
DOI: 10.1007/s0035

A Survey on Feature Weighting Based K-Means Algorithms

Renato Cordeiro de Amorim

University of Hertfordshire, Hatfield UK

Abstract: In a real-world data set, there is always the possibility, rather high in
our opinion, that different features may have different degrees of relevance. Most
machine learning algorithms deal with this fact by either selecting or deselecting
features in the data preprocessing phase. However, we maintain that even among rel-
evant features there may be different degrees of relevance, and this should be taken
into account during the clustering process.

With over 50 years of history, K-Means is arguably the most popular parti-
tional clustering algorithm there is. The first K-Means based clustering algorithm to
compute feature weights was designed just over 30 years ago. Various such algo-
rithms have been designed since but there has not been, to our knowledge, a survey
integrating empirical evidence of cluster recovery ability, common flaws, and pos-
sible directions for future research. This paper elaborates on the concept of feature
weighting and addresses these issues by critically analyzing some of the most popu-
lar, or innovative, feature weighting mechanisms based in K-Means.

Keywords: Feature weighting; K-Means; Partitional clustering; Feature selection.

1. Introduction

Clustering is one of the main data-driven tools for data analysis. Given
a data set Y , composed of entities yi ∈ Y for i = 1, 2, ...,N, clustering algo-
rithms aim to partition Y into K clusters S = {S 1, S 2, ..., S K} so that the
entities yi ∈ S k are homogeneous and entities between clusters are hetero-
geneous, according to some notion of similarity. These algorithms address
a non-trivial problem whose scale sometimes goes unnoticed. For instance,
a data set containing 25 entities can have approximately 4.69x1013 different
partitions if K is set to four (Steinley 2006). Clustering has been used to

Corresponding Author’s Address: R.C. de Amorim, Department of Computer Sci-
ence, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK, Tel. +44 01707
284345, email: r.amorim@herts.ac.uk.

7-016-9208-4
Journal of Classification 3 (2016)3: -2 210 42

Published online: 2016 August 25

solve problems in the most diverse fields such as computer vision, text min-
ing, bioinformatics, and data mining (Vedaldi and Fulkerson 2010; Steinley
2006; Jain 2010; Sturn, Quackenbush, and Trajanoski 2002; Hunag, Xu, Ng,
and Ye 2008; Gasch and Eisen 2002; Mirkin 2012).

Clustering algorithms follow either a partitional or hierarchical ap-
proach to the assignment of entities to clusters. The latter produces a set of
clusters S as well as a tree-like relationship between these clusters, which
can be easily visualized with a dendogram. Hierarchical algorithms allow
a given entity yi to be assigned to more than one cluster in S , as long as
the assignments occur at different levels in the tree. This extra information
regarding the relationships between clusters comes at a considerable cost,
leading to a time complexity of O(N2), or even O(N3) depending on the
actual algorithm in use (Murtagh 1984; Murtagh and Contreras 2011). Par-
titional algorithms tend to converge in less time by comparison (details in
Section 2), but provide only information about the assignment of entities to
clusters. Partitional algorithms were originally designed to produce a set of
disjoint clusters, in which an entity yi ∈ Y could be assigned to a single clus-
ter S k ∈ S . K-Means (MacQueen 1967; Ball and Hall 1967; Steinhaus 1956)
is arguably the most popular of such algorithms (for more details see Sec-
tion 2). Among the many extensions to K-Means, we have Fuzzy C-Means
(Bezdek 1981) which applies Fuzzy set theory (Zadeh 1965) to allow a given
entity yi to be assigned to each cluster in S at different degrees of member-
ship. However, Fuzzy C-Means introduces other issues to clustering, falling
outside the scope of this paper.

The popularity of K-Means is rather evident. A search in scholar.
google.com for “K-Means” in May 2014 found just over 320, 000 results,
the same search in May 2015 found 442, 000 results. Adding to these im-
pressive numbers, implementations of this algorithm can be found in various
software packages commonly used to analyze data, including SPSS, MAT-
LAB, R, and Python. However, K-Means is not without weaknesses. For
instance, K-Means treats every single feature in a data set equally, regardless
of its actual degree of relevance. Clearly, different features in the same data
set may have different degrees of relevance, a prospect we believe should be
supported by any good clustering algorithm. With this weakness in mind, re-
search effort has happened over the last 30 years to develop K-Means based
approaches supporting feature weighting (more details in Section 4). Such
effort has lead to various different approaches, but unfortunately not much
guidance on the choice of which to employ in practical applications.

In this paper, we provide the reader with a survey of K-Means based
weighting algorithms. We find this survey to be unique because it does not
simply explain some of the major approaches to feature weighting in K-
Means, but also provides empirical evidence of their cluster recovery abil-

Feature Weighting Based K-Means Algorithms 211

ity. We begin by formally introducing K-Means and the concept of feature
weighting in Sections 2 and 3, respectively. We then critically analyze some
of the major methods for feature weighting in K-Means in Section 4. We
chose to analyze those methods we believe are the most used or innovative,
but since it is impossible to analyze all existing methods we are possibly
guilty of omissions. The setting and results of our experiments can be found
in Sections 5 and 6. The paper ends by presenting our conclusions and dis-
cussing common issues with these algorithms that could be addressed in
future research, in Section 7.

2. K-Means Clustering

K-Means is arguably the most popular partitional clustering algorithm
(Jain 2010; Steinley 2006; Mirkin 2012). For a given data set Y , K-Means
outputs a disjoint set of clusters S = {S 1, S 2, ..., S K}, as well as a centroid
ck for each cluster S k ∈ S . The centroid ck is set to have the smallest sum
of distances to all yi ∈ S k, making ck a good general representation of S k,
often called a prototype. K-Means partitions a given data set Y by iteratively
minimizing the sum of the within-cluster distance between entities yi ∈ Y
and respective centroids ck ∈ C. Minimizing the equation below allows
K-Means to show the natural structure of Y .

W(S ,C) =
K∑
k=1

∑
i∈S k

∑
v∈V

(yiv − ckv)2, (1)

where V represents the set of features used to describe each yi ∈ Y . The al-
gorithm used to iteratively minimize (1) may look rather simple at first, with
a total of three steps, two of which iterated until the convergence. However,
this minimization is a non-trivial problem, being NP-Hard even if K = 2
(Aloise, Deshpande, Hansen, and Popat 2009).

1. Select the values of K entities from Y as initial centroids c1, c2, ..., cK.
Set S ← ∅.

2. Assign each entity yi ∈ Y to the cluster S k represented by its closest
centroid. If there are no changes in S , stop and output S and C.

3. Update each centroid ck ∈ C to the centre of its cluster S k. Go to Step
2.

The K-Means criterion we show, (1), applies the squared Euclidean
distance as in its original definition (MacQueen 1967; Ball and Hall 1967).
The use of this particular distance measure makes the centroid update in
Step three of the algorithm above rather straightforward. Given a cluster S k

with |S k | entities, ckv = 1
|S k |
∑

i∈S k
yiv, for each v ∈ V .

R.C. de Amorim212

One can clearly see that K-Means has a strong relation with the Ex-
pectation Maximization algorithm (Dempster, Laird, and Rubin 1977). Step
two of K-Means can be seen as the expectation by keeping C fixed and min-
imizing (1) in respect to S , and Step three can be seen as the maximization
in which one fixes S and minimizes (1) in relation to C. K-Means also has
a strong relation with Principal Component Analysis, the latter can be seen
as a relaxation of the former (Zha, He, Ding, Gu, and Simon 2001; Drineas,
Frieze, Kannan, Vempala, and Vinay 2004; Ding and He 2004).

K-Means, very much like any other algorithm in machine learning,
has weaknesses. These are rather well-known and understood thanks to the
popularity of this algorithm and the considerable research effort done by
the research community. Among these weaknesses we have: (i) the fact
that the number of clusters K has to be known beforehand; (ii) K-Means
will partition a data set Y into K partitions even if there is no clustering
structure in the data; (iii) this is a greedy algorithm that may get trapped in
local minima; (iv) the initial centroids, found at random in Step one heavily
influence the final outcome; (v) it treats all features equally, regardless of
their actual degree of relevance.

Here we are particularly interested in the last weakness. Regardless
of the problem at hand and the structure of the data, K-Means treats each
feature v ∈ V equally. This means that features that are more relevant to a
given problem may have the same contribution to the clustering as features
that are less relevant. By consequence, K-Means can be greatly affected by
the presence of totally irrelevant features, including features that are solely
composed of noise. Such features are not uncommon in real-world data.
This weakness can be addressed by setting weights to each feature v ∈ V ,
representing its degree of relevance. We find this to be a particularly impor-
tant field of research, we elaborate on the concept of feature weighting in
the next section.

3. Feature Weighting

New technology has made it much easier to acquire vast amounts of
real-world data, usually described over many features. The curse of dimen-
sionality (Bellman 1957) is a term usually associated with the difficulties
in analyzing such high-dimensional data. As the number of features v ∈ V
increases, the minimum and maximum distances become impossible to dis-
tinguish as their difference, compared to the minimum distance, converges
to zero (Beyer, Goldstein, Ramakrishnan, and Shaft 1999).

lim
|V |→∞

distmax − distmin
distmin

= 0. (2)

Feature Weighting Based K-Means Algorithms 213

Apart from the problem above, there is a considerable consensus in the
research community that meaningful clusters, particularly those in high-
dimensional data, occur in subspaces defined by a specific subset of features
(Tsai and Chiu 2008; Liu and Yu 2005; Chen, Ye, Yu, and Huang 2012; De
Amorim and Mirkin 2012). In cluster analysis, and in fact any other pattern
recognition task, one should not simply use all features available as clus-
tering results become less accurate if a significant number of features are
not relevant to some clusters (Chan, Ching, Ng, and Huang 2004). Unfor-
tunately, selecting the optimal feature subset is NP-Hard (Blum and Rivest
1992).

Feature weighting can be thought of as a generalization of feature se-
lection (Wettschereck, Aha, and Mohri 1997; Modha and Spangler 2003;
Tsai and Chiu 2008). The latter has a much longer history and it is used
to either select or deselect a given feature v ∈ V , a process equivalent to
assigning a feature weight wv of one or zero, respectively. Feature selec-
tion methods effectively assume that each of the selected features has the
same degree of relevance. Feature weighting algorithms do not make such
assumption as there is no reason to believe that each of the selected features
would have the same degree of relevance in all cases. Instead, such algo-
rithms allow for a feature weight, usually in the interval [0, 1]. This may
be a feature weight wv, subject to

∑
v∈V wv = 1, or even a cluster dependant

weight wkv, subject to
∑

v∈V wkv = 1 for k = 1, 2, ...,K. The idea of cluster
dependant weights is well aligned with the intuition that a given feature v
may have different degrees of relevance at different clusters.

