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Abstract: We propose to use the Zipfian distribution as a kernel for the design of a 
nonparametric classifier in contrast to the Gaussian distribution used in most kernel 
methods. We show that the Zipfian distribution takes into account multifractal nature 
of data and gives a true picture of scaling properties inherent in data. We also show 
that this new look at data structure can lead to a simple classifier that can, for some 
tasks, outperform more complex systems. 
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1. Introduction 
 

Proper selection of kernel and window width is essential for a good 
probability density estimation and for classification in classification tasks 
(Schölkopf and Smola 2002; Scott 1992). This problem is solved solely 
from the statistical point of view. However, the role of spatial correlations 
and the effective data dimensionality are not considered in kernel methods.  
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Here we show that the Zipfian distribution (Maslov 2005; Zipf 
1968) can take into account the fractal nature of data, and can be a suitable 
alternative to the standard kernel functions. We prove here that the kernel 
method with the Zipfian kernel gives an unbiased approximation of the 
class probability of the given point. For proof we use here or necessarily 
redefine some notions from the multifractals theory. Singularity exponents, 
as well as scaling exponents are widely used in multifractal chaotic series 
analysis and can be related to data that do not form a series. It was shown 
already by Mandelbrot (1982) that any data might possess fractal or 
multifractal properties. We use these exponents for proof of our method of 
classification. As there is no time scale, even no ordering of samples, one 
cannot use such a tool as wavelet functions.  

Furthermore, this classification method is truly nonparametric as 
there is no need to set up the window width common in most kernel meth-
ods.  

Our results demonstrate that the kernel method can be related to the 
fractal nature of data and to the harmonic series (Maslov 2005; Schmuland 
2003) via the Zipfian distribution. 

This work can be a starting point for more detailed description of 
local behavior of multivariate and not exactly self-similar fractal data, and 
for the development of new approaches to data analysis including classifi-
cation problems. 

 
2. Preliminaries 

 
2.1 Data and the Learning Set 

 
Let the learning set U of total N samples be given. Each sample 

xt={xt1, xt2,… xtn}; t = 1, 2, ... N , xtk  R ; k = 1, 2, ..., n corresponds to a 
point in n-dimensional metric space Mn, where n is the sample space di-
mension. For each xt  U a class function T: Rn  {1, 2, ... C}: T(xt) = c is 
introduced. With the class function the learning set U is decomposed into 

disjoint classes Uc = {xt  U | T(xt) = c};  c  {1, 2, ..., C},  c
C
c U1 , Uc ∩ 

Ud = Ø;  c, d  {1, 2, ..., C}; c  d. Cardinality of set  Uc let be Nc ; 

 


C

c c NN
1

. 

As we need to express which sample is closer or further from some 
given point x, we can rank points of the learning set according to distance 
ri of point xi from point x. Therefore, let points of U be indexed (ranked) 
so that for any two points xi, xj   U there is i < j if ri < rj; i, j = 1, 2, ... N, 
and class Uc = {xi  U | T(xi) = c}. Of course, the ranking depends on point 
x and eventually metrics of Mn. We use Euclidean (L2) and absolute (Man-
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hattan, L1) metrics here. In the following indexing by i means ranking in 
the way just introduced. 

 

2.2 Zipfian Kernel 
 

The Zipfian distribution (Zipf's law) (Maslov 2005; Zipf 1968) pre-
dicts that out of a population of N elements, the frequency of elements of 
rank i, f(i;s,N), is given by probability mass function 





N

t

s

s

t

i
Nsif

1

1

1
),;( ,                                       (1) 

where N is the number of elements, i is their rank, s is the value of the ex-
ponent characterizing the distribution. The law may also be written as: 

                                 
sN

s Hi
Nsif

,

1
),;(  , 

where HN,s is the Nth generalized harmonic number. 
The simplest case of Zipf's law is a "1/f function" arising when s = 

1. Given a set of Zipfian distributed frequencies of occurrence of some 
objects, sorted from the most common to the least common, the second 
most common frequency will occur ½ as often as the first. The third most 
common frequency will occur 1/3 as often as the first, and so on. Over 
fairly wide ranges, and to a fairly good approximation, many natural phe-
nomena obey Zipf's law. Note that in the case of a "1/f function", i.e. s = 1, 
N must be finite and its denominator is equal to HN, the so-called harmonic 
number, i.e. the sum of truncated harmonic series (Schmuland 2003); oth-
erwise the denominator is a sum of harmonic series, which is divergent. 
However, if exponent s exceeds 1,  s > 1, then the series is convergent, 

 


1

1
)(

t
st

s  , 

where  is Riemann's zeta function. 
 
