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Abstract: In the election of a hierarchical clustering method, theoretic properties
may give some insight to determine which method is the most suitable to treat a
clustering problem. Herein, we study some basic properties of two hierarchical clus-
tering methods: α-unchaining single linkage or SL(α) and a modified version of this
one, SL∗(α). We compare the results with the properties satisfied by the classical
linkage-based hierarchical clustering methods.
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1. Introduction

Kleinberg (2002) studied the problem of clustering in an axiomatic
way. He proposed a few basic properties that any clustering function F
should satisfy. Let X be any finite set and d any distance function. Let
P(X) denote the set of all possible partitions ofX. Fix a clustering method
F so that F (X, d) = Π ∈ P(X). The properties proposed by Kleinberg
were:
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• Scale invariance: For all α > 0, F (X,α · d) = Π

• Richness: Given a finite set X, for every Π ∈ P(X) there exists a
metric dΠ onX such that F (X, dΠ) = Π.

• Consistency: LetΠ = {B1, ..., Bn}. Let d′ be any distance onX such
that

1) for all x, x′ ∈ Bi, d′(x, x′) ≤ d(x, x′) and
2) for all x ∈ Bi, x′ ∈ Bj , i �= j, d′(x, x′) ≥ d(x, x′).

Then, F (X, d′) = Π.

Then, he proved that no standard clustering function can satisfy these
three conditions simultaneously. This does not mean that defining a cluste-
ring function is impossible. The impossibility only holds when the unique
input in the algorithm is the space and the set of distances. It can be avoided
including, for example, the number of clusters to be obtained as part of the
input. See Ackerman, Ben-David and Locker (2010a) and Zadeht and Ben-
David (2009). Another option is to consider hierarchical clustering where
the output can be presented as a nested family of partitions, a dendrogram
or as an ultrametric space over the same underlying set as the input. The
main advantage of this approach is that hierarchical clustering methods out-
put multiscale information of the data set. If the multiscale structure is a
significant information of the problem, the output of a standard clustering
method, if not irrelevant, would be at least incomplete. For more details see
Carlson and Mémoli (2008; 2010).

Carlsson and Mémoli (2010) also studied a property-based approach
to hierarchical clustering methods taking as input a finite metric space. They
prove, see Theorem 3.1 below, that single linkage hierarchical clustering
(SL HC) is the only hierarchical clustering algorithm which satisfies si-
multaneously three properties:

• (I) If the input consists of two points at a distance p, the output is the
same space.

• (II) A non-increasing map between two metric spaces induces a non-
increasing map between the outputs (when considered as ultrametric
spaces).

• (III) The distance between any pair of points in the output is greater
or equal than the minimal distance between two points in the input.

It is worth mentioning that there is another characterization of SL by
Zadeh and Ben-David in the setting of partitional clustering. See Zadeh and
Ben-David (2009).

Also Carlsson and Mémoli (2010) prove that SL HC exhibits some
interesting properties. In particular, it is stable in the Gromov-Hausdorff
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sense, this is, if two metric spaces are close in the Gromov-Hausdorff met-
ric, then applying the algorithm, the ultrametric spaces obtained are also
close in this metric. However, there is a basic weakness in SL HC which
is the chaining effect, see Murtagh (1983) and Wishart (1969). The chain-
ing effect can be seen as the tendency of the algorithm to merge two blocks
when the minimal distance between them is small. This might be a problem
in many practical situations. Consider, for example, two clusters in R

n fol-
lowing a multivariate normal distribution. If both clusters are close enough
these blocks are merged together very soon by SL HC , independently of
the distribution of the points in the data set.

In Martínez-Pérez (2013), we tried to offer some solution to this ef-
fect. We proposed a modified version of SL HC called α-unchaining single
linkage (or SL(α)). This method shows some sensitivity to the density dis-
tribution of the data set, so it is capable of detecting blocks when the min-
imal distance between them is small. We also defined a second version of
this method, SL∗(α), to detect blocks when they are connected by a chain
of points.

Thus, we were able to offer some solution to these chaining effects
but, in exchange, we lost some of the good properties of SL. In particular,
SL(α) is no longer stable in the Gromov-Hausdorff sense. In fact, as we
proved in Martínez-Pérez (2015), there is no stable solution to this chaining
effect in the range of almost-standard linkage-basedHC methods using �SL.

Now, the question is when should we use SL(α) and SL∗(α). Among
the large variety of clustering methods the best option usually depends on
the particular clustering problem. But how do we choose the most suitable
algorithm for the task? Ackerman, Ben David and Loker propose to study
significant properties of some popular clustering functions. See Ackerman,
Ben-David and Locker (2010a; 2010b). The idea is finding abstract signifi-
cant properties concerning the output of the algorithms which illustrate the
difference between applying one clustering method or another. Then, the
practitioner should decide which properties are important for the problem
under study and choose the algorithm which satisfies them.

In Martínez-Pérez (2013; 2015), we tried to give concrete definitions
to express the chaining and stability properties of SL(α) andSL∗(α). Herein,
we complete the work by analyzing some basic properties on these methods.

We prove that SL(α) and SL∗(α) are permutation invariant, this is,
the order in which the points are introduced in the algorithm does not af-
fect the output of the algorithm. They are also rich, meaning that for every
possible output of the data set, there is a metric in the input such that the
algorithm produces that output. In the weighted setting, these methods are
not weight-robust, this is, assigning different weights to the points may offer
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different outputs of the algorithm. Notice that this property can be consid-
ered to choose between complete linkage (CL), which is weight-robust, and
average linkage (AL) which is not. See Ackerman, Ben-David, Branzei and
Loker (2012).

SL(α) and SL∗(α) are obtained by adding some unchaining condi-
tions to SL HC . Thus, we pay special attention to the characteristic proper-
ties of SL following the characterization from Carlsson and Mémoli (2010).
In order to illustrate the difference between SL and the new methods, we
define three natural properties for HC methods which can be summarized
as follows:

• A HC method is faithful if the algorithm leaves ultrametric spaces
invariant, meaning that if the input is an ultrametric space, then the
output is the same ultrametric space.

