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Some Relationships Between Cronbach’s Alpha and
the Spearman-Brown Formula
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Abstract: Cronbach’s alpha is an estimate of the reliability of a test score if the items
are essentially tau-equivalent. Several authors have derived results that provide al-
ternative interpretations of alpha. These interpretations are also valid if essential tau-
equivalency does not hold. For example, alpha is the mean of all split-half reliabilities
if the test is split into two halves that are equal in size. This note presents several con-
nections between Cronbach’s alpha and the Spearman-Brown formula. The results
provide new interpretations of Cronbach’s alpha, the stepped down alpha, and stan-
dardized alpha, that are also valid in the case that essential tau-equivalency or parallel
equivalency do not hold. The main result is that the stepped down alpha is a weighted
average of the alphas of all subtests of a specific size, where the weights are the de-
nominators of the subtest alphas. Thus, the stepped down alpha can be interpreted
as an average subtest alpha. Furthermore, we may calculate the stepped down alpha
without using the Spearman-Brown formula.

Keywords: Stepped up alpha; Stepped down alpha; Standardized alpha; Reliability;
Coefficient alpha; Psychometrics.

1. Introduction

An important concept in psychometrics and test theory is the reliabil-
ity of a test score. In general, a test score is said to have high reliability if it
produces similar values for a participant when administration conditions are
kept consistent. More formally, in classical test theory reliability is defined
as the ratio of the true score variance and the total score variance (Lord and
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Novick 1968; Thorndike 1971; McDonald 1999). Since the true score vari-
ance cannot be directly observed, the reliability of a test score must be es-
timated. In practice there is usually only a single test administration, rather
than two or more. In this case a standard approach to reliability estimation
is the internal consistency reliability method. The most commonly used in-
ternal consistency coefficient is coefficient alpha (Cronbach 1951; Cortina
1993; Osburn 2000; Sijtsma 2009; Furr and Bacharach 2013; Field 2013).

Coefficient alpha was proposed by Guttman (1945) as lambda3 and
later popularized as alpha by Cronbach (1951). The coefficient has been
applied in thousands of research studies and Cronbach’s paper has been cited
numerous times (Cortina 1993; Sijtsma 2009). Suppose we have a test that
consists ofm ≥ 2 items. Let σij denote the covariance between items i and
j with 1 ≤ i, j ≤ m, and let σ2

T denote the variance of the total test score.
Cronbach’s alpha is defined as

α =
m

m− 1
·
∑

i �=j σij

σ2
T

. (1)

Various authors have criticized the use of alpha. Examples have been pre-
sented that show that alpha is not a measure of the one-dimensionality of a
test (Cronbach 1951; Grayson 2004; Sijtsma 2009). Furthermore, there are
several coefficients that are higher lower bounds to the reliability of a test
than alpha (Revelle and Zinbarg 2009; Sijtsma 2009).

However, most critics and reviewers of alpha agree that it is likely
that the coefficient will continue to be a standard tool in reliability estima-
tion in the near future (Cortina 1993; Sijtsma 2009). Moreover, many years
after Cronbach’s paper, alpha is still a hot topic in current research. For
example, the derivation of alpha is based on several assumptions from clas-
sical test theory (Lord and Novick 1968; McDonald 1999; Graham 2006).
Robustness of alpha to violations of its two major assumptions, essential
tau-equivalency and uncorrelated errors, has been documented in Graham
(2006), Green and Hershberger (2000), and Green and Yang (2009), while
robustness to non-normal data has been studied in Sheng and Sheng (2012).