Feature selection methods for unlabelled data follow either a filter
or wrapper approach (Dy 2008; Kohavi and John 1997). The former uses
properties of the data itself to select a subset of features during the data pre-
processing phase. The features are selected before the clustering algorithm
is run, making this approach usually faster. However, this speed comes at
price. It can be rather difficult to define whether a given feature is relevant
without applying clustering to the data. Methods following a wrapper ap-
proach make use of the information given by a clustering algorithm when
selecting features. Often, these methods lead to better performance when
compared to those following a filter approach (Dy 2008). However, these
also tend to be more computationally intensive as the clustering and the fea-
ture selection algorithms are run. The surveys by Dy (2008), Steinley and
Brusco (2008), and Guyon and Elisseeff (2003) are, in our opinion, a very
good starting point for those readers in need of more information.

Feature weighting and feature selection algorithms are not competing
methods. The former does not dismiss the advantages given by the latter.
Feature weighting algorithms can still deselect a given feature v by setting
its weight wv = 0, bringing benefits traditionally related to feature selec-

R.C. de Amorim214

tion. Such benefits include those discussed by Guyon and Elisseeff (2003)
and Dy (2008), such as a possible reduction in the feature space, reduction
in measurement and storage requirements, facilitation of data understanding
and visualization, reduction in algorithm utilization time, and a general im-
provement in cluster recovery thanks to the possible avoidance of the curse
of dimensionality.

Clustering algorithms recognize patterns under an unsupervised learn-
ing framework, it is only fitting that the selection or weighting of features
should not require labelled samples. There are a considerable amount of
unsupervised feature selection methods, some of which can be easily used
in the data pre-processing stage (Devaney and Ram 1997; Talavera 1999;
Mitra, Murthy, and Pal 2002) to either select or deselect features from V .
Feature weighting algorithms for K-Means have thirty years of history, in
the next section we discuss some what we believe to be the main methods.

4. Major Approaches to Feature Weighting in K-Means

Work on feature weighting in clustering has over 40 years of history
(Sneath and Sokal 1973), however, only in 1984 (Desarbo, Carroll, Clark,
and Green 1984) feature weighting was applied to K-Means, arguably the
most popular partitional clustering algorithm. Many feature weighting al-
gorithms based on K-Means have been developed since, here we chose nine
algorithms for our discussion. These are either among the most popular, or
introduce innovative new concepts.

4.1 SYNCLUS

Synthesized Clustering (SYNCLUS) (DeSarbo et al. 1984) is, to our
knowledge, the first K-Means extension to allow feature weights. SYN-
CLUS employs two types of weights by assuming that features, as well
as groups of features, may have different degrees of relevance. This al-
gorithm requires the user to meaningfully group features into T partitions
G = {G1,G2, ...,GT }. We represent the degree of relevance of the feature
group Gt with ωt, where 1 ≤ t ≤ T . The feature weight of any given feature
v ∈ V is represented by wv.

In its first step, very much like K-Means, SYNCLUS requests the user
to provide a data set Y and the desired number of partitions K. Unlike K-
Means, the user is also requested to provide information regarding how the
features are grouped, and a vector ω containing the weights of each feature
group. This vector ω is normalized so that

∑T
t ωt = 1. DeSarbo suggests

that each wv, the weight of a given feature v ∈ V , can be initialized so that
it is inversely proportional to the variance of v over all entities yi ∈ Y , or are
all equal.

Feature Weighting Based K-Means Algorithms 215

The distance between two objects yi and y j is defined, in each feature
group, as their weighted squared distance d(yi, y j)(t) =

∑
v∈Gt

wtv(yiv − y jv)2.
Given ω, w, Y , K, and d(yi, y j)(t), for i, j = 1, 2, ...,N, SYNCLUS optimizes
the weighted mean-square, stress-like objective function below.

W(S ,C,w, ω) =

∑T
t ωt
∑

i∈Y
∑

j∈Y (δi j − d(yi, y j)(t))∑
i∈Y
∑

j∈Y δ2i j
, (3)

subject to a disjoint clustering so that S k ∩ S l = ∅ for k, l = 1, 2, ...,K and
k � l, as well as

∑
i∈Y
∑

j∈Y δ2i j � 0, δi j = αa∗i j + β (details regarding α and β
in DeSarbo et al. 1984) where,

a∗i j =

⎧⎪⎪⎨⎪⎪⎩
1
|S k | , if {yi, y j} ⊆ S k.

0, otherwise.
(4)

Although an icon of original research, SYNCLUS does have some weak-
nesses. This computationally expensive algorithm presented mixed results
on empirical data sets (Green, Kim, and Carmone 1990), and there have
been other claims of poor performance (Gnanadesikan, Kettenring, and Tsao
1995). SYNCLUS is not appropriate for clusterwise regression context with
both dependent and independent variables (DeSarbo and Cron 1988).

Nevertheless, SYNCLUS has been a target to various extensions. De-
Sarbo and Mahajan (1984) extended this method to deal with constraints,
different types of clustering schemes, as well as a general linear transforma-
tion of the features. It has also been extended by Makarenkov and Legendre
(2001) by using the Polak-Ribiere optimization procedure (Polak 1971) to
minimize (3). However, this latter extension seemed to be particularly use-
ful only when ‘noisy’ features (those without cluster structure) existed. The
authors recommended using equal weights (ie. the original K-Means) when
data are error-perturbed or contained outliers.

The initial work on SYNCLUS also expanded into a method to find
optimal feature weights for ultrametric and additive tree fitting (De Soete
1986; De Soete 1988). However, this work lies outside the scope of this
paper as the method was applied in hierarchical clustering.

SYNCLUS marked the beginning of research on feature weighting in
K-Means, and it is possible to see its influences in nearly all other algorithms
in this particular field.

4.2 Convex K-Means

Modha and Spangler (2003) introduced the convex K-Means (CK-
Means) algorithm. CK-Means presents an interesting approach to feature

R.C. de Amorim216

weighting by integrating multiple, heterogeneous feature spaces into K-
Means. Given the two entities {yi, y j} ⊆ Y , each described over the features
v ∈ V , the dissimilarity between these two entities is given by the distortion
measure below.

Dw(yi, y j) =
∑
v∈V

wvDv(yiv, y jv), (5)

where Dv depends on the feature space in use. Modha and Spangler present
two generic examples.

Dv(yiv, y jv) =

⎧⎪⎪⎨⎪⎪⎩
(yiv − y jv)T (yiv − y jv), in the Euclidean case

2(1 − yTivy jv), in the Spherical case.
(6)

Equation (5) allows calculating the distortion of a specific cluster∑
yi∈S k

Dw(yi, ck), and the quality of the clustering S = {S 1, S 2, ..., S K}, given
by
∑K

k=1
∑

yi∈S k
Dw(yi, ck). CK-Means determines the optimal set of feature

weights that simultaneously minimizes the average within-cluster dispersion
and maximizes the average between-cluster dispersion along all of the fea-
ture spaces, by consequence minimizing the criterion below.

W(S ,C,w) =
K∑
k=1

∑
yi∈S k

Dw(yi, ck). (7)

This method finds the optimal weight wv for each v ∈ V from a pre-defined
set of feature weights Δ = {w :

∑
v∈V wv = 1,wv ≥ 0, v ∈ V}. Each partition

S (w) = {S (w)
1 , S

(w)
2 , ..., S

(w)
K } generated by minimizing (7) with a different set

of weights w ∈ Δ is then evaluated with a generalization of Fisher’s discrim-
inant analysis. In this, one aims to minimize the ratio between the average
within-cluster distortion and the average between-cluster distortion.

CK-Means can be thought of as a gradient descent method that never
increases (7), and eventually converges to a local minima solution. This
method has introduced a very interesting way to cluster entities described
over different feature spaces, something we would dare say is a common
characteristic of modern real-world data sets. CK-Means has also shown
promising results in experiments (Modha and Spangler 2003), however, the
way it finds feature weights has led to claims that generating Δ would be
difficult in high-dimensional data (Tsai and Chiu 2008; Huang, Ng, Rong,
and Li 2005), and that there is no guarantee the optimal weights would be in
Δ (Huang et al. 2005).

4.3 Attribute Weighting Clustering Algorithm

Another extension to K-Means to support feature weights was intro-
duced by Chan et al. (2004). This algorithm generates a weight wkv for

Feature Weighting Based K-Means Algorithms 217

each feature v ∈ V at each cluster in S = {S 1, S 2, ..., S k, ..., S K}, within the
framework of K-Means. This method supports the intuitive idea that dif-
ferent features may have different degrees of relevance at different clusters.
This Attribute Weighting algorithm (AWK, for short) attempts to minimize
the weighted squared distance between entities yi ∈ Y and their respective
centroids ck ∈ C, as per the criterion below.

W(S ,C,w) =
K∑
k=1

∑
i∈S k

∑
v∈V

wβkvd(yiv, ckv), (8)

where β is a user-defined parameter that is greater than 1, d(yiv, ckv) = |yiv −
ckv|2 for a numerical v, and its the simple matching dissimilarity measure
below for a categorical v.

d(yiv, ckv) =

⎧⎪⎪⎨⎪⎪⎩
0, if yiv = ckv
1, if yiv � ckv.

(9)

The criterion (8) has a computational complexity complexity of O(NMK)
(Chan et al. 2004), where M = |V | and is subject to:

1. A disjoint clustering, in which S k ∩ S l = ∅ for k, l = 1, 2, ...,K and
k � l.

2. A crisp clustering, given by
∑K

k=1 |S k | = N.

3.
∑

v∈V wkv = 1 for a given cluster S k.

4. {wkv} ≥ 0 for k = 1, 2, ...,K and v ∈ V .
Chan et al. (2004) minimizes (8) under the above constraints by using par-
tial optimization for S , C and w. The algorithm begins by setting each
wkv = 1/|V |, fixing C and w in order to find the necessary conditions so
S minimizes (8). Then one fixes S and w, minimizing (8) in respect to C.
Next, one fixes S and C and minimizes (8) in respect to w. This process is
repeated until convergence.

The minimizations of the first and second steps are rather straight for-
ward. The assignment of entities to the closest cluster S k uses the weighted
distance d(yi, ck) =

∑
v∈V wkv(yiv−ckv)2, and since (8) clearly uses the squared

Euclidean distance, ckv = 1
|S k|
∑

i∈S k
yiv. The minimization of (8) is respect to

w depends on
∑

i∈S k
(yiv − ckv)2, generating the three possibilities below.

wkv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
v∗ , if

∑
i∈S k

(yiv − ckv)2 = 0, and v∗ = |{v′ : ∑i∈S k
(yiv′ − ckv′)2 = 0}|,

0, if
∑

i∈S k
(yiv − ckv)2 � 0, but

∑
i∈S k

(yiv′ − ckv′)2 = 0, for some v′ ∈ V,
1

∑
j∈V
[∑

i∈S k (yiv−ckv)
2

∑
i∈S k (yi j−ck j)

2

] 1
β−1

, if
∑

i∈S k
(yiv − ckv)2 � 0.