• A HC method is lower-bounded by SL if whenever two points are at
distance ε in the output, then there exists a ε-chain between them in
the input.

• A HC method is non-expanding in the inclusion if adding points to
the input will never increase the distance between the points in the
output.

Being faithful can be a desirable property, especially when the data set
is close to an ultrametric space. For example, suppose that the data set is an
approximation of a set of points which is contained in an ultrametric space
(this can be the case of any tree-like data set, for example, a phylogenetic
tree). Then if the measures of the distances between the points were perfect,
applying a faithful algorithm we obtain a result which is exactly the real
dendrogram. If the method is also semi-stable, see Martínez-Pérez (2015),
we can assure that if the measures are precise, then the output will be close
the real data.

Being lower-bounded by SL gives a lower bound to the distance be-
tween points in the output. It is a very common property. For example,
consider any linkage function such that the distance between two blocks
is always greater or equal than the minimal distance between them. Then,
the corresponding linkage-based hierarchical clustering algorithm will be
lower-bounded by SL.

Clearly, SL is faithful, lower-bounded by SL and non-expanding in
the inclusion. In fact, we prove that these three properties offer an alternative
characterization of SL. See Theorem 3.11.

Many algorithms are faithful and lower-bounded by SL. In particular,
CL HC , AL HC , SL(α) and SL∗(α) satisfy these properties. Thus, being
non-expanding in the inclusion is a key property to illustrate the difference
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betweenSL and other methods as those mentioned above. Also, considering
the original characterization from Carlsson and Mémoli (2010), it is trivial
to check that AL, CL, SL(α) and SL∗(α) satisfy I and III but not II and
therefore, property II can be used to distinguish those algorithms from SL.
However, since II implies being non-expanding in the inclusion, we believe
that the last one is a better option for the task.

The results obtained in Martínez-Pérez (2013;2015) and herein are
summarized in Table 1.

2. Background and Notation

A dendrogram over a finite set is a nested family of partitions. This is
usually represented as a rooted tree.

Let P(X) denote the collection of all partitions of a finite set X =
{x1, ..., xn}. Then, a dendrogram can also be described, see Carlsson and
Mémoli (2010), as a map θ : [0,∞) → P(X) such that:

1. θ(0) = {{x1}, {x2}, ..., {xn}},
2. there exists T such that θ(t) = X for every t ≥ T ,

3. if r ≤ s then θ(r) refines θ(s),

4. for all r there exists ε > 0 such that θ(r) = θ(t) for t ∈ [r, r + ε].

Notice that conditions 2 and 4 imply that there exist t0 < t1 < ... <
tm such that θ(r) = θ(ti−1) for every r ∈ [ti−1, ti), i = 0, 1, ...,m and
θ(r) = θ(tm) = {X} for every r ∈ [tm,∞).

For any partition {B1, ..., Bk} ∈ P(X), the subsets Bi are called
blocks.

Let D(X) denote the collection of all possible dendrograms over a
finite set X. Given some θ ∈ D(X), let us denote θ(t) = {Bt

1, ..., B
t
k(t)}.

Therefore, the nested family of partitions is given by the corresponding par-
titions at t0, ..., tm, this is, {Bti

1 , ..., B
ti
k(ti)

}, i = 0, ...,m.
An ε-chain is a finite sequence of points x0, ..., xN that are sepa-

rated by distances less or equal than ε: d(xi, xi+1) ≤ ε. Two points are
ε-connected if there is an ε-chain joining them. Any two points in an ε-
connected set can be linked by an ε-chain. An ε-component is a maximal
ε-connected subset.

An ultrametric space is a metric space (X, d) such that for all x, y, z ∈
X, d(x, y) ≤ max{d(x, z), d(z, y)}. Given a finite metric space X let
U(X) denote the set of all ultrametrics overX.

There is a well known equivalence between trees and ultrametrics.
See Hughes (2004) and Martínez-Pérez and Morón (2009) for a complete
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Table 1. Overview of the properties satisfied by the hierarchical clustering methods discussed
in this work.

SL CL AL SL(α) SL∗(α)
Permutation invariant ✓ ✓ ✓ ✓ ✓

Rich ✓ ✓ ✓ ✓ ✓

Weight-robust ✓ ✓ ✗ ✗ ✗

Faithful ✓ ✓ ✓ ✓ ✓

Non-expanding in the inclusion ✓ ✗ ✗ ✗ ✗

Lower bounded by SL ✓ ✓ ✓ ✓ ✓

Semi-stable ✓ ✓ ✓ ✓ ✗

Stable ✓ ✗ ✗ ✗ ✗

Strongly chaining ✓ ✗ ✗ ✗ ✗

Completely chaining ✓ ✗ ✗ ✗ ✗

Weakly unchaining ✗ ✗ ✗ ✓ ✓

α-bridge-unchaining ✗ ✗ ✗ ✗ ✓

exposition of how to build categorical equivalences between them. In par-
ticular, this may be translated into an equivalence between dendrograms and
ultrametrics:

Thus, a hierarchical clustering method T can be presented as an algo-
rithm whose output is a dendrogram or an ultrametric space.

Notation: Let TD(X, d) denote that we apply the algorithm T to the metric
space (X, d) and we present the output as a dendrogram, θX (or just θ if
there is no ambiguity about the space). Let TU (X, d) denote that we apply
the algorithm T to the metric space (X, d) an we present the output as an
ultrametric space, (X,uX ) (or just (X,u) if there is no ambiguity). The
dendrogram θX and the ultrametric space (X,uX ) are two presentations of
the same object.

In Carlsson and Mémoli (2010), the authors use a recursive proce-
dure to redefine SL HC , AL HC and CL HC . The main advantage of
this procedure is that it allows to merge more than two clusters at the same
time. Therefore, AL and CL HC can be made permutation invariant. In
Martínez-Pérez (2013), we gave an alternative presentation of this recursive
procedure as a first step to define SL(α) and SL∗(α). Let us recall here, for
completeness, this presentation.