2.3 Kernel Methods 

 
Origin of kernel methods can be seen in the oldest and most widely 

used density estimator, the histogram and in the k-th nearest neighbor (k-
NN) method.  

For the histogram, given an origin x0 and a bin width h, we define 
the bins of the histogram to be the intervals [x0 + mh, x0 + (m + 1)h] for 
positive and negative integers m. The intervals have been chosen closed on 
the left and open on the right for definiteness. The histogram density esti-
mate (naive estimator) is then defined by 
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 1
if x No of X in same bin as x

Nh
( ) .



 . 

 

Note that, to construct the histogram, we have to choose both an origin and 
a bin width; it is the choice of bin width, which, primarily, controls the 
amount of smoothing inherent in the procedure (Silverman 1992). By in-
troducing the weight function 

1 2 1

0

if x
w x

otherwise

/
( )







  . 

The naive estimator can be rewritten in form  

1

1 1n
i

i

x x
f x w

N h h
( ) ( )






   . 

 

This naive estimator can be generalized by replacing the weight function w 
by a kernel function K that satisfies integral condition 

1K x dx( )




  .  

Usually, K will be a symmetric probability density function, the normal 
density, for instance, or the weight function w used in the definition of the 
naive estimator. By analogy with the naive estimator, the kernel estimator 
with kernel K is defined by 

1

1 N
i

i

x x
f x K

Nh h
( ) ( )






   ,  

where h is the window width, also called the smoothing parameter or 
bandwidth.  

Important are conditions when the estimator is nonparametric, i.e. is 
consistent in large class of density functions. In that case, the kernel 
should be Mercer’s kernel (Herbrich 2002) which implies that the kernel 
should be positive semidefinite, which also includes the integral condition 
above. Not all kernels need to be Mercer’s kernels. For example, the neu-
ral network with hyperbolic tangent transfer function is a kernel machine 
but a tanh kernel is never positive definite (Schölkopf and Smola 2002).  

It turns out  that many algorithms may be viewed as generalized 
kernel estimators; see Scott (1992, Theorem 6.6), which says that any es-
timator that is continuous and Gateaux generalized differentiable can be 
written in the form of a mean of kernel functions. In kernel density estima-
tors the kernel function is centered at the data sample location and defines 
an influence region around it. Usually, the influence region has its maxi-
mum at the data sample location and decreases in value with respect to the 
distance from that location. A scale parameter, also called bandwidth or 
window width, controls the kernel function smoothing over the surround-
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ing space. Most studies choose the Gaussian function as the kernel due to 
its properties of approximation and for having derivatives of all orders 
over the entire space. The performance of kernel estimators crucially de-
pends on the value of the kernel’s bandwidth (Bors and Nasios 2013). 

The nearest neighbor class of estimators represents an attempt to 
adapt the amount of smoothing to the “local” density of data (Silverman 
1992). The degree of smoothing is controlled by an integer k, chosen to be 
considerably smaller than the learning set size; typically k < N/2. The k-th 
nearest neighbor density estimate is then defined by 

k

k
f x

NV x
( )

( )
  , 

where Vk(x) is volume of ball centered at x and containing k points nearest 
to x. While the naive estimator is based on the number of observations fall-
ing in a box of fixed width centered at the point of interest, the nearest 
neighbor estimate is inversely proportional to the size of the ball needed to 
contain a given number of observations.  

It is possible to generalize the nearest neighbor estimate to provide 
an estimate related to the kernel estimate. Let K(x) be a kernel function 
integrating to one. Then the generalized k-th nearest neighbor estimate is 
defined by 

1

1 N
i

ik k

x X
f x K

NV x d x
ˆ ( )

( ) ( )




 
 
 

   

 

It can be seen at once that this is precisely the kernel estimate evaluated at 
x with window width Vk(x). Thus, the overall amount of smoothing is gov-
erned by the choice of the integer k but the window width used at any par-
ticular point depends on the density of observations near that point. The 
ordinary k-th nearest neighbor estimate is the special case when K is the 
uniform kernel.  