(10)

R.C. de Amorim218

The experiments in Chan et al. (2004) deal solely with β > 1. This is proba-
bly to avoid the issues related to divisions by zero that β = 1 would present
in (10), and the behaviour of (8) at other values (for details see Section 4.4).
It is interesting to see that DeSarbo et al. (1984) suggested two possible
cases for initial weights in SYNCLUS (details in Section 4.1), either to set
all weights to the same number, or to be inversely proportional to the vari-
ance of the feature in question. It seems to us that Chan’s method have used
both suggestion, by initializing each weight wkv to 1/|V | and by optimizing
wkv so that it is higher when the dispersion of v in yiv ∈ S k is lower, as the
third case in (10) shows.

There are some issues to have in mind when using this algorithm. The
use of (9) may be problematic in certain cases as the range of d(yiv, ckv) will
be different depending on whether v is numerical or categorical. Based on
the work of Huang (1998) and Ng and Wong (2002), Chan et al. introduces
a new parameter to balance the numerical and categorical parts of a mixed
data set, in an attempt to avoid favouring either part. In their paper, they test
AWK using different values for this parameter and the best is determined
as that resulting in the highest cluster recovery accuracy. This approach
is rather hard to follow in real-life clustering scenarios as no labelled data
would be present. This approach was only discussed in the experiments part
of the paper, not being present in the AWK description so it is ignored in our
experiments.

Another point to note is that their experiments using real-life data
sets, despite all explanations about feature weights, use two weights for each
feature. One of these relates to the numerical features while the other relates
to those that are categorical. This approach was also not explained in the
AWK original description and is ignored in our experiments as well.

A final key issue to this algorithm, and in fact various others, is that
there is no clear method to estimate the parameter β. Instead, the authors
state that their method is not sensitive to a range of values of β, but unfortu-
nately this is demonstrated with experiments on synthetic data in solely two
real-world data sets.

4.4 Weighted K-Means

Huang et al. (2005) introduced the Weighted K-Means (WK-Means)
algorithm. WK-Means attempts to minimize the object function below,
which is similar to that of Chan et al. (2004), discussed in Section 4.3. How-
ever, unlike the latter, WK-Means originally sets a single weight wv for each
feature v ∈ V .

W(S ,C,w) =
K∑
k=1

∑
i∈S k

∑
v∈V

wβvd(yiv, ckv), (11)

Feature Weighting Based K-Means Algorithms 219

The equation above is minimized using an iterative method, optimizing (11)
for S , C, and w, one at a time. During this process Huang et al. (2005)
present the two possibilities below for the update of wv, with S and C fixed,
subject to β > 1.

wv =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if Dv = 0

1∑h
j=1

Dv
D j

1
β−1

, if Dv � 0, (12)

where,

Dv =

K∑
k=1

∑
i∈S k

d(yiv, ckv), (13)

and h is the number of features where Dv � 0. If β = 1, the minimization of
(11) follows that wv′ = 1, and wv = 0, where v′ � v, and Dv′ ≤ Dv, for each
v ∈ V (Huang et al. 2005).

The weight wβv in (11) makes the final clustering S , and by conse-
quence the centroids in C, dependant of the value of β. There are two possi-
ble critical values for β, 0 and 1. If β = 0, Equation (11) becomes equivalent
to that of K-Means (1). At β = 1, the weight of a single feature v ∈ V is set
to one (that with the lowest Dv), while all the others are set to zero. Setting
β = 1 is probably not desirable in most problems.

The above critical values generate three intervals of interest. When
β < 0, wv increases with an increase in Dv. However, the negative exponent
makes wβv smaller, so that v has less of an impact on distance calculations. If
0 < β < 1, wv increases with an increase in Dv, so doesw

β
v . This goes against

the principle that a feature with a small dispersion should have a higher
weight, proposed by Chan et al. (2004) (perhaps inspired by SYNCLUS, see
Section 4.1), and followed by Huang et al. (2005). If β > 1, wv decreases
with an increase in Dv, and so does wβv , very much the desired effect of
decreasing the impact of a feature v in (11) whose Dv is high.

WK-Means was later extended to support fuzzy clustering (Li and Yu
2006), as well as cluster dependant weights (Huang et al. 2008). The latter
allows WK-Means to support weights with different degrees of relevance
at different clusters, each represented by wkv. This required a change in
the criterion to be minimized toW(S ,C,w) =

∑K
k=1
∑

i∈S k

∑
v∈V w

β
kvd(yiv, ckv),

and similar changes to other related equations.
In this new version, the dispersion of a variable v ∈ V at a cluster S k is

given by Dkv =
∑

i∈S k
(d(yiv, ckv)+ c), where c is a user-defined constant. The

authors suggest that in practice c can be chosen as the average dispersion
of all features in the data set. More importantly, the adding of c addresses
a considerable shortcoming. A feature whose dispersion Dkv in a particular
cluster S k is zero should not be assigned a weight of zero when in fact Dkv =

0 indicates that v may be an important feature to identify cluster S k. An

R.C. de Amorim220

obvious exception is if
∑K

k=1 Dkv = 0 for a given v, however, such feature
should normally be removed in the data pre-processing stage.

Although there have been improvements, the final clustering is still
highly dependant on the exponent exponent β. It seems to us that the selec-
tion of β depends on the problem at hand, but unfortunately there is no clear
strategy for its selection. We also find that the lack of relationship between
β and the distance exponent (two in the case of the Euclidean squared dis-
tance) avoids the possibility of seen the final weights as feature re-scaling
factors. Finally, although WK-Means supports cluster-dependant features,
all features are treated as if they were a homogeneous feature space, very
much unlike CK-Means (details in Section 4.2).

4.5 Entropy Weighting K-Means

The Entropy Weighting K-Means algorithm (EW-KM) (Jing, Ng, and
Huang 2007) minimizes the within cluster dispersion while maximising the
negative entropy. The reasoning behind this is to stimulate more dimensions
to contribute to the identification of clusters in high-dimensional sparse data,
avoiding problems related to identifying such clusters using only a few di-
mensions.

With the above in mind, Jing, Ng, and Huang (2007) devised the fol-
lowing criterion for EW-KM:

W(S ,C,w) =
K∑
k=1

⎡⎢⎢⎢⎢⎢⎢⎣
∑
i∈S k

∑
v∈V

wkv(yiv − ckv)2 + γ
∑
v∈V

wkv logwkv

⎤⎥⎥⎥⎥⎥⎥⎦ , (14)

subject to
∑

v∈V wkv = 1, {wkv} ≥ 0, and a crisp clustering. In the criterion
above, one can easily identify that the first term is the weighted sum of
the within cluster dispersion. The second term, in which γ is a parameter
controlling the incentive for clustering in more dimensions, is the negative
weight entropy.

The calculation of weights in EW-KM occurs as an extra step in re-
lation to K-Means, but still with a time complexity of O(rNMK) where r is
the number of iterations the algorithm takes to converge. Given a cluster S k,
the weight of each feature v ∈ V is calculated one at a time with the equation
below.

wkv =
exp(−Dkv

γ
)∑

j∈V exp(
−Dk j

γ)
, (15)

where Dkv represents the dispersion of feature v in the cluster S k, given by
Dkv =

∑
i∈S k

(yiv − ckv)2. As one would expect, the minimization of (14) uses
partial optimization for w, C, and S . First, C and w are fixed and (14) is

Feature Weighting Based K-Means Algorithms 221

minimized in respect to S . Next, S and w are fixed and (14) is minimized in
respect to C. In the final step, S and C are fixed, and (14) is minimized in
respect to w. This adds a single step to K-Means, used to calculate feature
weights.

The R package weightedKmeans found at CRAN includes an imple-
mentation of this algorithm, which we decided to use in our experiments
(details in Sections 5 and 6). Jing, Ng, and Huang (2007) presents extensive
experiments, with synthetic and real-world data. These experiments show
EW-KM outperforming various other clustering algorithms. However, there
are a few points we should note. First, it is somewhat unclear how a user
should choose a precise value for γ. Also, most of the algorithms used in the
comparison required a parameter as well. Although we understand it would
be too laborious to analyze a large range of parameters for each of these al-
gorithms, there is no much indication on reasoning behind the choices made.

4.6 Improved K-Prototypes

Ji, Bai, Zhou, Ma, and Wang (2013) have introduced the Improved
K-Prototypes clustering algorithm (IK-P), which minimizes the WK-Means
criterion (11), with influences from k-prototype (Huang 1998). IK-P intro-
duces the concept of distributed centroid to clustering, allowing the handling
of categorical features by adjusting the distance calculation to take into ac-
count the frequency of each category.

IK-P treats numerical and categorical features differently, but it is still
able to represent the cluster S k of a data set Y containing mixed type, data
with a single centroid ck = {ck1, ck2, ..., ck|V |}. Given a numerical feature v,
ckv = 1

|S k |
∑

i∈S k
yiv, the center given by the Euclidean distance. A categorical

feature v containing L categories a ∈ v, has ckv = {{a1v , ω1
kv}, {a2v , ω2

kv}, ...,{alv, ωl
kv}, ..., {aLv , ωL

kv}}. This representation for a categorical v allows each
category a ∈ v to have a weight ωl

kv =
∑

i∈S k
η(yiv), directly related to its

frequency in the data set Y .

η(yiv) =

⎧⎪⎪⎨⎪⎪⎩
1∑

i∈S k 1
, if yiv = alv,

0, if yiv � alv.
(16)

Such modification also requires a re-visit of the distance function in (11).
The distance is re-defined to the below.

d(yiv, ckv) =

⎧⎪⎪⎨⎪⎪⎩
|yiv − ckv|, if v is numerical,

ϕ(yiv − ckv), if v is categorical, (17)

where ϕ(yiv − ckv) = ∑K
k=1 ϑ(yiv, a

l
v),

R.C. de Amorim222

ϑ(yiv, a
k
v) =

⎧⎪⎪⎨⎪⎪⎩
0, if yiv = alv,

ωk
iv, if yiv � alv .

(18)

IK-P presents some very interesting results (Ji et al. 2013), outper-
forming other popular clustering algorithms such as k-prototype, SBAC,
and KL-FCM-GM (Chatzis 2011; Ji, Pang, Zhou, Han, and Wang 2012).
However, the algorithm still leaves some open questions.

For instance, Ji et al. (2013) present experiments on six data sets (two
of which being different versions of the same data set) setting β = 8, but
it is not clear whether the good results provided by this particular β would
generalize to other data sets. Given a numerical feature, IK-P applies the
Manhattan distance (17), however, centroids are calculated using the mean.
The center of the Manhattan distance is given by the median rather than the
mean, this is probably the reason why Ji et al. (2013) found it necessary to
allow the user to set a maximum numbers of iterations to their algorithm.
Now, even if the algorithm converges, most likely it would converge in a
smaller number of iterations if the distance used for the assignments of en-
tities was aligned to that used for obtaining the centroids. Finally, while
d(yiv, ckv) for a categorical v has a range in the interval [0, 1], the same is
not true if v is numerical, however, Ji et al. (2013) make no mention to data
standardization.

