
Journal of Classification 3 (2015)
DOI: 10.1007/s00357-

Discriminant Analysis of Interval Data: An Assessment
of Parametric and Distance-Based Approaches

A. Pedro Duarte Silva
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Abstract: Building on probabilistic models for interval-valued variables, paramet-
ric classification rules, based on Normal or Skew-Normal distributions, are derived
for interval data. The performance of such rules is then compared with distance-
based methods previously investigated. The results show that Gaussian parametric
approaches outperform Skew-Normal parametric and distance-based ones in most
conditions analyzed. In particular, with heterocedastic data a quadratic Gaussian rule
always performs best. Moreover, restricted cases of the variance-covariance matrix
lead to parsimonious rules which for small training samples in heterocedastic prob-
lems can outperform unrestricted quadratic rules, even in some cases where the model
assumed by these rules is not true. These restrictions take into account the particu-
lar nature of interval data, where observations are defined by both MidPoints and
Ranges, which may or may not be correlated. Under homocedastic conditions linear
Gaussian rules are often the best rules, but distance-based methods may perform bet-
ter in very specific conditions.
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1. Introduction

In multivariate data analysis often each observation contains some in-
trinsic variability. This is the case when analyzing a group rather than a
single individual, where within group variability should not be overlooked,
but taken into account, to avoid an important loss of information. Consider,
for instance, that we are interested in analyzing basketball teams, in terms
of age, height, points scored and nationality of players. If we just take av-
erages or mode values, much information is lost; in such case, the range or
even the distribution of the players’ values in each team is of utmost im-
portance. Also, when we observe a variable along time and wish to record
the set of observed values rather than just a specific one (e.g., mean, max-
imum), then again a set rather than a single value must be recorded. The
same issue arises when analyzing concepts instead of single specimen – a
tree species and not the specific tree in our garden; an accident scenario,
and not the particular accident we have witnessed. Therefore, restrictive
summarizations, e.g., by means, medians or modes, to impose a fit to the
classical representation structure should be avoided. Symbolic Data Anal-
ysis (see, e.g., Bock and Diday 2000; Billard and Diday 2003; Diday and
Noirhomme-Fraiture 2008; Noirhomme-Fraiture and Brito 2011) provides a
framework where variability may explicitly be taken into account in the data
representation and analysis. To this aim, new variable types have been in-
troduced, whose realizations are no longer single real or categorical values,
as in the classical case, but finite sets, intervals or distributions on an under-
lying set. To this day, many methods for symbolic data have been developed
(see Noirhomme-Fraiture and Brito 2011); however, most of those methods
rely on exploratory non-parametric approaches.

In this paper, we are interested in the discriminant analysis of interval
data, i.e., where elements are characterized by variables whose values are
intervals on IR. Interval data may occur in many different situations. When
describing ranges of variable values – for example, daily stock prices or
temperature ranges – we obtain native interval data; in the aggregation of
huge data bases, when real values describe the individual observations we
obtain intervals for the description of the aggregated data.

Discriminant analysis of interval data has been investigated in dif-
ferent contexts. Ishibuchi, Tanaka and Noriko Fukuoka (1990) determine
interval representations in a discriminant space for such data, using a mathe-
matical programming formulation. The proposedmethod is then applied to a
chemical sensing problem. Jahanshahlooa, Lotfib, Balfc, and Rezaid (2007)
rely on mathematical programming and goal programming to develop a data
envelopment analysis-discriminant analysis methodology designed for in-
terval data. In Nivlet, Fournier, and Royer (2001), and Utkin and Coolen
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(2011), discriminant analysis of interval data is developed based on impre-
cise probability theory. In Lauro, Verde, and Palumbo (2000), a generaliza-
tion of classical Factorial Discriminant Analysis to symbolic data (see, for
instance, Noirhomme-Fraiture, and Brito 2011) is proposed. This method is
based on a numerical analysis of the transformed symbolic data, followed
by a symbolic interpretation of the results; it allows considering numerical,
qualitative nominal or distribution-valued variables; classification rules are
then based on proximities in the factorial plane (see also Lauro, Verde, and
Irpino 2008). This method is available in the Symbolic Data Analysis soft-
ware package SODAS. Bayesian decision trees for the case when predictors
are interval variables are presented in Rasson, Pirçon, Lallemand, and Adans
(2008). Discriminant analysis of interval data has also been addressed us-
ing Support Vector Machines (Do and Poulet 2005; Carrizosa, Gordillo, and
Plastria 2007; Angulo, Anguita, and González 2007), as well as Artificial
Neural Networks, see Sı́ma (1995), Simoff (1996), Beheshti, Berrached, de
Korvin, Hu, and Sirasaengtaksin (1998) and Rossi and Conan (2002). Ap-
pice, D’Amato, Espositio and Malerba (2006) study the performance of the
k-nearest neighbor method for different types of data and using different
distance measures.

Distance-based approaches to linear discriminant analysis of interval
data are discussed in Duarte Silva and Brito (2006). These approaches rely
on representations of interval data which are used in Symbolic Data Analysis
for different methodologies; they lead to representations in the discriminant
space in the form of intervals or single points, from which distance-based
allocation rules are derived. In Brito and Duarte Silva (2012), a parametric
modelling for interval data, assuming multivariate Normal or Skew-Normal
distributions for the MidPoints and Log-Ranges of the interval variables, is
proposed. The intrinsic nature of the interval variables may lead to special
structures of the variance-covariance matrix, represented by five different
possible cases. From these models parametric classification rules may be
derived. This approach is implemented in an R-package, MAINT.DATA,
which also includes maximum likelihood estimation and statistical tests for
the different considered cases.1

This paper evaluates the relative performance of different classifica-
tion rules in the discriminant analysis of interval-valued data, focusing on
the classification performance. We note that many proposals for the discrim-
inant analysis in the context of interval data have a dual objective of both
obtaining a symbolic representation in a discriminant space and classifying
new elements with unknown origin. While both those goals are certainly
worthwhile here we are only concerned with comparison of classification

1. MAINT.DATA is available at the CRAN repository.
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accuracy for different methods (under varying data conditions), which may
be the most important goal in many applications.

