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Abstract:  Multiple imputation is one of the most highly recommended procedures 
for dealing with missing data. However, to date little attention has been paid to 
methods for combining the results from principal component analyses applied to a 
multiply imputed data set. In this paper we propose Generalized Procrustes analysis 
for this purpose, of which its centroid solution can be used as a final estimate for the 
component loadings. Convex hulls based on the loadings of the imputed data sets can 
be used to represent the uncertainty due to the missing data. In two simulation 
studies, the performance of Generalized Procrustes approach is evaluated and 
compared with other methods. More specifically it is studied how these methods 
behave when order changes of components and sign reversals of component loadings 
occur, such as in case of near-equal eigenvalues, or data having almost as many 
counterindicative items as indicative items. The simulations show that other proposed 
methods either may run into serious problems or are not able to adequately assess the 
accuracy due to the presence of missing data. However, when the above situations do 
not occur, all methods will provide adequate estimates for the PCA loadings.  
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1. Introduction 
 

Multiple imputation (Rubin 1987) is a general procedure for dealing 
with missing data, which can be used for a wide variety of statistical 
techniques. The technique consists of four steps: (1) Missing values are 
estimated M times according to a specific statistical model; (2) These 
estimates are substituted into the data set, resulting in M plausible 
complete versions of the incomplete data set; (3) Standard statistical 
procedures are applied to these M data sets; (4) The results are pooled to 
obtain estimates for the parameters and their variability.  

Relatively little attention has been given in the literature to multiple 
imputation in principal component analysis (PCA; for an extensive 
discussion of PCA, see Jolliffe 2002). The major difficulty for multiple 
imputation in PCA is the pooling of the results from the analyses of the 
imputed data sets to obtain a single estimate of the loading matrix. While 
averaging is an appropriate pooling procedure in many other statistical 
techniques, this is not recommended for PCA due to the lack alignment of 
the components from separate solutions. It is necessary to optimally align 
component spaces first before they can be combined. In this paper it is 
shown that Generalized Procrustes Analysis (Gower 1971; 1975; Ten 
Berge 1977) is ideally suited for this purpose. Several alternatives, like 
averaging the correlation matrices of the imputed data sets and averaging 
(varimax-rotated) component loading matrices are discussed and studied as 
well. 

The exposition will be set in the context of research using 
psychological tests and questionnaires given their ubiquitousness in the 
social and behavioral sciences. Generally tests and questionnaires are 
highly structured and multidimensional, which allows for a clear 
evaluation of the combination techniques. 

 
2. Missingness Mechanisms and Alternative Methods  

for Missing Data in PCA 
 

To better understand the appropriateness of multiple imputation in 
the context of PCA, it is necessary to discuss the missingness mechanisms 
that are described in the literature, along with other methods for handling 
missing data. The literature on missing data (e.g. Little and Rubin 2002; 
Schafer 1997; Rubin 1976) distinguishes three missingness mechanisms: 
Missing Completely At Random (MCAR), Missing At Random (MAR), 
and Not Missing At Random (NMAR). 

When missing data are MCAR missing values are a simple random 
sample of all data points. When missing data are MAR they depend on 
observed variables. This can be a background variable such as gender (e.g., 
men leave more questions unanswered than women) or an item in the 
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questionnaire (e.g., higher scores on this item concur with higher 
probabilities that a respondent leaves other questions unanswered). Finally, 
when data are NMAR the missing data depend on information that is not 
observed. This can be an unobserved variable (for example, missingness 
depends on gender, gender being unobserved), or the value of the missing 
score itself (e.g., high scores having a higher probability of being missing 
than lower scores). For a more technical description of the three 
missingness mechanisms, we refer to the above-mentioned literature. 

Traditional methods for handling missing data in PCA such as 
listwise and pairwise deletion are only guaranteed to give unbiased results 
when the missingness mechanism is MCAR. Since this is a very strong 
assumption, several other methods (along with multiple imputation) have 
been put forward that will also lead to valid results under MAR 
mechanisms. The major proposals in the present context are Weighted 
least squares fitting (Kiers 1997; Grung and Manne 1997), Regularized 
PCA (Josse, Pagès, and Husson 2011; 2009), the EM algorithm (Bernaards 
and Sijtsma 1999; 2000; Schafer 1997, pp. 163–181), Maximum likelihood 
principal component analysis (Wentzell, Andrews, Hamilton, Faber, and 
Kowalski 1997), the Missing-data passive method (Benzécri 1973; 
Meulman 1982; Takane and Oshima-Takane 2003), and Symbolic PCA 
(Zuccolotto 2008). One of the drawbacks of these procedures compared to 
multiple imputation is that they will only lead to unbiased results for 
specific types of MAR. More specifically, these methods cannot handle 
missing data that are related to background variables outside the model 
(such as gender) because for handling the missing data they only use the 
variables included in the PCA. Thus, even though the data are MAR, for 
the above-mentioned methods this assumption is violated, and valid results 
can no longer be guaranteed. 