4.7 Intelligent Minkowski Weighted K-Means

Previously, we have extended WK-Means (details in Section 4.4) by
introducing the intelligent Minkowski Weighted K-Means (iMWK-Means)
(De Amorim and Mirkin 2012). In its design, we aimed to propose a deter-
ministic algorithm supporting non-elliptical clusters with weights that could
be seen as feature weighting factors. To do so, we combined the Minkowski
distance and intelligent K-Means (Mirkin 2012), a method that identifies
anomalous patterns in order to find the number of clusters in a data set, as
well as good initial centroids.

Below, we show the Minkowski distance between the entities yi and
y j, described over features v ∈ V .

d(yi, y j) = (
∑
v∈V
|yiv − y jv|p)1/p, (19)

where p is a user-defined parameter. If p equals 1, 2, or ∞, Equation (19) is
equivalent to the the Manhattan, Euclidean and Chebyshev distances, re-
spectively. Assuming a given data set has two dimensions (for easy vi-
sualization), the distance bias of a clustering algorithm using (19) would
be towards clusters whose shape are any interpolation between a diamond

Feature Weighting Based K-Means Algorithms 223

(p = 1) and a square (p = ∞), clearly going through a circle (p = 2). This is
considerably more flexible than algorithms based solely on the squared Eu-
clidean distance, as these recover clusters biased towards circles only. One
can also see the Minkowski distance as a multiple of the power mean of the
feature-wise differences between yi and y j.

The iMWK-Means algorithm calculates distances using (20), a
weighted version of the pth root of (19). The use of a root is analogous to
the frequent use of the squared Euclidean distance in K-Means.

d(yi, y j) =
∑
v∈V

wp
kv|yiv − y jv|p, (20)

where the user-defined parameter p scales the distance as well as well as
the cluster dependent weight wkv. This way the feature weights can be seen
as feature re-scaling factors, this is not possible for WK-Means when β �
2. Re-scaling a data set with these feature re-scaling factors increases the
likelihood of various cluster validity indices to lead to the correct number
of clusters (De Amorim and Hennig 2015). With (20) one can reach the
iMWK-Means criterion below.

W(S ,C,w) =
K∑
k=1

∑
i∈S k

∑
v∈V

wp
kv|yiv − ckv|p. (21)

The update of wkv, for each v ∈ V and k = 1, 2, ...,K, follows the equation
below.

wkv =
1

∑
u∈V

Dkvp

Dkup

1
p−1
, (22)

where the dispersion of feature v in cluster k is now dependant on the ex-
ponent p, Dkvp =

∑
i∈S k
|yiv − ckv|p + c, and c is a constant equivalent to

the average dispersion. The update of the centroid of cluster S k on feature
v, ckv also depends on the value of p. At values of p = 1, 2, and ∞, the
center of (19) is given by the median, mean and midrange, respectively. If
p � {1, 2,∞} then the center can be found using a steepest descent algorithm
(De Amorim and Mirkin 2012).

The iMWK-Means algorithm deals with categorical features by trans-
forming them to numerical, following a method described byMirkin (2012).
In this method, a given categorical feature v with L categories is replaced by
L binary features, each representing one of the original categories. For a
given entity yi, only the binary feature representing yiv is set to one, all oth-
ers are set to zero. The concept of distributed centroid (Ji et al. 2013) can
also be applied to our algorithm (De Amorim and Makarenkov to appear),
however, in order to show a single version of our method we decided not to
follow the latter here.

R.C. de Amorim224

Clearly, the chosen value of p has a considerable impact on the final
clustering given by iMWK-Means. De Amorim and Mirkin (2012) intro-
duced a semi-supervised algorithm to estimate a good p, requiring labels for
20% of the entities in Y . Later, the authors showed that it is indeed possi-
ble to estimate a good value for p using only 5% of labelled data under the
same semi-supervised method, and presented a new unsupervised method to
estimate p, requiring no labelled samples (De Amorim and Mirkin 2014).

The iMWK-Means proved to be superior to various other algorithms,
including WK-Means with cluster dependant weights (De Amorim and
Mirkin 2012). However, iMWK-Means also has room for improvement.
Calculating a centroid for a p � {1, 2,∞} requires the use of a steepest de-
scent method. This can be time consuming, particularly when compared
with other algorithms defining ckv = 1

|S k |
∑

i∈S k
yiv. Although iMWK-Means

allows for a distance bias towards non-elliptical clusters, by setting p � 2, it
assumes that all clusters should be biased towards the same shape.

4.8 Feature Weight Self-Adjustment K-Means

Tsai and Chiu (2008) integrated a feature weight self-adjustmentmech-
anism (FWSA) to K-Means. In this mechanism, finding wv for v ∈ V is
modelled as an optimization problem to simultaneously minimize the sepa-
rations within clusters and maximize the separation between clusters. The
former is measured av =

∑K
k=1
∑

i∈S k
d(yiv, ckv), where d() is a function re-

turning the distance between the feature v of entity yi and that of centroid
ck. The separation between clusters of a given feature v is measured by
bv =

∑K
k=1 Nkd(ckv, cv), where Nk is the number of entities in S k, and cv is

the center of feature v over yi ∈ Y . With av and bv, one can evaluate how
much the feature v contributes to the clustering quality, and in a given itera-
tion j calculate w(j+1)

v .

w(j+1)
v =

1
2
(w(j)

v +
b(j)v /a

(j)
v∑

v∈V (b
(j)
v /a

(j)
v)

), (23)

where the multiplication by 1/2 makes sure that wv ∈ [0, 1] so it can satisfy
the constrain

∑
v∈V w

(j+1)
v = 1. With wv, one can then minimize the criterion

below.

W(S ,C,w) =
K∑
k=1

∑
i∈S k

∑
v∈V

wv(yiv − ckv)2, (24)

subject to
∑

v∈V wv = 1 and {wv}v∈V ≥ 0, and a crisp clustering. Experiments
in synthetic and real-world data sets compare FWSAK-Means favourably in
relation to WK-Means. However, it assumes a homogeneous feature space,
and like the previous algorithms it still evaluates a single feature at a time.

Feature Weighting Based K-Means Algorithms 225

This means that that a group of features, each irrelevant on its own, but
informative if in a group, would be discarded.

FWSA has already been compared to WK-Means in three real-world
data sets (Tsai and Chiu 2008). This comparison shows FWSA reaching
an adjusted Rand index (ARI) 0.77 when applied to the Iris data set, while
WK-Means reached only 0.75. The latter ARI was obtained by setting β = 6,
but our experiments (details in Section 6.) show that WK-Means may reach
0.81. The difference may be related to how the data was standardized, as
well as how β was set as here we found the best at each run. Of course, the
fact that FWSA does not require a user-defined parameter is a considerable
advantage.

4.9 FG-K-Means

The FG-K-Means (FGK) algorithm (Chen et al. 2012) extends K-
Means by applying weights at two levels, features and clusters of features.
This algorithm has been designed to deal with large data sets whose data
comes from multiple sources. Each of the T data sources provides a subset
of featuresG = {G1,G2, ...,GT }, whereGt � ∅,Gt ⊂ V ,Gt∩Gs = ∅ for t � s
and 1 ≤ t, s ≤ T , and ∪Gt = V . Given a cluster S k, FGK identifies the de-
gree of relevance of a feature v, represented by wkv, as well as the relevance
of a group of features Gt, represented by ωkt. Unlike SYNCLUS (details in
Section 4.1), FGK does not require the weights of the groups of features to
be entered by the user. FGK updates the K-Means criterion (1) to include
both wkv and ωkt, as we show below.

W(S ,C,w, ω) =
K∑
k=1

⎡⎢⎢⎢⎢⎢⎢⎣
∑
i∈S k

T∑
t=1

∑
v∈Gt

ωktwkvd(yiv, ckv) + λ
T∑
t=1

ωktlog(ωkt)

+η
∑
v∈V

wkvlog(wkv)

⎤⎥⎥⎥⎥⎥⎦ , (25)

where λ and η are user-defined parameters, adjusting the distributions of the
weights related to the groups of features inG, and each of the features v ∈ V ,
respectively. The minimization of (25) is subject to a crisp clustering in
which any given entity yi ∈ Y is assigned to a single cluster S k. The feature
group weights are subject to

∑K
k=1 ωkt = 1, 0 < ωkt < 1, for 1 ≤ t ≤ T . The

feature weights are subject to
∑

v∈Gt
wkv = 1, 0 < wkv < 1, for 1 ≤ k ≤ K and

1 ≤ t ≤ T .
Given a numerical v, the function d in (25) returns the squared Eu-

clidean distance between yiv and ckv, given by (yiv − ckv)2. A categorical v
leads to d returning one if yiv = ckv, and zero otherwise, very much like (9).
The update of each feature weight follows the equation below.

R.C. de Amorim226

wkv =
exp(−Ekv

η)∑
h∈Gt

exp(−Ekh

η
)
, (26)

where Ekv =
∑

i∈S k
ωktd(yiv, ckv), and t is the index of the feature group to

which feature v is assigned to. The update of the feature group weights
follows.

ωkt =
exp(−Dkt

λ
)∑T

s=1 exp(
−Dks

λ
)
, (27)

where, Dkt =
∑

i∈S k

∑
v∈Gt

wkvd(yiv, ckv). Clusterings generated by FGK are
heavily dependant on λ and η. These parameters must set to positive real val-
ues. Large values for λ and η lead to weights to be more evenly distributed,
so more subspaces contribute to the clustering. Low values lead to weights
being more concentrated on fewer subspaces, each of these having a larger
contribution to the clustering.

FGK has a time complexity of O(rNMK), where r is the number of
iterations this algorithm takes to complete (Chen et al. 2012). It has out-
performed K-Means, WK-Means (see Section 4.4), LAC (Domeniconi et
al. 2007) and EW-KM (see Section 4.5), but it also introduces new open
questions. This particular method was designed aiming to deal with high-
dimensional data, however, it is not clear how λ and η should be estimated.
This issue makes it rather hard to use FGK in real-world problems. We find
that it would also be interesting to see a generalization of this method to use
other distance measures, allowing a different distance bias.

5. Setting of the Experiments

In our experiments, we have used real-world as well as synthetic data
sets. The former were obtained from the popular UCI machine learning
repository (Lichman 2013) and include data sets with different combinations
of numerical and categorical features, as we show in Table 1.

The synthetic data sets contain spherical Gaussian clusters so that the
covariance matrices are diagonal with the same diagonal value σ2 generated
at each cluster randomly between 0.5 and 1.5. All centroid components were
generated independently from a Gaussian distribution with zero mean and
unity variance. The cardinality of each cluster was generated following an
uniformly random distribution, constrained to a minimum of 20 entities. We
have generated 20 data sets under each of the following configurations:
(i) 500x4-2, 500 entities over four features partitioned into two clusters;
(ii) 500x10-3, 500 entities over 10 features partitioned into three clusters;
(iii) 500x20-4, 500 entities over 20 features partitioned into four clusters;
(iv) 500x50-5, 500 entities over 50 features partitioned into five clusters.