The remainder of the paper is organized as follows. Section 2 briefly
introduces interval data, and its representations, and proceeds presenting
different methods for discriminant analysis of interval data. In Section 3,
an application of different methods to real data, on interval quarterly tem-
peratures registered in chinese metereological stations, is presented and dis-
cussed. Section 4 reports a simulation study designed to compare the perfor-
mance of distance and parametric based approaches under different setups.
Finally, Section 5 discusses the results and draws some conclusions.

2. Discriminant Methods for Interval Data

2.1 Interval Data

Let S = {s1, . . . ,sn} be the set of n entities under analysis. An interval
variable is defined by an application

Y : S → T such that si → Y (si) = [li,ui],

where T is the set of intervals of an underlying set O ⊆ IR. Let I be an n× p
matrix containing the values of p interval variables on S. Each si ∈ S is hence
represented by a p-dimensional vector of intervals, Ii = (Ii1, . . . , Iip), i =
1, . . . ,n, with Ii j = [li j,ui j], j = 1, . . . , p (see Table 1).

The value of an interval variable Yj for each si ∈ S is defined by the
lower and upper bounds li j and ui j of Ii j = Yj(si). For modelling purposes,
however, an alternative parametrization consisting in representing Yj(si) by

the MidPoint ci j =
li j +ui j

2
and Range ri j = ui j − li j of Ii j may be useful.

To extend linear classical discriminant analysis to the case of interval
data, appropriate definitions of linear combinations, dispersion and associ-
ation measures must be established. However, as discussed in Duarte Silva
and Brito (2006), there is no unequivocal manner of defining these concepts
and not all choices satisfy usual properties.

Let Z = I
⊗

β be r appropriately defined linear combinations of I
based on p× r real coefficients β j�.

Definitions of linear combinations, dispersion and association mea-
sures ideally should satisfy the following properties, for any p× r real ma-
trix β :

P1: Ii
⊗

β� =
p

∑
j=1

β j�× Ii j where β� denotes the �-th column of matrix β

and
P2: SI

⊗
β = β tSIβ , i.e., the covariance between interval variables should be

a symmetric bilinear operator.
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Table 1. Matrix I of interval data

Y1 . . . Yj . . . Yp

s1 [l11,u11] . . . [l1 j,u1 j] . . . [l1p,u1p]
. . . . . . . . . . . .
si [li1,ui1] . . . [li j,ui j] . . . [lip,uip]
. . . . . . . . . . . .
sn [ln1,un1] . . . [ln j,un j] . . . [lnp,unp]

In Duarte Silva and Brito (2006) two distinct definitions of linear
combinations are considered:

LC1 : Ii
⊗

A β� = zi�A = [zi�A,zi�A], i = 1, . . . ,n, with⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zi�A =
p

∑
j=1

β j� li j

zi�A =
p

∑
j=1

β j� ui j .

It is clear that while LC1 satisfies property P2, it does not satisfy prop-
erty P1 if at least one element of β� is negative.

On the other hand, the following alternative definition of linear com-
bination of interval variables always respects P1, and respects P2 for suitable
definitions of dispersion and association measures:

LC2 : Ii
⊗

B β� = zi�B = [zi�B,zi�B], i = 1, . . . ,n, with⎧⎪⎪⎨
⎪⎪⎩

zi�B = ∑
β j�>0

β j� li j + ∑
β j�<0

β j� ui j

zi�B = ∑
β j�>0

β j� ui j + ∑
β j�<0

β j� li j .

Note that LC2 is the definition that results from applying the rules
of Interval Calculus (Moore 1966), since the resulting intervals include all
possible values that are scalar linear combinations of the values within the
intervals Ii j.

2.2 Distance-Based Approaches

In Duarte Silva and Brito (2006), three different approaches for dis-
criminant analysis of interval data are compared. The first approach as-
sumes an Uniform distribution in each observed interval (as in Bertrand and

520 A.P. Duarte Silva and P. Brito



Goupil 2000), derives the corresponding measures of dispersion and asso-
ciation, and appropriately defines linear combinations of interval variables
that maximize the usual discriminant criterion; a second approach expands
the original data set into the set of all interval description vertices (following
Chouakria, Cazes, and Diday 2000), and proceeds with a classical analysis
of the expanded set; finally, a third approach is based on the parametrization
of each interval by its MidPoint and Range (as do Lauro and Palumbo 2005
and Neto and De Carvalho 2008). Representations in the discriminant space
may then take the form of intervals or single points from which distance-
based allocation rules are derived.

The first considered approach assumes that each interval variable rep-
resents the possible values of an underlying real-valued variable; follow-
ing Bertrand and Goupil (2000) an equidistribution hypothesis is assumed,
which consists in considering that the values of the underlying variable are
uniformly distributed; the empirical distribution function of an interval vari-
able is then defined as a uniform mixture of n uniform distributions.

If the n observations are partitioned into k groups,C1, . . . ,Ck, then the
global empirical density functions are mixtures of the corresponding group
specific functions. The global variance and covariance can be decomposed
in a within group component and a between group component, W and B
respectively. Variances and covariances obtained from these matrices satisfy
property P2.

As in the classical case, the discriminant functions coefficients are
given by the eigenvectors of W−1B. Single point representations on a dis-
criminant space are obtained directly, interval representations may be deter-
mined by an appropriate linear combination of the lower and upper bounds
(see Section 2.1 above).

An alternative approach is investigated, which consists of considering
all the vertices of the hypercube representing each of the n entities in the p-
dimensional space, and then perform a classical discriminant analysis of the
resulting n×2p by p matrix, following Chouakria, Cazes, and Diday (2000)
for Principal Component Analysis.

A new matrix of single real values M is created from the interval data
matrix I (see Table 1), where to each row i of I correspond 2p rows of M,
obtained by all possible combinations of the limits of intervals [li j,ui j], j =
1, . . . , p.

A classical discriminant analysis on matrix M then leads to a facto-
rial representation of points, one for each of the 2p vertices, from which
an interval representation may be obtained: let Qi be the set of row indices
q in matrix M which refer to the vertices of the hypercube corresponding
to si; for q ∈ Qi let ζq� be the value of the �-th real-valued discriminant
function for the vertex with row index q; the value of the �-th interval dis-
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criminant variate z for si is then defined by zi� = Min {ζq�,q ∈ Qi} and
zi� = Max {ζq�,q ∈ Qi}.