Multiple imputation on the other hand, can use all available 
information in the imputation model, including background variables, so 
that the relations between the missing data and the background variables 
are also accounted for in the imputed values, and in the subsequent PCA. 
Therefore, multiple imputation will lead to unbiased results for any type of 
MAR, provided the imputation model sufficiently resembles the model 
underlying the data. The multivariate normal model (Schafer 1997, Chap. 
5) has shown to be adequate in many cases (Graham and Schafer 1999; 
Bernaards, Belin, and Schafer 2007). 

Finally, under NMAR no method is guaranteed to give unbiased 
results. However, Schafer (1997, pp. 26–28) argued and showed that the 
more variables are included in the imputation model, the more likely it is 
that the MAR assumption holds. Thus, since multiple imputation can use a 
larger number of variables for handling the missing data than the above-
mentioned methods, it will also be more robust to departures from MCAR 
and MAR. 
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3. Multiple Imputation and PCA 
 

In the previous section it was argued that multiple imputation 
resolves the problem of dependence of the missingness on observed 
covariates outside the PCA model. However, using multiple imputation in 
PCA creates another problem, i.e. how the results from several imputed 
data sets can be combined into one overall PCA solution. Rubin (1987, p. 
2) proposed several procedures for pooling standard errors, parameter 
estimates, and significance tests resulting from several imputed data sets. 
Few such procedures have been proposed for pooling the results from PCA 
apart from averaging loading matrices (see, for example, Ho, Silva, and 
Hogg 2001; Masi, Aldag, and Chatterton 2006) and averaging the 
correlation matrices of the imputed data sets prior to performing a PCA on 
the average (Van Ginkel, Van der Ark, Sijtsma, and Vermunt 2007; Van 
Ginkel 2010). 
 
3.1 Averaging Component Loadings 
 

With the unavailability of an adequate pooling technique for PCA in 
multiple imputation, the first thing a researcher may think of is to average 
loading matrices. With only M separate PCA solutions from M imputed 
data sets at hand, this is the only option that can be performed manually. 
Because generally Varimax-rotated solutions are interpreted rather than 
the unrotated solutions, it seems most convenient to average the Varimax-
rotated solutions. The resulting method will henceforth be referred to as 
the Mean Varimax method (MVM). 

MVM has three disadvantages. Firstly, averaging gives incorrect 
results when the order of the components is not the same for all imputed 
data sets. For example, in an incomplete data set with 10 items with two 
components with near equal variance, it may happen that in one imputed 
data set items 1-5 load highest on the first component, and items 6-10 load 
highest on the second component, while for another imputed data set this 
may be reversed. Secondly, in one or more imputed data sets the signs of 
the loadings may be reversed compared to those of other imputed data sets. 
This may happen when a questionnaire contains about equally many 
indicative as counterindicative items. A third disadvantage is that the 
Varimax rotated solutions of the M imputed data sets may have been 
rotated according to the Varimax criterion, but are not optimally rotated 
towards each other. As a result, the average solution is computed across 
solutions that have more variation among each other than necessary (for a 
discussion of these problems, see, e.g., Chatterjee 1984; Markus 1994; 
Milan and Whittaker 1995; and Linting, Meulman, Groenen, and Van der 
Kooij 2007). A better pooling procedure would be to put the unrotated 
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components of all imputed data sets in the same order, switch signs for 
some sets of the unrotated loadings, optimally rotate the solutions towards 
each other and then compute an average component solution. Finally, for 
interpretational purposes this average solution may then be rotated 
according to the Varimax criterion.  
 
3.2 PCA of the Mean Correlation Matrix 
 

Van Ginkel et al. (2007) and Van Ginkel (2010) investigated the 
influence of multiple imputation on the results of PCA by first computing 
the average correlation matrix based on several imputed data sets, 
followed by a PCA with a Varimax rotation. This approach will henceforth 
be referred to as mean correlation matrix (MCM). This method resolves 
the problem of order change and sign reversal of loadings that MVM 
method has, since pooling takes place at the level of the correlation matrix 
rather than at the level of the Varimax-rotated component loadings. 
However, when loadings are computed for an average correlation matrix, 
all information about the variability among imputed data sets is lost. As a 
result it becomes impossible to get an impression of the uncertainty of the 
PCA solution due to the missing data.  
 
3.3 Generalized Procrustes Analysis for Pooling Component Loadings 

 
Generalized Procrustes analysis (GPA; Gower 1971; 1975; Ten 

Berge 1977) solves all three aforementioned problems (order change, sign 
reversal and rotational freedom of PCA solutions with respect to each 
other) at the same time by producing an optimal average solution, in 
particular the centroid of the PCA solutions from the imputed data sets as 
well as an assessment of the amount of uncertainty due to the missing data. 
The same idea for multiple imputation in PCA has already been discussed 
by Kroonenberg (2008, pp. 152–153) and by Van Ginkel and Kroonenberg 
(2009), inspired by a comment of D’Aubigny (2004). See also Josse, 
Pagès, and Husson (2011) who used a similar idea: they applied a PCA to 
the incomplete data using Weighted least squares (Kiers 1997). Next they 
multiply imputed the data under this PCA model, and used a Procrustes 
rotation (see details below) to rotate each solution optimally to the WLS 
solution. 

