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1. Introduction

Clustering is an important task in data mining. It aims to divide data
into groups where similar observations are assigned to the same group called
cluster. It has been applied successfully in many fields such as in market
segmentation (Van Hattum and Hoijtink 2009; DeSarbo and Cron 1988), in
social network analysis (Wang and Fleury 2011; Pérez-Suárez, Martı́nez-
Trinidad, Carrasco-Ochoa, and Medina-Pagola 2013) and in document clas-
sification (Chao-Liu, Wu, and Liu 2011; Aliguliyev 2009). For many clus-
tering applications, it may be recommended to allow observations to belong
to more than one cluster. This kind of applications is referred to as overlap-
ping clustering (Banerjee, Krumpelman, Basu, Mooney, and Ghosh 2005;
Fellows, Guo, Komusiewicz, Niedermeier, and Uhlmann 2011).

Overlapping clustering is different from crisp clustering where each
observation belongs to exactly one cluster leading to K exclusive clusters
representing the data. Overlapping clustering is based on the assumption
that clusters are non-exclusive. In this configuration, any observation can
belong to one or many clusters. Looking for non-exclusive clusters con-
tributes to solve many real life problems that require to find overlapping
clusters in order to fit the data set structure. For example, in social network
analysis, community extraction algorithms need to detect overlapping clus-
ters where an actor can belong to multiple communities (Tang and Liu 2009;
Wang, Tang, Gao, and Liu 2010; Fellows, Guo, Komusiewicz, Niedermeier,
and Uhlmann 2011). In video classification, overlapping clustering is a nec-
essary requirement where videos have potentially multiple genres (Snoek,
Worring, van Gemert, Geusebroek, and Smeulders 2006). In emotion detec-
tion, overlapping clustering methods need to detect different emotions for a
specific piece of music (Wieczorkowska, Synak, and Ras 2006).

Several overlapping clustering methods based on different approaches
are proposed in the literature. This work will focus on overlapping meth-
ods, extending or generalizing K-means algorithm, to produce non-disjoint
groups. Based on the squared Euclidean distance, these methods look for
linear separations between clusters and fail to produce clusters with nonlin-
ear boundaries (Filippone, Camastra, Masulli, and Rovetta 2008; Girolami
2002). This fact makes existing methods not appropriate to detect overlap-
ping groups in real life applications where separations are frequently nonlin-
ear and complex. Hence, the use of nonlinear methods becomes a necessary
requirement to detect relevant clusters.

In order to identify relevant overlapping clusters with nonlinear sep-
arations, this work focuses on kernel K-means, a nonlinear variant of K-
means. This method is generalized to look for overlapping clusters by mod-
eling the possibility of overlaps in the optimized criterion and by exploring
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the possible space of overlapping assignments rather than that of partitions.
Two variants are proposed, Kernel Overlapping K-Means I (KOKMI) and
Kernel Overlapping K-Means II (KOKMII) to produce clusters in a high,
possibly infinite, dimensional space based on the Mercer Kernel technique.
The second method is an improvement of the first method in terms of com-
putational complexity and efficiency.

This paper is organized as follows: Section 2 presents existing over-
lapping clustering methods and discusses their shortcomings in detecting
nonlinear separations between clusters. Section 3 presents the Mercer Ker-
nel technique and kernel K-means. Section 4 introduces the proposed meth-
ods KOKMI and KOKMII while Section 5 describes experiments and show
results on different data sets. Finally, Section 6 presents the conclusion and
future works.

2. Overlapping Clustering

2.1 Related Work

In many clustering applications, the possibility that an observation be-
longs to more than one cluster is usually ignored. However, few works have
focused on detecting non-disjoint groups in data. First, some methods mod-
ify results of fuzzy classification to produce overlapping clusters such as the
extension of clusters obtained with Fuzzy c-means by thresholding cluster
memberships (Deodhar and Ghosh 2006; Lingras and West 2004; Zhang,
Wang, and Zhang 2007). However, learning the prior threshold is a difficult
task as the number of clusters increases. In addition, criteria to be optimized
iteratively look for optimal partitions without introducing overlaps between
data in the optimization step. These contributions can lead to suitable re-
sults in some applications but being not based on theoretical approaches,
their extensions or improvements are limited (Banerjee, Krumpelman, Basu,
Mooney, and Ghosh 2005).

Recent methods look for overlapping clusters based on theoretical ap-
proaches. The most important advantage of these methods is their ability to
produce non-disjoint clusters where overlaps are introduced in their opti-
mized criteria. There are two kinds of approaches : SUM and AVERAGE.
We denote by SUM methods which group observations into overlapping
clusters while minimizing the sum of distances between each observation
and the sum of clusters’ representatives (prototypes or centroids) to which
the observation belongs to. Examples of these methods are Principal Clus-
ter Analysis (PCL) (Mirkin 1987b) and its variants (Mirkin 1987a, 1990),
the Alternating Least Square algorithms (ALS) (Depril, Van Mechelen, and
Mirkin 2008; Wilderjans, Depril, and Van Mechelen 2012) and the Low-
dimensional Additive Overlapping Clustering (Depril, Van Mechelen, and
Wilderjans 2012).
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Conversely, methods based on AVERAGE approach group observa-
tions into overlapping clusters while minimizing the sum of distances be-
tween each observation and the average, instead of the sum, of clusters’
representatives to which the observation belongs to. Examples of these
methods are the Overlapping K-means (OKM) (Cleuziou 2008), Overlap-
ping K-Medoid (OKMED) (Cleuziou 2010), the Evidential C-means (ECM)
(Masson and Denoeux 2008) , Overlapping Clustering with Sparseness Con-
straint (Lu, Hong, Street, Wang, and Tong 2012) and Overlapping Self Or-
ganizing Map (OSOM) (Cleuziou 2013).

Clustering based on SUM and AVERAGE approaches can lead to non
disjoint groups. The adoption of these approaches is motivated by require-
ments of real life applications. Methods based on SUM were used in group-
ing patients into diseases. Each patient may suffer from more than one dis-
ease and therefore could be assigned to multiple syndrome clusters. Thus,
the final symptom profile of a patient is the sum of the symptom profiles of
all syndromes he is suffering from. However, to avoid false analysis, these
methods need sometimes to prepare data to have zero mean. For example,
if a symptom variable denotes the body temperature, then when a patient
simultaneously suffers from two diseases, it does not make sense to assume
that his body temperature equals to the sum of body temperatures as associ-
ated with two diseases.

Methods based on AVERAGE approach have been well used to group
music signals into different emotions and films into several genres. These
methods are based on a geometrical reasoning in the data space by consider-
ing overlapping observations resulting of intersections of boundary surfaces
of overlapping clusters. For example, if a film belongs to action and horror
genres, it should have some shared properties with these categories of films,
however it can neither be a full action film or a full horror one. So, over-
lapping films belonging to action and horror categories may geometrically
appear in the boundary surface between full horror and full action films.