The third explored approach uses the representation of each observed
interval by its MidPoint and Range, as in Neto and De Carvalho (2008) and
Neto and De Carvalho (2010) for Regression Analysis, and Lauro, Verde
and Palumbo (2000) for Principal Component Analysis. Two separate clas-
sical discriminant analysis on these values are then performed and the results
combined in some appropriate way; alternatively MidPoints and Ranges
may also be considered conjointly.

In all three approaches allocation rules are based on point distances
or distances between intervals, according to whether the representations on
the discriminant space assume the form of single points or intervals.

For the first considered approach, a natural rule based on point dis-
tances consists in allocating each observation to the group with nearest cen-
troı̈d in the discriminant space, using the Euclidean distance and correcting
for distinct prior probabilities and/or misclassification costs.

Alternatively, linear combinations of the interval variables may be
determined, leading to interval-valued discriminant variates, in which case
allocation rules may be derived by using distances between interval vectors.

In the vertices approach, discriminant variates are interval-valued, so
this same type of allocation rule is applied.

For the MidPoints and Ranges approach, only point distances are used
to define allocation rules. When two separate analysis are performed for
MidPoints and Ranges, the discriminant variates are generally correlated,
and the Mahalanobis distance should be used; when a single discriminant
analysis is performed for bothMidPoints and Ranges, the Euclidean distance
is adequate.

2.3 Parametric Modelling of Interval Data

Consider each interval Ii j represented by its MidPoint ci j and Range
ri j. The Gaussian model (see Brito and Duarte Silva 2012) consists in as-
suming a multivariate Normal distribution for MidPoints C and the logs of
the Ranges R, R∗ = ln(R),(C,R∗) ∼ N2p(μ ,Σ), with μ =

[
μ t

C μ t
R∗
]t

and

Σ =

(
ΣCC ΣCR∗
ΣR∗C ΣR∗R∗

)
where μC and μR∗ are p-dimensional column vec-

tors of the mean values of, respectively, the MidPoints and Log-Ranges,
and ΣCC,ΣCR∗ ,ΣR∗C and ΣR∗R∗ are p× p matrices with their variances and
covariances.

We denote Xi =
[
Ct

i R∗
i

t]t
the 2p dimensional column vector compris-

ing all the MidPoints and Log-Ranges for si, i = 1, . . . ,n.
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This model has the advantage that it allows for a straightforward ap-
plication of classical inference methods. It is important to keep in mind,
however, that the MidPoint ci j and the Range ri j of the value of an inter-
val variable Ii j = Yj(si) are two quantities related to the same variable, and
must therefore be considered together. It follows that the global covariance
matrix should take into account the link that may exist between MidPoints
and Log-Ranges of the same or different variables. Intermediate parameteri-
zations between the non-restricted and the non-correlation setup considered
for real-valued data are relevant for the specific case of interval data.

The most general formulation allows for non-zero correlations among
all MidPoints and Log-Ranges (Case 1); in another setup, interval variables
Yj are uncorrelated, but for each variable, the MidPoint may be correlated
with its Range (Case 2); a third situation allows for MidPoints (respectively,
Ranges) of different variables to be correlated, but no correlation between
MidPoints and Ranges is allowed (Case 3); finally, all MidPoints and Ranges
are uncorrelated, both among themselves and between each other (Case 4).
In a full complete setup, another case could still be considered, namely, al-
lowing for non-null correlation between the MidPoint of each variable and
its Log-Range, but not betweenMidPoints and Log-Ranges of different vari-
ables. This case appears to be less natural, and leads to considerable com-
putational complexity, and will therefore not be considered in the present
investigation. Table 2 summarizes the different cases considered in this pa-
per.

It should be remarked that in cases 2, 3 and 4, Σ can be written as
a diagonal by blocks matrix, after a possible rearrangement of rows and
columns. It follows that maximum likelihood estimates under these cases
can be obtained directly from the classical non-restricted estimates. Test-
ing for the different models/configurations can be done in a straightforward
manner, using the likelihood-ratio approach.

The Gaussian model has many advantages, which explains its gen-
eralized applicability in multivariate data analysis; in particular, it allows
for a direct modelling of the covariance structure between the variables.
Nevertheless it does present some limitations, namely the fact that it im-
poses a symmetrical distribution on the MidPoints and a specific relation be-
tween mean, variance and skewness for the Ranges. A more general model
that overcomes these limitations may be obtained by considering the family
of Skew-Normal distributions (see, for instance, Azzalini and Dalla Valle
1996). The Skew-Normal generalizes the Gaussian distribution by intro-
ducing an additional shape parameter, while trying to preserve some of its
mathematical properties.

A random vector X is said to follow a 2p-multivariate Skew-Normal
distribution (see Azzalini and Capitanio 1999) if its density is given by
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Table 2. Different cases for the variance-covariance matrix

Case Characterization Σ

1 Non-restricted Non-restricted
2 Yj’s non correlated ΣCC,ΣCR∗ = ΣR∗C,

ΣR∗R∗ all diagonal
3 C’s non-correlated with R∗’s ΣCR∗ = ΣR∗C = 0
4 All C’s and R∗’s are non-correlated Σ diagonal

f (x;α ,ξ ,Ω) = 2φ2p(x−ξ ;Ω)Φ2p(α tω−1(x−ξ )),x ∈ IR2p, (1)

where ξ andα are 2p-dimensional vectors, Ω is a symmetric 2p×2p positive-
definite matrix, ω is a diagonal matrix formed by the square-roots of the
diagonal elements of Ω and φ2p,Φ2p are, respectively, the density and the
distribution function of a 2p-dimensional standard Gaussian vector.

As an alternative to the Normal model, it may be considered that
(C,R∗) follow jointly a 2p-multivariate Skew-Normal distribution. Notice
that the Skew-Normal model encompassesmixed models with marginal Nor-
mal random variables, for which the corresponding shape parameter is null.