For x, y ∈ X and any (standard) clustering C ofX, x ∼C y if x and
y belong to the same cluster in C and x �∼C y, otherwise.

Two (standard) clusterings C = (C1, ..., Ck) of (X, d) and C ′ =
(C ′

1, ...C
′
k) of (X

′, d′) are isomorphic clusterings, denoted (C, d) ∼= (C ′, d′),
if there exists a bijection φ : X → X ′ such that for all x, y ∈ X, d(x, y) =
d′(φ(x), φ(y)) and x ∼C y if and only if φ(x) ∼C′ φ(y).
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A linkage function can be though of as a way of measuring the dis-
tance between two blocks. We use the definition of linkage function from
Ackerman, Ben-David and Loker (2010b):

Definition 2.1. A linkage function is a function

� : {(X1,X2, d) | d is a distance function overX1 ∪X2} → R+

such that,

1. � is representation independent: For all (X1,X2) and (X ′
1,X

′
2), if

they are clustering-isomorphic, ((X1,X2), d) ∼= ((X ′
1,X

′
2), d

′), then
�(X1,X2, d) = �(X ′

1,X
′
2, d

′).
2. � is monotonic: For all (X1,X2) if d′ is a distance function overX1 ∪

X2 such that for all x ∼{X1,X2} y, d(x, y) = d′(x, y) and for all
x �∼{X1,X2} y, d(x, y) ≤ d′(x, y) then �(X1,X2, d) ≤ �(X1,X2, d

′).
3. Any pair of clusters can be made arbitrarily distant: For any pair of

data sets (X1, d1), (X2, d2), and any r in the range of �, there exists a
distance function d that extends d1 and d2 such that �(X1,X2, d) > r.

For technical reasons, it is usually assumed that a linkage function has a
countable range. Say, the set of nonnegative algebraic real numbers.

Some standard choices for � are:

• Single linkage: �SL(B,B′) = min(x,x′)∈B×B′ d(x, x′)
• Complete linkage: �CL(B,B′) = max(x,x′)∈B×B′ d(x, x′)

• Average linkage: �AL(B,B′) =
∑

(x,x′)∈B×B′ d(x,x′)
#(B)·#(B′) where #(X) de-

notes the cardinality of the setX.

A linkage-based hierarchical clustering method T is determined by a
linkage function. The algorithm begins with a partition where the blocks
are the single points. Then, in each step, every pair of blocks at minimal
distance is merged. Notice that this allows multiple blocks to be merged at
the same time. As we showed inMartínez-Pérez (2015), this definition could
cause technical complications constructing the dendrogram if the linkage
function is not increasing, this is, if the minimal distance between blocks
does not necessarily increase at every step. One solution is to include being
increasing as a basic property on the linkage-function. Otherwise, linkage-
based methods can be formally presented as follows.

Let (X, d) be a finite metric space where X = {x1, ..., xn}. Let � be
some linkage function. Then, the linkage-based algorithm T�(X, d) outputs
a dendrogram θ� defined as follows:
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1. Let Θ0 := {{x1}, ..., {xn}} and R0 = 0.

2. For every i ≥ 1, whileΘi−1 �= {X}, letRi := min{�(B,B′) |B,B′ ∈
Θi−1, B �= B′}.

3. Let Θi be the result of merging every pair of blocks B,B′ ∈ Θi−1

such that �(B,B′) = Ri.

4. Finally, let θ� : [0,∞) → P(X) be such that θ�(r) := Θi(r) with
i(r) := max{i |Ri ≤ r}.

In Martínez-Pérez (2015), the methods defined by applying this al-
gorithm for some linkage function � are called standard linkage-based HC
methods.

Let us now recall the definition of SL(α) and SL∗(α). Further expla-
nations, figures and easy examples can be found in Martínez-Pérez (2013).

2.1 Definition of SL(α)

This method is defined to treat the chaining effect produced by blocks
which are close using the minimal distance, �SL. See Figure 1. These type
of blocks are merged together very soon by SL HC so they are usually
undetected by this algorithm.

Given a finite metric space (X, d), let Ft(X, d) be the Rips (or Vietoris-
Rips) complex of (X, d). Let us recall that the Rips complex of a metric
space (X, d) is a simplicial complex whose vertices are the points ofX and
[v0, ..., vk] is a simplex of Ft(X, d) if and only if d(vi, vj) ≤ t for every
i, j. Given any subset Y ⊂ X, by Ft(Y ) we refer to the subcomplex of
Ft(X) defined by the vertices in Y . A simplex [v0, ..., vk] has dimension
k. The dimension of a simplicial complex is the maximal dimension of its
simplices.

Notice that densely packed points produce high dimensional sim-
plices in the Rips complex. We will consider this as a sign that the cluster is
significant. Low dimensional simplices mean that there are few points close,
so they might be suspicious of being noise or poor measurements.

SL(α) is a HC method that depends on a parameter α ∈ N. We use
single linkage, �SL, to measure the distance between blocks and define the
method as a linkage-based algorithm.

The algorithm starts with a partition Θ0 = {{x1}, ..., {xn}}. For
technical reasons we define D = {0 = t0 < t1 < · · · < tm} to be the
ordered set of distances between points in X and iterate the algorithm from
i = 1 to i = m.

In the step i, two blocks, B,B′ from the partition Θi−1 are merged if
the following two conditions are satisfied simultaneously:
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ε 

B1 B2 

Figure 1. The minimal distance between the blocks B1 andB2 is ε. The clustering {B1, B2}
would not be detected by SL HC.

• �SL(B,B′) ≤ ti
• there is a simplexΔ ∈ Fti(B ∪B′) such thatΔ∩B �= ∅,Δ∩B′ �= ∅
and α · dim(Δ) ≥ min{dim(Fti(B)), dim(Fti (B

′))}.
Therefore, two blocks are merged if the minimal distance is ti (as

in SL HC) unless both blocks contain simplices whose dimension is more
than α times the dimension of the simplices that are common to both blocks.
In this case, the connection is dismissed.