2.2 Problem Description

To study patterns produced by SUM and AVERAGE approaches we
visualize partitioning of two existing overlapping methods, OKM and ALS
methods, which are respectively based on the AVERAGE and the SUM
approach. Partitionings are visualized through Voronoı̈ cells1 obtained for

1. To build Voronoı̈ cells we considered a rectangle (500 × 500) of pixels on the screen and
we considered three initial pixels (100, 50), (100, 400) and (400, 400) as clusters’ proto-
types for the first case study and three other pixels (100, 200), (200, 100) and (250, 200) as
clusters’ prototypes for the second case study.
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Figure 1. Voronoı̈ cells obtained with OKM (AVERAGE based Approach) and ALS (SUM
based Approach) for three clusters.

three clusters over a two dimensional space as defined by the objective cri-
terion optimized by these methods. Figure 1 shows an example of Voronoı̈
cells where the representation space is divided into several cells and each
possible combination of clusters is associated to one cell. For OKM, Figures
1(a) and 1(b) show seven cells, with all possible combinations of clusters
except the empty set, where each cell is centered on a prototype or a combi-
nation (average) of prototypes. Overlapping cells get larger as the clusters’
prototypes become more distant. For ALS, Figure 1(c) shows that over-
laps between clusters are not recovered when prototypes are distant, except
cluster1 ∩ cluster2 and cluster2 ∩ cluster3. However, when prototypes
become closer to each other, as shown in Figure 1(d), all combinations of
cluster prototypes are given. We easily notice that overlapping cells are the
resulting combination (sum) of representatives of single clusters. For exam-
ple, the magenta cell results from the combination of cluster1 (Red cell)
and cluster3 (Blue cell).
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Hence, OKM and ALS have the ability to detect overlapping clus-
ters even though separations between resulting clusters are linear. This fact
makes these methods not well adapted to real life applications where sepa-
rations between clusters are usually nonlinear with complex shapes.

Since complex and nonlinear separations between clusters are ex-
pected depending on the target application, we focus our study on the non-
linear method kernel K-means (Girolami 2002). We show how it can be
generalized to detect overlapping clusters with both linear and nonlinear
boundaries.

3. Kernel Machines

3.1 Mercer Kernel

To solve the problem of non-linearly-separable clusters, many meth-
ods have been modified incorporating kernels such as SVM (Cortes and
Vapnik 1995) which performs better than other classification algorithms in
many applications (Cristianini, Campbell, and Burges 2002). The success of
SVM has extended the use of kernels to other learning algorithms (e.g., Ker-
nel PCA (Schölkopf, Smola, and Müller 1998), kernel K-means (Girolami
2002), kernel fuzzy C-means (Wu, Xie, and Yu 2003)). These methods use
positive-definite kernel, also referred to as Mercer kernel, to implicitly map
data from original space called input space into a high dimensional space
called feature space. Computing a partition with linear boundaries in the
feature space results in a partition with nonlinear boundaries in the input
space.

A functionK : X ×X −→ R is called a Mercer kernel if and only if
K is symmetric and the following condition of semi-definiteness holds:

N∑

i=1

N∑

j=1

cicjKij ≥ 0 ∀N ≥ 2 and ∀ci, cj ∈ R, (1)

where Kij is the dot product of mapped data in the feature space defined as
follows:

Kij = K(xi, xj) = φ(xi)φ(xj), (2)

where φ : X −→ F is a mapping from the input space X to a high dimen-
sional feature space F . Table 1 gives some widely used Mercer kernels such
as Linear, Polynomial, Gaussian, Exponential and Sigmoid kernels.

The advantage of kernels consists in the possibility of computing dis-
tance measures between observations in the feature space F without ex-
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Table 1. Examples of Positive-definite kernel functions

Kernel function Value
Linear Kernel Kij = K(xi, xj) = xi.xj

Polynomial Kernel Kij = K(xi, xj) = ((xi.xj) + c)d

Gaussian RBF Kernel Kij = K(xi, xj) = exp(
−‖xi−xj‖2

2σ2 )

Exponential RBF Kernel Kij = K(xi, xj) = exp(
−‖xi−xj‖

2σ2 )
Sigmoid Kernel Kij = K(xi, xj) = tanh(θ(xi.xj) + c)

plicitly knowing φ. The kernel induced distance measure (Schölkopf et al.
1998), also referred to as Kernel Trick, can be computed as follows:

‖ φ(xi)− φ(xj) ‖2 = (φ(xi)− φ(xj))((φ(xi)− φ(xj))

= φ(xi)φ(xi)− 2φ(xi)φ(xj) + φ(xj)φ(xj)

= Kii − 2Kij +Kjj. (3)

The use of Mercer kernel in clustering can be divided into three cat-
egories (Filippone, Camastra, Masulli, and Rovetta 2008). First, methods
based on kernelization of the metric (Wu, Xie, andYu 2003; Zhang and Chen
2002, 2003, 2004) which look for centroids in input space while distances
between patterns and centroids are computed by means of kernels. Second,
methods based on clustering in the feature space (Graepel and Obermayer
1998; Inokuchi and Miyamoto 2004; Qinand and Suganthan 2004; Giro-
lami 2002) which map data into a higher feature space and then compute
centroids using the Kernel Trick. Third, methods based on support vectors
(Camastra and Verri 2005; Ben-Hur, Horn, Siegelmann, and Vapnik 2001)
which use One Class SVM to find a minimum enclosing sphere in the feature
space able to include almost all data excluding outliers.

In this paper, Mercer kernel is used for clustering in the feature space
(the second category of the use of Mercer kernel in clustering) for KOKMI
and KOKMII where the whole learning process is computed in a high di-
mensional space.

3.2 Kernel K-Means

Kernel K-means is an extension of K-means algorithm to solve the
problem of nonlinearly separable clusters. By an implicit mapping of the
data from an input space to a higher feature space, kernel K-means looks
for separations in feature space and solves the problem of clustering non-
linearly-separable data. For a finite data sample X, the kernel function
yields a symmetric N × N positive definite matrix K, where each Kij en-
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try is the dot product between the representations in feature space, φ(xi)
and φ(xj), of observations xi and xj as measured by the kernel function
(Camastra and Verri 2005).

Kernel K-means aims to minimize the sum of squared Euclidean er-
rors in feature space given by:

J(Π) =

N∑

i=1

C∑

c=1

Pic‖φ(xi)−mφ
c ‖2, (4)

where Pic is a binary variable indicating membership of observation xi to
cluster c andmφ

c is the prototype of cluster c in feature space. The prototype
is defined in the feature space as the center of gravity of observations that
belong to cluster c. This prototype cannot be computed because the mapping
function φ is generally unknown. However, the clustering error ‖ φ(xi) −
mφ

c ‖ can be computed using the Kernel Trick as follows:

‖φ(xi)−mφ
c ‖2

= ‖φ(xi)− 1

Wc

N∑

j=1

Pjcφ(xj)‖2

= Kii − 2

Wc

N∑

j=1

PjcKij +
1

(Wc)2

N∑

j =1

N∑

g=1

PjcPgcKjg, (5)

where Wc =

N∑

j=1

Pjc is the number of observations that belong to cluster c,

Pjc ∈ {0, 1} and Pgc ∈ {0, 1} denote the memberships of observations xj
and xg to cluster c. Then, the clustering error function in kernel K-means
can be written as follows:

J(Π) =
N∑

i=1

C∑

c=1

Pic[Kii − 2

Wc

N∑

j=1

PjcKij +
1

(Wc)2

N∑

j=1

N∑

g=1

PjcPgcKjg]. (6)

To minimize the clustering error (6), kernel K-means performs two
principal steps: the determination of the nearest cluster from each observa-
tion in the feature space and the update of memberships matrix. The stop-
ping rule is defined by the maximal number of iterations and the minimal
improvement of the objective function between two iterations.
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4. Overlapping Clustering in a High Dimensional Feature Space

In order to look for overlapping clusters with linear and nonlinear
boundaries, we propose two methods, KOKMI and KOKMII, where all
steps of the clustering algorithm are computed in a high dimensional fea-
ture space. For both methods and without loss of generality, the AVERAGE
approach is used to introduce overlaps in the objective criterion but the SUM
approach could be used as well.