In the Gaussian model, for each case, an estimate of the optimum
classification rule can be obtained by direct generalization of the classical
linear (2) and quadratic (3) discriminant classification rules,

Y = argmaxg(μ̂g
t Σ̂−1X − 1

2
μ̂g

t Σ̂−1μ̂g + log π̂g), (2)

Y = argmaxg(−1
2

Xt Σ̂g
−1

X (3)

+μ̂g
t Σ̂g

−1
X + log π̂g − 1

2
(log detΣ̂g + μ̂g

t Σ̂g
−1μ̂g)),

whereY ∈ 1, ...,k denotes the group assignments, g is a group index, μ̂g, Σ̂, Σ̂g

and π̂g are the maximum likelihood estimates of μg,Σ,Σg for the correspond-
ing cases, and πg are the prior probabilities of group membership.

For the Skew-Normal model, different alternatives may be consid-
ered. In particular, we consider a Location model in which the groups differ
only in terms of the location parameter ξ , and a General Model, where the
groups differ in terms of all parameters. The corresponding classification
rules are, respectively,

Y = argmaxg(ξ̂g
t
Ω̂−1X − 1

2
ξ̂g

t
Ω̂−1ξ̂g + log π̂g +ζ0(α̂ tω̂−1(X − ξ̂g))), (4)
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Table 3. China temperatures interval data

Station Region Q1 Q2 Q3 Q4

Beijing-1974 North [−9.5,10.6] [6.5,29.8] [12.6,29.6] [−10.44,9.06]
Beijing-1975 North [−8.6,12.9] [7.9,30.2] [15.0,31.6] [−7.0,19.2]

. . . . . . . . . . . . . . . . . .
ZhangYe-1988 Northwest [−15.4,7.2] [2.3,26.4] [8.6,30.2] [−12.0,15.1]

Y = argmaxg(−1
2

XtΩ̂g
−1

X + ξ̂g
t
Ω̂g

−1
X + log π̂g −

1
2
(log det Ω̂g + ξ̂g

t
Ω̂g

−1ξ̂g)+ζ0(α̂g
tω̂g

−1(X − ξ̂g))), (5)

where ξ̂g,Ω̂,Ω̂g, α̂ , α̂g are maximum likelihood estimates and ζ0(w) =
ln(2Φ(w)).

3. Application: China Temperatures Data

This data set gathers temperatures measured in meteorological sta-
tions in China. The analysis is based on data consisting of the intervals of
observed temperatures (Celsius scale) in each of the four quarters, Q1 to Q4,
of the years 1974 to 1988 in 60 stations. Table 3 reproduces the original
data for some stations and years. The full table comprises n = 60× 15− 1
outlier2 = 899 rows and 4 columns.

The 60 meteorological stations belong to 6 different regions in China
(North, Northwest, Northeast, East, South Central, Southwest), which define
a partition of the 899 stations-year combinations. Figure 1 depicts the 60
stations according to the defined partition. To control for possible temporal
auto-correlation, the global yearly average temperature was subtracted to the
corresponding original values.

On a preliminary analysis to assess deviations from normality, Q-Q
plots did not reveal any strong deviations, although for a few variables and
classes Normality was rejected by the Kolmogorov-Smirnov test (which is
to be expected given the large sample sizes).

Twenty five different discriminant methods are applied and their re-
sults compared, namely: nine distance-based approaches – classical linear
discriminant analysis based on the intervals’ MidPoints only, with alloca-
tion defined by Euclidean point-distances; linear discriminant analysis us-
ing MidPoints and Ranges separately, with allocation defined by Maha-
lanobis point-distances, and using MidPoints and Ranges simultaneously,

2. The outlier is YinChuan in 1982, where a value of −999.99◦C is reported in July
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Figure 1. The 60 metereological stations, according to region.

with allocation defined by Euclidean point-distances; uniformity-based LC1,
uniformity-based LC2, Vertices method and Factorial Discriminant Analy-
sis (FCA) (our implementation, following Lauro, Verde, and Irpino 2008),
all with allocation rules using Hausdorff interval distances, for FCA, ver-
sions with single, average and complete linkage are considered; and sixteen
parametric-based approaches, eight using the Gaussian model – Linear and
Quadratic Discriminant Analysis, and eight using Skew-Normal Discrimi-
nant Analysis – Location and General model – always considering cases 1
to 4 for the variance-covariance matrix (see Table 2). Table 4 presents the
cross-validation estimates (ten-fold cross-validation replicated 20 times) of
the error-rates for the first six distance-based methods; Table 5 for the FCA
method, Tables 6 to 9 present the cross validation estimates of the error-rates
for the parametric methods and the four different covariance structure cases,
Linear and Quadratic Discriminant Analysis for the Gaussian model (Tables
6 and 7, respectively), and Skew-Normal Discriminant Analysis – Location
and General models (Tables 8 and 9, respectively).
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Table 4. China data: Error-rates (cross-validation) for distance-based methods

Region MidPoints Unif. Unif. Vertices Mid. Rng. Mid. Rng.
Point dist. LC1 LC2 Sep. Simul.

North 0.9882 0.0370 0.0583 0.0883 0.5724 0.5684
Northeast 0.1927 0.2220 0.2226 0.2222 0.1108 0.1135
Northwest 0.2558 0.9176 0.8741 0.7523 0.3191 0.3161

East 0.1750 0.2142 0.1740 0.2686 0.1453 0.1439
South Central 0.5667 0.5000 0.5000 0.5000 0.5471 0.5521
Southwest 0.4143 0.6670 0.6740 0.5893 0.4673 0.4650
GLOBAL 0.3551 0.4661 0.4496 0.4354 0.3206 0.3200

Table 5. China data: Error-rates (cross-validation) for the FDA method

Region Single linkage Average linkage Complete linkage

North 0.8661 0.4227 0.0148
Northeast 0.4717 0.5338 0.9702
Northwest 0.5433 0.6168 0.9935

East 0.6572 0.8165 0.9700
South Central 0.8233 0.8875 0.8367
Southwest 0.5890 0.8020 0.9233
GLOBAL 0.6330 0.7050 0.8699