Finally, the resulting dendrogram is defined as θα(t) := Θi for every
t ∈ [ti, ti+1).

This construction is generalized in Martínez-Pérez (2015) to define
the class of almost-standard linkage-based HC methods. This class allows
to incorporate to a linkage-based algorithm some extra condition on two
clusters to be merged.

Let us recall that given some space X with a distance function d, a
sequence of points x0, x1, ..., xn is a t-chain if d(xi−1, xi) ≤ t for every
1 ≤ i ≤ n.

Remark 2.2 It is immediate, by construction, that if two points x, x′ belong
to the same block of θα(ti) then, necessarily, there exists a ti-chain, x =
x0, x1, ..., xn = x′ joining them

2.2 Definition of SL∗(α)

This method is defined on the basis of SL(α) to avoid two blocks
to be merged when there is a chain of single points or small blocks joining

126 A. Martínez-Pérez



them. This method introduces a distinction between big blocks, which are
considered as the relevant information, and small blocks which are consid-
ered as secondary in the formation of new clusters.

The algorithm starts again with the single points Θ∗
0 := {{x1}, ...,

{xn}}.
Then, given the ordered set of distances between points in X, D =

{0 = t0 < t1 < · · · < tm}, the algorithm iterates from i = 1 to i = m.
For every i, two blocks, B,B′, from the partition Θ∗

i−1 are related,
B ∼∗ B′, if the following conditions (the same as in SL(α)) are satisfied
simultaneously:

• �SL(B,B′) ≤ ti

• there is a simplexΔ ∈ Fti(B ∪B′) such thatΔ∩B �= ∅,Δ∩B′ �= ∅
and α · dim(Δ) ≥ min{dim(Fti (B)), dim(Fti (B

′))}.
Now let us define a graph Gti

α whose vertices are the blocks in Θ∗
i−1

and there is an edge joining the blocks B,B′ if and only if B ∼∗ B′.
Notice that SL(α) just merges together the blocks that form the con-

nected components of this graph to define Θi. In SL∗(α) we distinguish
between big blocks and small blocks in each connected component using
the parameter α.

Let A be any connected component of Gti
α , denoted A ∈ cc(Gti

α ),
with blocks B1, ..., Br . We call big blocks of A those blocks Bi ∈ A such
that

α ·#(Bi) ≥ max
1≤l≤r

{#(Bl)}. (1)

The rest of the blocks of A are called small blocks.
Let Hα(A) be the subgraph of A whose vertices are the big blocks

and Sα(A) be the subgraph of A whose vertices are the small blocks.
Then, B,B′ ∈ Θ∗

i−1 are merged in Θ∗
i if B,B′ belong to the same

connected component, let us say A, and one of the following conditions
holds:

iii) ∃C ∈ cc(Hα(A)) such that B,B ∈ C .

iv) B ∈ C ∈ cc(Hα(A)), B′ ∈ C ′ ∈ cc(Sα(A)) and there is no big block
in A\C adjacent to any block in C ′.

Finally, the resulting dendrogram is defined as θ∗α(t) := Θ∗
i for every

t ∈ [ti, ti+1).

Remark 2.3 At step iii, ifHα(A) is connected, then Bj1 ∪ · · · ∪Bjr defines
a block of θα(ti).
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Remark 2.4 Notice that if two points x, x′ belong to the same block of
θ∗α(ti) then, necessarily, there exists a ti-chain, x = x0, x1, ..., xn = x′
joining them.

3. Single Linkage Hierarchical Clustering

In this section we recall some basic properties and the characteriza-
tion of SL HC from Carlsson and Mémoli (2010). We also propose some
alternatives. Our first intention is to find significant properties to compare
SL and SL(α).

3.1 Characterization of SL

Carlsson and Mémoli provided the following axiomatic characteriza-
tion of SL HC:

Let us recall that given a finite metric space (X, d), sep(X, d) :=
minx �=x′d(x, x′).

Theorem 3.1 (Carlsson and Mémoli 2010, Theorem 18) Let T be a hierar-
chical clustering method such that:

(I) TU
(
{p, q},

(
δ 0
0 δ

))
=

(
{p, q},

(
δ 0
0 δ

))
for all δ > 0.

(II) Given two finite metric spacesX,Y and φ : X → Y such that dX(x, x′) ≥
dY (φ(x), φ(x

′)) for all x, x′ ∈ X, then

uX(x, x′) ≥ uY (φ(x), φ(x
′))

also holds for all x, x′ ∈ X, where TU (X, dX ) = (X,uX ) and
TU (Y, dY ) = (Y, uY ).

(III) For any metric space (X, d),

u(x, x′) ≥ sep(X, d) for all x �= x′ ∈ X

where TU (X, d) = (X,u).

Then, T is exactly single linkage hierarchical clustering.

Notation: For the particular case of SL HC , if there is no need to distin-
guish the metric space, let us denote TSL

D (X, d) = θSL and TSL
U (X, d) =

(X,uSL).

Notation: Given two metrics d, d′ defined on a setX, let us denote d ≤ d′ if
d(x, x′) ≤ d′(x, x′) ∀x, x′ ∈ X.
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Definition 3.2 A hierarchical clustering method T is lower-bounded by SL
if whenever two points are at distance ε in the output, then there exists a
ε-chain between them in the input (i.e. if for every metric space (X, d),
u ≥ uSL, where TU (X, d) = (X,u)).

The following propositions follow immediately from the proof of The-
orem 18 in Carlsson and Mémoli (2010).

Proposition 3.3 For any metric space (X, d), if T satisfies conditions II
and III , then T is lower-bounded by SL (i.e. u ≥ uSL).

Also, it is readily seen that if a HC algorithm is lower-bounded by
SL, then T satifies III .

Proposition 3.4 If T satisfies conditions I and II , then uSL ≥ u.