4.1 KOKMI: Kernel Overlapping K-Means I

The first method generalizes kernel K-means to produce overlapping
clusters by introducing overlaps between clusters in the objective function.
Given a set of observations X = {xi}Ni=1 with xi ∈ R

d and N the number
of observations and given an implicit nonlinear mapping function φ, the aim
of KOKMI is to find a set Π = {πc}Cc=1 of C overlapping clusters such that
the following objective function is minimized:

J(Π) =

N∑

i=1

‖φ(xi)− φ(xi)‖2, (7)

where φ(xi) the representative of observation xi defined in feature space by
the average of clusters prototypes which xi belongs to:

φ(xi) =

C∑

c=1

Picm
φ
c

C∑

c=1

Pic

, (8)

where Pic ∈ {0, 1} is a binary variable that indicates membership of xi to
cluster c and mφ

c is the representative (prototype) of cluster c in the feature
space. The objective function iteratively minimizes the distance between
each observation and its representative in a new feature space F obtained
by the nonlinear mapping function φ. For minimizing the objective function
J in (7) KOKMI assigns, at each iteration, observations to one or several
clusters and then computes the new value of J . If J shows improvement, the
same steps are repeated until a stop-condition is met. The stop-condition can
be either the maximum number of iterations or the minimum improvement
in the objective.
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4.1.1. Evaluation of the Objective Function in Feature Space

To evaluate the objective function J we need to compute at each itera-
tion clusters prototypes in the feature space. Each prototype is defined by the
average of observations that belong to the corresponding cluster weighted
according to the number of assignments of each observation as follows:

mφ
c =

N∑

j=1

Pjcwjφ(xj)

Wc
, (9)

where wj is the weight assigned to observation xj defined by wj =

1/(

C∑

c=1

Pjc)
2 andWc =

N∑

j=1

Pjcwj is the sum of weights of the observations

that belong to cluster c. The weight wj decreases as well as assignments’
cardinality of xj increases in order to reduce the effect of overlapping ob-
servations in determining the representative of each cluster.

Since the mapping function φ is not explicitly known, it is impossible
to compute clusters prototypes in feature space using Equation (9). Nev-
ertheless, it is always possible to compute distances between patterns and
prototypes in feature space using the Kernel Trick. Therefore, using this
technique, the objective function of KOKMI becomes:

J(Π) =

N∑

i=1

‖φ(xi)− 1

Li

C∑

c=1

Pic
1

Wc

N∑

j=1

Pjcwjφ(xj)‖2

=

N∑

i=1

{φ(xi)φ(xi)− 2

Li

C∑

c=1

N∑

j=1

Pic
1

Wc
Pjcwjφ(xi)φ(xj) +

1

L2
i

C∑

c=1

N∑

j=1

C∑

t=1

N∑

g=1

Pic
1

Wc
PjcPit

1

Wt
Pgtwjwgφ(xj)φ(xg)},

(10)

where Li =

C∑

c=1

Pic. If each dot product in feature space is replaced by any

Mercer Kernel, the objective function J can be computed in feature space as
follows:

J(Π) =

N∑

i=1

d[φ(xi), φ(xi)], (11)
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where:

d[φ(xi), φ(xi)]

= Kii − 2

Li

C∑

c=1

N∑

j=1

Pic
1

Wc
PjcwjKij +

1

L2
i

C∑

c=1

N∑

j=1

C∑

t=1

N∑

g=1

Pic
1

Wc
PjcPit

1

Wt
PgtwjwgKjg. (12)

If observations are assigned to only one cluster, as in hard clustering
methods, the objective function in KOKMI is reduced to:

J(Π) =

N∑

i=1

[Kii − 2

1

C∑

c=1

N∑

j=1

Pic
1

Wc
PjcKij +

1

12

C∑

c=1

N∑

j=1

C∑

t=1

N∑

g=1

Pic
1

Wc
PjcPit

1

Wt
PgtKjg]

=

N∑

i=1

C∑

c=t=1

Pic[Kii − 2

Wc

N∑

j=1

PjcKij +

1

(Wc)2

N∑

j=1

N∑

g=1

PjcPgcKjg].

(13)

This reduced objective function exactly matches with the objective function
of kernel K-means.

4.1.2. Multi-Assignments of Observations in Feature Space

The assignment step looks for optimal assignments which minimize
the objective function. The latter can be solved through searching for op-
timal cluster memberships by evaluating all possible 2C combinations of
clusters for each observation. However, it becomes computationally infeasi-
ble in real life applications. To overcome this problem, a heuristic solution
is introduced to minimize the objective function and to explore a subspace
of possible assignments. Given an observation xi, a set of C clusters and
possibly an old assignments of xi, new assignments of xi are determined
using the function ASSIGN. Firstly, this function assigns xi to the closest
cluster, updates representative φ(xi) and then evaluates the distance between
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Algorithm 1 ASSIGN(xi, {c = 1, ..., c = C}, Aold
i ) → Ai

INPUT xi: Observation in Rd.
{c = 1, ..., c = C}: Set of C clusters.
Aold

i : Old assignment of observation xi.
OUTPUT Ai: New assignment of xi.
1: set Ai = {c�} using Equation 14 , evaluate the distance d[φ(xi), φ(xi)]

with assignments Ai using Equation 12.
2: Look for the next nearest cluster c� which is not included in Ai such that

c� = min
{c=1,...,c=C}/Ai

‖φ(xi)−mφ
c ‖2 using Equation 14

3: Evaluate the distance d[φ(xi), φ(xi)′] with assignments A
′
i = Ai ∪ c�

4: if d[φ(xi), φ(xi)′] ≤ d[φ(xi), φ(xi)] then
5: Ai ← Ai ∪ {c�}, and go to step 2.
6: else
7: if d[φ(xi), φ(xi)] ≤ d[φ(xi), φ(xi)old] then
8: return Ai.
9: else
10: return Aold

i .
11: end if
12: end if

the observation and its representative using Equation (12). Next, this func-
tion looks for the next nearest cluster which is not considered in the set of
assignments. This cluster is added to the assignments of observation xi,
then the representative φ(xi) is updated and the distance between xi and its
new representative is reevaluated. If the distance is minimized, the function
continues the assignment of xi to the next nearest cluster. Otherwise, the
function compares obtained assignments in the last step with those given be-
fore performing the function ASSIGN and returns the optimal assignments
which minimize the distance between xi and its representative. The old as-
signments are evaluated to ensure the minimization of the objective function
after each assignment step. The pseudo code of the function ASSIGN is
described by Algorithm 1.

We note that looking for the index of the closest cluster cmin from
an observation is determined by the minimum of distances between the ob-
servation and the clusters’ prototypes which are computed in feature space
using the Kernel Trick as follows:

cmin = min
{c=1,...,c=C}

‖φ(xi)−mφ
c ‖2
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Algorithm 2 KOKMI(X, tmax, ε, C) → {πc}Cc=1

INPUT X: set of observations in R
d.