Here we show that a suitable alternative to the standard kernel func-
tions can be the Zipfian distribution (Maslov 2005; Zipf 1968) with proba-

bility mass function 
1

N

i

H

/
, where i is the order number of a near neighbor, 

and HN is the N-th harmonic number. We show that this distribution can 
take into account a fractal nature of data. The use of the Zipfian kernel is 
essential as no other kind of kernel can express it better. 

The method proceeds from observation as follows. If any data are of 
a fractal or multifractal nature then distances between points are governed 
by the scaling law. It means that distances between pairs of points and es-
pecially distances between fixed point x and its neighbors follow this be-
havior. Thus if the i-th neighbor lies at distance ri from point i then a scal-
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ing exponent q exists such that i = Kri
q has the form of linear dependence 

(due to proper selection of q) as was shown by Grassberger and Procaccia 
(1983). Now, if we suppose that the influence of the i-th neighbor of some 
class on the probability that point x is of the same class is inversely pro-
portional to ri

q i.e. to its index i, we can easily estimate the probability that 
point x is of that class as mentioned above. The influence function (1/i) can 
be seen as a kernel function centered into the i-th neighbor and the ap-
proach as kernel method. It also follows from this that kernel considered is 
the Zipfian kernel and that kernel of another form cannot combine partial 
“influences” of individual neighbors in such a simple way.  

Considering the two-class classification problem under the assump-
tion of equal priors, the k-NN classifier in its simplest form states f(x)= j/k, 
where j is the number of points of class c among all k points nearest to the 
point x.  

In our method we center the Zipfian kernel on each point xi of learn-
ing data set of size N. At point x the kernel gives value (probability densi-
ty, in fact probability mass as Zipfian distribution is discrete) 1/i; xi is i-th 
nearest neighbor of x. Then, the sum of all these reciprocals gives the sum 
of harmonic series up to the N-th element, i.e. the harmonic number HN. 
Let the sum of these reciprocals only for points of given class c be Sc. We 
show here that then the probability that point x is of class c is given by ra-
tio Sc/HN.  

From the point of view of the kernel approach, it is easily seen that 
the above approach could be considered as kernel method but the Zipfian 
kernel does not fulfill kernel conditions discussed already. Note that 
Zipfian distribution has a heavy “hyperbolic” tail such that density mass 
function diminishes with 1/t for large (integer) t (the random variable) 
while heavy tail Cauchy distribution and Student’s t probability density 
functions diminish polynomially as 1/t2 or faster, and the density of La-
place’s double exponential distribution diminishes exponentially. 

 
3. The Method 

3.1 Intuitive Basis 
 

Here we explain the method of probability estimation proposed on 
the following illustrative example. Let us consider partial influences of 
individual points to the probability that point x is of class c; we consider 
two classes only here. Both classes have the same cardinality. Each point 
of class c in the neighborhood of point x adds a little to the probability that 
point x is of class c, where c = {1, 2} is the class mark. This influence is 
the larger the closer the point considered is to point x and vice versa. This 
observation is based on the finding of Cover and Hart (1967) that the first 
nearest neighbor has the largest influence on proper estimation to what 
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class point x belongs. Suppose that the influence on the probability that 
point x is of class c of the nearest neighbor of class c is 1, the influence of 
the second nearest neighbor is 1/2 , the influence of the third nearest neigh-
bor is 1/3 etc. Just these values are related to Zipfian distribution. 

From the kernel methods point of view, we center the Zipfian kernel 
to each point xi of data set. At point x the kernel gives probability mass 
proportional to 1/i (we use exponent s = 1); xi is i-th nearest neighbor of x. 
Summing up these values for points xi of class 1 gives number S1, for 
points of class 2 number S2. The estimate of the probability that point x is 
of class 1 is  

1

1 2

1
S x

p c x
S x S x

( )
ˆ ( | )

( ) ( )
 

  . 

 

The classification procedure is depicted in Figure 1. The problem is: 
What is color of given point x depicted in black at the left upper part of 
picture? First we rank points of the learning set according to their distanc-
es from point x as shown at the right upper part of picture. There are 14 
points here, 7 red, 7 green as shown in the upper lines in the table below 
pictures. Reciprocals of rank numbers are in the third line. In the fourth 
and fifth line there are reciprocals of ranks of points xi from sets Uc=red and 
Uc=green. In the rightmost two columns of table are corresponding sums and 
estimated probabilities that point x is red (0.526967) or green (0.473033). 
Setting threshold θ = 0.5 we can state that point x is red. 

