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Abstract: The Deterministic Input Noisy Output “AND” gate (DINA) model and the
Deterministic Input Noisy Output “OR” gate (DINO) model are two popular cogni-
tive diagnosis models (CDMs) for educational assessment. They represent different
views on how the mastery of cognitive skills and the probability of a correct item
response are related. Recently, however, Liu, Xu, and Ying demonstrated that the
DINO model and the DINA model share a “dual” relation. This means that one
model can be expressed in terms of the other, and which of the two models is fitted
to a given data set is essentially irrelevant because the results are identical. In this
article, a proof of the duality of the DINA model and the DINO model is presented
that is tailored to the form and parameterization of general CDMs that have become
the new theoretical standard in cognitively diagnostic modeling.

Keywords: Cognitive diagnosis; DINA model; DINO model; General cognitive di-
agnosis models.

1. Introduction

The Deterministic Input Noisy Output “AND” gate (DINA) model
(Junker and Sijtsma 2001; Macready and Dayton 1977) and the Determin-
istic Input Noisy Output “OR” gate (DINO) model (Templin and Henson
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2006) are two popular cognitive diagnosis models (CDMs). CDMs for ed-
ucational assessment (DiBello, Roussos, and Stout 2007; Haberman and
von Davier 2007; Leighton and Gierl 2007; Rupp, Templin, and Henson
2010) decompose an examinee’s ability in a domain into binary cognitive
skills called attributes, each of which an examinee may or may not have
mastered. Distinct profiles of attributes define different proficiency classes.
From the observed item scores, maximum likelihood estimates of the model
parameters are obtained that are then used to assign examinees to the differ-
ent proficiency classes. Software for fitting the DINA model and the DINO
model using marginal maximum likelihood estimation via the Expectation
Maximization (EM) algorithm (MMLE-EM) is available through the pack-
age CDM implemented in R (Robitzsch, Kiefer, George, and Uenlue 2016).

The DINA model and the DINO model represent different views on
how the mastery of attributes and the probability of a correct item response
are related. The DINA model is a conjunctive model, meaning that only
mastery of all attributes required for an item maximizes the probability of
a correct response. In contrast, the DINO model is a disjunctive model,
which means that mastery of a subset of the required attributes is a sufficient
condition for maximizing the probability of a correct response (for a detailed
discussion of these concepts, consult Henson, Templin, and Willse 2009).

Recently, however, Liu, Xu, and Ying (2011) demonstrated that the
DINO model and the DINA model share a “dual” relation: One model can
be expressed in terms of the other, and which of the two models is fitted
to a given data set is essentially irrelevant because, after appropriate trans-
formations, the item parameter estimates are identical (as is shown in detail
below) and thus, the estimates of examinees’ proficiency class memberships
are identical too. This also means that the two models must share the same
theoretical properties—what applies to one model automatically holds for
the other model. Hence, one proof fits both models, and one set of simula-
tions suffices to cover both models.

General CDMs have become the new theoretical standard in cogni-
tively diagnostic modeling (de la Torre 2011; Henson, Templin, and Willse
2009; Rupp, Templin, and Henson 2010; von Davier 2005, 2008, 2014). In
this article, a proof of the duality of the DINA model and the DINO model is
presented that is tailored to the form and parameterization of general CDMs.
The presentation is preceded by a brief review of some key technical con-
cepts concerning CDMs. As an example of how the duality of the DINA
model and the DINO model allows to condense separate proofs for the two
models into a single proof, a compact proof of the condition of complete-
ness of the Q-matrix is presented that covers both models. The Discussion
summarizes the practical and theoretical implications of the DINA-DINO
duality.
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2. Review: Key Technical Concepts

2.1 Cognitive Diagnosis Models

Models for cognitive diagnosis are constrained latent class models.
Let Yij denote the observed response of examinee i, i = 1, . . . , N , to binary
item j, j = 1, . . . , J . Consider N examinees who belong to M distinct
latent proficiency classes. The general latent class model defines the con-
ditional probability of examinee i in proficiency class Cm, m = 1, . . . ,M ,
answering correctly item j by the item response function (IRF), P (Yij =
1|i ∈ Cm) = πjm, where πjm is constant for item j across all members i in
proficiency class Cm. The proficiency-class membership of the examinees
is estimated from the observed item responses, Yij , using either MMLE-
EM or Markov chain Monte Carlo (MCMC) techniques. The observed item
responses are assumed independent conditional on proficiency-class mem-
bership (i.e, local independence). No further restrictions are imposed on
the relation between the latent variable—proficiency-class membership—
and the observed item response.