OUTPUT π: Set of C clusters.
1: Initialize representatives of clusters with random clusters prototypes.
2: t=0.
3: Assign each observation xi to one or several clusters using

function“ASSIGN”.
4: Compute objective function Jt(Π) using Equation 11.
5: if (t < tmax and Jt−1(Π)− Jt(Π) > ε) or (t = 0) then
6: set t = t+ 1 and go to step 3.
7: else
8: Return the clusters’ memberships.
9: end if

= min
{c=1,...,c=C}

{Kii − 2

Wc

N∑

j=1

PjcwjKij +

1

(Wc)2

N∑

j=1

N∑

g=1

PjcPgcwjwgKjg}. (14)

A pseudo code of KOKMI is described by Algorithm 2. The com-
putational complexity2 of KOKMI is in the order O(N3C2) evaluated over
the complexity of assignments which isO(N3C2) and the complexity of the
objective function which is O(N3C2).

4.2 KOKMII: Kernel Overlapping K-means II

KOKMI proposed in the previous section computes distances, rep-
resentatives and clusters prototypes in the feature space. This proposed
method is characterized by a high computational complexity induced by
the evaluation of its objective function which is in the order of O(N3C2)
making it not suitable to large data sets. In order to improve KOKMI in
terms of efficiency, computational complexity and to make it well adapted
to large data sets, we propose KOKMII where cluster centroids are replaced
by clusters medoids.

2. All reported computational complexities are computed without evaluating the computa-
tional complexity of Mercer KernelK(xi, xj) between each pair of observations because we
use an online implementation of the Kernel function. Moreover, the complexity of computing
K(xi, xj) depends of the type of kernel.
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4.2.1 Optimized Cluster Prototypes Computation in Feature Space

For KOKMII, the definition of prototypes in the feature space is mod-
ified and clusters centroids are replaced by clusters medoids. Each cluster
prototype is defined as the observation that minimizes the weighted sum of
distances over all observations belonging to the responding cluster. Using
Mercer Kernel, the prototype is defined as follows:

mc = min
i∈Nc

(xi)

Nc∑

j=1,j �=i

1

wj
‖φ(xi)− φ(xj)‖2

Nc

Nc∑

j=1,j �=i

1

wj

(15)

= min
i∈Nc

(xi)

Nc∑

j=1,j �=i

1

wj
[Kii − 2Kij +Kjj]

Nc

Nc∑

j=1,j �=i

1

wj

,

where Nc is the number of observations in cluster c. In this way, the proto-
type is determined in the feature space F and is a member of the initial set
of observations.

4.2.2 Clustering Algorithm of KOKMII

Given the new way of determining prototypes in the feature space, the
computational complexity of the objective function J is reduced toO(NC2).
The objective function is given in Equation 16.

J(Π) =

N∑

i=1

‖φ(xi)− φ(xi)‖2

=

N∑

i=1

‖φ(xi)−

C∑

c=1

Picφ(mc)

Li
‖2

=

N∑

i=1

d′[φ(xi), φ(xi)], (16)

where d′[φ(xi), φ(xi)] is defined by:
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Algorithm 3 KOKMII(X, tmax, ε, C) → {πc}Cc=1

INPUT X: set of observations in R
d.

tmax: maximum number of iterations.
ε: minimal improvement in the objective function.
C: number of clusters.

OUTPUT Π: set of C clusters.
1: Initialize representatives of clusters with random cluster prototypes
2: t= 0.
3: Compute cluster prototypes using Equation 15.
4: Assign each observation xi to one or several clusters using “ASSIGN”.
5: Compute objective function Jt(Π) using Equation 16.
6: if (t < tmax and Jt−1(Π)− Jt(Π) > ε) or (t= 0) then
7: go to step 3.
8: else
9: return the distribution of clusters’ memberships.
10: end if

= φ(xi).φ(xi)− 2

Li

C∑

c=1

Picφ(mc)φ(xi) +

1

(Li)2

C∑

c=1

C∑

l=1

PicPilφ(mc)φ(ml)

= Kii − 2

Li

C∑

c=1

PicKimc
+

1

(Li)2

C∑

c=1

C∑

l=1

PicPilKmcml
. (17)

Differently to KOKMI, KOKMII adds a new step for the determina-
tion of cluster prototypes independently from the evaluation of the objective
function. At each iteration, cluster prototypes are computed, then observa-
tions are assigned to one or several clusters, and finally the objective func-
tion J is evaluated. These steps are repeated until improvement of J is no
longer significant or the maximum number of iterations is reached. The
computational complexity of KOKMII is in the order of O(N2

c C) where
Nc is the maximum number of observations per cluster. This complexity
is evaluated over the computational complexity of prototypes (O(N2

c C)),
the computational complexity of assignments (reduced to O(NC2)) and the
computational complexity of the objective function (reduced to O(NC2)).
KOKMII is given in Algorithm 3.
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Assignments of each observation to one or several clusters in KOK-
MII are computed using the same function ASSIGN. The new definition of
cluster prototypes has made computation of the distance between each ob-
servation and its representative easier as described in Equation 17. Also,
finding the closest cluster from an observation xi in the feature space is
computationally easier and is given by:

c� = min
{mc}C

c=1

‖φ(xi)− φ(mc)‖2 = min
{mc}C

c=1

Kii − 2Kimc
+Kmcmc

. (18)

5. Experiments and Discussions

In this section, through an experimental study we evaluate the perfor-
mance of the two proposed methods in detecting overlapping groups with
complex and nonlinear separations between clusters.

5.1 Methodology

We begin by studying patterns induced by the proposed objective cri-
terion through the report of Voronoı̈ cells for the first example described
in Figure 1. After that, we perform two experimental studies. First, experi-
ments are conducted on data sets having non-linearly-separable clusters with
complex shapes to check the effectiveness of proposed methods in detect-
ing these clusters. Second, experiments are conducted on real multi-labeled
data sets to check the effectiveness in identifying overlapping groups. Ex-
periments are performed on a computer, with 4 GB RAM and 2.1 GHZ
Intel Core 2 duo processor, and all proposed methods are implemented in C .
For ALS method, we use ADPROCLUS software proposed by Wilderjans,
Ceulemans, Van Mechelen, and Depril (2011). Since proposed methods re-
quire defining the number of clusters and the parameter of the kernel func-
tion in prior, we have considered in all experiments the following values:

• Number of clusters: for each data set, the number of clusters is set by
the number of underlying true labels. However, in practice the num-
ber of clusters is usually unknown. In that case, one could use differ-
ent model heuristics for determining the optimal number of clusters
(Ceulemans and Kiers 2006; Depril, Van Mechelen, and Wilderjans
2012; Wilderjans, Depril, and Van Mechelen 2012). For example, the
user can test different clusterings with increasingly number of clusters
and then, selects the clustering which has the best balance between
the minimization of the objective function and the number of clusters
(Wilderjans, Ceulemans, VanMechelen, and Depril 2011;Wilderjans,
Ceulemans, and Meers 2012).
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• parameter of the kernel function: although many techniques were pro-
posed to select the best parameter of the kernel function, it is still
a challenging issue. Since designing the best parameter of a kernel
function is not the objective of this work, it is determined empirically
over different executions of proposed methods. However, we report
results using different kernels with different initialization of parame-
ters to show the sensitivity of proposed methods to the selection of a
kernel.