In fact, Proposition 3.4 can be improved introducing the following
definition.

Definition 3.5 A hierarchical method T is non-expanding in the inclusion
if for any metric space (Y, d) and any subset X ⊂ Y , if i : X → Y is the
inclusion map, then uX(x, x′) ≥ uY (i(x), i(x

′)).

This means that, by adding points to the input, the ultrametric distance
in the output may turn smaller but never bigger. Clearly, property II implies
being non-expanding in the inclusion.

Remark 3.6 Carlsson and Mémoli (2008) study hierarchical clustering (or
persistent clustering) and introduce some notion of functoriality. In order to
compare the application of the algorithm on different data sets, it would be
very useful to consider the algorithm as a functor from the data sets (met-
ric spaces or sets with a distance function) to dendrograms. The authors
consider three different categories whose objects are finite metric spaces:
Miso whose morphisms are isometries, Mmon whose morphisms are dis-
tance non-increasing maps (i.e. non-expanding maps) which are inclusions
as set maps, andMgen whose morphisms are distance non-increasing maps.

In this sense, it can be seen that being non-expanding in the inclusion
is equivalent to being functorial in the category Msub whose objects are
finite metric spaces and whose morphisms are inclusions (this is, isometries
which are inclusions as set maps). Since Msub ⊂ Mmon ⊂ Mgen, if the
method is not non-expanding in the inclusion, then it is not functorial neither
in Mmon norMgen.

If we accept thatHC algorithms must be faithful and lower-bounded
by SL, then the uniqueness Theorem 3.11 below, implies that SL is the
unique method which defines a functor from data sets to dendrograms in the
categoriesMsub,Mmon andMgen. This is closely related with the unique-
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ness theorem on the functoriality on Mgen, see Theorem 4.1 in Carlsson
and Mémoli (2008).

The proof of Proposition 3.4 in Carlsson and Mémoli (2010) can be
trivially adapted to obtain the following.

Proposition 3.7 If T satisfies I and is non-expanding in the inclusion, then
uSL ≥ u.

Proof. Let x, x′ ∈ (X, d) such that uSL(x, x′) = δ. Then, there exists a
δ-chain x = x0, x1, ..., xn = x′ such that maxi d(xi−1, xi) = δ. By I , if
Xi = {xi−1, xi}, T(Xi, d|Xi

) = (Xi, d|Xi
) and uXi

(xi−1, xi) ≤ δ. Then,
since T is non-expanding in the inclusion, u(xi−1, xi) ≤ uXi

(xi−1, xi) ≤ δ
and, by the properties of the ultrametric, u(x, x′) ≤ δ.
�

As we mentioned above, a hierarchical clustering method can be seen
as an algorithm that takes as input some space with a distance function and
gives as output an ultrametric space. Thus, another natural condition to ask
on a hierarchical clustering method is that applying it to an ultrametric space
we obtain the same ultrametric space.

Definition 3.8We say that T is faithful if given an ultrametric space as input,
then the output is the same ultrametric space (i.e. for any ultrametric space
(X, d), u(x, y) = d(x, y), where TU (X, d) = (X,u)).

It can be readily seen that SL HC is faithful:

Proposition 3.9 If (X, d) is an ultrametric space, then uSL(x, y) = d(x, y)
for every x, y ∈ X.

Proof. By definition, it is clear that uSL(x, y) ≤ d(x, y) for every x, y ∈ X.
Let us see that, if (X, d) is an ultrametric space, then uSL(x, y) ≥

d(x, y). uSL(x, y) = inf{t | there exists a t-chain joining x to y}. Suppose
uSL(x, y) = t and let x = x0, x1, ..., xn = y be a t-chain joining x to
y. By the properties of the ultrametric, d(xi−1, xi+1) ≤ max{d(xi−1, xi),
d(xi, xi+1)} ≤ t for every 1 ≤ i ≤ n − 1. Therefore, d(x, y) ≤ t and
uSL(x, y) ≥ d(x, y).
�

Richness property for HC methods can be defined in the same way
Kleinberg did for standard clustering. Thus, aHC method T is rich if given
a finite set X, for every θ ∈ D(X) there exists a metric dθ on X such that
TD(X, dθ) = θ. Therefore, being faithful immediately implies being rich.

Corollary 3.10 TSL is rich.
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By Proposition 3.9, SL HC is faithful. It is trivial to see that it is
lower-bounded by SL. Also, since property (II) implies being non-expanding
in the inclusion, it follows from Theorem 3.1 that SL is non-expanding in
the inclusion. In fact, these properties give an alternative characterization of
SL HC .

Theorem 3.11 SL HC is the unique hierarchical clustering method which
is faithful, non-expanding in the inclusion and lower-bounded by SL.

Proof. Trivially, being faithful implies property (I). By Proposition 3.7, if a
method T satisfies property (I) and is non-expanding in the inclusion, then
uSL ≥ u. If T is also lower-bounded by SL, then u = uSL. Therefore, T is
equivalent to SL.
�

3.2 Stability of SL

Let us recall the definition of Gromov-Hausdorff distance from Burago,
Burago and Ivanov (2001). See also Gromov (2007).

Let (X, dX ) and (Y, dY ) be two metric spaces. A correspondence
(between A and B) is a subsetR ∈ A×B such that

• ∀ a ∈ A, there exists b ∈ B s.t. (a, b) ∈ R

• ∀ b ∈ B, there exists a ∈ A s.t. (a, b) ∈ R

Let R(A,B) denote the set of all possible correspondences between
A and B.

Let ΓX,Y : X × Y ×X × Y → R
+ given by

(x, y, x′, y′) �→ |dX(x, x′)− dY (y, y
′)|.

Then, the Gromov-Hausdorff distance betweenX and Y is:

dGH(X,Y ) :=
1

2
inf

R∈R(X,Y )
sup

(x,y)(x′,y′)∈R
ΓX,Y (x, y, x

′, y′).