Feature Weighting Based K-Means Algorithms 227

Table 1.Real-world data sets used in our comparison experiments.

Entities Clusters Original features
Numerical Categorical Total

Australian credit 690 2 6 8 14
Balance scale 625 2 0 4 4
Breast cancer 699 2 9 0 9
Car evaluation 1728 4 0 6 6
Ecoli 336 8 7 0 7
Glass 214 6 9 0 9
Heart (Statlog) 270 2 6 7 13
Ionosphere 351 2 33 0 33
Iris 150 3 4 0 4
Soybean 47 4 0 35 35
Teaching Assistant 151 3 1 4 5
Tic Tac Toe 958 2 0 9 9
Wine 178 3 13 0 13

Unfortunately, we do not know the degree of relevance of each fea-
ture in all of our data sets. For this reason, we decided that our experiments
should also include data sets to which we have added noise features. Given
a data set, for each of its categorical features, we have added a new fea-
ture composed entirely of uniform random integers (each integer simulates
a category). For each of its numerical features, we have added a new fea-
ture composed entirely of uniform random values. In both cases, the new
noise feature has the same domain as the original feature. This approach has
effectively doubled the number of features in each data set, as well as the
number of data sets used in our experiments.

Prior to our experiments, we have standardized the numerical features
of each of our data sets as per the equation below.

yiv =
yiv − yv
range(yv)

, (28)

where yv = 1
N

∑N
i=1 yiv, and range(yv) = max({yiv}Ni=1) − min({yiv}Ni=1). Our

choice of using (28) instead of the popular z-score is perhaps easier to ex-
plain with an example. Let’s imagine two features, unimodal v1 and mul-
timodal v2. The standard deviation of v2 would be higher than that of v1
which means that the z-score of v2 would be lower. Thus, the contribution
of v2 to the clustering would be lower than that of v1 even so it is v2 that has
a cluster structure. Arguably, a disadvantage of using (28) is that it can be
detrimental to algorithms based on other standardization methods (Steinley
and Brusco 2008b), not included in this paper.

We have standardized the categorical features for all but those exper-
iments with the Attribute weighting and Improved K-Prototypes algorithms

R.C. de Amorim228

(described in Sections 4.3 and 4.6, respectively). These two algorithms de-
fine distances for categorical features, so transforming the latter to numeri-
cal is not required. Given a categorical feature v containing q categories we
substitute v by q new binary features. In a given entity yi, only a single of
these new features is set to one, that representing the category originally in
yiv. We then numerically standardize each of the new features by subtract-
ing it by its mean. The mean of a binary feature is in fact its frequency, so
a binary feature representing a category with a high frequency contributes
less to the clustering than one with a low frequency. In terms of data pre-
processing, we also made sure that all features in each data set had a range
higher than zero. Features with a range of zero are not meaningful so they
were removed.

Unfortunately, we found it very difficult to set a fair comparison in-
cluding all algorithms we describe in this paper. SYNCLUS and FG-K-
Means (described in Sections 4.1 and 4.9, respectively) go a step further in
feature weighting by allowing weights for feature groups. However, they
both require the user to meaningfully group features v ∈ V into T partitions
G = {G1,G2, ...,GT }with SYNCLUS also requesting the user to set a weight
for each of these groups. Even if we had enough information to generateG,
it would be unfair to provide this extra information to some algorithms and
not to others. If we were to group features randomly, we would be provid-
ing these two algorithms with misleading information more often than not,
which would surely have an impact on their cluster recovery ability. If we
were to set a single group of features and give this group a weight of one,
then we would be removing the main advantage of using these algorithms,
and in fact FG-K-Means would be equivalent to EW-KM. Convex K-Means
(Section 4.2) also goes a step further in feature weighting, it does so by inte-
grating multiple, heterogeneous feature spaces. Modha and Spangler (2003)
demonstrates that with the Euclidean and Spherical cases. However, there is
little information regarding the automatic detection of the appropriate space
given a feature v ∈ V , a very difficult problem indeed. For these reasons we
decided not to include these three algorithms in our experiments.

6. Results and Discussion

In our experiments, we do have a set of labels for each data set. This
allows us to measure the cluster recovery of each algorithm in terms of the
adjusted Rand index (ARI) (Hubert and Arabie 1985) between the generated
clustering and the known labels.

ARI =

∑
i j

(
ni j
2

)
− [∑i

(
ai
2

)∑
j

(
b j

2

)
]/
(
n
2

)
1
2 [
∑

i

(
ai
2

)
+
∑

j

(
b j

2

)
] − [∑i

(
ai
2

)∑
j

(
b j

2

)
]/
(
n
2

) , (29)

where ni j = |S i ∩ S j|, ai = ∑K
j=1 |S i ∩ S j| and bi = ∑K

i=1 |S i ∩ S j|.

Feature Weighting Based K-Means Algorithms 229

FWSA is the only algorithm we experiment with that does not require
an extra parameter from the user. This is clearly an important advantage as
estimating optimum parameters is not a trivial problem, and in many cases
the authors of the algorithms do not present a clear estimation method.

The experiments we show here do not deal with parameter estimation.
Instead, we determine the optimum parameter for a given algorithm by ex-
perimenting with values from 1.0 to 5.0 in steps of 0.1. The only exception
are the experiments with EW-KM where we apply values from 0 to 5.0 in
steps of 0.1, this is because EW-KM is the only algorithm in which a pa-
rameter between zero and one is also appropriate. Most of the algorithms
we experiment with are non-deterministic (iMWK-Means is the only excep-
tion), so we run each algorithm at each parameter 100 times and select as
the optimum parameter that with the highest average ARI.

Tables 2 and 3 show the results of our experiments on the real-world
data sets without noise features added to them (see Table 1). We show the
average (together with the standard deviation) and maximum ARI for what
we found to be the optimum parameter for each data set we experiment with.
There are different comparisons we can make, particularly when one of the
algorithms is deterministic, iMWK-Means. If we compare the algorithms
in terms of their expected ARI, given a good parameter, then we can see
that in 9 data sets iMWK-Means reaches the highest ARI. We run each non-
deterministic algorithm 100 times for each parameter value. If we take into
account solely the highest ARI over these 100 runs then the EW-KM reaches
the highest ARI overall in 9 data sets, while IK-P does so in six. Still looking
only at the highest ARI, the FWSA algorithm (the only algorithm not to
require an extra parameter) reaches the highest ARI in four data sets, the
same number as AWK and WK-Means. Another point of interest is that the
best parameter we could find for iMWK-Means was the same in four data
sets.

Tables 4 and 5 show the results of our experiments on the real-world
data sets with noise features added to them. Given a data set Y , for each
v ∈ V , we add a new feature to Y composed entirely of uniform random
values (integers in the case of a categorical v) with the same domain as v.
This effectively doubles the cardinality of V . In this set of experiments, the
Improved K-Prototype was unable to find eight clusters in the Ecoli data set.
We believe this issue is related to the data spread. The third feature of this
particular data set has only 10 entities with a value other than 0.48. The
fourth feature has a single entity with a value other than 0.5. Clearly, on
the top of these two issues, we have an extra seven noise features. Surely
one could argue that features three and four could be removed from the data
set as they are unlikely to be informative. However, we decided not to start
opening concessions to algorithms. Instead, we expect the algorithms to

R.C. de Amorim230

Table 2. Experiments with the real-world data sets with no added noise features. The standard
deviation can be found after the backslash under the mean. Par refers to the parameter value
required by the algorithm.

Attribute Weighting Weighted K-Means Entropy WK
ARI ARI ARI

Mean Max Par Mean Max Par Mean Max Par
Australian 0.15/0.11 0.50 4.9 0.19/0.23 0.50 2.2 0.31/0.19 0.50 0.90
Balance 0.03/0.03 0.19 3.4 0.04/0.04 0.18 4.7 0.04/0.05 0.23 2.10
Breast c. 0.68/0.20 0.82 4.5 0.83/0.00 0.83 2.6 0.85/0.01 0.87 1.10
Car eva. 0.07/0.05 0.22 2.6 0.04/0.05 0.13 1.2 0.07/0.06 0.22 4.60
Ecoli 0.02/0.02 0.04 2.5 0.42/0.06 0.57 3.5 0.45/0.09 0.72 0.10
Glass 0.15/0.03 0.22 3.7 0.19/0.04 0.28 2.8 0.17/0.03 0.28 0.10
Heart 0.21/0.16 0.45 4.7 0.18/0.07 0.27 1.1 0.33/0.10 0.39 3.10
Ionosphere 0.14/0.08 0.25 1.2 0.18/0.05 0.34 1.2 0.18/0.00 0.21 0.70
Iris 0.80/0.16 0.89 1.6 0.81/0.11 0.89 3.9 0.71/0.14 0.82 0.30
Soybean 0.57/0.18 1.00 3.5 0.78/0.22 1.00 3.1 0.74/0.20 1.00 0.10
Teaching A. 0.02/0.01 0.05 1.9 0.02/0.01 0.07 4.0 0.03/0.02 0.10 0.20
Tic Tac Toe 0.02/0.03 0.07 1.4 0.03/0.04 0.15 4.1 0.02/0.03 0.15 1.00
Wine 0.76/0.06 0.82 4.8 0.85/0.02 0.90 4.4 0.82/0.05 0.90 0.30

Table 3. Experiments with the real-world data sets with no added noise features. The standard
deviation can be found after the backslash under the mean. Par refers to the parameter value
required by the algorithm. IMWK-Means is a deterministic algorithm and FWSA does not
require a parameter, hence the dashes.

Improved K-P Intelligent Minkowski WK Feature Weight Self Adj.
ARI ARI ARI

Mean Max Par Mean Max Par Mean Max Par
Australian 0.15/0.08 0.20 4.7 - 0.50 1.1 0.20/0.21 0.50 -
Balance 0.04/0.05 0.23 1.3 - 0.09 3.3 0.03/0.03 0.15 -
Breast c. 0.74/0.00 0.74 4.9 - 0.85 4.6 0.81/0.12 0.83 -
Car eva. 0.03/0.05 0.22 5.0 - 0.13 2.0 0.04/0.06 0.22 -
Ecoli 0.46/0.00 0.46 3.0 - 0.04 2.5 0.37/0.06 0.52 -
Glass 0.21/0.06 0.31 4.4 - 0.28 4.6 0.16/0.04 0.25 -
Heart 0.31/0.08 0.36 4.6 - 0.31 2.9 0.15/0.10 0.31 -
Ionosphere 0.14/0.07 0.43 1.9 - 0.21 1.1 0.17/0.03 0.21 -
Iris 0.78/0.21 0.90 1.2 - 0.90 1.1 0.77/0.19 0.89 -
Soybean 0.87/0.16 0.95 2.4 - 1.00 1.8 0.71/0.23 1.00 -
Teaching A. 0.01/0.01 0.04 4.0 - 0.04 2.2 0.02/0.01 0.05 -
Tic Tac Toe 0.02/0.03 0.15 2.8 - 0.02 1.1 0.02/0.02 0.15 -
Wine 0.86/0.01 0.86 4.3 - 0.82 1.6 0.70/0.13 0.82 -

Feature Weighting Based K-Means Algorithms 231

Table 4. Experiments with the real-world data sets with added noise features. The standard
deviation can be found after the backslash under the mean. Par refers to the parameter value
required by the algorithm.