Obtained results are compared in terms of four validation measures:
Precision, Recall, F-measure and Overlap size. The first three validation
measures estimate whether the prediction of categories is correct with re-
spect to the underlying true categories in the data. Precision is calculated as
the fraction of observations correctly labeled as belonging to class ci divided
by the total number of observations labeled as belonging to class ci. Recall
is the fraction of observations correctly labeled as belonging to class ci di-
vided by the total number of observations that really belong to class ci. The
F-measure is the harmonic mean of Precision and Recall. They are defined
as follows:

Precision(ci) = NCLO/TNLO
Recall(ci) = NCLO/TNAC

F-measure(ci) = 2*Precision(ci)*Recall(ci) / (Precision(ci)+Recall(ci)),

where NCLO, TNLO and TNAC are respectively the number of correctly
labeled observations, the total number of labeled observations and the total
number of observations that really belong to the correct class. All these
measures are computed separately on each cluster, then the average value of
all clusters is reported. The fourth measure, Overlap size, evaluates the size
of overlaps yielded by the learning method. This measure is defined by the
average number of groups per observation in the data set:

Overlap =

∑

xi∈X
|ci|

|X| , (19)

where |X| is the total number of observations and |ci| is the number of clus-
ters to which xi belongs to. The built overlap is compared with the true
rate of overlaps in the labeled data set. The rate of overlaps is an important
characteristic that affects the performance of different overlapping cluster-
ing methods.
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5.2 Nonlinear Separations

To evaluate the performance of proposed methods in detecting com-
plex and nonlinear separations between clusters, we visualize Voronoı̈ cells
(for 3 clusters) obtained with KOKMII using different types of kernels with
different parameters. Figure 2 shows the ability of KOKMII to detect over-
lapping clusters with both linear and nonlinear boundaries depending of the
type of the kernel function. For example, the Polynomial Kernel performs
linear separations, the Gaussian performs nonlinear separations while Sig-
moid performs a more complex and nonlinear separations. In fact, the choice
of the kernel function and its parameters affect the structure of obtained pat-
terns and affect the type of separations. For example, using Gaussian kernel,
as the parameter σ increases overlapping regions between clusters are re-
duced. This result is also confirmed in real data sets where obtained overlap
decreases as σ becomes larger.

Some kernels perform only linear separations between clusters, such
as the Linear and Polynomial Kernels. However, other kernels can perform
both linear and nonlinear separations depending on the value of their pa-
rameters. Example of these kernels is the Sigmoid which can build linear
boundaries when θ = −10−9 and c = 10 as shown in Figure 2.

Moreover, Voronoı̈ cells show that some kernels have a similar be-
havior and can detect the same patterns. For example, the Gaussian Kernel
with σ = 1000 and the Sigmoid Kernel with θ = −10−9 and c = 10 build
identical clusters shapes.

Compared to Voronoı̈ cells obtained with OKM and ALS, those ob-
tained with KOKMII using different kernels show the ability of the proposed
methods to detect overlapping clusters with both linear and nonlinear sepa-
rations. Next, these results are checked over non-linearly separable and real
multi-labeled data sets.

5.3 Convolution Data Sets Having Non-Overlapping Classes With
Nonlinear Separations

5.3.1. Data Sets Description

Experiments are performed on three convolution data sets which are
Iris data set, Test data set and Ionosphere data set. Iris3 data set is tradition-
ally used as a basis test for evaluation. It is composed of 150 data in R

4

tagged according to three non-overlapping clusters with 50 observations per
class. One of these classes, “Setosa”, is clearly separated while the two oth-
ers “Versicolour” and “Virginica” are difficult to learn by linear separations.

3. cf. http://archive.ics.uci.edu/ml/datasets/Iris.
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Figure 2. Voronoı̈ cells obtained with KOKMII using Polynomial, Gaussian and Sigmoid

Kernels
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Figure 3. 3D plot of Test data set using first three principal axes obtained with PCA method

in the mapped data using RBF kernel: (a) data shown from a first angle (b) data shown from

a second angle

The second data set is Test data set which has a simple structure with
two non-linearly-separable clusters. All samples are randomly chosen from
unit square [0, 1] × [0, 1] in a two dimensional space with the uniform dis-
tribution. Points that fall in the kernel area with center (0.5, 0.5) and radius
0.4 are assigned label +1. Those in the complement are assigned label −1.
The particularity of this data set is that corresponding classes have two ring
shapes where algorithms with linear separations fail to separate them. How-
ever, when these data are mapped to a higher feature space using RBF kernel,
the clusters lose their ring shapes and become easier to separate as shown in
Figure 3(a). If data are shown from another angle, the ring shapes are there
as reported in Figure 3(b).

The third data set is Ionosphere4, built by a radar system in Goose Bay
Labrador. This system analyzes the electrons in the ionosphere, where some

4. cf. http://archive.ics.uci.edu/ml/datasets/Ionosphere.

Kernel-Based Methods to Identify Overlapping Clusters 195

http://archive.ics.uci.edu/ml/datasets/Ionosphere


electrons show a certain type of structure. These electrons determine the
first class in the data set that labeled “good”. Other electrons, with no struc-
ture in ionosphere, define the second class in the data set that labeled “bad”.
Electrons are transmitted from antennas via a signal, which is described by
34 attributes that will constitute the size of the data set Ionosphere. The total
number of signals in the data set is 351 signals. The characteristic of this
data set is that the two classes have a two ring shapes that are difficult to
separate by linear clustering algorithms.

5.3.2 Results on Non-Linearly-Separable Data Sets

We compare the proposedmethods with 5 existingmethods: K-means,
kernel K-means, fuzzy C-means, OKM and ALS. Table 2 reports Precision
(P), Recall (R) and F-measure (F) of the best run for each method, which
gives the minimal value of the objective criterion, among twenty runs while
Table 3 reports the size of overlaps relative to the best run. A different initial-
ization of prototypes have been used over the twenty runs, whereas within
each run the same initialization of prototypes has been used for the different
methods.

Compared to existing overlapping methods, and for all the data sets
F-measures obtained with KOKMI and KOKMII outperform F-measures
obtained with OKM and ALS using Euclidean distance. The improvement
in classification results is achieved in terms of Precision and Recall. The
improvement is important in Test data set where OKM and ALS fail to de-
termine clusters with ring shapes. Figure 4 shows structures of patterns
obtained by K-means, fuzzy C-means, OKM, kernel K-means, KOKMI and
KOKMII in Test data set. Figures 4 (b,e,f) show that methods incorporat-
ing kernel can detect clusters with concentric shapes. On the other side,
K-means and OKM completely fail to detect these clusters as shown in Fig-
ures 4 (a,d). These results show the ability of KOKMI and KOKMII to
achieve nonlinear separations between clusters and then their performance
in detecting clusters with complex shapes.

In fact, methods based on the kernel approach yield better results than
traditional non kernel methods. For hard methods, Kernel K-means outper-
forms K-means and fuzzy C-means. For overlapping methods, KOKMI and
KOKMII outperform OKM and ALS. These empirical results demonstrate
that looking for separations between clusters in a high dimensional space
is better than looking for separations in an Euclidean input space either for
hard or for overlapping methods.