Table 6. China data: Error-rates (cross-validation) for the Gaussian parametric methods:
Linear Discriminant Analysis

Region LDA C1 LDA C2 LDA C3 LDA C4

North 0.5989 0.7204 0.6456 0.8637
Northeast 0.1248 0.2219 0.1577 0.2219
Northwest 0.2998 0.2799 0.2854 0.2284

East 0.1532 0.2446 0.1875 0.2340
South Central 0.5483 0.5000 0.5429 0.5000
Southwest 0.4570 0.6147 0.4873 0.6330
GLOBAL 0.3213 0.3844 0.3398 0.3857

As is usually the case, estimates of the error rates differ from group
to group; in particular, the East and Northeast regions are in general bet-
ter identified than the remaining ones. In terms of global error rates, in
general, parametric methods perform better than distance-based ones, Gaus-
sian Quadratic Discriminant Analysis better than Gaussian Linear Discrimi-
nant Analysis and General Skew-Normal Model better than Location Skew-
Normal Model. More general models give best results, which was to be
expected given the large sample size. Nevertheless, the shape parameters
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Table 7. China data: Error-rates (cross-validation) for the Gaussian parametric methods:
Quadratic Discriminant Analysis

Region QDA C1 QDA C2 QDA C3 QDA C4

North 0.3371 0.3540 0.2638 0.3189
Northeast 0.1025 0.1926 0.1565 0.2221
Northwest 0.3203 0.3486 0.3688 0.3451

East 0.1079 0.2116 0.1585 0.2126
South Central 0.4463 0.5079 0.5000 0.5000
Southwest 0.2543 0.5310 0.3333 0.6263
GLOBAL 0.2414 0.3430 0.2814 0.3589

Table 8. China data: Error-rates (cross-validation) for the Skew-Normal Discriminant
Analysis: Location Model

Region SKLM C1 SKLM C2 SKLM C3 SKLM C4

North 0.8114 0.7135 0.6504 0.8952
Northeast 0.1058 0.2221 0.1521 0.2221
Northwest 0.2629 0.2789 0.2886 0.2214

East 0.1410 0.2470 0.1918 0.2484
South Central 0.5367 0.5008 0.5504 0.5000
Southwest 0.4507 0.6150 0.4880 0.6087
GLOBAL 0.3222 0.3844 0.3424 0.3862

Table 9. China data: Error-rates (cross-validation) for the Skew-Normal Discriminant
Analysis: General Model

Region SKGM C1 SKGM C2 SKGM C3 SKGM C4

North 0.3121 0.3387 0.2574 0.3543
Northeast 0.1202 0.1684 0.1508 0.2291
Northwest 0.3059 0.3576 0.3771 0.3028

East 0.1000 0.2071 0.1581 0.2164
South Central 0.4621 0.5050 0.4738 0.5021
Southwest 0.2577 0.5107 0.3187 0.5720
GLOBAL 0.2397 0.3352 0.2816 0.3459

introduced by the Skew-Normal Model made almost no difference in clas-
sification results. Also, methods using interval distances in the discriminant
space, i.e. the LC1, LC2, the Vertices method and FCA perform poorly, tend-
ing to classify too many stations in one given region (varying from method
to method). Point distance approaches using MidPoints and Ranges provide
results comparable to those of Linear Discriminant Analysis.
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4. Simulation

To better understand the factors affecting the relative performance of
the methods under comparison, we performed a controlled simulation exper-
iment. We considered a full factorial design for problems with two groups,
three interval variables, and the following seven factors:

Classification method (CM – 22 levels): the 6 distance-based considered in
Duarte Silva and Brito (2006), and the 16 parametric methods under
comparison.

Data Generating Process (DGP – 2 levels): MidPoints generated by trans-
formations using Gaussian and Skew-Normal variables.

Separation (Sep - 2 levels): the Mahalanobis distance between group cen-
trois set at 1.0 (poorly separated groups) and 3.0 (well separeted groups).

Range heterogeneity (RHet - 2 levels): In one level (homogeneous Ranges)
the Log-Ranges had the same distribution across groups, and in the
other one (heterogeneous Ranges) the groups differed in terms of both
the MidPoint and Log-Range distributions.

Training sample size (TSS - 4 levels): Total number of training sample
observations, set at 30, 60, 100 and 150.

Variance ratios (VR - 2 levels): Ratio between the variances associated
with different distributions across groups. Set at 1 (homocedastic
problems) and 9 (heterocedastic problems).

True case (TConf - 4 levels): case of true covariance of the within-group
distributions of MidPoints and Log-Ranges. Set at the levels 1 (un-
restricted), 2 (Uncorrelated Interval Variables), 3 (MidPoints uncorre-
lated with Log-Ranges) and 4 (all MidPoints and Log-Ranges uncor-
related with each other).

For each data condition, defined by a combination of factors DGP,
Sep, TSS, RHet, VR and TConf, we generated 100 independent balanced
training samples, used them to establish the empirical rules, and evaluated
these rules on one balanced validation sample with 1000 observations, inde-
pendently generated.

Each observation was defined from p independent Gaussian or Skew-
Normal (X ) and p independent Uniform variates (U) where the means in the
first group were set to zero and the means in the second group ensured the
desired level of Mahalanobis distance. In the Skew-Normal case, one of the
MidPoint variables has Fisher’s skewness coefficient set to 0.75, for the re-
maining variables this coefficient is null. We note that for multivariate Skew-
Normal distributions, the admissible domain of the parameters is somehow
restricted, in particular not allowing for high skewness in many variables
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(Arellano-Valle and Azzalini 2008). We chose to concentrate skewness on
one variable, to maximize the deviation from the Gaussian model. In the
case of heterocedastic problems we used the average covariance matrix to
find the required Mahalanobis distances.

For Case 4, the X variables define the intervals’ MidPoints, and the
U variables the Log-Ranges. For Case 1, MidPoints (MP) and Log-Ranges
(LR) were defined through the transformations MP = [L1|L2] [XtUt ]t , LR =
L3 Ut , where [L1|L2] and L3 are orthonomal matrices of independently
generated Uniform loadings. For Case 2, MP and LR were generated in
the same way, but placing all required zeros in matrix L2 to ensure that
only MidPoints and Log-Ranges of the same interval variables had non-null
correlations. Finallly, for Case 3 they were defined through MP = L1 Xt ,
LR = L3 Ut . Notice that none of these models coincides with the models
adjusted to the data by the parametric classification rules.