Attribute Weighting Weighted K-Means Entropy WK
ARI ARI ARI

Mean Max Par Mean Max Par Mean Max Par
Australian 0.16/0.07 0.22 4.8 0.21/0.23 0.50 1.3 0.34/0.17 0.50 5.00
Balance 0.01/0.02 0.11 2.4 0.02/0.03 0.18 3.2 0.02/0.03 0.13 0.30
Breast c. 0.32/0.00 0.32 1.8 0.84/0.00 0.84 4.9 0.86/0.00 0.87 1.70
Car eva. 0.05/0.05 0.14 2.6 0.03/0.04 0.14 3.0 0.04/0.05 0.15 2.80
Ecoli 0.01/0.01 0.04 3.8 0.38/0.08 0.50 1.2 0.34/0.05 0.42 0.20
Glass 0.16/0.03 0.24 5.0 0.20/0.04 0.27 1.1 0.14/0.04 0.22 0.30
Heart 0.20/0.14 0.41 4.8 0.22/0.12 0.33 1.2 0.36/0.09 0.45 0.20
Ionosphere 0.19/0.07 0.27 1.2 0.18/0.03 0.21 1.2 0.17/0.02 0.18 0.20
Iris 0.77/0.17 0.89 4.4 0.79/0.12 0.87 1.5 0.64/0.08 0.73 0.20
Soya 0.46/0.16 0.94 4.0 0.76/0.21 1.00 1.5 0.61/0.21 1.00 0.30
Teaching A. 0.02/0.01 0.07 4.8 0.01/0.01 0.08 2.0 0.02/0.01 0.05 0.30
Tic Tac Toe 0.03/0.03 0.07 1.6 0.02/0.03 0.15 2.3 0.02/0.02 0.10 0.80
Wine 0.76/0.07 0.88 3.8 0.84/0.02 0.87 1.5 0.77/0.03 0.82 0.10

Table 5. Experiments with the real-world data sets with added noise features. The standard
deviation can be found after the backslash under the mean. Par refers to the parameter value
required by the algorithm. IMWK-Means is a deterministic algorithm and FWSA does not
require a parameter, hence the dashes.

Improved K-P Intelligent Minkowski WK Feature Weight Self Adj.
ARI ARI ARI

Mean Max Par Mean Max Par Mean Max Par
Australian 0.15/0.09 0.20 4.9 - 0.22 1.7 0.18/0.22 0.50 -
Balance 0.02/0.04 0.13 1.4 - 0.08 2.8 0.01/0.02 0.09 -
Breast c. 0.73/0.00 0.73 4.5 - 0.87 1.4 0.65/0.34 0.83 -
Car eva. 0.02/0.03 0.12 1.1 - 0.04 2.5 0.03/0.05 0.14 -
Ecoli - - - - 0.04 2.5 0.09/0.09 0.29 -
Glass 0.23/0.05 0.30 3.4 - 0.23 2.5 0.10/0.06 0.21 -
Heart 0.32/0.06 0.36 4.0 - 0.30 3.9 0.10/0.10 0.35 -
Ionosphere 0.12/0.04 0.38 2.1 - 0.29 1.5 0.16/0.05 0.21 -
Iris 0.82/0.12 0.85 3.2 - 0.90 1.1 0.75/0.28 0.89 -
Soya 0.90/0.11 0.95 2.1 - 1.00 1.4 0.67/0.19 1.00 -
Teaching A. 0.00/0.01 0.02 4.7 - 0.05 2.9 0.01/0.01 0.05 -
Tic Tac Toe 0.02/0.04 0.15 1.1 - 0.07 1.1 0.02/0.03 0.15 -
Wine 0.83/0.03 0.90 4.4 - 0.83 1.2 0.55/0.25 0.81 -

R.C. de Amorim232

find these issues and deal with them. This turn, when comparing expected
ARI values given a good parameter, iMWK-Means reaches the highest ARI
value in 8 data sets. It ceased to reach the highest ARI in the Australian
data set in which it now reaches 0.22 while EW-KM reaches 0.34 (that is
0.03 more than in the experiments with no noise features, but such small
inconsistencies are to be expected in experiments with non-deterministic
algorithms). When comparing the maximum possible for each algorithm,
the WK-Means algorithm does reach the highest ARI in six data sets, while
EW-KM does so in five.

Tables 6 and 7 show the results of our experiments on the synthetic
data sets with and without noise features. Given a data set Y , for each v ∈ V
we have added a new feature to Y containing uniformly random noise in the
same domain as that of v, very much like what we did in the real-world data
sets. The only difference is that in the synthetic data sets we do not have
categorical features and we know that they contain Gaussian clusters (see
Section 5). We have 20 data sets for each of the data set configurations,
hence, the values under max represent the average of the maximum ARI
obtained in each of the 20 data sets, as well as the standard deviation of
these values.

In this set of experiments, iMWK-Means reached the highest ex-
pected ARI in all data sets, with and without noise features. If we compare
solely the maximum possible ARI per algorithm, WK-Means reaches the
highest ARI in three data set configurations with no noise features added to
them, and in two of the data sets with noise features. AWK also reaches
the highest ARI in two of the configurations. Clearly, there are other com-
parisons we can make using all algorithms described in Section 4. Based
on the information we present in Section 4 about each algorithm, as well as
the cluster recovery results we present in this section, we have defined eight
characteristics we believe are desirable for any K-Means based clustering al-
gorithm that implements feature weighting. Table 8 shows our comparison,
which we now describe one characteristic at a time.

No extra user-defined parameter. Quite a few of the algorithms we
describe in Section 4 require an extra parameter to be defined by the user.
By tuning this parameter (or these parameters, in the case of FGK), each of
these algorithms is able to achieve high accuracy in terms of cluster recovery.
However, it seems to us that this parameter estimation is a non-trivial task,
particularly because the optimum value is problem dependant. This makes
it very difficult to suggest a generally good parameter value (of course this
may not be the case if one knows how the data is distributed). Since differ-
ent values for a parameter tend to result in different clusterings, one could
attempt to estimate the best clustering by applying a clustering validation in-
dex (Arbelaitz, Gurrutxaga, Muguerza, Pérez, and Perona 2013; De Amorim

Feature Weighting Based K-Means Algorithms 233

Table 6. Experiments with the synthetic data sets, with and without noise features. The stan-
dard deviation can be found after the backslash under the mean. Par refers to the parameter
value required by the algorithm.

Attribute Weighting Weighted K-Means Entropy WK
ARI ARI ARI

Mean Max Par Mean Max Par Mean Max Par
No noise
500x4-2 0.50/0.36 0.61/0.31 4.11/1.21 0.61/0.32 0.62/0.31 3.28/1.26 0.62/0.30 0.66/0.26 2.35/1.15
500x10-3 0.62/0.20 0.83/0.11 4.55/0.53 0.68/0.20 0.85/0.10 3.10/1.05 0.67/0.20 0.84/0.10 0.83/0.39
500x20-4 0.74/0.22 0.98/0.02 4.09/0.66 0.75/0.25 0.99/0.02 3.11/1.02 0.75/0.24 0.98/0.03 0.35/0.22
500x50-5 0.83/0.18 1.00/0.01 3.48/1.03 0.82/0.19 1.00/0.00 3.62/0.99 0.80/0.19 1.00/0.00 0.24/0.12
With noise
500x4-2 0.29/0.38 0.60/0.32 2.93/1.11 0.27/0.37 0.61/0.32 1.46/0.80 0.34/0.33 0.56/0.29 0.29/0.16
500x10-3 0.59/0.20 0.80/0.13 4.19/0.78 0.61/0.23 0.85/0.10 1.29/0.15 0.54/0.25 0.78/0.14 0.32/0.26
500x20-4 0.73/0.22 0.98/0.03 3.78/0.90 0.71/0.25 0.93/0.19 1.37/0.26 0.81/0.14 0.95/0.06 0.34/0.10
500x50-5 0.83/0.18 1.00/0.01 3.14/0.81 0.82/0.20 0.98/0.10 2.01/1.22 0.84/0.15 1.00/0.01 0.52/0.41

Table 7. Experiments with the synthetic data sets, with and without noise features. The stan-
dard deviation can be found after the backslash under the mean. Par refers to the parameter
value required by the algorithm. IMWK-Means is a deterministic algorithm and FWSA does
not require a parameter, hence the dashes.

Improved K-P Intelligent Minkowski WK Feature Weight Self Adj.
ARI ARI ARI

Mean Max Par Mean Max Par Mean Max Par
No noise
500x4-2 0.45/0.37 0.59/0.32 3.69/1.18 - 0.63/0.30 3.18/1.31 0.38/0.36 0.57/0.33 -
500x10-3 0.60/0.21 0.81/0.12 3.85/0.85 - 0.71/0.18 2.51/0.83 0.42/0.23 0.67/0.24 -
500x20-4 0.74/0.25 0.98/0.04 3.74/1.03 - 0.90/0.17 2.58/1.05 0.64/0.24 0.94/0.15 -
500x50-5 0.82/0.19 1.00/0.00 3.50/1.14 - 1.00/0.01 1.73/0.94 0.77/0.20 0.97/0.11 -
With noise
500x4-2 0.27/0.36 0.58/0.33 2.47/1.05 - 0.48/0.40 1.79/1.25 0.02/0.13 0.47/0.37 -
500x10-3 0.55/0.22 0.79/0.13 2.84/1.01 - 0.85/0.09 1.58/0.26 0.07/0.19 0.39/0.35 -
500x20-4 0.71/0.25 0.93/0.15 2.58/0.92 - 0.95/0.06 1.80/0.69 0.26/0.30 0.88/0.22 -
500x50-5 0.82/0.20 1.00/0.01 2.65/0.96 - 0.94/0.08 2.24/0.88 0.72/0.26 0.97/0.12 -

and Mirkin 2014), consensus clustering (Goder and Filkov 2008), or even a
semi-supervised learning approach (De Amorim and Mirkin 2012). Regard-
ing the latter, we have previously demonstrated that with as low as 5% of
the data being labelled it is still possible to estimate a good parameter for
iMWK-Means (De Amorim and Mirkin 2014).

It is deterministic. A K-Means generated clustering heavily depends
on the initial centroids this algorithm uses. These initial centroids are often
found at random, meaning that if K-Means is run twice, it may generate very
different clusterings. It is often necessary to run this algorithm a number of
times and then somehow identify which clustering is the best (again, perhaps
using a clustering validation index, a consensus approach, or in the case of
this particular algorithm the output of its criterion). If a K-Means based

R.C. de Amorim234

Table 8. A comparison of the discussed feature weighting algorithms over eight key charac-
teristics.