GPA in the context of multiple imputation works as follows. 
Suppose Am (m = 1,…, M) is a J × K matrix containing the principal 
component loadings of the m-th imputed data set, where J is the number of 
variables  and  K  the  number  of components. In GPA we want to find the 
K × K orthogonal transformation matrix Tm for each of the M imputed data 
sets such that the sum of the squared distances between the transformed 
loading matrices is minimized. 
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To find the transformation matrices T1,…,TM we must first consider the 
special case when there are only two matrices A and B and A needs to be 
optimally fitted to B. This is known as the classical orthogonal Procrustes 
problem  (see Green 1952; Gower 1971).  This  problem  requires only one 
transformation matrix T which may be found as follows: suppose QLV'  is 
a singular value decomposition of matrix A'B. Then the transformation 
matrix T can be found by means of 
 

'QVT  (2) 
 

By multiplying A with T, A is optimally fitted to B. 
For more than two matrices, Ten Berge’s (1977, p. 272) procedure 

may be used. Define t as the iteration number. Starting at t = 1, the 
algorithm goes as follows: 

 
Step 0:  Set Tm = I for m = 2,…, M. 

Step 1:  Fit A1 optimally to B = m

M

m mTA 2
using transformation 

                   matrix T as computed in Equation 2, yielding A1T1
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Step M+1:  Fit A1T1
(t) optimally to B = 
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2

t
m

M

m mTA 
, yielding 

                   A1T1
(t+1). 

 
Steps 2-M are repeated, increasing t with 1 at each iteration, until 
convergence. 
 

Once convergence has been achieved, the centroid configuration (the mean 
of all transformed solutions) is used as the final solution for the M imputed 
data sets. For interpretational purposes, the centroid solution may be 
rotated either with an orthogonal or an oblique transformation. A more 
detailed discussion of GPA may be found in Commandeur (1991), Ten 
Berge (1977), and Gower (1975). 
 
3.4 Uncertainty About the PCA Solutions 
 

One important advantage of multiple imputation over single 
imputation is that it takes statistical stability into account. This usually 
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means that standard errors and confidence intervals of parameter estimates 
are adjusted for the extra uncertainty caused by the missing data (Rubin 
1987). Although it is possible to construct confidence intervals for 
component loadings (e.g., Girshick 1939; Anderson 1963; Archer and 
Jennrich 1973; Ogasawara 2000; 2002; Timmerman, Kiers, and Smilde 
2007), standard PCA is mostly used for descriptive purposes, and 
statistical tests or confidence intervals are rarely used.  

However, also for descriptive PCA it is possible to show the 
uncertainty about the sample loadings as a result of the missing data by 
constructing a loading plot for all imputed PCAs simultaneously. Each 
variable is represented by M points, one for each PCA. Per variable, for M 
loadings the convex hull is computed resulting in a polygon which 
contains all M solutions. The surface of such a convex hull gives an 
impression of the uncertainty due to the missing data of the estimated 
component loadings. It should be noted that the convex hulls only give 
relative information about the uncertainty of the loadings, namely how 
much variability a loading has relative to the others. A loading with a large 
convex hull suffers much from the missing data so that consequently we 
have to be cautious with its interpretation. However, this relative 
information fits well into the explorative nature of PCA, in which usually 
no statistical inferences are drawn about parameter estimates. Furthermore, 
in other contexts than multiple imputation it is also common to use convex 
hulls in an exploratory manner (see, e.g., Rousseeuw, Ruts, and Tukey 
1999). If one wants absolute information about the uncertainty of the 
loadings in the form of confidence intervals, one could turn to Convex hull 
peeling (Green 1981) or confidence ellipses (e.g., Josse, Pagès, and 
Husson 2011). Figure 1 shows an example of such a loading plot for a 
simulated data set from a simulation study that will be discussed later on. 

The larger the surface of a convex hull, the more uncertain the exact 
the location of the loading becomes as a result of the missing data. Thus, 
when items have low centroid loadings but large convex hulls, the items 
are not necessarily of bad quality but the missing data may simply 
introduce too much uncertainty about the exact values of the loadings. 
 
3.4.1 Theoretical Properties of the Convex Hulls 
 

The question is to what extent the convex hulls will cover the values 
of the true sample loadings if the data had been complete. To answer this 
question it is important to introduce the concept of a Bayesianly proper 
imputation method (Schafer 1997, p. 105). Suppose X is an incomplete 
data matrix with a missing part Xmis and an observed part Xobs, so that X = 
(Xmis, Xobs), and that θ is a set of model parameters. An imputation method 
is said to be Bayesianly proper if its imputations are independent 
realizations  of  the  posterior  distribution of Xmis given Xobs and parameter 
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Figure 1. Loading plots With Convex Hulls of Component Solution of a Simulated Data 
Set, Using Generalized Procrustes Analysis. 