From another point of view, let  
i

T x c T x cPr ( ) | ( )   be the 

probability that the given point x is of class c if neighbor point number i is 
of the same class as point x. Note that points of the learning set U are in-
dexed so that for any two points xi, xj   U  there is i < j if ri < rj; i, j = 1, 2, 
... N. In the following K is a constant that is used to normalize the proba-
bility that point x belongs to a class to 1: 

For the first (nearest) point i = 1         
1

1

1
T x c T x c KPr ( ) | ( )   , 

for the second point i = 2                    
2

1

2
T x c T x c KPr ( ) | ( )    , 

and so on, generally for point No. i       1
i

T x c T x c K
i

Pr ( ) | ( )   . 
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Figure 1. Illustration  of  classification  procedure  for  the  simplest case of two classes and  
of the same number of samples of both classes. 

 
 

 
Individual points are independent and then we can sum up these 

probabilities. Thus, we add the partial influences of k individual points 
together by summing up 

                 1
i c i c

i

x U x U

p c x T x c T x c K iˆ ( | ) Pr ( ) | ( ) /
 

     .             (2) 

Note that the sum goes over indexes i for which the corresponding 
samples of the learning set are of class c, c = 1, 2, … C, where C is the 
number of classes.  

Let  

1
i c

c
x U

S i/


  . 

Then there is  

1

C

c N

c

S H


 , 

where HN is the N-th harmonic number. The estimation of the probability 
that the given point x belongs to class c is 
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c

N

S
p x c

H
ˆ ( | )  . 

This approach is based on the hypotheses that the weight of a neigh-
bor is proportional just to the reciprocal of its order number as well as to 
its distance from the given point, see Theorem 1.  

It can be seen that 
1

K
i

is also the value (at point x) of the kernel 

function with its center at point xi and having the form of a Zipfian proba-
bility mass function (1) for s = 1. Summing up these values over all centers 
that belong to class Uc gives (2).       

 
3.2 The Classification Procedure 

 
The probability estimation above can be used for classification. Let 

the samples of the learning set (i.e. all samples irrespective of the class) be 
sorted according to their distances from the given point x. Let indexes be 
assigned to these points so that 1 is assigned to the nearest neighbor, 2 to 
the second nearest neighbor of the given point x etc. 

Let us compute sums 
1

1
1

i

c
x Uc

S x i
N

( )


  , i.e. the sums of recipro-

cals of the indexes of samples from each class c separately; Nc is the num-
ber of samples of class c (cardinality of Uc) and  N1 = N2 = ... = NC .  

The estimate of the probability that point x belongs to class c is  

1

c

C

k

k

S
p c x

S

ˆ ( | )






.                                      (3) 

In the end, the formula above is nothing else than Bayes formula.  
Usually we say that point x is of class k if p k xˆ ( | ) is the largest of 

all p c xˆ ( | ) . 

In the case of two classes, when some discriminant threshold θ is 
chosen then if p(c = 1| x) ≥ θ point x is of class 1, else it is of class 2. This 
is the same procedure as in other classification approaches where the out-
put is estimation of probability (naïve Bayes) or any real valued variable 
(neural networks). The value of the threshold can be optimized with re-
spect to the loss function.  

For classification into more than two classes we use this formula for 
all classes and we assign to the given point x a class c for which p(c | x) is 
the largest.  
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Formally we can rewrite (3) into more comprehensive form. For the 
two class problem with different number of samples of one and the other 
class formula we have 

1 21 2

1
1

1 1
1 1

i c

i i

x Uc

x U x U

i
N

p c x

i i
N N

/

ˆ ( | )

/ /



 






 
 . 

It is seen here the introduction of the relative representation of dif-
ferent numbers of samples of one and the other class, i.e. introducing a 
priori probabilities. 

For C classes there is  

1

1
1

1
1

i c

i k

x Uc

C

k x Uk

i
N

p c x

i
N

/

ˆ ( | )


 




 
 . 

 
4.  Approximation of The Probability of The Class 

 
4.1 Zipfian Kernel Approach 

 
Let indexes i be assigned to points (samples) of the learning set 

without respect to a class so that i = 1 is assigned to the nearest neighbor 
of point x, i = 2 to the second nearest neighbor etc. We have a finite learn-
ing set of size N samples and Nc samples of individuals from class c.  