The Gromov-Hausdorff metric gives a notion of distance between
metric spaces. One of the advantages of this metric is that it is well defined
for metric spaces of different cardinality. In Carlsson and Mémoli (2010)
this metric is used to prove that TSL holds some stability under small per-
turbations on the metric. The authors prove that if two metric spaces are
close (in the Gromov-Hausdorff metric) then the corresponding ultrametric
spaces obtained as output of the algorithm are also close. In Martínez-Pérez
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(2015), we studied Gromov-Hausdorff stability of linkage-basedHC meth-
ods defining the following conditions.

Notation: Let (M, dGH) denote the set of finite metric spaces with the
Gromov-Hausdorff metric and (U , dGH) denote the set of finite ultrametric
spaces with the Gromov-Hausdorff metric.

Definition 3.12 A HC method T is semi-stable in the Gromov-Hausdorff
sense if for any sequence of finite metric spaces ((Xk, dk))k∈N in (M, dGH)
such that limk→∞(Xk, dk) = (U, d) ∈ U then limk→∞TU (Xk, dk) =
TU (U, d).

Definition 3.13 AHC method T is stable in the Gromov-Hausdorff sense if

TU : (M, dGH) → (U , dGH)

is continuous.

A hierarchical clustering method is said to be permutation invariant if
it yields the same dendrogram under permutation of the points in the sample,
this is, if the output of the algorithm does not depend on the order by which
the data is introduced. Although this is not the easiest way to check this
property, it may be noticed that being stable in the Gromov-Hausdorff sense
implies being permutation invariant.

The following result is a consequence of Proposition 26 in Carlsson
and Mémoli (2010).

Proposition 3.14 SL HC is stable in the Gromov-Hausdorff sense. In par-
ticular, it is semi-stable and permutation invariant.

4. Basic Properties of SL(α) and SL∗(α)

In this section, we study some basic properties on SL(α) andSL∗(α).
In particular, we check those seen at Section 3.

The following result is clear from the definition.

Proposition 4.1 SL(α) and SL∗(α) are permutation invariant algorithms.

Notation: Let (X, d) be a finite metric space. Let us recall that if there
is no ambiguity on the metric space we denote TSL

D (X, d) = θSL and

TSL
U (X, d) = uSL. Let us denote T

SL(α)
D (X, d) = θα and T

SL(α)
U (X, d) =

uα. Similarly, let TSL∗(α)
D (X, d) = θ∗α and TSL∗(α)

U (X, d) = u∗α.

The following two results state that if α is big enough then the algo-
rithms SL(α) and SL∗(α) respectively, are equivalent to SL.

Proposition 4.2 Let (X, d) be a finite metric space with X = {x1, ..., xn}.
If α ≥ n−2

2 , then θSL = θα.
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Proof. Let TSL
D (X, d) = θSL, T

SL(α)
D (X, d) = θα.

We know that θSL(t0) = θα(t0).
Suppose θSL(ti−1) = θα(ti−1). Let us see that if α ≥ n−2

2 , condition
i already implies ii and the edges of the graph Gti

α are those defined by con-
dition i. Let B1, B2 be two blocks in θα(ti−1) such that min{d(x, y) |x ∈
B1, y ∈ B2} ≤ ti. For any simplexΔ, α·dim(Δ) ≥ α andmin{#(B1),#(B2)} ≤
n
2 . Since α ≥ n−2

2 , α · dim(Δ) ≥ α ≥ min{#(B1) − 1,#(B2) − 1} ≥
min{dim(Fti(B1)), dim(Fti (B2))}. Therefore, θSL(ti) = θα(ti).

Thus, θSL(t) = θα(t) for every t ≥ 0.
�

Proposition 4.3 Let (X, d) be a finite metric space with X = {x1, ..., xn}.
If α ≥ n− 1, then θSL = θ∗α.

Proof. Let TSL
D (X, d) = θSL and TSL∗(α)

D (X, d) = θ∗α.
We know that θSL(t0) = θ∗α(t0).
Suppose θSL(ti−1) = θ∗α(ti−1). As we saw in the proof of Proposition

4.2, since α ≥ n− 1 > n−2
2 , condition i already implies ii and the edges of

the graph Gti
α are those defined by condition i.

Now, let A = {B1, ..., Br} be any connected component of Gti
α .

If the subgraph Hα(A) is not connected, then there are at least three
blocks Bi1 , Bi2 , Bi3 in A, such that 1 ≤ #(Bi1) < 1

α max1≤l≤r{#(Bl)}
and#(Bi2),#(Bi3) ≥ 1

α max1≤l≤r{#(Bl)}. Trivially,max1≤l≤r{#(Bl)} ≤
n− 2. Hence, there is a contradiction since 1 ≤ n−2

α ≤ n−2
n−1 < 1.

Hence, Hα(A) is connected and, as we saw in Remark 2.3, all the
blocks in A are identified. Therefore, θ∗α(ti) = θSL(ti).

Thus, θSL(t) = θ∗α(t) for every t ≥ 0.
�

Proposition 4.4 SL(α) and SL∗(α) are lower-bounded by SL (i.e. uSL ≤
uα and uSL ≤ u∗α) for every α ∈ N.

Proof. As we saw at Remarks 2.2 and 2.4, if two points x, x′ ∈ X belong
to the same block of θα(t) (resp. θ∗α(t)), they belong, in particular, to the
same t-component of X and, therefore, to the same block of θSL(t). Thus,
uSL(x, x

′) ≤ uα(x, x
′) (resp. uSL(x, x′) ≤ u∗α(x, x′)).

�

The following result proves that if the input is an ultrametric space,
then SL(α) and SL∗(α) are equivalent to SL.

Proposition 4.5 If (X, d) is an ultrametric space, then θα = θSL = θ∗α for
every α.
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Proof. By definition, θα(t0) = θSL(t0) = θ∗α(t0). Suppose θα(ti−1) =
θSL(ti−1) = θ∗α(ti−1) = {B1, ..., Bn}. Let us see that θα(ti) = θSL(ti) =
θ∗α(ti).