In contrast, CDMs constrain the relation between the latent variable
and the observed item response such that the membership in a certain profi-
ciency class is associated with the mastery of particular cognitive attributes
that in turn determines the item response probabilities. Suppose that K la-
tent binary attributes constitute a given ability domain; there are then 2K dis-
tinct attribute profiles composed of theseK attributes representingM = 2K

distinct classes of proficiency. (Note that an attribute profile for a profi-
ciency class can consist of all zeroes, because it is possible for an examinee
not to have mastered any attributes at all.) Let the K-dimensional vector,
αm = (αm1, . . . , αmK)T , represent the binary attribute profile of profi-
ciency class Cm, where the kth entry indicates whether the respective at-
tribute has been mastered. The attribute profile of examinee i ∈ Cm, αi∈Cm

,
is usually written asαi = (αi1, . . . , αiK)T . (Throughout the text, the super-
script T denotes the transpose of vectors or matrices; the “prime notation”
is reserved for distinguishing between vectors or their scalar entries. For
brevity, the examinee index, i, is omitted if the context permits; for exam-
ple, αi is simply written as α = (α1, . . . , αK)T .)

Consider a test of J items for assessing ability in the domain. Each in-
dividual item j is associated with aK-dimensional binary vector, qj , called
item-attribute profile, where qjk = 1 if a correct answer requires mastery
of the kth attribute, and 0 otherwise. Note that item-attribute profiles con-
sisting entirely of zeroes are inadmissible, because they correspond to items
that require no skills at all. Hence, given K attributes, there are at most
2K − 1 distinct item-attribute profiles. The J item-attribute profiles of a test
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constitute its Q-matrix,Q = {qjk}(J×K), (Tatsuoka 1985), that summarizes
the constraints specifying the associations between items and attributes.

2.2 General Cognitive Diagnosis Models

CDMs differ in the way in which mastery and nonmastery of the at-
tributes are believed to affect an examinee’s performance on a test item (e.g.,
compensatory models versus non-compensatory models; conjunctive mod-
els versus disjunctive models; for a detailed discussion, see Henson, Tem-
plin, and Willse 2009). General CDMs provide a theoretical framework for
expressing the functional relation between attribute mastery and the proba-
bility of a correct item response in a unified mathematical form and param-
eterization that are applicable to “recognizable” CDMs (de la Torre 2011, p.
181), as discussed previously in the literature, and CDMs “that have not yet
been defined” (Henson, Templin, and Willse 2009, p. 199), thereby estab-
lishing a general standard for model comparison and evaluation.

The General Diagnostic Model (GDM; von Davier, 2005, 2008) is the
archetypal general CDM. Von Davier defined hj = h(qj ,αi) as a general
function of the attribute profile of item j and the attribute profile of examinee
i to allow for maximal flexibility in modeling examinees’ responses to item
j. Presumably, the most popular form of von Davier’s GDM uses the logistic
function as the link with hj resulting in the IRF

P (Yij = 1 | αi) =
eβj0+β′

jh(qj ,αi)

1 + eβj0+β′
jh(qj ,αi)

=
eβj0+

∑K
k=1 βjkqjkαik

1 + eβj0+
∑K

k=1 βjkqjkαik

.

qjk indicates whether mastery of attribute αik is required for item j. (See
Equations 1 and 2; von Davier, 2005.) Henson, Templin, and Willse (2009)
specified νj as the linear combination of the K attribute main effects, αk,
and all their two-way, three-way, . . .,K-way interactions

νj = h(qj ,αi) = βj0 +

K∑
k=1

βjkqjkαik +

K∑
k′=k+1

K−1∑
k=1

βj(kk′)qjkqjk′αikαik′

+ · · ·+ βj12...K

K∏
k=1

qjkαik.