 
 
 

set θ, and given that the missingness is MAR. This posterior distribution, 
denoted )|( obsmisP XX , can then be written as: 

 

 dPPP obsobsmisobsmis )|(),|()|( XXXXX  . (3) 

The above definition implies that θ has to apply for both the model that 
generated the data and the imputation model. In other words, the 
imputation model must equal the model that generated the data. 

Another implication of the above definition is that the data have to 
be MAR. If the data are NMAR, then Xobs does not accurately represent 
the data and consequently, draws from the posterior )|( obsP X  will not 
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be representative of )|( XP . As a result, draws from the distribution of 

)|( obsmisP XX  possibly covers only part of the total possible values for 

Xmis. However, if all of the above conditions are met, it follows 
automatically that for an infinite number of imputations the true sample 
loading is always covered by the convex hull, since the true value that 
would have been obtained if the data had been complete, is just one of the 
possible draws from the distribution of )|( obsmisP XX . 

In practice the convex hulls will not (always) capture all the 
loadings that would have been obtained if the data had been complete. 
There are two possible reasons for this. The first reason is that the 
imputation model deviates from the model that generated the data. It is 
therefore important to use an imputation model that accurately describes 
the data. The second reason is that the number of imputations is finite. The 
question is how many imputations are needed for the convex hulls to 
capture a fair amount of the true sample loadings, which is also one of the 
research questions of this study. 
  

4. Comparing Procedures for Finding a Pooled Component Solution 
 

On theoretical grounds, GPA is superior for handling principal 
component analysis solutions from multiply imputed data sets because it 
solves all three problems mentioned earlier (order change, sign reversal 
and rotational freedom) simultaneously. However, it is an open question 
how strong such an advantage is in well-behaved practical applications 
compared MVM.  

To answer this question, two simulation studies were carried out. In 
the first simulation study, incomplete data sets were drawn from artificial 
populations and were multiply imputed. Component solutions resulting 
from GPA, MVM, and MCM were compared with the component 
structure of the corresponding artificial populations.  

In the second simulation study the focus was the uncertainty about 
the PCA loadings represented by convex hulls. More specifically, the 
purpose was first of all to show how much larger the surfaces of the 
convex hulls become when convex hulls are not corrected for sign 
reversals, order changes, and rotational freedom. The second purpose was 
to see whether the convex hulls capture a fair amount of the loadings of the 
original sample data. Here, GPA was compared with MVM. MCM was not 
considered because it throws away information about the uncertainty due 
to the missing data.  

In the next section, the simulation procedures and the designs of the 
simulation studies are discussed in detail, followed by their results. 
Finally, conclusions are drawn about the performance of MVM, MCM, 
and GPA. 
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5. Simulation Study 1 
 
5.1 Method 
 

For the first simulation study, three populations were constructed. 
Instead of using standard theoretical distributions, the populations were 
based on three real data sets, denoted the population data sets. This 
approach was used in order to more closely mirror situations that may 
occur in reality (for details see below). The data sets to be used in the 
simulations, denoted as the original sample data sets, were randomly 
drawn samples from the three population data sets. Subsequently, different 
percentages of missingness were created in these data sets, resulting in 
what we will call incomplete sample data sets. Next, the missing scores 
were estimated several times using multiple imputation, and the resulting 
completed data sets are referred to as imputed sample data sets. For the 
imputed sample data sets component solutions were combined either by 
using GPA, MVM, or MCM. For each final component solution, it was 
established via a Euclidean loss function and a measure for bias how 
closely the combined component solution resembled the component 
structure based on a PCA on the population data set. 
 
5.1.1 Simulating the Population Data Sets 
 

Two of the population data sets were constructed using two real data 
sets from the NICHD (1996) data. The third population data set was 
constructed using a data set from a study about posttraumatic stress 
disorder (PTSD) in children (Alisic, Van der Schoot, Van Ginkel, and 
Kleber 2008). This data set has also been used in another multiple 
imputation study (Van Ginkel 2010). 

The first NICHD data set consisted of the scores of 1016 mothers on 
the Child-Parent Relationship Scale (Pianta 1992). The questionnaire 
consists of 15 items all of which had five-point response scales. All items 
were constructed to measure mothers’ perceptions about the relationship 
with their children. Each item belonged to one of two subscales: Mother 
Conflict With Child (Items 2, 8, 10, 11, 12, 13, and 14) and Mother 
Closeness With Child (Items 1, 3, 4, 5, 6, 7, 9, and 15). 

The total score on the 21-item Maternal Separation Anxiety Scale 
(Hock 1984) was used as a covariate for simulating the missing data. The 
probability that item scores on items of the Child-Parent Relationship 
Scale were missing increased linearly with the covariate score. For the 
highest covariate score the probability of item scores being missing was 
three times as high as for the lowest covariate score. This procedure 
corresponds to a missing-at-random mechanism (Rubin 1976). It is 
important to note that this covariate was part of the imputation model but 
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was not included in the subsequent PCAs. Because methods such as the 
Missing-data passive approach (Benzécri 1973; Meulman 1982; Takane 
and Oshima-Takane 2003) and Weighted least squares fitting (Kiers 1997; 
Grung and Manne 1998) only use variables included in the PCA for 
handling the missing data their results may be biased as already mentioned 
in the introduction. 