Once the reliability of a test score is estimated (e.g. using Crobach’s
alpha), it is frequently desirable to predict the reliability of a test score of a
test that measures the same construct but has a different length. For exam-
ple, in recent years there is an increasing interest in short or shortened tests
(Kruyen, Emons, and Sijtsma 2012). A recent literature review is presented
in Kruyen, Emons, and Sijtsma (2013). In practice there are limitations on
the available time and resources and a short test may therefore be more ef-
ficient. To predict the reliability of a test score that is based on a different
test length, psychometricians commonly use the Spearman-Brown predic-
tion formula (S-B formula). Let ρ denote the reliability of a test score before
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adjustment and let ρ∗ denote the adjusted reliability. The Spearman-Brown
formula is given by (Spearman 1910; Brown 1910)

ρ∗ =
Nρ

1 + (N − 1)ρ
, (2)

where N > 0 is the extension factor.
Formulas (1) and (2) both stem from classical test theory (Lord and

Novick 1968; Thorndike 1971). However, compared to essential tau-equiva-
lency, the S-B formula is based on the stricter assumption of parallel equiv-
alency. In the context of the split-half approach to reliability estimation
the S-B formula is sometimes called the ‘step up’ formula. The split-half
method is another approach to estimating the reliability of a test when there
is only one test administration (Revelle and Zinbarg 2009; Field 2013; Furr
and Bacharach 2013). If we are interested in the reliability of a subtest, the
adjusted alpha will be referred to as the stepped down alpha. If we are inter-
ested in the reliability of a longer test, the adjusted alpha will be referred to
as the stepped up alpha.

Several authors have attempted to give meaning to Cronbach’s alpha,
and to its estimate from a sample, when the items are not essentially tau-
equivalent (McDonald 1999, p. 93). Cronbach (1951) showed that alpha is
the mean of all (Flanagan-Rulon) split-half reliabilities, if a test is split into
two halves that are equal in size. The problem with the split-half approach
is that there are multiple ways to divide the items of a test into two halves.
The estimate therefore depends on the way the split is made (Callender and
Osburn 1977; Field 2013). Cronbach (1951) showed that if a test is split
into two subtests of equal size, then alpha for the full test is the mean of
all the split-half reliabilities. Using alpha instead of the split-half estimate
removes, in a way, the arbitrariness of how to split a test. Cronbach’s result
was generalized by Raju (1977) to the case that a test can be split into any
number of parts that are equal in size. These properties of alpha are impor-
tant because they provide a proper interpretation of alpha (Cortina 1993).
In this note we present several relationships between Cronbach’s alpha and
the S-B formula. The results are algebraic and provide new interpretations
of alpha, the stepped down alpha, and standardized alpha. Following Cron-
bach (1951) and Raju (1977), the interpretations are also valid in the case
that essential tau-equivalency and parallel equivalency do not hold.

The note is organized as follows. In Section 2 we present the theo-
rems for Cronbach’s alpha. This section includes the following result. The
problem with a subtest of a test is that there are multiple ways to remove
items from the test. In general, each subtest has a different associated alpha,
which is an estimate of the reliability of the subtest score. For a specific
subtest size we may consider all possible subtests and the associated subtest
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alphas. It is shown that the stepped down alpha is a weighted average of the
alphas of all subtests of a specific size, where the weights are the denomi-
nators of the subtest alphas. This shows that the stepped down alpha can be
interpreted as an average subtest alpha. It also shows that we can find the
stepped down alpha without using the S-B formula. In Section 3 we present
an existence theorem that is a consequence of the main theorem. It is shown
that, in general, Cronbach’s alpha can be decreased by shortening a test. In
Section 4 we formulate the results from Sections 2 and 3 for standardized
alpha. Section 5 contains a conclusion.

2. Cronbach’s Alpha

Before presenting the theorems, we first introduce some additional
notation and definitions. Suppose we have a test that consists of m ≥ 2
items. Let covm and varm denote, respectively, the average covariance and
average variance between them items. Cronbach’s alpha can be defined as

αm =
mcovm

varm + (m− 1)covm
. (3)

The subscript m of αm denotes that alpha is defined on m items. For the
results below, Formula (3) is more convenient to work with than Formula
(1).

Suppose we want to shorten them-item test to a k-item subtest where
1 ≤ k < m. On the one hand we could predict the reliability of the k-
item subtest using αm in the S-B formula. The corresponding stepped down
alpha is given by

α∗
m =

kcovm
varm + (k − 1)covm

. (4)

Formula (4) is obtained by using ρ = αm andN = k/m in Formula (2), and
multiplying the numerator and denominator of the result by varm + (m −
1)covm. Alternatively, we can removem− k items from them-item test. In
this case the associated coefficient alpha is given by (Raju 1977)

αk =
kcovk

vark + (k − 1)covk
, (5)

where covk and vark denote, respectively, the average covariance and aver-
age variance between the k items of the subtest. The number of ways we can
pick a subtest of k items out ofm items is given by the binomial coefficient

(
m

k

)
=

m!

k!(m− k)!
. (6)
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Hence, we have
(
m
k

)
distinct k-item subtests and as many versions of αk.