Based on this form of νj , Henson, Templin, and Willse (2009) defined the
IRF of a general CDM termed the (saturated) Loglinear Cognitive Diagnosis
Model (LCDM) as
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P (Yij = 1 | αi)

=
eβj0+

∑K
k=1 βjkqjkαk+

∑K
k′=k+1

∑K−1
k=1 βjkk′qjkqjk′αkαk′+···+βj12...K

∏K
k=1 qjkαk

1 + e
βj0+

∑
K
k=1 βjkqjkαk+

∑
K
k′=k+1

∑K−1
k=1 βjkk′qjkqjk′αkαk′+···+βj12...K

∏
K
k=1 qjkαk.

(see Equation 11 in Henson, Templin, andWillse 2009). By imposing appro-
priate constraints on the β-coefficients in νj , the IRFs of specific CDMs can
be expressed as (constrained) submodels of the (saturated) LCDM—among
them also the DINA model and the DINO model. Recently, von Davier
(2011, 2014) demonstrated that by appropriately transforming the Q-matrix
the DINA model can be reparameterized as a submodel of the GDM.

2.3 The Deterministic Input Noisy Output “AND” Gate Model

The traditional form of the IRF of the DINA model is P (Yj = 1 |
α) = (1 − sj)

ηjg
(1−ηj)
j subject to 0 < gj < 1 − sj < 1 for all items j

(Junker and Sijtsma 2001; Macready and Dayton 1977). The conjunction
parameter ηj is defined as ηj =

∏K
k=1 α

qjk
k ; ηj indicates whether examinee i

has mastered all the attributes needed to answer item j correctly. The item-
related parameters sj = P (Yj = 0|ηj = 1) and gj = P (Yj = 1|ηj = 0)
formalize the probabilities of slipping (failing to answer item j correctly
despite having the skills required to do so) and guessing, (answering item j
correctly despite lacking the skills required to do so), respectively.

Without loss of generality, assume that K∗ ≤ K of the K attributes
are required for item j; in addition, assume that their indices are ordered
such that theK∗ attributes occupy the firstK∗ positions, 1, 2, . . . ,K∗, of qj .
Because the DINA model is a conjunctive CDM, its conversion to the logit
form of the LCDM requires that all attribute main effects and interactions
be restricted to zero except for the highest order interaction involving allK∗
attributes. Hence, the IRF of the DINA model in terms of the LCDM is

P (Yj = 1 | α) =
eβj0+βj12...K∗

∏K∗
k=1 αk

1 + eβj0+βj12...K∗
∏K∗

k=1 αk

(1)

subject to: βj12...K∗ > 0.

(Note that if the K∗ attributes occupy the first K∗ positions, 1, 2, . . . ,K∗,
of qj , then qjk = 1 is always true and can be dropped from the IRF.)
The constraint is implied by the traditional parameterization of the DINA
model. From P (Yj = 1|α) = gj if ηj = 0 follows eβj0/

(
1 + eβj0

)
=

gj ; and P (Yj = 1|α) = 1 − sj if ηj = 1 suggests eβj0+βj12...K∗/
(
1 +

eβj0+βj12...K∗
)
= 1 − sj . The constraint then follows from the restriction

0 < gj < 1− sj < 1.
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2.4 The Deterministic Input Noisy Output “OR” Gate Model

The DINO model (Templin and Henson 2006) is a disjunctive CDM
(i.e., mastery of a subset of the required attributes is a sufficient condition
for maximizing the probability of a correct item response). Define the dis-
junction parameter ωj = 1 − ∏K

k=1(1 − αk)
qjk that indicates whether at

least one of the attributes associated with item j has been mastered. (Like
ηj in the DINA model, ωj represents the ideal item response when neither
slipping nor guessing occurs.) The traditionally parameterized IRF of the
DINO model is P (Yij = 1 | α) = (1− sj)

ωjg
(1−ωj)
j .

Without loss of generality, assume again that K∗ ≤ K of the K at-
tributes are required for item j; in addition, assume that their indices are or-
dered such that theK∗ attributes occupy the firstK∗ positions, 1, 2, . . . ,K∗,
of qj . The condition that mastery of just one attribute of those required for
item j already maximizes the probability of a correct response translates into
the following constraint to be imposed on the coefficients

βj1 = βj2 = . . . = βjK∗ = (−1)βj12 = (−1)βj13

= . . . = (−1)βj(K∗−1)K∗ = . . . = (−1)K
∗+1βj12···K∗.