Using Zipfian probability mass function (1) as a kernel function, we 
have the kernel function in the form K(||x-xi||/h)=1/(isHN,s). At the same 
time, product Nh, i.e. the number of samples times the smoothing factor 
has no significance here and we set Nh = 1. Then we get an approximation 
of the probability that the given point x belongs to class c in the form 

 

,

1 1
( | )

c

s
i UN s

p c x
H i





  ,                                (4) 

 

where the sum goes over indexes i for which the corresponding samples of 
the learning set are of class c. Summing up approximations of probability 

densities at point x for all classes, we get apparently 
1

1 1N

s
iN sH i, 
  that is 

equal to 1 and thus fulfills the assumption that the given point belongs to 
some class. 
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Two classes only and the same number of samples of both classes 
are assumed without loss of generality in the theorem and the proof is as 
follows. 

 

Theorem 1. Let the task of classification into two classes be given and let 
the size of the learning set be N and let both classes have the same number 
of samples, i.e. there is the same a priori probability. Let i be the index 
(rank) of the i-th nearest neighbor xi of point x (without considering the 
neighbor’s class) and ri be its distance from the point x. Then 

1
i c

x U

N
N

i

p c x
H

/

lim ( | )






 .                                  (5) 

where p(c|x) is the probability that point x belongs to class c.  
 

In the following proof we use some notions known from Jiřina and 
Jiřina, Jr. (2008; 2009; 2013), briefly summarized as follows. 

 
4.1.1 Mapping the Distribution 

 
Let us have an example of a ball in an n-dimensional space contain-

ing uniformly distributed points over its volume. Let us divide the ball on 
concentric “peels” of the same volume. Using the formula 

n
ii nSVr )(/ , which is, in fact, the inverted formula for volume Vi of n-

dimensional ball of radius ri, we obtain a quite interesting succession of 
radii corresponding to the individual volumes - peels. The symbol S(n) 
denotes the volume of a ball with unit radius in E

n
; note S(3) = 4/3 . A 

mapping between the mean density ρi  in an i-th peel and its radius ri is 
ρi = p(ri); p(ri) is the mean probability density in the i-th ball peel with ra-
dius ri. The probability distribution of points in the neighborhood of 
a given point x is thus simplified to a function p(ri) of a scalar variable ri. 
We call this function a probability distribution mapping function D(x, r) 
and its partial differentiation with respect to r the distribution density 
mapping function d(x, r). Functions D(x, r) and d(x, r) for x fixed are, in 
fact, the probability distribution function and the probability density func-
tion of variable r, i.e. of distances of all points from the given point x. 
More exact definitions follow (Jiřina and Jiřina, Jr. 2008). 
 
Definition 1. Probability distribution mapping function D(x, r) of the giv-
en point x is function 

),(

)(),(
rxB

dzzprxD , where r is distance from the giv-

en point and B(x, r) is ball with center x and radius r. 
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Definition 2. Distribution density mapping function d(x, r) of the given 
point x is function ),(),( rxD

r
rxd




 , where D(x, r) is a probability distri-

bution mapping function of the given point x and radius r. 
Note. When it is necessary to differentiate the class of a point at dis-

tance r from point x, we write D(x, r, c) or d(x, r, c). 
 

4.1.2 Correlation Dimension 
 

It is seen that for fixed x the function D(x, r), r > 0 is monotonously 
non-decreasing from zero to one. Functions D(x, r) and d(x, r) for x fixed 
are one-dimensional analogs to the probability distribution function and 
the probability density function, respectively. In fact, D(x, r) is the distri-
bution function of distances of points from the given point x and d(x, r) is 
corresponding probability density function. So we can write p(c|x, r) = d(x, 
r, c). Moreover, D(x, r) reminds the correlation integral (Grassberger and 
Procaccia 1983).  The correlation integral 

 







N

ji
ji

N
I xxrh

N
rC

1,
..2

|)|(
1

lim)( , 

where x.i and x.j are points of the learning set without respect to class and 
h(.) is a Heaviside’s step function, can be written in the form (Camastra 
2003; Camastra and Vinciarelli 2001). 
 




