-like CEM-PWRM
721.46 738.31 734.33 704.64 703.18

Figure 7 shows the graphical clustering results and the corresponding
cluster prototypes for the real switch operation curves. We can see that the
standard GMM clustering fails as it does not take into account the temporal
aspect of the data, the obtained clusterings are not different and the mean
curves are computed as over-all mean curves so that the obtained results are
not very convincing. The results provided by the PRM and PSRM models
are not convincing with regard to either the clustering or the approximation.
However, the PWRM model clearly provides better results, since the cluster
prototypes are more concordant with the real shape of the curves and, espe-
cially the proposed CEM-PWRM provides informative clusters. Indeed, it
can be observed that for the CEM-PWRM approach, the curves of the first
cluster (middle) and the second one (right) do not have the same characteris-
tics since their shapes are clearly different. Therefore they may correspond
to two different states of the switch mechanism. In particular, for the curves
belonging to the first cluster (middle), it can be observed that something
happened at around 4.2 seconds of the switch operation. According to the
experts, this can be attributed to a fault in the measurement process, rather
than a fault in the switch itself. The device used for measuring the power
would have been used slightly differently for this set of curves. Since the
true class labels are unknown, we consider the results of intra-class inertia,
which are found to be more significant for these data than is the intra-class
inertia of the extensions. The values of inertia corresponding to the results
shown in Figure 7 are given in Table 3.The intra-class results confirm that
the piecewise regression mixture model has an advantage at giving homoge-
neous and well approximated clusters from curves of regime changes.

6.3.2 Tecator Data

The Tecator data1 consist of near infrared (NIR) absorbance spectra
of 240 meat samples. The NIR spectra were recorded on a Tecator Infratec
food and feed Analyzer working in the wavelength range 850− 1050 nm.
The full Tecator data set contains n = 240 spectra with m = 100 for each
spectrum, and is presented in Figure 8. This data set has been considered
in Hébrail et al. (2010) and in our experiment we consider the same setting,
that the data set is summarized with six clusters (K = 6), each cluster being
composed of five linear regimes (segments) (R = 5, p = 1).

1. Tecator data are available at http://www.math.univ-toulouse.fr/staph/npfda/npfda-datasets.
html.
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Figure 7. Clustering results and the corresponding cluster prototypes obtained with EM-

GMM, EM-PRM, EM-PSRM, and the corresponding cluster segmentations obtained with

K-means-like and CEM-PWRM. For the color version of this figure, the reader is referred to

the web version of this article.

Figure 9 shows the clustering and segmentation results obtained by
the proposed CEM-PWRM algorithm. One can see that the retrieved clus-
ters are informative in the sense that the shapes of the clusters are clearly
different, and the piecewise approximation is in concordance with the shape
of each cluster. On the other hand, it can also be observed that this result is
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Figure 8. Tecator curves.
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Figure 9. Clusters and the corresponding piecewise linear prototypes for each cluster ob-

tained with the CEM-PWRM algorithm for the full Tecator data set.

very close to the one obtained by Hébrail et al. (2010) but using the
K-means-like approach. This not surprising and confirms that our proposed
CEM-PWRM algorithm is a probabilistic alternative for the K-means-like
approach.

405Piecewise Regression Mixture for Functional Data



10 20 30 40 50 60 70
0

50

100

150

200

250

echo length

al
tim

et
ric

 e
ch

o

Figure 10. Topex/Poseidon satellite curves.

6.3.3 Topex/Poseidon Satellite Data

The Topex/Poseidon radar satellite data2 were registered by the satel-
lite Topex/Poseidon around an area of 25 kilometers upon the Amazon
River. The data contain n = 472 waveforms of the measured echoes, sam-

pled at m = 70 (number of echoes). The curves of this data set are shown
in Figure 10. We employed the same number of clusters (20) and a piece-
wise linear approximation of four segments per cluster, as used in Hébrail
et al. (2010). We note that, in our approach, we directly apply the proposed
CEM-PWRM algorithm to the raw satellite data without a preprocessing
step. However, in Hébrail et al. (2010), the authors used a two-fold scheme.
They first performed a topographic clustering step using the Self Organizing
Map (SOM), and then applied their K-means-like approach to the results of
the SOM.

Figure 11 shows the clustering and segmentation results obtained with
the proposed CEM-PWRM algorithm for the satellite data set. First, it can
be observed that the provided clusters are clearly informative and reflect
the general behavior of the hidden structure of this data set. The structure is
indeed clearer with the mean curves of the clusters (prototypes) than with the
raw curves. The piecewise approximation thus helps to better understand the
structure of each cluster of curves from the obtained partition, and to more
easily infer the general behavior of the data set. On the other hand, one can
also see that this result is similar to the one found in Hébrail et al. (2010):
most of the profiles are present in the two results. The slight difference can
be attributed to the fact that the result in Hébrail et al. (2010) is provided
from a two-stage scheme which includes an additional pre-clustering step
using the SOM, rather than by directly applying the piecewise regression
model to the raw data.

2. Satellite data are available at http://www.lsp.ups-tlse.fr/staph/npfda/npfda-datasets.html.
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Figure 11. Clusters and the corresponding piecewise linear prototypes for each cluster

obtained with the CEM-PWRM algorithm for the satellite data set.

7. Conclusions and Discussion

In this paper, we introduced a new probabilistic approach for
simultaneous clustering and optimal segmentation of curves with regime
changes. The proposed approach is a piecewise polynomial regression
mixture (PWRM). We provided two algorithms to estimate the parameters
of the model. The first (EM-PWRM) consists in using the EM algorithm to
maximize the observed data log-likelihood and the second (CEM-PWRM)
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is a CEM algorithm to maximize the complete-data log-likelihood. We
showed that the CEM-PWRM algorithm is a general probabilistic-based ver-
sion of the K-means-like algorithm of Hébrail et al. (2010). We conducted
experiments on both simulated curves and real data sets to evaluate the pro-
posed approach and compare it to alternatives, including the regression mix-
ture, the spline regression mixtures and the standard GMM for multivariate
data. The obtained results demonstrated the benefits of the proposed ap-
proach in terms of both curve clustering and piecewise approximation of the
regimes of each cluster. In particular, the comparisons with the K-means-
like algorithm approach confirm that the proposed CEM-PWRM is a general
probabilistic alternative. In the experiments, the EM and CEM versions, in
this clustering and segmentation context, provided similar results. It is worth
mentioning that if the aim is primarily the density estimation, the EM ver-
sion would be suggested since the CEM is known to provide inconsistent
parameter estimates, the parameters being updated from only a subset of the
data. However, CEM is known to be well-tailored to the purpose of segmen-
tation and clustering.

We note that in some practical situations involving continuous func-
tions, the proposed piecewise regression mixture, in its current formulation,
may lead to discontinuities between the segments for the piecewise approx-
imation. This can be easily avoided by slightly modifying the algorithm
by adding an interpolation step, as performed in Hébrail et al. (2010). We
also note that in this paper, we are interested in piecewise regimes which
dot not overlap; only the clusters can overlap. However, one way to ad-
dress regime overlap is to augment the number of regimes in the proposed
approach so that a regime that overlaps (for example it occurs in two dif-
ferent time ranges) can be treated as two regimes. These two reconstructed
non-overlapping regimes would have very close characteristics so as to cor-
respond to a single overlapping regime.
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