Table 10 presents, for each data condition, the method with lowest
estimated expected error rate; those indicated in bold perform better than all
other methods by more than one percentage point. Tables 11 and 12 gather
the corresponding estimated error rates and standard errors. We note that
the methods in bold have always error estimates lower than the second best
method by more than both 0.01 and two standard errors. Complete tables
with average validation sample misclassification rates are available from the
authors upon request.

As expected, the average error rates for heterocedastic cases are al-
ways lower than the corresponding values for the homocedastic values, the
differences being particularly striking when the group centroids are badly
separated – which may be explained by the fact that in the former case dif-
ferences in variances-covariances also contribute to the separation between
the groups.

The relative standings of the different methods may be summarized
as follows:

1. Heterocedastic conditions: Some of the most interesting results occur
for heretocedastic conditions. Under these conditions, one parametric
Gaussian quadratic rule always performs the best while linear rules
and distance-based methods perform poorly. Remarkably, for small
training samples, the best results are often achieved by a model with
a more restricted case than the true generating process. In particular,
under Case 1, for samples with 30 or 60 observations, the quadratic
Gaussian rule based on Case 3 (MidPoints uncorrelated with Log-
Ranges) performs the best in all but one data condition. More general
quadratic rules work well for large samples but can be disappointing
in small samples. Figure 2 illustrates this behavior. Furthermore, the
parametric Gaussian quadratic rules usually perform better than the
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Table 10. Best methods by data condition (in bold if all other methods present average error
rates larger by more than 0.01).

Gaussian Skew-Normal
Homocedastic ; Equal Ranges ; Good Separation

30 60 100 150 30 60 100 150
C1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1
C2 ldaC2 ldaC2 ldaC2 ldaC2 ldaC2 ldaC2 qdaC2 ldaC2
C3 ldaC4 ldaC4 Vrt LocC3 CP CP CP ldaC3
C4 Vrt ldaC4 Vrt Vrt Vrt ldaC4 Vrt LocC4

Heterocedastic ; Equal Ranges ; Good Separation
30 60 100 150 30 60 100 150

C1 qdaC3 qdaC1 qdaC1 qdaC1 qdaC3 qdaC3 qdaC1 qdaC1
C2 qdaC2 qdaC2 qdaC2 qdaC2 qdaC2 qdaC2 qdaC2 qdaC2
C3 qdaC4 qdaC3 qdaC3 qdaC3 qdaC3 qdaC3 qdaC3 qdaC3
C4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4

Homocedastic ; Different Ranges ; Good Separation
30 60 100 150 30 60 100 150

C1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1
C2 ldaC2 ldaC2 ldaC2 ldaC2 ldaC2 ldaC2 ldaC2 ldaC2
C3 ldaC3 ldaC3 ldaC3 ldaC3 ldaC3 qdaC3 qdaC3 ldaC3
C4 ldaC4 ldaC4 ldaC4 ldaC4 ldaC4 ldaC4 ldaC4 ldaC4

Heterocedastic ; Different Ranges ; Good Separation
30 60 100 150 30 60 100 150

C1 qdaC3 qdaC3 qdaC1 qdaC1 qdaC3 qdaC3 qdaC1 qdaC1
C2 qdaC2 qdaC2 qdaC2 qdaC2 qdaC2 qdaC2 qdaC2 qdaC2
C3 qdaC3 qdaC3 qdaC3 qdaC3 qdaC3 qdaC3 qdaC3 qdaC3
C4 qdaC4 qdaC4 qdaC2 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4

Homocedastic ; Equal Ranges ; Bad Separation
30 60 100 150 30 60 100 150

C1 ldaC1 ldaC1 ldaC1 Vrt ldaC1 ldaC1 ldaC1 ldaC1
C2 ldaC2 ldaC2 ldaC2 ldaC2 ldaC2 ldaC2 ldaC2 ldaC2
C3 CP ldaC3 CP CP CP CP LocC4 ldaC3
C4 ldaC4 ldaC4 Vrt ldaC4 Vrt CP Vrt ldaC4

Heterocedastic ; Equal Ranges ; Bad Separation
30 60 100 150 30 60 100 150

C1 qdaC3 qdaC3 qdaC3 qdaC1 qdaC3 qdaC3 qdaC1 qdaC1
C2 qdaC2 qdaC2 qdaC2 qdaC2 qdaC4 qdaC2 qdaC2 qdaC2
C3 qdaC4 qdaC3 qdaC3 qdaC3 qdaC4 qdaC3 qdaC3 qdaC3
C4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4

Homocedastic ; Different Ranges ; Bad Separation
30 60 100 150 30 60 100 150

C1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1 ldaC1
C2 Vrt Vrt Vrt Vrt ldaC2 ldaC2 ldaC2 CpRgCmb
C3 ldaC3 ldaC3 ldaC3 ldaC3 ldaC3 LocC3 ldaC3 qdaC3
C4 ldaC4 ldaC2 Vrt Vrt CpRgSep ldaC4 qdaC4 CpRgSep

Heterocedastic ; Different Ranges ; Bad Separation
30 60 100 150 30 60 100 150

C1 qdaC3 qdaC3 qdaC1 qdaC1 qdaC3 qdaC3 qdaC1 qdaC1
C2 qdaC4 qdaC2 qdaC2 qdaC2 qdaC4 qdaC2 qdaC2 qdaC2
C3 qdaC4 qdaC3 qdaC3 qdaC3 qdaC3 qdaC3 qdaC3 qdaC3
C4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4 qdaC4
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Table 11. Average and standard error (in brackets) error rates for the best methods by
data condition: a) Good separation of group centroids (in bold if all other methods present
average error rates larger by more than 0.01).