 






1

1 1
.. |)|(

)1(

1
lim)(

N

i

N

ij
ji

N
I xxrh

NN
rC . 

It can be seen that correlation integral is a distribution function of 
distances between pairs of data points given. The probability distribution 
mapping function is a distribution function of distances from one fixed 
point. In the case of finite number of points N, there are N(N - 1)/2 pairs of 
points and then distances between them, and from them one can construct 
empirical correlation integral. Similarly, for each point there are N - 1 dis-
tances and from these N - 1 distances one can construct empirical probabil-
ity distribution mapping function. There are exactly N such functions and 
mean of these functions gives empirical correlation integral. This is valid 
also in the limit for the number N of points going to infinity.  

On the other hand there are essential differences. The probability 
distribution mapping function is a local feature dependent on the position 
of point x. The empirical distribution mapping function also includes 
boundary effects (Arya, Mount, and Narayan 1996) of the true data set. 
The correlation integral is a feature of the fractal or data generating pro-
cess and should not depend on the position of the particular point consid-
ered or on the size of the data set at hand.  
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In a log-log graph of the correlation integral, i.e. the graph of the 
dependence of CI on r, the slope gives the correlation dimension . In the 
log-log graph of the probability distribution mapping function D(x, r) the 
curve is also close to a monotonously and nearly linearly growing func-
tion. The slope (derivative) is given by a constant parameter. Let us denote 
this parameter q and call it the distribution mapping exponent. This param-
eter is rather close but generally different from . 

The linear part of the log-log graph means  
 

I
C r alog ( ) log  , 

where a is a constant, and then IC r ar( )  . Thus, CI(r) grows linearly 

with variable z r .  
Similarly the probability distribution mapping function grows line-

arly with rq at least in the neighborhood of point x. Its derivative, the dis-
tribution density mapping function, is constant there. 
 
4.1.3 Proof of Theorem 1 

 
There are c spatial distributions pc(x) of probability that any point x 

(on the support considered) is of class c. Then for each point x and C clas-

ses there is 
1

1
C

c

c

p x( )


 . For each given point x one can state the probabil-

ity distribution mapping function D(x, ri, c). We approximate this function 
so that it holds (K is a constant) 

q qD x r c Kr
i i

( , , )   

in the neighborhood of point x. Using differentiation, according to variable 

z = q
ir , we get qd x r c K

i
( , , )  . It means that by the use of z = qr

i
, the 

space is mapped (“distorted”) so that the distribution density mapping 
function is constant in the neighborhood of point x for a particular distribu-

tion. Let us consider sum
1

N q qd x r c r
i i

i
( , , ) /


. For this sum we have  

          1
1 1

N Nq q qd x r c r p c x r
i i iN Ni i

lim ( , , ) / ( | ) lim / 
   

          (6) 

 

because d(x, q
ir , c) = d(x, z, c) = p(c | x) for all i (the uniform distribution 

has a constant density).  
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By the use of zi  = qr
i

, the space is nonlinearly rescaled so that the 

distribution density mapping function id x z c( , , )  is constant in the neigh-

borhood of point x. Then q
ir is proportional to i, 1

q

ir k i ; k1 is a constant. 

Exponent q need not be a constant but can be a function q = q(x, c); we 

write it for point xi in form q = q(i, c). Let  1

q i c

ir k i( , )   for all i of class c. 

(From the last formula one could derive the q(i, c), but we need not do it.) 
We rewrite the equation (6) in the form 

  

1
1 1

N Nq i c q i c q i c
d x r c r p c x r

i i iN Ni i

( , ) ( , ) ( , )
lim ( , , ) / ( | ) lim / 
    

 

 

and then in the form 
 

1
1 1

N Nq
d x r c i p c x i p c x H

i NN N Ni i
lim ( , , ) / ( | ) lim / ( | ) lim  
      

. 

 
Given the learning set, we have the space around point x “sampled” by 
individual points of the learning set. Let pc(ri) be an a-posteriori probabil-
ity that point i in distance ri from the given point x is of the class c. Then 
pc(ri) is equal to 1 if point i is of class c and pc(ri) is equal to zero, if the 
point is of the other class. Then the particular realization of Np c x H( | )  is 

sum 1
i c

x U

i/


 .  Using this sum, we can write 

1p c x H i
NN N x U

i c

( | ) lim lim / 
    

. 