The second data set consisted of the responses of 1278 mothers to 
the Self Scale. The items on this scale are taken from the NEO Personality 
Inventory (Costa and McCrae 1985). The inventory consists of 36 items 
scored on five-point scales, and it has three subscales: Neuroticism (items 
1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, and 34), Extraversion (items 2, 5, 8, 
11, 14, 17, 20, 23, 26, 29, 32, and 35), and Agreeableness (items 3, 6, 9, 
12, 15, 18, 21, 24, 27, 30, 33, and 36). 

This time the covariate score was the total scale score on the My 
Feelings scale (CES-D; Radloff 1977) which consists of 20 items scored 
on five-point scales, measuring maternal depression. This covariate score 
was used to simulate the same missing-at-random mechanism as for the 
first data set.  

Finally, the third data set consisted of 1515 complete response 
patterns of children to the KIDSCREEN-27 (Ravens-Sieberer et al. 2007). 
This is a 27-item questionnaire that covers five quality-of-life dimensions. 
The complete data set is described in Alisic et al. (2008). Here, gender was 
the covariate on which the missing data depended. For girls the probability 
of being missing was three times as high as for boys. 

All empirical data sets were too small to draw a large number of 
samples from with replacement of reasonable size and with a sufficiently 
small overlap. Therefore the three data sets were artificially enlarged to 
create three population data sets, as explained in the Appendix. The 
resulting populations are denoted Population 1 (Child-Parent Relationship 
Scale), Population 2 (Self Scale), and Population 3 (KIDSCREEN-27). 
 
5.1.2 Simulating the Original Sample Data Sets 
 

From each of the above-mentioned populations, 200 replicated data 
sets were drawn, 100 of which were of size N = 200 and 100 of which 
were of size N = 500. Different sample sizes were studied to see whether 
the performance of the pooling methods would be influenced by sample 
size.  
 
5.1.3 Simulating the Incomplete Sample Data Sets 

 
In each of the simulated original sample data sets, 5%, 10% and 

15% of the item scores were removed. Because missingness mechanism 
was not the topic of this paper, it was decided to use only one mechanism 
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for simulating the missingness. The MAR mechanism described earlier 
was chosen for this purpose because MCAR is an ideal situation which is 
not likely to occur in practice, while NMAR may introduce additional bias 
in the analyses, and may obscure the comparisons.  
 
5.1.4 Imputing the Incomplete Sample Data Sets 

 
The resulting incomplete sample data sets were imputed using 

multiple imputation under the multivariate normal model (Schafer 1997, 
Chap. 5). Dependence of the missingness on the covariate was taken into 
account by including the covariate in the imputation model. 

One reason for using this imputation method is that it is widely 
available in many statistical software packages such as NORM (Schafer 
1998), the missing-data library of S-plus 8 for Windows (2007), the mi 
package in R (Su, Gelman, Hill, and Yajima 2011), and SAS 8.1 in the 
procedure PROC MI (Yuan 2011). The statistical package SPSS (SPSS 
Inc. 2011), can also perform multiple imputation under this model, but 
uses a different computational technique (MICE; Van Buuren, Brand, 
Groothuis-Oudhoorn, and Rubin 2006). 

A second reason for using the multivariate normal model is that it is 
most appropriate for statistical techniques that assume continuous data like 
PCA. In this paper rating scales are considered discretized continuous 
numeric variables, which is in line with the prerequisites for standard 
principal component analysis. There has been considerable discussion on 
the appropriateness of treating rating scales as such (For a summary of the 
arguments see, e.g. Knapp 1990; Doering and Raymond 1979; Acock, and 
Martin 1974), but it is common practice to do this. Besides, there is some 
evidence that discrete rating scales can safely be treated as interval scales 
(Nandakumar, Yu, Li, and Stout 1998; Bollen and Barb 1981; also, see 
Labovitz 1967; Baker, Hardyck, and Petrinovich 1966). 

Note that the imputation model makes an even stronger assumption, 
namely that sets of rating scales can be conceived of as multivariate 
normally distributed. However, multiple imputation under the multivariate 
normal model was found to be robust against departures from the 
multivariate normal model (Graham and Schafer 1999; Bernaards, Belin, 
and Schafer 2007). 

For this study, data were imputed five times. Early literature states 
that this number of imputations is sufficient for most purposes (see, 
Schafer 1997, pp. 106–107; pp. 197–199). However, more recent literature 
(for an overview, see Van Buuren 2012, pp. 49–51) states that more 
imputations may be needed. For our purposes a larger number was not 
necessary because additional uncertainty as a result of a small number of 
imputations cancels itself out across replicated data sets.  
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Finally, PCAs were carried out for the resulting imputed data sets 
and combined using GPA and MVM; for MCM the correlation matrices 
were pooled (see above). 