N
o
ex
tr
a
us
er
-d
efi

ne
d
pa
ra
m
et
er

It
is
de
te
rm

in
is
ti
c

A
cc
ep
ts
di
ff
er
en
td

is
ta
nc
e
bi
as

S
up
po
rt
s
at
le
as
tt
w
o
w
ei
gh
ts
pe
r
fe
at
ur
e

F
ea
tu
re
s
gr
ou
pe
d
au
to
m
at
ic
al
ly

C
al
cu
la
te
s
al
lu

se
d
fe
at
ur
e
w
ei
gh
ts

S
up
po
rt
s
ca
te
go
ri
ca
lf
ea
tu
re
s

A
na
ly
ze
s
gr
ou
ps

of
fe
at
ur
es

SYNCLUS
CK-Means
AWK
WK-Means
EWK-Means
IK-P
iMWK-Means
FWSA
FGK

feature weighting algorithm is also non-deterministic, chances are one will
have to determine the best parameter and then the best run when applying
that parameter. One could also run the algorithm many times per parameter
and apply a clustering validation index to each of the generated clusterings.
In any case, this can be a very computationally intensive task. We find that
the best approach would be to have a feature weighting algorithm that is
deterministic, requiring the algorithm to be run a single time. The iMWK-
Means algorithm applies a weighted Minkowski metric based version of the
intelligent K-Means (Mirkin 2012). The latter algorithm finds anomalous
clusters in a given data set and uses this information to generate initial cen-
troids, making iMWK-Means a deterministic algorithm.

Accepts different distance bias. Any distance in use will lead to a
bias in the clustering. For instance, the Euclidean distance is biased towards
spherical shapes, while the Manhattan distance is biased towards diamond
shapes. A good clustering algorithm should allow for the alignment of its
distance bias to the data at hand. Two of the algorithms we analyze address
this issue, but in very different ways. CK-Means is able to integrate multiple,
heterogeneous feature spaces into K-Means, this means that each feature

Feature Weighting Based K-Means Algorithms 235

may use a different distance measure, and by consequence have a different
bias. This is indeed a very interesting, and intuitive approach, as features
measure different things so they may be in different spaces. The iMWK-
Means also allows for different distance bias, it does so by using the Lp

metric, leaving the exponent p as a user-defined parameter (see Equation
20). Different values for the exponent p lead to different distance biases.
However, this algorithm still assumes that all clusters in the data set have
the same bias.

Supports at least two weights per feature. To model the degree of
relevance of a particular feature, one may need more than a single weight.
There are two very different cases that one should take into consideration:
(i) a given feature v ∈ V may be considerably informative when attempting
to discriminate a cluster S k, but not so for other clusters. This leads to the
intuitive idea that v should in fact have K weights. This approach is followed
by AWK, WK-Means (in its updated version, see Huang, Xu, Ng, and Ye
2008), EWK-Means, iMWK-Means and FGK; (ii) a given feature v ∈ V
may not be, on its own, informative to any cluster S k ∈ S . However, the
same feature may be informative when grouped with other features. Gener-
ally speaking, two (or more) features that are useless by themselves may be
useful together (Guyon and Elisseeff 2003). FGK is the only algorithm we
analyze that calculates weights for groups of features.

Features grouped automatically. If a feature weighting algorithm
should take into consideration the weights of groups of features, it should
also be able to group features on its own. This is probably the most contro-
versial of the characteristics we analyze because none of the algorithms we
deal with here is able to do so. We present this characteristic in Table 8 to
emphasize its importance. Both algorithms that deal with weights for groups
of features, SYNCLUS and FGK, require the users to group the features
themselves. We believe that perhaps an approach based on bi-clustering
(Mirkin 1998) could address this issue.

Calculates all used feature weights. This is a basic requirement of
any feature weighting algorithm. It should be able to calculate all of the
feature weights it needs. Of course, a given algorithm may support initial
weights being provided by the user, but it should also be able to optimize
these if needed. SYNCLUS requires the user to input the weights for groups
of features and does not optimize these. CK-Means requires all possible
weights to be put in a set Δ = {w :

∑
v∈V wv = 1,wv ≥ 0, v ∈ V} and then

tests each possible subset of Δ, the weights are not calculated. This approach
can be very time consuming, particularly in high-dimensional data.

Supports categorical features. Data sets often contain categorical fea-
tures. These features may be transformed to numerical values, however,
such transformation may lead to loss of information and considerable in-

R.C. de Amorim236

crease in dimensionality. Most of the analyzed algorithms that support cat-
egorical features do so by setting a simple matching dissimilarity measure
(eg. AWK, WK-Means and FGK). This binary dissimilarity is zero if both
features have exactly the same category (see for instance Equation 9), and
one otherwise. IK-P presents a different and interesting approach taking into
account the frequency of each category at a categorical v. This allows for a
continuous dissimilarity measure in the interval [0,1].

Analyzes groups of features. Since two features that are useless by
themselves may be useful together (Guyon and Elisseeff 2003), a feature
weighting algorithm should be able to calculate weights for groups of fea-
tures. Only a single algorithm we have analyzed is able to do so, FGK.
SYNCLUS also uses weights for groups of features, however, these are in-
put by the user rather than calculated by the algorithm.

7. Conclusion and Future Directions

Recent technology hasmade it incredibly easy to acquire vast amounts
of real-world data. Such data tend to be described in high-dimensional
spaces, forcing data scientists to address difficult issues related to the curse
of dimensionality. Dimensionality reduction in machine learning is com-
monly done using feature selection algorithms, in most cases during the data
pre-processing stage. This type of algorithm can be very useful to select rel-
evant features in a data set, however, they assume that all relevant features
have the same degree of relevance, which is often not the case.

Feature weighting is a generalization of feature selection. The former
models the degree of relevance of a given feature by giving it a weight,
usually in the interval [0, 1]. Feature weighting algorithms can also deselect
a feature, very much like feature selection algorithms, by simply setting its
weight to zero. K-Means is arguably the most popular partitional clustering
algorithm. Efforts to integrate feature weighting in K-Means have been done
for the last 30 years (for details, see Section 4).

In this paper, we have provided the reader with a discussion on nine of
the most popular or innovative feature weighting mechanisms for K-Means.
Our survey also presents an empirical comparison including experiments
in real-world and synthetic data sets, both with and without noise features.
Because of the difficulties of presenting a fair empirical comparison (see
Section 5), we experimented with six of the nine algorithms discussed. Our
survey shows some issues that are somewhat common in these algorithms
and could be addressed in future research. For instance, each of the algo-
rithms we discuss presents at least one of the following issues:

(i) the criterion to be minimized includes a new parameter (or more),
but unfortunately there is no clear strategy for the selection of a precise

Feature Weighting Based K-Means Algorithms 237

value for this parameter. This issue applies to most algorithms we discussed.
Future research could address this issue in different ways. For instance, a
method could use one or more clustering validation indices (for a recent
comparison of these, see Arbelaitz et al. 2013) to measure the quality of
clusterings obtained applying different parameter values. It could also ap-
ply a consensus clustering based approach (Goder and Filkov 2008), as-
suming that two entities that should belong to the same cluster are indeed
clustered together by a given algorithm more often than not, over different
parameter values. Methods developed in future research could also apply
a semi-supervised approach, this could require as low as 5% of the
data being labelled in order to estimate a good parameter (De Amorim and
Mirkin 2014).

(ii) the method treats all features as if they were in the same feature
space, often not the case in real-world data. CK-Means is an exception
to this rule, it integrates multiple, heterogeneous feature spaces. It would
be interesting to see this idea expanded in future research to other feature
weighting algorithms. Another possible approach to this issue would be to
measure dissimilarities using different distance measures but compare them
using a comparable scale, for instance the distance scaled by the sum of the
data scatter. Of course this could lead to new problems, such as for instance
defining what distance measure should be used at each feature.

(iii) the method assumes that all clusters in a given data set should
have the same distance bias. It is intuitive that different clusters in a given
data set may have different shapes. However, in the algorithms we discuss
when a dissimilarity measure is chosen it introduces a shape bias that is
the same for all clusters in the data set. Future research could address this
issue by allowing different distance measures at different clusters, leading
to different shape biases. However, this could be difficult to achieve given
what we argue in (ii) and that one would need to align each cluster to the
bias of a distance measure.

(iv) features are evaluated one at a time, presenting difficulties for
cases when the discriminatory information is present in a group of features,
but not in any single feature of this group. In order to deal with this issue,
a clustering method should be able to group such features and calculate a
weight for the group. Perhaps the concept of bi-clustering (Mirkin 1998)
could be extended in future research by clustering features and entities, but
also weighting features and groups of features.

The above ideas for future research address indeed some of the major
problems we have today in K-Means based feature weighting algorithms. Of
course this does not mean they are easy to implement, in fact we acknowl-
edge quite the opposite.

R.C. de Amorim238

References

ALOISE, D., DESHPANDE, A., HANSEN, P., and POPAT, P. (2009), “NP-Hardness of
Euclidean Sum-of-Squares Clustering”, Machine Learning, 75(2), 245–248.

ARBELAITZ, O., GURRUTXAGA, I., MUGUERZA, J., PÉREZ, J.M., and PERONA,
I. (2013), “An Extensive Comparative Study of Cluster Validity Indices”, Pattern
Recognition, 46(1), 243–256.

BALL, G.H., and HALL, D.J. (1967), “A Clustering Technique for Summarizing Multivari-
ate Data”, Behavioral Science, 12(2), 153–155.

BELLMAN, R. (1957), Dynamic Programming, Princeton, NJ: Princeton University Press.
BEYER, K., GOLDSTEIN, J., RAMAKRISHNAN, R., and SHAFT, U. (1999), “When is

Nearest Neighbor Meaningful?”, in Proceedings of the 7th International Conference
on Database Theory, Vol. 1540, Springer, pp. 217–235.

BEZDEK, J.C. (1981), Pattern Recognition with Fuzzy Objective Function Algorithms,
Norwell, MA: Kluwer Academic Publishers.

BLUM, A.L., and RIVEST, R.L. (1992), “Training a 3-Node Neural Network Is NP-
Complete”, Neural Networks, 5(1), 117–127.

CHAN, E.Y., CHING,W.K., NG, M.K., and HUANG, J.Z. (2004), “An Optimization Algo-
rithm for Clustering Using Weighted Dissimilarity Measures”, Pattern Recognition,
37(5), 943–952.

CHATZIS, S.P. (2011), “A Fuzzy C-Means-Type Algorithm for Clustering of Data with
Mixed Numeric and Categorical Attributes Employing a Probabilistic Dissimilarity
Functional”, Expert Systems with Applications, 38(7), 8684–8689.

CHEN, X., YE, Y., XU, X., and HUANG, J.Z. (2012),“A Feature Group Weighting Method
for Subspace Clustering of High-Dimensional Data”, Pattern Recognition, 45(1),
434–446.