Dividing this equation by the limit of sum on the left hand side, we get  

1 i
N x U

i c p c|x)
H

NN

lim /

(
lim


  



 

 

 

and due to the same limit transition in the numerator and in the denomina-
tor we can rewrite it in the form (5). 
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4.2  Bayes Risk 
 

We have shown that estimate (4) converges to true probability 
p(c|x). Considering two-class classification with simple loss matrix 
L(1, 1) = L(2, 2) = 0, L(1, 2) = L(2,1) = 1 there is conditional Bayes risk of 
estimating a class of point x 

 
2 1R x R c x R not c x p c x( ) ( | ) ( | ) ( ( | ))    . 

 

It is apparent that its estimate 2 1R x p c xˆ ˆ( ) ( ( | ))   converges to R(x) as 

p c xˆ ( | ) converges to p c x( | ) . The R xˆ ( )  can be computed easily having 

classification error that is equal to 1 p c xˆ ( | )  and can be found for exam-

ple in Table 1, see Section 5. 
 
4.3 Computational Complexity 

 
For total N samples and single given point x the procedure consists 

of three steps: 
 

 Computation of distances; the computational complexity for one dis-
tance is proportional to dimensionality n, of all N distances nN. 

 Sorting distances is proportional to Nlog N. 
 Summing up of reciprocals of indexes is proportional to N. 

 
Then the total complexity is anN +bNlog N + dN = N(an +blog N + d ), 
where a, b, d are implementation dependent constants. For larger learning 
data sets the complexity is governed by sorting. It is also seen that the 
computational complexity directly depends on the learning set size N and 
in small extend on dimensionality n. 
 

5. Experiments 
 

5.1 Implementation Details 
 

5.1.1  System and Language Environment  
 

The algorithm was implemented in c++ as a function to separate it 
from necessary reading and writing data and setting up control parameters. 
It runs under Windows as well as under Linux environment; the compilers 
used were Microsoft Visual C++ and c++ of GCC 4.8 Release Series by 
GNU Project - Free Software Foundation (FSF), respectively.  
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5.1.2 Input Parameters 
 

To run, the program needs names of arrays for learning and testing 
data, problem dimensionality n and length (the number of samples) of the-
se arrays. There is also name for array with output values, i.e. estimated 
class probabilities for each sample of testing data. 

 
5.1.3 Control 

 

There is a single control parameter - user can change metrics Lp by set-
ting up p – usually p = 1 or p = 2 but any positive real value can be used. 
Of course, Lp for p less than one is not a metrics. Using large p (say 
p = 10) one gets close to Linf metrics; the ranking of neighbors is then giv-
en by the largest coordinate with very rare exceptions. Distance ri should 
be computed using the formula  

 

1

pn

p
i ij j

j

r x x


  , 

 

but we do not use the p-th root; in sorting values of ri
p suffice for compari-

sons. We use standard library quicksort function. 
 

5.1.4 Normalization  
 

For all the data sets, each of all the input features is normalized to 
values with zero mean and unit empirical variance. 

 
5.2 Tasks from UCI Machine Learning Repository – Comprehensive 
       Tests 

 
Data sets ready for a run with a classifier are available on the net 

(Lucas and Algoval 2008). For small data sets in this corpus each task con-
sists of 50 pairs of training and testing sets corresponding to 50-fold cross 
validation. For large data sets, i.e. DNA data (Paredes 2008), Letter data 
(Letter recognition), and Satimage (Statlog Landsat Satellite) the single 
partition into training and testing sets according to specification in Bache 
and Lichman (2013) was used. We also added the popular Iris data set with 
ten-fold cross validation. 

In Table 1 the results obtained by different methods are summa-
rized. The methods are as follows: 

 
L2 The nearest neighbor method by Paredes and Vidal (2006) 
1-NN L2 The nearest neighbor method computed by authors 
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sqrt-NN L2 The k-NN method with k equal to square root of the  
number of samples of the learning set computed by authors 

Bayes 10 The Bayes naive method with ten bins histograms,  
computed by authors 

CDM The learning weighted metrics method with class  
dependent Mahalanobis by Paredes and Vidal (2006) 

CW The learning weighted metrics method with class  
dependent weighting by Paredes and Vidal (2006) 

PW The learning weighted metrics method with prototype  
dependent weighting by Parades and Vidal (2006) 

CPW The learning weighted metrics method with class  
and prototype - dependent weighting by Parades and  
Vidal (2006)

IINC L1 The method presented here with Manhattan L1 metrics 

IINC L2 The method presented here with Euclidean L2 metrics 

 
In Table 1 in each row the best result is denoted by bold numerals. 