 
5.1.5 Dependent Variables 

 
For each pooled PCA solution the following fit index served as a 

quality measure of the solution. Suppose jka  is the population component 

loading of item j on component k, and vjka ,ˆ  is the corresponding 

centroid/mean loading of M imputed versions of incomplete sample data 
set v. The root mean squared bias RMSBv for the v-th incomplete data set is 
defined as 
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The value of RMSBv can be interpreted as the root of the squared 

distance of the loadings of either the original sample data set v (when 
computed for the original sample data sets) or the multiply imputed sample 
data set v (when computed for the imputed sample data sets) to the 
population loadings in the multidimensional space, averaged over J items 
and the K extracted components. The smaller RMSBv, the better the 
component solution of the original or imputed sample data fits the 
component structure of the population (loadings of the imputed data sets 
fit the loadings of the population data set). 

Besides this fit measure, the non-squared distance of vjka ,ˆ  from 

jka  was also studied because this gives an indication of whether loadings 

are systematically under- or overestimated. That is, for each original 
sample data set v and multiply imputed sample data set v the mean bias, 
denoted MB, across items and components was computed as: 
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The MBv averaged across replications serves as an estimate for bias across 
items and components. 

Prior to computing RMSBv and MBv, component solutions of both 
imputed and original sample data sets were optimally rotated towards the 
population solution using an orthogonal Procrustes rotation (Green 1952; 
Gower 1971) to correct for rotational freedom.  
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5.2 Results 
 

For each of the populations, two 2 (Sample size) × 3 (Percentage of 
missingness) × 2 (Pooling technique) ANOVAs were carried out with the 
RMSBv and MBv as the dependent variables. We used two ANOVAs 
instead of one MANOVA because even though RMSBv and MBv are both 
quality measures, they are quite different concepts with different 
properties. Following Cohen’s (1988) guidelines for effect sizes, small (.01 
≤ total η² < .06), medium (0.6 ≤ total η² < .14), and large effects (total η² ≥ 
.14) of the ANOVAs are reported. Table 1 shows the ANOVA results for 
the significant effects with a discernable size. 

The table shows that for all populations, Sample size (N) and 
Percentage of missingness met Cohen’s criteria for effect sizes for RMSBv; 
for MBv only Sample Size had a small effect in Population 2. Pooling 
technique had a discernable effect size for Populations 2 and 3. Finally, the 
interaction of Sample size and Pooling method was small for Population 3. 

In general, as the percentage of missingness increased, both RMSBv 
and MBv increased. Furthermore, for sample sizes of N = 500 RMSBv was 
smaller than for sample sizes of N = 200. This makes sense because a 
larger sample size increases the stability of the PCA solution, resulting in 
smaller deviations from the population solutions. For Populations 2 and 3 
there were discernable effects of Pooling technique on RMSBv. GPA 
produced on average the smallest value of RMSBv, followed by MCM, and 
MVM. When inspecting the data, it turned out that this large RMSBv for 
MVM was indeed due to sign reversals and order changes of components. 
Finally, the interaction of Sample size and Pooling technique can be 
described as follows: as the sample size increased, the value of RMSBv 
decreased for all methods, only for MVM it decreased less rapidly than for 
GPA and MCM. 

Table 2 shows the means (M) and standard deviations (SD) of 
RMSBv for all combinations of sample size, missingness mechanism, for 
pooling technique and for all populations. The results of the original 
sample data (without missing values) are shown in the first row (0% 
missingness), for comparison with the results of the imputed sample data. 
The table shows that RMSBv has similar magnitude for methods GPA, and 
MCM and that MVM generally has larger values of RMSBv. The results for 
the mean bias MBv are shown in Table 3. Like RMSBv, results are very 
similar for MCM and GPA, and the results of MVM deviate from those of 
MCM and GPA. 

Furthermore it can be seen from Tables 2 and 3 that on average 
neither of the methods GPA and MCM clearly performed best. With 
respect to RMSBv (Table 2) GPA performed best, whereas for MBv (Table 
3) MCM performed best.  
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Table 1. ANOVA results for mean bias and root mean squared bias of effects with a 
discernable size. 
 

Number of 
components 

Dependent 
variable 

Independent variable F df1 df2 η² 

2 RMSB N 328.87 1 198 .59*** 
Percentage missingness 68.41 2 396 .01* 

MB N 6.17 1 198 .03* 
3 RMSB N 577.37 1 198 .62*** 

Percentage missingness 9.74 2 396 .02* 
Pooling technique 54.52 2 396 .02* 

5 RMSB N 579.41 1 198 .60*** 
Percentage missingness 175.65 2 396 .03* 
Pooling technique 322.91 2 396 .06* 
N × Pooling technique 106.73 2 396 .02* 

 All p-values were less than .001, except for the effect of Sample size on MB for 2 
components (p = .014). 
 
 
 
 
Table 2. Results for root mean squared bias, shown for all percentages of missingness, 
pooling techniques, and populations. Totals are aggregated across pooling technique. 
Entries must be multiplied by 10-3.  
 