The subtest alphas αk are related to the overall alpha αm and the
stepped down alpha α∗

m in several ways. We first present the result men-
tioned in the introduction. Theorem 1 shows that the stepped down alpha
α∗
m is a weighted average of the subtest alphas αk.

Theorem 1. Coefficient α∗
m is a weighted average of the αk, where the

weights are the denominators of the αk.

Proof: Since Formula (4) presents an expression of α∗
m, we must deter-

mine an expression of the weighted average. The numerator of the weighted
average is equal to the sum of the kcovk. Let covm and covk denote the sum
of the covariances of, respectively, the total test and a given k-item subtest.
For a given k-item subtest we have the identity

covk =
2

k(k − 1)
covk. (7)

If we consider all k-item subtests, the number of times a pair of items is part
of a k-item subtest is given by the binomial coefficient(

m− 2

k − 2

)
=

(m− 2)!

(k − 2)!(m− k)!
. (8)

Thus, the sum of all the covk is given by(
m− 2

k − 2

)
covm =

(
m− 2

k − 2

)
· m(m− 1)

2
· covm. (9)

Using (7) and (9), the sum of the kcovk, i.e., the numerator of the weighted
average, is given by(

m− 2

k − 2

)
· 2

k(k − 1)
· m(m− 1)

2
· kcovm =

(
m

k

)
kcovm. (10)

The denominator of the weighted average is equal to the sum of the weights
vark+(k−1)covk. It consists of two parts. If we consider all k-item subtests,
the number of times a single item is part of a k-item subtest is given by the
binomial coefficient (

m− 1

k − 1

)
=

(m− 1)!

(k − 1)!(m− k)!
. (11)

Using (11), the part of the denominator involving the item variances is given
by (

m− 1

k − 1

)
· 1
k
·m · varm =

(
m

k

)
varm, (12)
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while the part involving the item covariances is, using (8), equal to
(
m− 2

k − 2

)
· 2

k(k − 1)
·m(m− 1)

2
·(k−1)covm =

(
m

k

)
(k−1)covm. (13)

Thus, using (10), (12) and (13) the weighted average of the αk is given by

(10)

(12) + (13)
=

(m
k

)
kcovm(m

k

)
varm +

(m
k

)
(k − 1)covm

,

which is equivalent to Formula (4).
�

It follows from Theorem 1 that the stepped down alpha α∗
m can be

interpreted in terms of the subtest alphas αk, namely, α∗
m is an average of

the subtest alphas αk. Since the stepped down alpha is a weighted average,
its value lies between the minimum and maximum values of the subtest al-
phas. Hence, similar to an ordinary average, the stepped down alpha can be
interpreted as an average subtest alpha. This interpretation of the stepped
down alpha always holds, even when parallel equivalency or essential-tau
equivalency do not hold. It also follows that we may find the stepped down
alpha without using the S-B formula.

Theorem 1 can also be formulated in terms of the overall alpha αm,
instead of the stepped down alpha α∗

m. Since coefficient (4) is a weighted
average of the alphas of the k-item subtests (Theorem 1), it reflects the aver-
age reliability of a test of length k. Coefficient (4) can be stepped up using
the S-B formula. Using ρ = α∗

m and N = m/k in Formula (2), and multi-
plying the numerator and denominator of the result by varm+(k− 1)covm,
we obtain the overall alpha αm. Hence, we have the following corollary.

Corollary 2. Coefficient αm is equal to the stepped up weighted average
of the αk, where the weights are the denominators of the αk.