Let Bi, Bj be such that min{d(x, y) |x ∈ Bi, y ∈ Bj} ≤ ti.
Since Bi, Bj are (ti−1)-components, by the properties of the ultrametric,
d(x, y) ≤ ti for every (x, y) ∈ B1 ×B2.

Therefore, every pair of points inB1∪B2 define a simplex in Fti(B1∪
B2) and condition ii holds for every α. Thus, there is an edge defined be-
tween Bi and Bj . This proves that θα = θSL.

Now, let Bi, Bj be two blocks in the same connected component of
Gti

α . Then, by the properties of the ultrametric, {Bi, Bj} is an edge of Gti
α .

Hence, for any connected component A of Gti
α , Hα(A) is connected and,

by Remark 2.3, θ∗α(ti) is defined by the connected components of Gti
α . This

proves that θ∗α = θSL.
�

Since SL is faithful, it follows from Proposition 4.5 that:

Corollary 4.6 SL(α) and SL∗(α) are faithful.

Corollary 4.7 SL(α) and SL∗(α) are rich.

Notice that SL(α) and SL∗(α) are faithful and lower-bounded by
SL. Since they are different from SL, by Theorem 3.11, it follows that
they are not non-expansive in the inclusion. In the following example from
Martínez-Pérez (2013), we show how including some space in a larger data
set can expand the distance between points in the output applying SL(α).

Example 4.8 Let (X, d) be the graph from Figure 2.
Suppose the edges in N1, N2 have length 1 and the rest have length

3. The distances between vertices are measured as the minimal length of a
path joining them.

Let Z := {x0, y0} and d′(x0, y0) = 3. Let i : (Z, d′) → (X, d) be
the inclusion map. It is immediate to check that applying either SL(α) or
SL∗(α) with α < 3 we obtain ultrametric spaces (Z, uZ), (X,uX ) such
that uZ(x0, y0) < uX(x0, y0).

Ackerman, Ben-David, Branzei and Loker (2012) study clustering in
the weighted setting. A weight function on the data set X is a map w :
X → R

+. The authors analyze the influence of weight functions on different
clustering algorithms. If the weight map w is evaluated in N, it can be
interpreted as the data set having w(x) copies of the point x in the same
location. In this particular case, their work is related to Fisher and Van Ness
(1971) where the authors studied how the duplication of points affected the
output of different clustering algorithms.

134 A. Martínez-Pérez



B1 B2 

3 1 

x0 y0 x0
y0

N1 N2 

x1 

x3 

x2 

y1 

y2 

y3 

Figure 2. SL(α) is not non-expanding in the inclusion.

Linkage-based algorithms can be defined in the weighted setting, as
usual, based on a linkage function. SL and CL work exactly the same way
in the weighted setting since �SL and �CL are not affected by the weight
function. For the case of AL, let w(X) =

∑
x∈X w(x). Then, the average-

linkage linkage function is

�AL(X1,X2, d, w) =
∑

x∈X1,y∈X2

d(x, y) · w(x) · w(y)
w(X1) · w(X2)

.

In Ackerman, Ben-David, Branzei and Loker (2012) the authors con-
sider the property of being weight-robust proving that this condition distin-
guishes betweenAL and CL hierarchical k-clustering. We adapt the defini-
tion to offer an easier and more intuitive exposition of what is being weight-
robust. Our definition implies the one from Ackerman, Ben-David, Branzei
and Loker (2012) without being exactly equivalent. Nevertheless, the results
herein work for both definitions.

Definition 4.9 A hierarchical clustering algorithm T is weight-robust if for
all (X, d) and all weight functions w,w′, T(w[X], d) = T(w′[X], d).

Since �SL and �CL are independent from the weight given to the
points, it is readily seen that SL and CL are weight-robust. See Fisher
and Van Ness (1971). However, as it is proved in Ackerman, Ben-David,
Branzei and Loker (2012), AL is not weight-robust.

Let us see how the definition of SL(α) and SL∗(α) can be extended
to the weighted setting. The distance between blocks is measured using �SL
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which is not affected by the weight. Therefore, we only need to define how
to compute the dimension of the simplices in the Rips Complex. Given a
weight function w : X → R

+, let a simplex [x0, ..., xn] have dimension∑n
i=0 w(xi) − 1. This definition is consistent with considering for each

point x, w(x) copies in the same location.

Proposition 4.10 SL(α) and SL∗(α) are not weight-robust.

Proof. Consider the space (X, d) shown in Figure 2 where every vertex has
weight 1.

Applying SL(α) with α = 1 we obtain a dendrogram θα such that
θα(t) = {{x0}, ..., {x6}, {y0}, ..., {y6}} for every t < 1,
θα(t) = {{x1}, {x2}, {x3}, N1, N2, {y1}, {y2}, {y3}} for every 1 ≤

t < 3, where N1 = {x0, x4, x5, x6} and N2 = {y0, y4, y5, y6}.
θα(t) = {B1, B2} for every 3 ≤ t < 5
θα(t) = X for every 5 ≤ t.
Applying SL∗(α) the same dendrogram is obtained.
Now, suppose we triplicate in (X, d) the points x0, y0, this is, we

consider w(x0) = w(y0) = 3 and w(xi) = 1 = w(yi) for every 1 ≤ i ≤ 6.
Then, let us apply SL(α) on the new space (X, d′).

θα(t) = {{x0}, , ..., {x6}, {y0}, ..., {y6}} for every t < 1,
θα(t) = {{x1}, {x2}, {x3}, N1, N2, {y1}, {y2}, {y3}} for every 1 ≤

t < 3.
Now, for t = 3, notice that the Rips complexes F3(N1), F3(N2) have

dimension 5. Also, there is a complex {x0, y0} in F3(X, d) which intersects
N1 and N2 and has dimension 5. Since α = 1, N1 and N2 are merged.
Thus, θα(t) = X for every 3 ≤ t.