Table 2 shows that hard methods, especially kernelK-means, give bet-
ter classification results than overlapping methods. This usefulness of hard
methods is explained by the fact that all the data sets are non overlapping
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Table 2. Comparison of the performance of KOKMI and KOKMII versus other existing
methods for data sets with non-linearly-separable categories

Dataset Label Iris data set Test data set Ionosphere data set
P R F P R F P R F

K-means 0.891 0.885 0.890 0.540 0.580 0.559 0.702 0.710 0.705
Kernel K-means 0.925 0.926 0.925 1 1 1 0.887 0.885 0.886
Fuzzy C-means 0.891 0.911 0.898 0.499 0.550 0.523 0.701 0.722 0.713

OKM 0.701 0.905 0.814 0.307 0.500 0.381 0.531 0.691 0.598
ALS 0.672 0.943 0.789 0.562 0.692 0.620 0.545 0.900 0.681
KOKMI with 0.871 0.928 0.896 0.940 1 0.969 0.662 0.745 0.701
RBF kernel
KOKMII with 0.831 0.975 0.898 0.940 1 0.969 0.610 0.877 0.720
RBF kernel

Table 3. Size of overlaps obtained with KOKMI, KOKMII and other methods for data sets
with non-linearly-separable categories

Size of Overlap
Iris data set Test data set Ionosphere data set

Real overlap size (1) (1) (1)
K-means 1 1 1
Kernel K-means 1 1 1
Fuzzy C-means 1 1 1

ALS 1.37 1.23 1.45
OKM 1.34 1 1.39
KOKMI with RBF kernel 1.15 1.07 1.28
KOKMII with RBF kernel 1.22 1.07 1.25

(overlap size= 1). Classification results obtained with overlapping methods
are characterized by a low Precision because observations are assigned to
more than one cluster. Although all data sets do not contain overlapping
observations, all overlapping methods build an overlap size greater than 1
as reported in Table 3. For example in Iris data set, observations which are
assigned to multiple clusters come from the two last classes, “Versicolour”
and “Virginica”, which are known to be strongly overlapping. In fact, the
size of overlaps affects the value of the F-measure. As the obtained size of
overlaps increases, the value of Precision decreases inducing a decrease of
F-measure.

In the next section, we study the effectiveness of these methods over
real data sets having different degrees of natural overlaps.
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Figure 4. Clusters obtained with different methods on Test data set : (a) Clusters obtained

withK-means (Euclidean distance), (b) Clusters obtained with kernel K-means (RBF kernel),

(c) Clusters obtained with fuzzy C-means (threshold=0.4), (d) Clusters obtained with OKM

(Euclidean distance), (e) Clusters obtained with KOKMI (RBF kernel), (f) Clusters obtained

with KOKMII (RBF kernel)
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5.4 Real Multi-Labeled Data Sets

We conducted experiments on real multi-labeled data sets from three
domains that strongly motivate overlapping clustering researches: video
classification, detection of emotions in music and image classification.

5.4.1 Multi-Labeled Data Sets Description

The first data set is EachMovie5 containing user ratings for eachmovie
in the collection. Users give ratings on a scale of 1 to 5, with 1 indi-
cating extreme dislike and 5 indicating strong approval. For each movie,
the corresponding genre information is extracted from the Internet Movie
Database (IMDB) collection. If each genre is considered as a separate cat-
egory or cluster, then this data set has naturally overlapping clusters since
manymovies are annotated in IMDB as belonging to multiple genres (Baner-
jee et al. 2005). For example, Aliens movie belongs to three genres: action,
horror and science fiction.

From the EachMovie data set, we extracted a subset of 75 movies
scattered over three overlapping clusters as follows: “action” = 21 movies;
“comedy” = 26movies; “crime”= 17movies and “action+crime”= 11movies.
A description of the subset can be found in Appendix A. Based on age, sex
and rate of users we try to find categories for each video. Figure 5 shows
the initial distribution of these movies where overlapping movies belong to
both action and crime genres. When mapping the same movies into a higher
feature space, using a Gaussian RBF kernel with σ = 1000, overlapping
movies are easily detected while they are geometrically laying in the ex-
tremity surface between action and crime movies. In addition, separations
between “crime” and “comedy” movies become easier to detect compared
to their first distribution.

The second multi-labeled data set is the Music6 data set. Emotion
detection in music can be realized by analyzing music signals. The emotion
labels are not usually disjoint in the sense that a single music sound may
be classified simultaneously into multiple emotional categories e.g. both
“happy” and “relaxing” (Trohidis, Tsoumakas, Kalliris, and Vlahavas 2008).
This stipulation seems to make the Music data set naturally overlapping.
The Music data set contains sound clips described by 72 real attributes and
annotated by three male experts. This process led to a final annotated data
set of 548 songs with 6main emotional clusters as described in Table 4. The
overlap between clusters is important in Music data set. For example, all

5. cf. http://www.grouplens.org/node/76.
6. cf. http://mlkd.csd.auth.gr/multilabel.html
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Figure 5. 2D plot of EachMovie data set using the first and second principal axes obtained

with PCA: (a) data in input space (b) data in feature space

music sounds that evoke “Quite Still” emotion also evoke “Relaxing Calm”
or/and “Sad Lonely” emotions.

The third multi-labeled data set is the Scene7 data set that contains
2407 natural scene images. Each image is transformed into a 49 × 3× 2 =
294 dimensional features vectors. Table 5 gives the detailed description
of the number of images associated with different label sets, where all the
possible class labels are Beach, Sunset, Fall foliage, Field, Mountain and
Urban. Over 8% of images belong simultaneously to multiple classes such
as images belonging to beach and mountain as illustrated in Figure 6. On
average, each image is associated with 1.08 class labels.

7. cf. http://mulan.sourceforge.net/datasets.html
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Table 4. Distribution of songs by six principal class labels in Music data set: Amazed Sur-
prised, Happy Pleased, Relaxing Calm, Quite Still, Sad Lonely and Angry Aggressive

Label number of songs
Amazed Surprised 24
Happy Pleased 23
Relaxing Calm 42
Quite Still 0
Sad Lonely 12
Angry Aggressive 72
Happy Pleased+Relaxing Calm 74
Happy Pleased+Amazed Surprised 38
Amazed Surprised+Angry Aggressive 81
Angry Aggressive+Sad Lonely 12
Sad Lonely+Quite Still 37
Quite Still+Relaxing Calm 30
Sad Lonely+Relaxing Calm 25
Happy Pleased+Amazed Surprised+Relaxing Calm 11
Sad Lonely+Quite Still+Relaxing Calm 67
Total 548

Figure 6. Example of overlapping images in Scene data set: (a) image associated to
Beach+Mountain (b) image associated to Field+Mountain
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Table 5. Distribution of images by six principal class labels in Scene data set: Beach, Sunset,
Fall foliage, Field, Mountain and Urban

Label number of images
Beach 369
Sunset 364
Fall foliage 360
Field 327
Beach+Field 1
Fall foliage+Field 23
Mountain 405
Beach+Mountain 38
Fall foliage+Mountain 13
Field+Mountain 75
Field+Fall foliage+Mountain 1
Urban 405
Beach+Urban 19
Field+Urban 6
Mountain+Urban 1
Total 2407

5.4.2 Results on Multi-Labeled Data Sets

For data sets described in Section 5.4.1, Table 6 presents results ob-
tained with KOKMI and KOKMII versus K-means, kernel K-means, OKM
and ALS methods in terms of Precision, Recall and F-measure. Each re-
ported measure results from the evaluation of the best run over twenty runs
of each algorithm. Results of KOKMI for Music and Scene data sets are
not reported due to time execution exceeding 24 hours however, it is easily
solved with KOKMII. The improvement with KOKMII is shown in terms of
computational complexity and classification results.