We have a second result for the overall alpha αm. Since the subtest
alphas αk in (5) estimate the reliabilities of the k-item subtests, we could
also step up each αk to obtain

(
m
k

)
different reliability estimates for a m-

item test. Theorem 3 shows that the overall alpha is a weighted average of
the stepped up subtest alphas, where the weights are the denominators of the
stepped up subtest alphas.

Theorem 3. Coefficient αm is equal to a weighted average of the stepped
up αk, where the weights are the denominators of the stepped up αk.
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Proof: Since Formula (3) presents an expression of αm, we must determine
an expression of the weighted average of the stepped up subtest alphas. We
first determine an expression of a stepped up alpha αk. Using ρ = αk

(Formula (5)) andN = m/k in Formula (2), and multiplying the numerator
and denominator of the result by vark + (k − 1)covk, we obtain

α∗
k =

mcovk
vark + (m− 1)covk

. (14)

Next, we determine the weighted average of the α∗
k in (14), using the de-

nominators vark + (m− 1)covk as weights. The numerator of the weighted
average is equal to the sum of themcovk. Using (8), this sum is given by

(
m− 2

k − 2

)
· 2

k(k − 1)
· m(m− 1)

2
·mcovm =

(
m

k

)
mcovm. (15)

The denominator of the weighted average is equal to the sum of the weights
vark + (m − 1)covk. It consists of two parts. The part involving the item
variances is given in (12). The part involving the item covariances is equal
to
(
m− 2

k − 2

)
· 2

k(k − 1)
·m(m− 1)

2
·(m−1)covm =

(
m

k

)
(m−1)covm. (16)

Thus, using (15), (12) and (16) the weighted average of the α∗
k is given by

(15)

(12) + (16)
=

(m
k

)
mcovm(m

k

)
varm +

(m
k

)
(m− 1)covm

,

which is equivalent to Formula (3).
�

3. An Existence Theorem

In this section we present an existence theorem for Cronbach’s alpha.
Theorem 4 shows that the value of alpha can, in general, be decreased by
removing some of the items from the test. The theorem follows from Theo-
rem 1 and an inequality between the stepped down alpha α∗

m and the overall
alpha αm.

Theorem 4. There exists a subtest alpha αk such that αk ≤ αm, with
equality if and only if covm = varm.
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Proof: We first derive the inequality α∗
m ≤ αm. We have α∗

m ≤ αm ⇔
k

varm + (k − 1)covm
≤ m

varm + (m− 1)covm
�

kvarm + k(m− 1)covm ≤ mvarm +m(k − 1)covm
�

(m− k)covm ≤ (m− k)varm. (17)

Since k < m, inequality (17) is equivalent to covm ≤ varm. The latter
inequality is, e.g., presented in Winer (1971, p. 272).

Finally, it follows from Theorem 1 that α∗
m is a weighted average of

the subtest alphas. The assertion then follows from the fact that the value
of α∗

m lies between the minimum and maximum values of the subtest alphas
αk, and from the fact that α∗

m never exceeds αm.
�

Thus, Cronbach’s alpha can in general be decreased by removing
some of the items from the test. Moreover, because k satisfies 1 ≤ k < m,
there is no restriction on the number of items that may be removed. In gen-
eral, alpha can be decreased by removing one, two or even m − 1 items.
Theorem 4 does not tell us which items these are, just that they exist if
covm < varm. Of course, the latter inequality usually holds in practice.
Theorem 4 shows in an alternative way that the value of alpha depends on
the number of items of a test. Since alpha tends to decrease when items are
removed, alpha will be lower for shorter tests.

The inequality covm < varm is closely related to intraclass correla-
tion

ICC(3, 1) =
covm
varm

from Shrout and Fleiss (1979, p. 423). Intraclass correlations are often used
when two or more raters classify the same number of targets on a numerical
scale. We have covm = varm if and only if ICC(3, 1) = 1. Hence, if
ICC(3, 1) < 1 it is possible to decrease Cronbach’s alpha by removing
items of the test.

4. Standardized Alpha

In this section we formulate the results from the previous sections for
standardized alpha. Suppose we have a test that consists of m ≥ 2 items.
Let corm denote the average correlation between them items. Standardized
alpha can be defined as
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αs
m =

mcorm
1 + (m− 1)corm

. (18)

Formula (18) was proposed by Cronbach (1951, p. 321) for the case that
the variances of the items are not at hand. Nowadays, standardized alpha
is mostly used when there are substantial differences in the variances of the
items.