N % 
missing 

Pooling 
technique 

Population1 Population 2 Population 3 
M SD M SD M SD 

200 0% - 264.61 23.89 274.15 20.57 310.94 22.95 
5% GPA 270.93 25.07 279.14 22.55 317.91 23.07 

MCM 271.03 25.10 279.34 22.65 319.21 24.24 
MVM 270.89 24.99 291.31 36.67 328.92 20.92 

10% GPA 276.94 28.33 286.02 23.76 324.16 23.77 
MCM 277.19 28.39 286.47 24.11 325.54 24.59 
MVM 276.80 28.22 298.29 34.91 334.44 18.40 

15% GPA 283.44 27.80 293.36 25.31 333.92 23.23 
MCM 284.78 27.42 294.12 25.57 336.16 24.61 
MVM 283.55 27.18 309.77 37.43 340.73 19.10 

500 0% - 209.32 19.51 213.04 13.45 242.60 15.95 
5% GPA 214.11 20.07 216.90 12.80 248.81 18.94 

MCM 214.12 20.06 216.92 12.79 248.94 18.90 
MVM 214.11 20.07 221.93 25.51 274.08 25.07 

10% GPA 218.98 20.42 221.67 12.96 256.01 18.59 
MCM 219.14 20.44 221.70 12.94 255.91 18.59 
MVM 218.97 20.42 230.39 29.54 290.82 23.45 

15% GPA 223.30 21.97 226.61 12.61 265.13 21.73 
MCM 223.36 22.01 226.72 12.57 265.40 21.91 
MVM 223.27 21.98 238.80 22.32 300.01 22.88 
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Table 3. Results for mean bias, shown for all percentages of missingness, pooling 
techniques, and populations. Totals are aggregated across pooling technique. Entries must 
be multiplied by 10-3. 
 

N % missing Pooling technique Population1 Population 2 Population 3 
M SD M SD M SD 

200 0% - -4.11 16.90 -2.85 15.03 -0.33 8.28 
5% GPA -6.22 18.30 -3.65 14.97 -0.71 8.27 

MCM -5.77 18.09 -3.53 14.96 -0.72 8.23 
MVM -6.25 18.33 -4.56 15.20 -1.11 8.23 

10% GPA -7.73 19.01 -4.85 18.21 -1.13 8.34 
MCM -7.08 18.76 -4.51 18.25 -1.19 8.33 
MVM -7.87 19.31 -6.43 18.55 -1.54 8.23 

15% GPA -9.64 20.05 -6.25 18.61 -1.73 8.63 
MCM -8.72 19.86 -6.09 20.04 -1.75 8.33 
MVM -9.76 20.13 -8.02 18.85 -2.17 8.34 

500 0% - -1.70 9.15 -1.46 8.94 -0.69 4.80 
5% GPA -2.19 9.60 -1.70 9.39 -0.84 4.85 

MCM -2.10 9.58 -1.66 9.39 -0.84 4.85 
MVM -2.20 9.60 -1.81 9.30 -0.51 5.32 

10% GPA -2.75 9.97 -1.91 9.55 -1.02 4.89 
MCM -2.55 9.90 -1.81 9.54 -1.02 4.88 
MVM -2.76 9.97 -2.21 9.44 -8.44 5.44 

15% GPA -2.64 10.10 -2.42 9.75 -1.43 4.98 
MCM -2.31 9.99 -2.23 9.71 -1.44 4.97 
MVM -2.66 10.10 -2.88 9.68 -1.64 5.99 

 
 
 
 
 
 

One final noticeable result is that the mean bias for no missing data 
(Table 3, first row) is not equal to 0. However, it turned out that this could 
be due to sampling variability (one-sample t-tests with Bonferroni 
correction). 

6. Simulation Study 2 
 

6.1 Method 
 

In this simulation study it was studied how often the convex hulls of 
the multiply imputed data captured the loadings of the corresponding 
original sample data in the two-dimensional space.  

For this simulation study one of the populations from Study 1 was 
used, namely the Child-Parent-Relationship-Scale data (two dimensions). 
Using N = 200, the same original sample data sets were drawn from this 
population as in Study 1, and a fixed percentage of missing data was 
simulated, namely 15%. 
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6.1.1 Independent Variables 

 
Two independent variables were studied, namely Pooling technique 

and # Imputations. Pooling methods were GPA and MVM. The #  Imputa-
tions was set to 5, 20, and 100. Different numbers of imputations were 
used because as would turn out later, 5 imputations were not enough to 
capture a fair amount of the loadings of the original sample data. 
 