The IRF of the DINO model in terms of the LCDM is then

P (Yj = 1 | α)

=
eβj0+βj1

∑K∗
k=1 αk+(−1)βj1

∑K∗
k′=k+1

∑K∗−1
k=1 αkαk′+...+(−1)K

∗+1βj1

∏K∗
k=1 αk

1 + eβj0+βj1

∑
K∗
k=1 αk+(−1)βj1

∑
K∗
k′=k+1

∑
K∗−1
k=1 αkαk′+...+(−1)K∗+1βj1

∏
K∗
k=1 αk

=
eβj0+βj1(

∑
K∗
k=1 αk+(−1)

∑
K∗
k′=k+1

∑
K∗−1
k=1 αkαk′+...+(−1)K

∗+1
∏

K∗
k=1 αk)

1 + eβj0+βj1(
∑K∗

k=1 αk+(−1)
∑K∗

k′=k+1

∑K∗−1
k=1 αkαk′+...+(−1)K∗+1

∏K∗
k=1 αk).

In assuming that 1 ≤ k ≤ K∗ attributes are mastered, the expression in
parentheses

K∗∑
k=1

αk + (−1)

K∗∑
k′=k+1

K∗−1∑
k=1

αkαk′ + . . .+ (−1)K
∗+1

K∗∏
k=1

αk

on the right-hand side in the previous equation can be written as(
k

1

)
+ (−1)

(
k

2

)
+ . . .+ (−1)k+1

(
k

k

)
.

Because

(−1 + 1)k = 0 = 1 + (−1)

(
k

1

)
+

(
k

2

)
+ . . .+ (−1)k

(
k

k

)
⇒ 1 =

(
k

1

)
+ (−1)

(
k

2

)
+ . . .+ (−1)k+1

(
k

k

)
.
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Hence,

P (Yj = 1 | α) =

{
eβj0

1+eβj0
if α = 0

eβj0+βj1

1+eβj0+βj1
otherwise.

Combining these two conditions into the expression

1−∏K∗

k=1(1− αk) =

{
0 if α = 0
1 otherwise

leads to the compact form of the IRF of the DINO model in terms of the
LCDM

P (Yj = 1 | α) =
eβ

◦
j0+β◦

j1

(
1−∏K∗

k=1(1−αk)
)

1 + eβ
◦
j0+β◦

j1

(
1−∏K∗

k=1(1−αk)
) (2)

subject to: β◦
j1 > 0.

(Henceforth the notation β◦
j is used to distinguish the DINO model from the

DINA model.) Constraints 1 and 2 are implied by the “traditional” parame-
terization of the DINO model. From P (Yj = 1 | α) = gj if ωj = 0 follows
gj = eβ

◦
j0/

(
1 + eβ

◦
j0

)
; and from P (Yj = 1 | α) = 1 − sj if ωj = 1, fol-

lows 1 − sj = eβ
◦
j0+β◦

j1/
(
1 + eβ

◦
j0+β◦

j1

)
. Because the slipping and guessing

parameters are restricted to 0 < gj < 1 − sj < 1, the constraint follows
directly.

3. Proof of the Duality of the DINA Model and the DINO Model
Based on the Loglinear Cognitive Diagnosis Model

In this section, the proof of the duality of the DINA model and the
DINO model is developed. Specifically, it is shown that the two models
are technically identical under certain transformations of (a) the exam-
inees’ attribute profiles, (b) their observed item scores, and (c) the model
parameters. (As an aside, note that the characterization of the special rela-
tion of the DINA model and the DINO model as “dual” deviates from the
well-defined meaning of this term in operations research; for details, consult
Papadimitriou and Steiglitz 1998.)

3.1 Transformation of Examinees’ Attribute Profiles

Consider the attribute profile α∗ = 1 − α. Then, the conditional
expectation of the DINO model, given α∗, is
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EDINO(Yj | α∗) =
eβ

◦
j0+β◦

j1

(
1−∏

K∗
k=1(1−α∗

k)
)

1 + eβ
◦
j0+β◦

j1

(
1−∏

K∗
k=1(1−α∗

k)
)

=
eβ

◦
j0+β◦

j1

(
1−∏

K∗
k=1 αk

)
1 + eβ

◦
j0+β◦

j1

(
1−∏

K∗
k=1 αk

) .
3.2 Transformation of Examinees’ Observed Item Response Scores

Let Y ∗
j = 1 − Yj ; then, the conditional expectation of Y ∗

j , given α∗,
for the DINO model is

EDINO(Y
∗
j | α∗) = 1− EDINO(Yj | α∗)