DE AMORIM, R.C., and HENNIG, C. (2015), “Recovering the Number of Clusters in Data
Sets with Noise Features Using Feature Rescaling Factors”, Information Sciences,
324, 126–145.

DE AMORIM, R.C., and MAKARENKOV, V. (to appear), “Applying Subclustering and
Lp Distance in Weighted K-Means with Distributed Centroid”, Neurocomputing,
doi=10.1016/j.neucom.2015.08.018.

DE AMORIM, R.C., and MIRKIN, B. (2012), “Minkowski Metric, Feature Weighting and
Anomalous Cluster Initializing in K-Means Clustering”, Pattern Recognition, 45(3),
1061–1075.

DE AMORIM, R.C., and MIRKIN, B. (2014), “Selecting the Minkowski Exponent for In-
telligent K-Means with Feature Weighting”, in Clusters, Orders, Trees: Methods and
Applications, Optimization and Its Applications, eds, F. Aleskerov, B. Goldengorin,
and P. Pardalos, Berlin: Springer, pp. 103–117.

DE SOETE, G. (1988), “OVWTRE: A Program for Optimal Variable Weighting for Ultra-
metric and Additive Tree Fitting”, Journal of Classification, 5(1), 101–104.

DE SOETE, G. (1986), “Optimal Variable Weighting for Ultrametric and Additive Tree
Clustering”, Quality and Quantity, 20(2-3), 169–180.

DEMPSTER, A.P., LAIRD, N.M., and RUBIN, D.B. (1977), “Maximum Likelihood from
Incomplete Data via the EM Algorithm”, Journal of the Royal Statistical Society,
Series B, 39(1), 1–38.

DESARBO, W.S., and CRON, W.L. (1988), “A Maximum Likelihood Methodology for
Clusterwise Linear Regression”, Journal of classification, 5(2), 249–282.

Feature Weighting Based K-Means Algorithms 239

DESARBO, W.S., and MAHAJAN, V. (1984), “Constrained Classification: The Use of A
Priori Information in Cluster Analysis”, Psychometrika, 49(2), 187–215.

DESARBO,W.S., CARROLL, J.D., CLARK, L.A., and GREEN, P.E. (1984), “Synthesized
Clustering: A Method for Amalgamating Alternative Clustering Bases with Differen-
tial Weighting of Variables, Psychometrika, 49(1), 57–78.

DEVANEY, M., and RAM, A. (1997), “Efficient Feature Selection in Conceptual Cluster-
ing”, in Proceedings of the 14th ACM International Conference in Machine Learning,
Nashville, TN, pp. 92–97.

DING, C., and HE, X. (2004), “K-means Clustering via Principal Component Analysis”, in
Proceedings of the Twenty-First ACM International Conference on Machine Learn-
ing, pp. 29.

DOMENICONI, C., GUNOPULOS, D., MA, S., YAN, B., AL-RAZGAN, M., and PA-
PADOPOULOS, D. (2007), “Locally Adaptive Metrics for Clustering High Dimen-
sional Data”, Data Mining and Knowledge Discovery, 14(1), 63–97.

DRINEAS, P., FRIEZE, A., KANNAN, R., VEMPALA, S., and VINAY, V. (2004), “Clus-
tering Large Graphs via the Singular Value Decomposition”,Machine Learning, 56(1-
3), 9–33.

DY, J.G. (2008), “Unsupervised Feature Selection”, in Data Mining & Knowledge Dis-
covery, Computational Methods of Feature Selection, eds. H. Liu, and H. Motoda,
Chapman & Hall/CRC, pp. 19–30.

GASCH, A.P., and EISEN, M.B. (2002), “Exploring the Conditional Coregulation of Yeast
Gene Expression Through Fuzzy K-Means Clustering”, Genome Biology, 3(11), 1–
22.

GNANADESIKAN, R., KETTENRING, J.R., and TSAO, S.L. (1995), “Weighting and Se-
lection of Variables for Cluster Analysis”, Journal of Classification, 12(1), 113–136.

GODER, A., and FILKOV, V. (2008), “Consensus Clustering Algorithms: Comparison and
Refinement”, in Proceedings of the 10th ALENEX SIAM, Vol. 8, pp. 109–117.

GREEN, P.E., KIM, J., and CARMONE, F.J. (1990), “A Preliminary Study of Optimal
Variable Weighting in K-Means Clustering”, Journal of Classification, 7(2), 271–
285.

GUYON, I., and ELISSEEFF, A. (2003), “An Introduction to Variable and Feature Selec-
tion”, The Journal of Machine Learning Research, 3, 1157–1182.

HUANG, J.Z., NG, M.K., RONG, H., and LI, Z. (2005), “Automated Variable Weighting
in K-Means Type Clustering”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(5), 657–668.

HUANG, J.Z., XU, J., NG, M., and YE, Y. (2008), “Weighting Method for Feature Se-
lection in K-Means, in Computational Methods of Feature Selection, Data Mining
& Knowledge Discovery, eds. H. Liu and H. Motoda, Chapman & Hall/CRC, pp.
193–209.

HUANG, Z. (1998), “Extensions to the K-Means Algorithm for Clustering Large Data Sets
with Categorical Values”, Data Mining and Knowledge Discovery, 2(3), 283–304.

HUBERT, L., and ARABIE, P. (1985), “Comparing Partitions”, Journal of classification,
2(1), 193–218.

JAIN, A.K. (2010), “Data Clustering: 50 years Beyond K-Means”, Pattern Recognition
Letters, 31(8), 651–666.

JI, J., PANG, W., ZHOU, C., HAN, X., and WANG, Z. (2012),“A Fuzzy K-Prototype Clus-
tering Algorithm for Mixed Numeric and Categorical Data”, Knowledge-Based Sys-
tems, 30, 129–135.

R.C. de Amorim240

JI, J., BAI, T., ZHOU, C., MA, C., and WANG, Z. (2013), “An Improved K-Prototypes
Clustering Algorithm for Mixed Numeric and Categorical Data, Neurocomputing,
120, 590–596.

JING, L., NG, M.K., and HUANG, J.Z. (2007), “An Entropy Weighting K-Means Algo-
rithm for Subspace Clustering of High-Dimensional Sparse Data”, IEEE Transactions
on Knowledge and Data Engineering, 19(8), 1026–1041.

KOHAVI, R., and JOHN, G.H. (1997), “Wrappers for Feature Subset Selection”, Artificial
Intelligence, 97(1), 273–324.

LI, C., and YU, J. (2006), “A Novel Fuzzy C-Means Clustering Algorithm”, in Proceed-
ings of the First International Conference on Rough Sets and Knowledge Technology,
Berlin, Heidelberg: Springer, pp. 510–515.

LICHMAN, M. (2013), “UCI Machine Learning Repository”, University of California,
Irvine, School of Information and Computer Sciences, http://archive.ics.uci.edu/ml.

LIU, H., and YU, L. (2005), “Toward Integrating Feature Selection Algorithms for Clas-
sification and Clustering”, IEEE Transactions on Knowledge and Data Engineering,
17(4), 491–502.

MACQUEEN, J. (1967), “Some Methods for Classification and Analysis of Multivariate
Observations”, in Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, 1(14), Berkley, CA: University of California Press, pp.
281–297.

MAKARENKOV, V., and LEGENDRE, P. (2001), “Optimal Variable Weighting for Ul-
trametric and Additive Trees and K-Means Partitioning: Methods and Software”,
Journal of Classification, 18(2), 245–271.

MIRKIN, B. (2012), Clustering: A Data Recovery Approach, Boca Raton FL: Chapman
and Hall/CRC.

MIRKIN, B. (1998), Mathematical Classification and Clustering: From How to What and
Why, Dordrecht: Springer.

MITRA, P., MURTHY, C.A., and PAL, S.K. (2002), “Unsupervised Feature Selection Using
Feature Similarity”, IEEE transactions on Pattern Analysis and Machine Intelligence,
24(3), 301–312.

MODHA, D.S., and SPANGLER, W.S. (2003), “Feature Weighting in K-Means Cluster-
ing”, Machine Learning, 52(3), 217–237.

MURTAGH, F. (1984), “Complexities of Hierarchic Clustering Algorithms: State of the
Art”, Computational Statistics Quarterly, 1(2), 101–113.

MURTAGH, F., and CONTRERAS, P. (2011), “Methods of Hierarchical Clustering”, arXiv
preprint arXiv:1105.0121.

NG, M.K., and WONG, J.C. (2002), “Clustering Categorical Data Sets Using Tabu Search
Techniques”, Pattern Recognition, 35(12), 2783–2790.

POLAK, E. (1971), Computational Methods in Optimization: A Unified Approach, New
York: Academic press.

SNEATH, P.H.A., and SOKAL, R.R. (1973), Numerical Taxonomy. The Principles and
Practice of Numerical Classification, San Francisco, CA: W.H.Freeman & Co Ltd.

STEINHAUS, H. (1956), “Sur la Division des Corp Materiels en Parties”, Bulletin of the
Polish Academy of Sciences, 1, 801–804.

STEINLEY, D. (2006), “K-Means Clustering: A Half-Century Synthesis”, British Journal
of Mathematical and Statistical Psychology, 59(1), 1–34.

Feature Weighting Based K-Means Algorithms 241

STEINLEY, D., and BRUSCO, M.J. (2008a), “Selection of Variables in Cluster Analysis:
An Empirical Comparison of Eight Procedures”, Psychometrika, 73(1), 125–144.

STEINLEY, D., and BRUSCO, M.J. (2008b), “A New Variable Weighting and Selection
Procedure for K-Means Cluster Analysis”, Multivariate Behavioral Research, 43(1),
77–108.

STURN, A., QUACKENBUSH, J., and TRAJANOSKI, Z. (2002), “Genesis: Cluster Anal-
ysis of Microarray Data”, Bioinformatics, 18(1), 207–208.

TALAVERA, L. (1999), “Feature Selection as a Preprocessing Step for Hierarchical Clus-
tering”, in Proceedings of the 16th International Conference in Machine Learning,
Bled, Slovenia, pp. 389–397.

TSAI, C.Y., and CHIU, C.C. (2008), “Developing a Feature Weight Self-Adjustment Mech-
anism for a K-Means Clustering Algorithm”, Computational Statistics & Data Anal-
ysis, 52(10), 4658–4672.

VEDALDI, A., and FULKERSON, B. (2010), “VLFeat: An Open and Portable Library of
Computer Vision Algorithms”, in Proceedings of the ACM International Conference
on Multimedia, 1469–1472.

WETTSCHERECK, D., AHA, D.W., and MOHRI, T. (1997), “A Review and Empirical
Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms”,
Artificial Intelligence Review, 11(1-5), 273–314.

ZADEH, L.A. (1965), “Fuzzy Sets”, Information and Control, 8(3), 338–353.

ZHA, H., HE, X., DING, C., GU, M., and SIMON, H.D. (2001), “Spectral Relaxation for
K-Means Clustering”, Advances in Neural Information Processing Systems, 1057–
1064.

R.C. de Amorim242