Applying SL∗(α) the same dendrogram is obtained. Therefore, both
methods are not weight-robust.
�

5. Chaining Effect and Stability

In this section we recall, for completeness, the results about chaining
and stability properties of SL(α) and SL∗(α) obtained in Martínez-Pérez
(2013; 2015).

Chaining effect is treated in a somehow imprecise way in the liter-
ature. There are several types of effects which can be included under this
name. SL(α) is defined to treat some particular type of chaining effect
which is the tendency of the algorithm to merge two blocks when the mini-
mal distance between them is small. This is clearly one of the main problems
of SL. In Martínez-Pérez (2013), we defined concrete properties to bound
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the kind of chaining effects we are considering. These properties were being
strongly chaining and being completely chaining which might be undesired
chaining effects in many practical problems.

A HC method is strongly chaining if given two blocks B1, B2 such
that the minimal distance between them is smaller that the minimal ε such
that B1 is ε-connected, then the clustering {B1, B2} does not appear at any
level of the resulting dendrogram.

Roughly speaking, aHC method is completely chaining if given two
blocksB1, B2 such that they are connected by an ε-chain x0, x1, ..., xk with
x0 ∈ B1 and xk ∈ B2 whereB1 is not ε-connected, thenB1 is never a block
in the resulting dendrogram.

Then, we prove that SL is strongly chaining and completely chain-
ing while AL, CL, SL(α) and SL∗(α) are neither strongly chaining nor
completely chaining.

We also define two properties to illustrate the type of chaining effects
that can be avoided using SL(α) and SL(α) respectively. These are being
α-weakly unchaining and α-bridge unchaining.

A method is α-weakly unchaining if it is able to detect the clustering
{B1, B2} where

• B1, B2 are ε-connected,
• there is a single pair of points x0 ∈ B1, y0 ∈ B2 with d(x, y) = t < ε,
• d(x, y) > ε for every (x0, y0) �= (x, y) ∈ B1 ×B2,
• Ft(B1) > α, Ft(B2) > α.

Roughly speaking, a method is α-bridge unchaining if it is able to
detect in X = B1 ∪ {x1, ..., xk−1} ∪B2 the clusters B1, B2 where

• ε is the minimal number such that B1, B2 are ε-connected,
• dim(Fε(B1)), dim(Fε(B2)) > α

• there is an ε-chain x0, ..., xk with x0 ∈ B1, xk ∈ Bk and x2, ..., xk−1 /∈
B1 ∪B2

In particular, being strongly chaining implies that the method is not
weakly unchaining for any α and being completely chaining implies that the
method is not bridge unchaining for any α.

In Martínez-Pérez (2013), we proved that SL(α) and SL∗(α) are α-
weakly unchaining (and SL, CL, AL are not). We also proved that SL∗(α)
is α-bridge unchaining (and SL, CL, AL, SL(α) are not).

In Martínez-Pérez (2015), we studied the stability of linkage-based
hierarchical clustering algorithms. We used Gromov-Hausdorff metric to
define stability as in Carlsson and Mémoli (2010). In particular, we defined
a method to be stable if for every pair of finite data sets which are close in
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the Gromov-Hausdorff distance, then the ultrametric spaces obtained in the
output are still close in the same metric (this is, the algorithm is continuous
as a functor from data sets to ultrametric spaces). We defined a method to
be semi-stable if given a sequence of finite data sets which is convergent to
an ultrametric space in the Gromov-Hausdorff metric then the ultrametric
spaces obtained in the output also converge to the output obtained from the
ultrametric space.

We proved that SL(α) is semi-stable in the Gromov-Hausdorff sense.
Unfortunately, most of the good stability properties of SL do not hold.
SL(α) and SL∗(α) are not stable in the Gromov-Hausdorff sense. Also,
it is not difficult to check that SL∗(α) is not semi-stable in the Gromov-
Hausdorff sense.

To complete the results of Table 1 let us recall that SL, CL and
AL are permutation invariant, see Carlsson and Mémoli (2010); SL, CL
are weight-robust and AL is not weight-robust, see Ackerman, Ben-David,
Branzei and Loker (2012); SL, AL and CL are faithful, see Martínez-Pérez
(2015). Richness can be obtained as an immediate consequence of being
faithful.

6. Conclusions

We prove that SL(α) and SL∗(α) are faithful (i.e. the algorithm
leaves ultrametric spaces invariant), lower-bounded by SL (i.e. if the dis-
tance between two points in the output is ε, then there is a ε-chain between
them in the input), permutation invariant (i.e. the output of the algorithm
does not depend on the order by which the data is introduced) and rich (i.e.
given a data set, for every possible output, there is a metric in the input such
that the application of the algorithm yields that output).

These properties are satisfied by many algorithms, SL, CL and AL
among them. In the spirit of Kleinberg impossibility result we may con-
sider being faithful, lower-bounded by SL, permutation invariant and rich,
as basic desirable conditions for any hierarchical clustering algorithm.

We prove that SL is the only hierarchical clustering algorithm which
is simultaneously faithful, lower-bounded by SL and non-expanding in the
inclusion. In particular, the last property is not satisfied by the algorithms
defined to treat the chaining effects: SL(α) and SL∗(α). This means that
if we are analyzing only a subset of the data set, which may be practical if
the whole data set is too big to compute, using SL, the distance between the
points in the output is greater or equal than the distance that would result
from applying the algorithm to the whole data set. Applying any other algo-
rithm, this can not be assured. Typically, the distance between the points in
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the output when only a subspace is considered may result either smaller or
greater applying any other algorithm.This is the case with CL, AL, SL(α)
or SL∗(α).

We also proved that SL(α) and SL∗(α) are not weight-robust. There-
fore, in both cases assigning weights to the points may have a deep influence
in the output of the algorithm. This is also the case applying AL but not if
we are using SL or CL.

The chaining and unchaining properties of these methods were stud-
ied in Martínez-Pérez (2013). The stability properties of linkage-basedmeth-
ods were analyzed in Martínez-Pérez (2015). The main results from those
papers together with the results obtained herein are summarized in Table 1.
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