= 1− eβ
◦
j0+β◦

j1(1−
∏

K∗
k=1 αk)

1 + eβ
◦
j0+β◦

j1(1−
∏K∗

k=1 αk)

=
1

1 + eβ
◦
j0+β◦

j1(1−
∏

K∗
k=1 αk)

=
e−β◦

j0−β◦
j1(1−

∏K∗
k=1 αk)

1 + e−β◦
j0−β◦

j1(1−
∏

K∗
k=1 αk)

=
e(−β◦

j0−β◦
j1)+β◦

j1

∏
K∗
k=1 αk

1 + e(−β◦
j0−β◦

j1)+β◦
j1

∏K∗
k=1 αk

. (3)

3.3 Transformation of the Model Parameters

Compare Equation 3 with the conditional expectation of Yj , given α,
for the DINA model

EDINA(Yj | α) =
eβj0+βj12...K∗

∏
K∗
k=1 αk

1 + eβj0+βj12...K∗
∏K∗

k=1 αk

.

Setting −β◦
j0 − β◦

j1 = βj0 and β◦
j1 = βj12...K∗ results in

EDINO(Y
∗
j | α∗) =

e(−β◦
j0−β◦

j1)+β◦
j1

∏K∗
k=1 αk

1 + e(−β◦
j0−β◦

j1)+β◦
j1

∏K∗
k=1 αk

=
eβj0+βj12...K∗

∏K∗
k=1 αk

1 + eβj0+βj12...K∗
∏K∗

k=1 αk

= EDINA(Yj | α), (4)

which completes the proof.

3.4 Results and Conclusions Based on Equation 4

First, the observed item responses, Y ∗
j , can be fitted by the DINO

model via software for the DINA model using the transformed item re-
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sponses, Yj = 1 − Y ∗
j , as input. Second, the estimates of examinees’ at-

tribute profiles in terms of the DINO model, α̂∗, are then computed from the
DINA attribute profile estimates, α̂, through the transformation α̂∗ = 1−α̂.
Third, the item parameter estimates of the DINO model can be derived from
those of the DINA model as −β̂◦

j0 − β̂◦
j1 = β̂j0 and β̂◦

j1 = β̂j12...K∗ .
Obviously, these transformations “work both ways”: Y ∗

j can be fitted by the
DINA model via software for the DINO model using the transformed item
responses, Yj = 1− Y ∗

j , as input, and so on.
From a practical point of view, these results appear as a mere

curiosity—who would get the idea to fit data with the DINO model through
software for the DINA model if routines for fitting the DINO model di-
rectly are available? However, these results are relevant because they imply
that the DINA model and the DINO model must share the same theoreti-
cal properties: What applies to one model automatically holds for the other
model. Hence, one proof fits both models, As an illustration, the next section
demonstrates how the DINA-DINO-duality allows to condense the separate
proofs of the condition of completeness of the Q-matrix into a single proof
covering both models.

4. A Proof of Q-Matrix Completeness for the DINA and the DINO
Model Using Their Duality

Recall that the J ×K Q-matrix, Q = {qjk}, collects the constraints
specifying the associations between all J test items andK attributes, where
qjk = 1 if a correct answer to the jth item requires mastery of the kth

attribute, and 0 otherwise. The Q-matrix is an integral component of all
CDMs.

A Q-matrix is said to be complete if it allows identification of all
possible proficiency classes among examinees. For the DINA model, Chiu,
Douglas, and Li (2009) proved that the Q-matrix is complete if and only
if it contains all K single-attribute items. (A single-attribute item has the
unit vector ek as its q-vector, with the kth element equal to 1 and all other
elements equal to 0.) (Chiu & Köhn, 2015a, proved that this condition of
Q-completeness also applies to the DINO model.) The original proof by
Chiu, Douglas, and Li (2009) was tailored to the DINA model and used the
traditional parameterization of this model in terms of η, sj and gj . This
parameterization is not suitable for general CDMs; hence, Chiu and Köhn
(2015a) proposed a general definition of Q-completeness in terms of the
expected item responses: S(α) = S(α′) ⇒ α = α′, where S(α) =
E(Y | α) denotes the expectation of an examinee’s item-score profile, Y =
(Y1, . . . , Yj , . . . , YJ)