Gaussian Skew-Normal
Homocedastic ; Equal Ranges ; Good Separation

30 60 100 150 30 60 100 150
C1 0.1015 0.0800 0.0626 0.0741 0.0924 0.0800 0.0585 0.0621

(.00237) (.00137) (.00069) (.00063) (.00247) (.00116) (.00086) (.00063)
C2 0.0858 0.0705 0.0727 0.0505 0.0732 0.0666 0.0643 0.0635

(.00145) (.00084) (.00048) (.00055) (.00147) (.00084) (.00059) (.00039)
C3 0.0685 0.0743 0.0721 0.0726 0.0792 0.0658 0.0574 0.0634

(.00353) (.00414) (.00047) (.00095) (.00122) (.00071) (.00072) (.00036)
C4 0.1670 0.1505 0.1491 0.1295 0.1566 0.1538 0.1311 0.1414

(.00142) (9e-04) (6e-04) (.00064) (.00152) (.00158) (.00062) (.00100)

Heterocedastic ; Equal Ranges ; Good Separation
30 60 100 150 30 60 100 150

C1 0.0784 0.0369 0.0211 0.0168 0.0660 0.0326 0.0350 0.0212
(.00236) (.00196) (.00088) (.00077) (.00439) (.00237) (.00108) (7e-04)

C2 0.0485 0.0241 0.0178 0.0118 0.0381 0.0180 0.0228 0.0096
(.00263) (.00103) (.00048) (.00062) (.00194) (.00085) (.00059) (.00046)

C3 0.0537 0.0226 0.0155 0.0148 0.0733 0.0327 0.0215 0.0218
(.00244) (.00096) (.00068) (.00043) (.00290) (.00101) (.00071) (5e-04)

C4 0.0207 0.0145 0.0111 0.0093 0.0290 0.0170 0.0237 0.0207
(.00243) (.00105) (.00098) (.00062) (.00274) (.00178) (.00125) (.00116)

Homocedastic ; Different Ranges ; Good Separation
30 60 100 150 30 60 100 150

C1 0.0981 0.0760 0.0774 0.0739 0.0998 0.0844 0.0870 0.0726
(.00217) (.00108) (.00071) (.00048) (.00220) (.00098) (.00049) (.00069)

C2 0.0680 0.0785 0.0669 0.0703 0.0922 0.0718 0.0653 0.0646
(.00150) (.00083) (.00037) (.00028) (.00135) (.00055) (.00045) (5e-04)

C3 0.0868 0.0874 0.0650 0.0640 0.0852 0.0837 0.0751 0.0680
(.00156) (.00084) (.00058) (.00047) (.00186) (.00113) (.00079) (.00053)

C4 0.0865 0.0763 0.0790 0.0777 0.0772 0.0682 0.0638 0.0580
(.00132) (.00064) (.00052) (.00037) (.00138) (.00077) (.00051) (.00032)

Heterocedastic ; Different Ranges ; Good Separation
30 60 100 150 30 60 100 150

C1 0.0757 0.0343 0.0246 0.0259 0.0770 0.0343 0.0298 0.0171
(.00337) (.00155) (.00104) (.00071) (.00227) (.00222) (8e-04) (.00084)

C2 0.0364 0.0233 0.0193 0.0148 0.0391 0.0224 0.0143 0.0120
(.00225) (.00092) (.00048) (.00037) (.00228) (.00088) (.00059) (.00054)

C3 0.0518 0.0222 0.0158 0.0196 0.0738 0.0391 0.0224 0.0232
(.00254) (.00115) (.00073) (.00059) (.00334) (.00113) (.00079) (.00067)

C4 0.0168 0.0119 0.0078 0.0049 0.0274 0.0135 0.0185 0.0093
(.00184) (.00068) (.00055) (4e-04) (.00206) (.00095) (.00071) (.00046)
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Table 12. Average and standard error (in brackets) error rates for the best methods by data
condition: b) Bad separation of group centroids (in bold if all other methods present average
error rates larger by more than 0.01).

Gaussian Skew-Normal
Homocedastic ; Equal Ranges ; Bad Separation

30 60 100 150 30 60 100 150
C1 0.3696 0.3465 0.3225 0.3393 0.3691 0.3256 0.3255 0.3176

(.00418) (.00201) (.00182) (.00277) (.00393) (.00315) (.00177) (.00128)
C2 0.3613 0.3422 0.3371 0.3114 0.3656 0.3448 0.3038 0.3065

(.00325) (.00256) (.00166) (.00116) (.00396) (.00246) (.00176) (.00178)
C3 0.3314 0.3270 0.3153 0.3025 0.3216 0.3199 0.3166 0.3064

(.00437) (.00267) (.00125) (.00111) (.00465) (.00178) (.00077) (.00132)
C4 0.4168 0.3939 0.3779 0.3638 0.4034 0.3574 0.3707 0.3800

(.00301) (.00236) (.00174) (.00187) (.00346) (.00287) (.00174) (.00133)

Heterocedastic ; Equal Ranges ; Bad Separation
30 60 100 150 30 60 100 150

C1 0.0950 0.0462 0.0321 0.0273 0.0781 0.0463 0.0400 0.0215
(.00192) (.00232) (.00158) (.00217) (.00336) (.00321) (.00246) (.00186)

C2 0.0615 0.0293 0.0231 0.0209 0.0500 0.0325 0.0197 0.0183
(.00374) (.00293) (.00215) (.00149) (.00274) (.00276) (.00205) (.00189)

C3 0.0630 0.0364 0.0257 0.0299 0.0779 0.0330 0.0260 0.0307
(.00205) (.00322) (.00238) (.00176) (.00182) (.00277) (.00188) (.00195)

C4 0.0401 0.0221 0.0226 0.0258 0.0591 0.0380 0.0327 0.0220
(.00291) (.00269) (.00259) (.00208) (.00332) (.00273) (.00227) (.00164)

Homocedastic ; Different Ranges ; Bad Separation
30 60 100 150 30 60 100 150

C1 0.3676 0.3600 0.3295 0.3367 0.3796 0.3305 0.3246 0.3194
(.00357) (.00275) (.00181) (.00165) (.00417) (.00215) (.00194) (.00157)

C2 0.3424 0.3489 0.3101 0.3027 0.3430 0.3420 0.3180 0.3019
(.00259) (.00185) (.00135) (8e-04) (.00380) (.00197) (.00152) (.00156)