Table 6 shows that, for all data sets, F-measures of the proposed meth-
ods are better than those of existing ones. Compared to overlapping meth-
ods, the improvement of F-measure is induced by the improvement in Pre-
cision. Also, we note that there is no significant difference between over-
lapping methods in terms of Recall since all of them assign observations to
many clusters. But, in terms of Precision KOKMII has the best values with
a large margin compared to other overlapping methods. These results show
that our proposedmethods can detect more relevant and complex separations
between clusters leading to the improvement of the classification precision.

In addition, reported results show that the size of actual overlaps in
each data set affects the performance of overlapping methods. As the size
of overlaps increases the performance of overlapping methods compared to
hard methods becomes more noticeable. For example, in Music data set,
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Table 6. Comparison of the performance of KOKMI and KOKMII versus other existing
methods for multi-labeled data sets

Data set Label Eachmovie Music Scene
P R F P R F P R F

K-means 0.735 0.541 0.624 0.500 0.203 0.287 0.501 0.516 0.509
Kernel K-means 0.771 0.603 0.679 0.576 0.214 0.311 0.532 0.564 0.546

OKM 0.590 0.829 0.691 0.395 0.336 0.364 0.330 0.889 0.491
ALS 0.510 0.770 0.618 0.291 0.558 0.387 - - -
KOKMI with 0.715 0.820 0.761 - - - - - -
RBF kernel
KOKMII with 0.785 0.819 0.800 0.475 0.365 0.415 0.422 0.755 0.549
RBF kernel

where actual overlaps is 1.81, all F-measures obtained with OKM, ALS
and KOKMII outperform those of K-means and kernel K-means. How-
ever, when the size of overlaps nearly reaches 1, such as in Scene data
set, F-measures obtained with hard methods outperform, or at least equal,
those of overlapping methods. For example, F-measure obtained with ker-
nel K-means in Scene data set is 0.546 which outperforms F-measures ob-
tained with OKM and ALS. In fact, high values of F-measure obtained with
hard methods are induced by high values of Precision, while for overlapping
methods, high values of F-measure are induced by high values of Recall.

Therefore, knowing the actual overlaps in each data set, the sizes of
overlaps built by each method are discussed. Table 7 summarizes overlaps
obtained with KOKMI and KOKMII compared to overlaps obtained with
existing overlapping and non overlapping methods. For hard methods, all
sizes of overlaps are equal to 1 since these methods build non disjoint clus-
ters and ignore the possibility that an observation belongs to more than one
cluster. Fuzzy C-means builds acceptable overlaps if the threshold is well
determined, elsewhere we can obtain an overlap size less than 1. For over-
lapping methods, we notice that OKM and ALS build large overlaps. For
example, in Music data set, the size of overlaps obtained with OKM and
ALS are 2.35 and 3.46 respectively, while the actual overlaps is 1.81. How-
ever, for the same data set, KOKMII builds an acceptable overlap size of
1.98. These results show the capacity of the proposed methods to build ac-
ceptable sizes of overlaps given the actual overlaps in each data set.

As described in Section 5.1, the structure of separations between over-
lapping clusters depends of the choice of the kernel function and its pa-
rameters. Therefore, we study the sensitivity of proposed methods to these
parameters by analyzing the performance of KOKMII in real multi-labeled
data sets using Gaussian, Exponential and Polynomial kernels with different
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Table 7. Size of overlaps obtained with KOKMI, KOKMII and other methods for multi-
labeled data sets

Size of Overlap
Eachmovie data set Music data set Scene data set

Real overlap size (1.14) (1.81) (1.08)
K-means 1 1 1
Kernel K-means 1 1 1
Hard Fuzzy C-means 1 1 1

OKM 1.40 2.35 2.85
ALS 1.73 3.46 -
Fuzzy C-means (threshold=0.3) 1.26 1.22 0.00
Fuzzy C-means (threshold=0.4) 0.93 0.97 0.00
KOKMI with RBF kernel 1.26 - -
KOKMII with RBF kernel 1.36 1.98 1.99

values of kernel parameters. Tables 8, 9 and 10 report average results and
standard deviations, on ten runs, obtained with KOKMII using different ker-
nels in Eachmovie, Music and Scene data sets. Reported results show many
interesting facts about our proposed methods:

• For all data sets, kernels performing nonlinear separations, such as
Exponential and Gaussian, give better results than those performing
linear separations (Polynomial). These results state that in real life
applications, where separations between clusters may be complex, it
would be better to perform a learning process with nonlinear separa-
tions.

• KOKMII is highly sensitive to the choice of the kernel function. For
example, in Scene data set, the best obtained F-measure with Expo-
nential kernel is 0.548; whereas this value does not exceed 0.513 using
Gaussian kernel.

• Choice of parameters of the kernel function can considerably affect
the performance of classification. Some kernel parameters have iden-
tical behaviors in all data sets. For example, we notice for Gaussian
and Exponential kernels that the size of overlaps increases, Precision
decreases and Recall increases as well as σ becomes large.

• Results of standards deviations on ten runs with different initializa-
tions of clusters representatives show that KOKMII is not very sensi-
tive to the these initializations.
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Table 8. Validation measures obtained with KOKMII using different types of kernels in
Eachmovie Data set

Kernel Value Precision Recall F-measure Overlap

Gaussian
σ = 1 0.610 ± 0.06 0.840± 0.15 0.719 ± 0.11 1.58 ± 0.10
σ = 15 0.715 ± 0.05 0.816 ± 0.15 0.754 ± 0.08 1.36 ± 0.05

RBF kernel
σ = 100 0.715 ± 0.05 0.816 ± 0.15 0.754 ± 0.08 1.36 ± 0.05
σ = 10000 0.715 ± 0.05 0.816 ± 0.15 0.754 ± 0.08 1.36 ± 0.05

Exponential
σ = 10 0.554 ± 0.03 0.771 ± 0.11 0.674 ± 0.09 1.74 ± 0.12
σ = 15 0.629 ± 0.06 0.817 ± 0.21 0.711 ± 0.15 1.52 ± 0.15

RBF kernel
σ = 100 0.629 ± 0.06 0.817 ± 0.21 0.711 ± 0.15 1.52 ± 0.15
σ = 10000 0.629 ± 0.06 0.817 ± 0.21 0.711 ± 0.15 1.52 ± 0.15

Polynomial kernel
d = 2 0.665 ± 0.09 0.739 ± 0.11 0.700 ± 0.10 1.33 ± 0.08
d = 3 0.665 ± 0.08 0.774 ± 0.14 0.715 ± 0.10 1.42 ± 0.02
d = 4 0.674 ± 0.02 0.710 ± 0.13 0.689 ± 0.07 1.32 ± 0.11

Table 9. Validation measures obtained with KOKMII using different types of kernels in
Music Data set

Kernel Value Precision Recall F-measure Overlap

Gaussian
σ = 1 0.539 ± 0.03 0.367 ± 0.00 0.436 ± 0.00 1.98 ± 0.00
σ = 5 0.471 ± 0.00 0.335 ± 0.02 0.392 ± 0.02 1.81 ± 0.03