T , given attribute profile α. (For the DINA model, the

jth entry of S(α) is defined as Sj(α) = E(Yj | α) = (1− sj)
ηjg

(1−ηj)
j .)
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As a small-scale example, consider the Q-matrix Q∗, with K = 3
attributes and J = 3 items

Q∗ =

⎛
⎝

0 1 0
1 0 1
1 1 1

⎞
⎠

that is not complete, as the computation of the expected item-response pro-
files, S(α) =

(
S1(α), S2(α), S3(α)

)T
, for the DINA model demonstrates

Sj(α) =
eβj0+βj12...K∗

∏
K∗
k=1 αk

1 + eβj0+βj12...K∗
∏

K∗
k=1 αk

.

Note that due to space restrictions the subsequent table only reports the co-
efficients that are retained in the expression of Sj(α). Observe that in case
of the single-attribute item 1, the coefficient of the highest-order interaction
term, βj12...K∗ , reduces to the coefficient of the corresponding main effect,
β12.

Q-Vectors
α q∗

1 = (010) q∗
2 = (101) q∗

3 = (111)

S1(α) S2(α) S3(α)
(000) β10 β20 β30

(100) β10 β20 β30

(010) β10 + β12 β20 β30

(001) β10 β20 β30

(110) β10 β20 β30

(101) β10 β20 + β2(13) β30

(011) β10 β20 β30

(111) β10 + β12 β20 + β2(13) β30 + β3(123)

Clearly, Q∗ is not complete because, for example, α1 = (000)T �= α2 =
(100)T ⇒ S(α1) = S(α2) = (β10, β20, β30). (Using the DINO model
would change the specific mathematical expressions of the S(α), but not
the general result that the proficiency classes are not well-separated.) An
incomplete Q-matrix prevents identification of all possible attribute-profiles
among examinees. Thus, completeness of the Q-matrix is a general require-
ment for any CDM. But Q-completeness can only be determined in connec-
tion with a specific CDM supposed to underly the data—a Q-matrix can be
shown to be complete for one CDM, but incomplete for another. Hence,
the condition under which a Q-matrix is complete must be proven for each
CDM individually (for the DINA model, this was proven in Chiu, Douglas,
and Li 2009). The duality of the DINA model and the DINO model, how-
ever, allows to combine the two proofs of the condition of Q-completeness,
as is demonstrated next.
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Define ek as the K-dimensional unit vector, with the kth entry equal
to 1 and all remaining entries equal to 0.

Proposition: For the DINO model and the DINA model, a J × K matrix
Q is complete if and only if it contains the K vectors, e1, e2, . . . , eK , of all
single-attribute items among its J rows.

Proof :
(⇒) Consider the attribute profiles α = (0, 0, . . . , 0)T and α′ = ek. Thus,

Sj(DINA)(α) =
eβj0

1 + eβj0

Sj(DINA)(α
′) =

{
eβj0+βjk

1+eβj0+βjk
if qj = ek

eβj0

1+eβj0
otherwise.

Because βj0 + βjk > βj0, eβj0+βjk

1+eβj0+βjk
> eβj0

1+eβj0
. Assume that ek is missing

from Q; thus, Sj(DINA)(α) = Sj(DINA)(α
′) = eβj0

1+eβj0
for all j, which implies

that SDINA(α) = SDINA(α
′). Hence,Q is not complete.

Define α∗ = 1 − α and α′∗ = 1 − α′; because α �= α′, α∗ �= α′∗. From
the duality of the DINA model and the DINO model then follows:

SDINO(α
∗) = EDINO(Y

∗ | α∗) = EDINA(Y | α) = EDINA(Y | α′)
= EDINO(Y

∗ | α′∗) = SDINO(α
′∗),

(recall that SDINA(α) = EDINA(Y | α)). Therefore,Q is not complete.

(⇐) Assume that K of the J rows of Q consist of e1, e2, . . . , eK . Reorder
the rows ofQ by moving these K rows to the first K row positions. Thus,

Sk(DINA)(α) =

{
eβk0+βkk

1+eβk0+βkk
if αk = 1

eβk0

1+eβk0
if αk = 0.