Suppose we want to shorten them-item test to a k-item subtest where
1 ≤ k < m. On the one hand, we could predict the reliability of the k-
item subtest using αs

m in the S-B formula. The corresponding stepped down
standardized alpha is given by

αs∗
m =

kcorm
1 + (k − 1)corm

. (19)

Formula (19) is obtained by using ρ = αs
m and N = k/m in Formula (2),

and multiplying the numerator and denominator of the result by 1 + (m −
1)corm. Alternatively, we can remove m − k items from the m-item test.
Standardized alpha for a k-item subtest is given by

αs
k =

kcork
1 + (k − 1)cork

, (20)

where cork denotes the average correlation between the k items.
Since we have not used any properties of covariances or variances,

the arguments in Theorem 1, Corollary 2, Theorem 3 and Theorem 4 are
still valid if we replace covk by cork and vark by 1. Hence, we have the
following analogous results for standardized alpha.

Corollary 5. Coefficient αs∗
m is a weighted average of the αs

k, where the
weights are the denominators of the αs

k.

Corollary 6. Coefficient αs
m is equal to the stepped up weighted average

of the αs
k, where the weights are the denominators of the αs

k.

Corollary 7. Coefficient αs
m is equal to a weighted average of the stepped

up αs
k, where the weights are the denominators of the stepped up αs

k.

Corollary 8. There exists a subtest alpha αs
k such that αs

k ≤ αs
m, with

equality if and only if corm = 1.

5. Conclusion

Cronbach’s alpha is an estimate of the reliability of a test score if the
items are essentially tau-equivalent. This assumption usually does not hold
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in practice. Therefore, several results have been derived that give meaning
to alpha when the items of a test are not essentially tau-equivalent. Cronbach
(1951) showed that alpha is the mean of all (Flanagan-Rulon) split-half reli-
abilities if the test is split into two halves that are equal in size. Raju (1977)
generalized this result to the case that a test can be split into any number of
parts that are equal in size. These properties of alpha are important because
they provide a proper interpretation of alpha (Cortina 1993). In this note
we presented several new properties of Cronbach’s alpha, the stepped down
alpha, and standardized alpha. The results are algebraic and provide new
interpretations of the internal consistency reliability coefficients. The inter-
pretations are also valid if the underlying assumptions of the coefficients do
not hold.

A common practice is to use the S-B formula to calculate alpha for a
test of different length. The main result of the note is a new interpretation of
the stepped down alpha. By removing different items of a test we obtain dif-
ferent subtests that have different associated alphas. Theorem 1 shows that
the stepped down alpha is a weighted average of the alphas of all subtests of
a specific size, where the weights are the denominators of the subtest alphas.
Thus, the stepped down alpha can be interpreted as an average subtest alpha.
It also follows that we can calculate the stepped down alpha without using
the S-B formula.

We also presented two new interpretations of Cronbach’s alpha. The
overall alpha of a test is equal to a stepped up weighted average of the subtest
alphas, where the weights are the denominators of the subtest alphas (Corol-
lary 2). Furthermore, the overall alpha is also equal to a weighted average
of all stepped up subtest alphas (Theorem 3). Both weighted averaging and
stepping up can be defined as a function on a space of alpha coefficients: a
weighted averaging function and a step up function. Corollary 2 and Theo-
rem 3 show that the final result, the overall alpha, is not affected by the order
of the functions. In other words, the two functions commute with respect to
function composition.

The three results (Theorem 1, Corollary 2, and Theorem 3) were also
formulated for standardized alpha (Corollaries 5, 6 and 7). Since the proper-
ties presented in Cronbach (1951) and Raju (1977) only apply to Cronbach’s
alpha, Corollaries 5, 6 and 7 are the first algebraic properties that have been
derived for standardized alpha. These descriptions of standardized alpha are
valid, even when the assumptions from classical test theory associated with
standardized alpha do not hold.
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