Furthermore, in the last column, the values for IINC better with L2 metrics 
than with L1 metrics are shown in italics. There are five such cases out of a 
total of 24. 

 
5.3 Standalone Real-life Comprehensive Classification Task  

 
This data set was available for tests described in Hakl, Jirina, and 

Richter-Was (2005) as one of many simulation studies for data processing 
relating ATLAS experiment at CERN, Geneva, Switzerland. For the de-
scription of the particle physics problem we cite Hakl, Jirina, and Richter-
Was (2005) verbatim in Table 2. 

The data set consists of 7 dimensional vectors of real numbers and 
class mark, which differentiates between signal samples (events) and 
background samples. The data set is split into learning and testing set, each 
of 3279 samples. 

In Figure 2 well-known ROC curves are shown for different separa-
tion/classification tools including the “cut” method popular in physics 
studies.  

The result obtained with “cuts” method is depicted by the black di-
amond. 

The result obtained by GMDH-MIA algorithm is depicted by the 
lower bold black line  

The results obtained by STATISTICA Neural Networks are depict-
ed  by  two  sets of red, magenta, orange and yellow lines. Each set corres- 
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Table 2. Problem formulation from the point of view of physics. 

 
       

 
... 

 
 

Note that references relate to Hakl, Jirina, and Richter-Was (2005). 

 
 
 

 

 
 

Figure 2.  ROC curves for different separation/classification tools including the “cut” 
method. 
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ponds to four best results out of ten networks generated. The set going 
more to the left at level 0.4 or 0.6 of sensitivity (signal acceptance) corre-
sponds to its being set as a classifier; the other set (closer to the black line 
of GMDH-MIA) corresponds to its being set as an approximator.  

The upper bold blue line was obtained by the IINC method de-
scribed in this paper with L1 metrics.  
 

6.  Discussion 
 

We have proved that probability density approximation can be 
based on the Zipfian kernel. In the proof we have shown a close relation of 
the Zipfian distribution (and of the selected harmonic series as well) to the 
local fractal nature of data. It is especially the use of 1/i that has a close 
connection to the scaling exponent, eventually to the correlation integral, 
and thus to the dynamics of the processes that generate data we wish to 
separate.  We have shown, in fact, that the influence to the probability that 
point x is of class c is 1/i if the i-th nearest neighbor is of class c. We sum 
up these influences so that the sum goes over the indexes i for which the 
corresponding samples of the learning set are of class c. In the case of two 
classes we get two numbers S1 and S2 which together give the sum of N 
first terms of harmonic series HN = 1 + ½ + ⅓+ ¼ + … + 1/N. (N is the size 
of the learning set.)  

An interesting finding is that the method proposed here and the 
proof of the theorem uses the notion of distance but no explicit metrics 
need to be specified.  

The method designed has no parameters to be tuned. There is also 
no problem with the convergence and the curse of dimensionality. The 
computational complexity grows at most linearly with the dimensionality 
and quadratically or less with the learning set size depending on the sort-
ing algorithm used.  

 
7.  Conclusions 

 
The main merit of the new method presented here is a new view on 

data space. This view is based on a strange geometry with polynomially 
expanded distances in dependence on the local dimensionality of data de-
noted as the distribution mapping exponent. This leads to the use of recip-
rocals of the neighbor indexes and finally to the probability density estima-
tion. The reciprocals of the neighbor indexes can be understood as 
“weights” of the learning set samples. It means, in fact, that the probability 
that the i-th neighbor and the given point are of the same class is given by 
the Zipfian distribution. In this context, the Zipfian distribution gets a 
much broader role than its use in linguistics and psychology.  
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The other question is how the method presented here can be further 
improved. We suspect e.g. that data of one and the other class can be simi-
larly distributed in the space even if data have different intrinsic dimen-
sionality. Data often lie in clusters which is a fact not tackled here. For 
given points outside these clusters or on boundaries of clusters the sum of 
reciprocals of the neighbor indexes of the opposite class may prevail, thus 
causing misclassification. This is a theme for further research in this field. 
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