(5)

Consider α �= α′ such that αk = 1 and α′
k = 0. Then, according to

Equation 5, Sk(DINA)(α) > Sk(DINA)(α
′) because βk0 + βkk > βk0, which

implies S1:K(DINA)(α) �= S1:K(DINA)(α
′), where S1:K(DINA)(α) denotes the

first K entries in SDINA(α). Hence, SDINA(α) �= SDINA(α
′), regardless of

whether S(K+1):J(DINA)(α) is identical to S(K+1):J(DINA)(α
′). Therefore, Q

is complete.

Recall that α∗ �= α′∗ because α �= α′. From the duality of the DINA
model and the DINO model follows then SDINO(α

∗) �= SDINO(α
′∗) because

SDINA(α) �= SDINA(α
′). Therefore, SDINO(α

∗) �= SDINO(α
′∗) if α∗ �= α′∗.

So,Q must be complete.
�
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In summary, the DINA model and the DINO model share the theoret-
ical property that completeness of the Q-matrix is guaranteed if and only if
it includes allK single-attribute items.

5. Discussion

The DINAmodel and the DINOmodel have always been perceived as
two conceptually different models of the relation between attribute mastery
and the probability of a correct item response. Liu, Xu, and Ying (2011),
however, showed that one model can be expressed in terms of the other.
They called this the duality of the DINA model and the DINO model. In
this article, the duality of the two models was proven using their parame-
terization as (constrained) LCDMs: Under certain (linear) transformations,
the DINA model and the DINO model are technically identical. As an im-
mediate practical consequence of the DINA-DINO duality, both models can
be fitted by the same software. Of course, this appears as a mere curiosity:
No one would consider fitting the DINO model by using DINA software
with the transformed data, while software for fitting the DINO model is
readily available. The importance of the DINA-DINO duality is rather the-
oretical: If the two models are shown to be identical under certain (linear)
transformations, then they must share the same theoretical properties. A
methodological development or discovery concerning one model automat-
ically also applies to the other model. Hence, instead of individual proofs
for each model, a single proof covers both models. As an example, a com-
pact proof of the condition of Q-completeness for the DINA model and the
DINO model was presented that used their duality.

Finally, the DINA-DINO duality also suggests that instead of separate
numerical studies, one set of simulations suffices for both models. As a
concluding example, consider a study conducted by de la Torre and Lee
(2013) comparing the power of the Wald test for several recognizable CDMs
including the DINAmodel and the DINOmodel. De la Torre and Lee (2013)
ran separate simulations for the two models. The results for the power of the
Wald test for the DINA model are reported in Table 4 (p. 366, De la Torre
and Lee 2013) and for the DINO model in Table 7 (p. 369, De la Torre and
Lee 2013). A comparison of the power values shows that they are almost
identical for the two models (the few slight deviations are due to sampling
variability).

As a concluding remark, it should be noted that the theoretical inter-
est in equivalencies among CDMs is relatively recent. Maris and Bechger
(2009) define that two CDMs are formally equivalent if and only if for
both models distinct parameterizations can be identified that generate iden-
tical item response probabilities. For example, the Reduced Reparameter-

182



Duality of the DINA Model and the DINO Model

ized Unified Model (Reduced RUM; Hartz 2002; Hartz & Roussos 2008) is
equivalent to the Generalized Noisy Input Deterministic Output “And” gate
(G-NIDA) model (Maris 1999). In using a log-link function, de la Torre
(2011) derived a reparameterization of the Reduced RUM that he called the
Additive Cognitive Diagnosis Model (ACDM). Von Davier (2011, 2014)
showed that by transforming the Q-matrix the DINA model can be reparam-
eterized as a submodel of the GDM. Maris and Bechger (2009) address the
potential damage that can arise from undetected equivalencies among seem-
ingly different CDMs because they may lead to different diagnoses, and sub-
sequently, different treatments. On the other hand, model equivalencies—if
they are known—can be exploited for the development of new algorithms
for fitting CDMs. Examples are DeCarlo’s (2011) Reparameterized DINA
model (RDINA) and the reparameterization of the Reduced RUM based on
the log-link function that Chiu and Köhn (2015b) used to derive an algo-
rithm for fitting the Reduced RUM with an unlimited number of attributes,
which, until then, was technically not possible.
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