RBF kernel
σ = 100 0.480 ± 0.02 0.263 ± 0.02 0.354 ± 0.03 1.42 ± 0.01
σ = 10000 0.477 ± 0.08 0.282 ± 0.02 0.354 ± 0.02 1.44 ± 0.02

Exponential
σ = 1 0.479 ± 0.02 0.362 ± 0.02 0.412 ± 0.02 1.98 ± 0.00
σ = 5 0.463 ± 0.00 0.313 ± 0.02 0.373 ± 0.02 1.64 ± 0.01

RBF kernel
σ = 100 0.466 ± 0.01 0.300 ± 0.02 0.365 ± 0.02 1.57 ± 0.03
σ = 10000 0.466 ± 0.01 0.300 ± 0.02 0.365 ± 0.02 1.57 ± 0.03

Plynomial kernel
d = 2 0.485 ± 0.01 0.327 ± 0.02 0.365 ± 0.01 1.44 ± 0.01
d = 3 0.493 ± 0.00 0.290 ± 0.01 0.365 ± 0.01 1.40 ± 0.02
d = 4 0.492 ± 0.00 0.295 ± 0.01 0.369 ± 0.01 1.41 ± 0.01

6. Conclusion

In order to better look for overlapping clusters with linear and non-
linear separations two clustering methods, based on the Mercer Kernel, are
proposed. The first method, based on centroids, generalizes kernel K-means
for overlapping clustering taking into account that an observation can belong
to more than one cluster. The second method, based on medoids, improves
the clustering accuracy of the previous method and adapts it to large data
sets. Experiments on artificial and real multi-labeled data sets show the abil-
ity and the efficiency of these methods to detect clusters with complex linear
and nonlinear separations.
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Table 10. Validation measures obtained with KOKMII using different types of kernels in
Scene Data set

Kernel Value Precision Recall F-measure Overlap

Gaussian
σ = 10 0.419 ± 0.04 0.663 ± 0.05 0.513 ± 0.04 1.75 ± 0.04
σ = 15 0.418 ± 0.04 0.655 ± 0.05 0.510 ± 0.05 1.75 ± 0.04

RBF kernel
σ = 100 0.423 ± 0.05 0.657 ± 0.05 0.511 ± 0.05 1.75 ± 0.04
σ = 10000 0.423 ± 0.05 0.657 ± 0.05 0.511 ± 0.05 1.75 ± 0.04

Exponential
σ = 10 0.425 ± 0.01 0.750 ± 0.04 0.548 ± 0.02 1.99 ± 0.00
σ = 15 0.426 ± 0.01 0.753 ± 0.05 0.544 ± 0.02 1.99 ± 0.00

Gaussian
σ = 100 0.425 ± 0.01 0.753 ± 0.04 0.544 ± 0.02 1.99 ± 0.00
σ = 10000 0.426 ± 0.01 0.753 ± 0.05 0.544 ± 0.02 1.99 ± 0.00

Polynomial kernel
d = 2 0.435 ± 0.04 0.661 ± 0.06 0.525 ± 0.05 1.75 ± 0.05
d = 3 0.455 ± 0.05 0.656 ± 0.05 0.537 ± 0.05 1.74 ± 0.05
d = 4 0.481 ± 0.03 0.593 ± 0.02 0.530 ± 0.02 1.63 ± 0.14

To easily interpret results after classification we consider a hard as-
signment of an observation to one or several groups. Each observation
would be a member or not of one or several groups. However, we can add a
probabilistic or fuzzy assignments of the observation to model its member-
ship to each cluster.

In addition, there are many real cases where the input data cannot
be described by explicit feature vectors but described by strings, trees or
histograms such as for images, graphs and text documents. These types of
applications are referred to as symbolic clustering. For such data, it should
be interesting to investigate the application of an overlapping clustering pro-
cess with specific kernels such as String (Lodhi, Cristianini, Shawe-Taylor,
and Watkins 2001) and Histogram (Barla, Odone, and Verri 2003) kernels.

Appendix A. Descriptions of the Subset Extracted From EachMovie

Table 11 shows the descriptions and the labels of the subset of movies
extracted from Eachmovie and used in Section 5.4.2. The “age of user” is
normalized in the interval [1..5], the “sex of user” takes (1) for male and
takes (2) for female, the “movie’s rate” is a scale from (1) to (5) with (1)
indicates extreme dislike and the remaining columns indicate the categories
of each movie in the collection.
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Table 11. Dataset extracted from EachMovie database.

age of user sex of user movie’s rate action movie comedy movie crime movie
2.77 2 4 1 0 0
3.22 1 4 1 0 0
1.44 2 4 1 0 0
1.53 1 4 1 0 0
2.42 1 4 1 0 0
2.86 1 5 1 0 0
2.24 1 4 1 0 0
1.44 1 5 1 0 0
3.22 1 5 1 0 0
3.13 2 5 1 0 0
1.88 1 5 1 0 0
2.51 1 5 1 0 0
1.97 1 5 1 0 0
2.06 2 4 1 0 0
1.80 1 4 1 0 0
1.62 1 4 1 0 0
2.51 1 4 1 0 0
2.60 1 4 1 0 0
1.35 1 4 1 0 0
3.57 1 4 1 0 0
2.33 2 5 1 0 0
1.80 1 3 0 1 0
2.86 2 1 0 1 0
2.24 1 4 0 1 0
2.15 2 3 0 1 0
1.80 1 2 0 1 0
2.24 1 3 0 1 0
1.97 1 4 0 1 0
2.51 1 3 0 1 0
1.35 1 3 0 1 0
2.60 1 3 0 1 0
1.71 1 4 0 1 0
3.40 2 2 0 1 0
2.95 1 3 0 1 0
3.04 1 2 0 1 0
1.35 1 3 0 1 0
2.86 2 3 0 1 0
3.57 1 3 0 1 0
1.35 1 2 0 1 0
3.13 2 3 0 1 0
2.51 1 4 0 1 0
1.44 1 4 0 1 0
2.24 1 3 0 1 0
1.00 2 2 0 1 0
1.44 1 3 0 1 0

(continued on next page)
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Table 11. Dataset extracted from EachMovie database (continued)

age of user sex of user movie’s rate action movie comedy movie crime movie
2.06 1 4 0 1 0
2.86 1 3 0 1 0
4.55 1 3 0 0 1
4.11 1 3 0 0 1
4.37 1 5 0 0 1
3.13 1 4 0 0 1
3.93 2 5 0 0 1
4.20 1 4 0 0 1
3.84 1 5 0 0 1
2.60 1 4 0 0 1
2.51 1 5 0 0 1
4.37 1 5 0 0 1
3.84 1 5 0 0 1
2.42 2 4 0 0 1
5.00 1 3 0 0 1
5.00 1 3 0 0 1
5.00 1 4 0 0 1
5.00 1 5 0 0 1
3.57 1 4 0 0 1
2.77 2 4 1 0 1
3.22 1 4 1 0 1
2.95 1 4 1 0 1
5.00 1 4 1 0 1
5.00 1 5 1 0 1
4.20 2 4 1 0 1
2.42 2 4 1 0 1
2.60 1 5 1 0 1
4.02 1 5 1 0 1
3.40 1 4 1 0 1
2.42 1 4 1 0 1
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