C3 0.3607 0.3329 0.3451 0.3319 0.3653 0.3576 0.3609 0.3174
(.00470) (.00267) (.00134) (.00151) (.00343) (.00445) (.00116) (.00155)

C4 0.3516 0.3250 0.3243 0.3275 0.3579 0.3417 0.3266 0.3150
(.00406) (.00197) (.00211) (.00169) (.00470) (.00170) (.00165) (.00108)

Heterocedastic ; Different Ranges ; Bad Separation
30 60 100 150 30 60 100 150

C1 0.0898 0.0525 0.0336 0.0286 0.0822 0.0471 0.0309 0.0245
(.00127) (.00214) (.00243) (.00226) (.00137) (.00153) (.00276) (.00193)

C2 0.0533 0.0236 0.0242 0.0132 0.0502 0.0307 0.0161 0.0247
(.00263) (.00244) (.00159) (.00131) (.00353) (.00267) (.00218) (.00157)

C3 0.0521 0.0263 0.0192 0.0256 0.0595 0.0377 0.0319 0.0252
(.00168) (.00300) (.00178) (.00192) (.00380) (.00220) (.00171) (.00155)

C4 0.0336 0.0211 0.0238 0.0207 0.0498 0.0344 0.0377 0.0321
(.00414) (.00241) (.00185) (.00144) (.00357) (.00204) (.00165) (.00150)
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Figure 2. Error rates of all methods on Gaussian data, in the validation sample for the hete-
rocedastic condition under Case 1, with heterogenous Ranges and bad-separated classes.

corresponding Skew-Normal rules even when data is generated from
a Skew-Normal distribution – as illustrated in Figure 3.

2. Homocedastic conditions: When MidPoints are correlated with Log-
Ranges (Cases C1 and C2), the parametric Gaussian linear rule with
the correct covariance case generally performs the best. However, for
large training samples, the corresponding quadratic rule comes close.
Overparametrized but correct linear rules are usually also competitive.
This situation is illustrated by Figure 4. However, the Skew-Normal
parametric models with non-satisfied restrictions may present a rather
erratic behavior; otherwise, their performance exhibits a similar pat-
tern – see Figure 5.

Among the distance-basedmethods, the Vertices and the Central-
Points methods appear to be the most competitive ones, the former
particularly when interval-valued variables are non-correlated (Cases
2 and 4), and the latter when Midpoints and LogRanges are uncorre-
lated (Cases 3 and 4). However, in this latter case the differences are
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Figure 3. Error rates of Gaussian quadratic and Skew-Normal general methods on Skew-
Normal data, in the validation sample for the heterocedastic condition under Case 1, with
heterogenous Ranges and bad-separated classes.

Figure 4. Error rates of the parametric Gaussian based methods on Gaussian data, in the
validation sample for the homocedastic condition under Case 2, with homogenous Ranges
and well-separated classes.
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Figure 5. Error rates for parametric Skew-Normal methods on Skew-Normal data, in the
validation sample for the Location Model under Case 2, with homogenous Ranges and well-
separated classes.

particularly large for small sample sizes and tend to become neglige-
able for large samples. Figures 6 and 7 illustrate these points. In some
specific situations, the Centers and the Vertices methods are even the
best ones. However, the Centers method deals badly with correlation
between MidPoints and Log-Ranges, and does not take much advan-
tage of larger samples. This is illustrated in Figure 8 where we can see
that the Centers method is the best one under Case C3 with 30 obser-
vations in the training sample and the second best (after the Vertices
method) under Case C4 with 30 observations in the training sample;
on the other hand its relative performance deteriorates under Cases C3
and C4 for large samples, and is rather poor under Cases C1 and C2
for any sample size. The Vertices method deals badly with correlation
among different interval-valued variables. In Figure 9 we can see that
while the performance of this method is the best one under Cases C2
and C4 with large training samples, it is not even competitive in cases
C1 and C3.

5. Conclusions

In this paper, the relative performance of distance-based and para-
metric classification rules, for discriminant analysis of interval-valued data,
is evaluated. A thorough simulation study, as well as an application to real
data, showed that parametric based rules outperform distance-based ones for

536 A.P. Duarte Silva and P. Brito



Figure 6. Error rates of the distance based methods on Gaussian data, in the validation sample
for the homocedastic condition under Case 2, with homogenous Ranges and well-separated
classes.

Figure 7. Error rates of the distance based methods on Gaussian data, in the validation sample
for the homocedastic condition under Case 3, with homogenous Ranges and well-separated
classes.
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Figure 8. Error rates for selected methods on Skew-Normal data, in the validation sample
for the homocedastic condition for all cases, with homogenous Ranges and bad-separated
classes.

most data conditions, with a few exceptions in very specific cases. Vertices
and Centers methods can be competitive, or even the best, in some specific
situations, but they tend to require strong restrictions in the covariance con-
figurations, and do not respond well to heterocedastic data conditions. Fur-
thermore, the parametric Gaussian rules usually perform better than the cor-
responding Skew-Normal rules even when data is generated from a Skew-
Normal distribution. As expected, in homocedastic problems, linear dis-
criminant rules perform the best, while for large training samples and hete-
rocedastic conditions quadratic methods are usually superior. However, for
small training samples in heterocedastic problems, unrestricted quadratic
rules can be outperformed by restricted rules, even in some cases where the
model assumed by these rules is not true. It is known (see e.g. Marks and
Dunn 1974) that traditional quadratic discrimination performs poorly with
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Figure 9. Error rates for selected methods on Gaussian data, in the validation sample for the
homocedastic condition for all cases, with heterogenous Ranges and bad-separated classes.

small training samples, even when covariance matrices clear differ, due to
the large number of parameters that need to be estimated. For that reason
Flury, Schmid, and Narayanan (1994) proposed parsimonius quadratic rules
that constraint some parameters of the covariance matrices. In the case of
interval data, Cases 2 through 4 provide a natural way of imposing con-
straints which, according to our simulation results, appear to be quite effec-
tive in reducing expected error rates for heterocedastic problems with small
or moderate training samples.
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