6.1.2 Dependent Variables 
 

Two dependent variables were studied. The first dependent variable 
was the amount of loadings of the original sample data that was captured 
by the corresponding convex hulls of the imputed data, as a percentage of 
the total number of items, denoted percentage of captured loadings (PCL). 
The second dependent variable was the average surface of the convex hulls 
of the component solution, denoted average convex hull surface (ACHS). 
The surface of one convex hull can be calculated as the sum of the 
triangles forming the convex hull. One way to calculate the surface of the 
triangles from their coordinates is by using Heron’s rule dating back to 
before 200 BC. Suppose a triangle has three sides, namely side a, b, and c, 
and define s = (a+b+c)/2. The surface of one triangle is computed as √[s(s-
a)(s-b)(s-c)], and the total surface of the convex hull is the sum of all 
triangles (see Weisstein 2012). 
 
6.2 Results 

 
Two 2 (Pooling technique) × 3 (# Imputations) ANOVAs were 

carried out with PCL and ACHS as the dependent variables. The results of 
these ANOVAs can be found in Table 4. Means and standard deviations of 
PCL and ACHS can be found in Table 5. 

Table 5 (first row) shows that for 5 imputations the percentage of 
loadings captured by the convex hulls (PCL) is only about 20% for both 
GPA and MVM. It was concluded that for 5 imputations the convex hulls 
are not very informative and thus it was decided to run the simulations 
with 20 imputations and 100 imputations as well (Table 5, second and 
third row). For 100 imputations the convex hulls capture a fair amount of 
the loadings, namely about 80%. For a test of 15 items (like in these 
simulations) this means that on average 13 out of 15 convex hulls include 
the corresponding loadings of the original sample data set. 

The interaction of # Imputations × Pooling technique was not 
significant for the percentage of captured loadings but it was significant 
for the average convex hull surface, although it did not meet Cohen’s 
criteria for effect sizes (Table 4). When looking at Table 5, this interaction 
may  be interpreted as follows: as the number of imputations increases, the 
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Table 4. ANOVA for percentage of loadings captured by the convex hulls, average surface 
of the convex hulls. 
 

Dependent 
variable 

Independent variable F df1      p       η² 

PCL Pooling technique  22.73 1 <.001 <.01 
# Imputations 1323.80 2 .01 .81*** 
Pooling technique × # Imputations 0.35 2 .71 <.01 

ACHS Pooling technique 5.96 1 <.001 .01* 
# Imputations 67.06 2 <.001 .15*** 
Pooling technique × # Imputations 4.23 2 .02 <.01 

All error degrees of freedom are equal to df2 = 198. 
 
 
 
Table 5. Results for PCL and ACHS, shown for all numbers of imputations, and poolting 
techniques. Totals are aggregated across number of imputations (rows), pooling technique 
(columns), or both (lower right corner in each panel). Entries for ACHS must be multiplied 
by 10-3.  
 

Dependent 

variable # Imputations 

GPA MVM Total 

M SD M SD M SD 

PCL 5 .20 .09 .21 .10 .21 .1

20 .59 .14 .61 .15 .60 .15

100 .83 .12 .84 .12 .83 .12

Total .54 .29 .56 .29 .55 .29

ACHS 5 4 1 4 3 4 2

20 13 5 18 20 16 15

100 26 9 40 66 .33 47

Total 14 11 21 42 18 31
 

 
 

average surface of the convex hulls also increases, but for GPA (first and 
second column) it increases less rapidly than for MVM (third and fourth 
column). 

Table 4 (second row in both panels) shows that the largest effects 
were found for the number of imputations. As the number of imputations 
increased, both the percentages of captured loadings and the average 
convex hull surface increased (Table 5, last two columns). Pooling 
technique did not seem to be as influential. The effect of Pooling technique 
was small for the average convex hull surface (Table 4, first row of lower 
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panel). As expected, GPA produced a smaller average surface than MVM 
did.  

The effect of Pooling technique on the percentage of captured 
loadings did not meet Cohen’s criteria for effect sizes, be it that MVM 
captured on average more loadings than GPA (Table 5, last row of upper 
panel). This is a counterintuitive result since it was expected that GPA 
would perform better than MVM. Thus, GPA produces convex hulls with 
smaller surfaces than MVM, but does not capture more loadings. 

However, since the interaction of # Imputations × Pooling technique 
is not significant for PCL and is significant for ACHS, this means that the 
surface of the convex hulls increases more for MVM than for GPA, but 
that the number of loadings that MVM captures more than GPA, does not 
increase as a result of it. In other words, MVM does not seem to benefit 
from the faster increase of the surface of the convex hulls when the 
number of imputations is increased. 

To gain more insight in how the counterintuitive main effect of 
Pooling technique on the percentage of captured loadings could be 
explained, the values of the average convex hull surface for MVM were 
plotted against the values the average convex hull surface for GPA. Figure 
2 shows the scatter plot for the 100 replicated data sets of the simulation 
study, when data are imputed 100 times. 

Figure 2 shows that for the lower end of the range, the relationship 
between the results from GPA and from MVM is near one to one. 
However, as ACHS increases for GPA, MVM has some outlying values 
which clearly do not follow the linear relationship with GPA. The outliers 
are probably the reason why on average the surfaces of the convex hulls 
are higher for MVM than for GPA. A larger surface is more likely to 
capture the loading of the original sample data than a small one. 

 
7. Discussion 

 
In this paper, Generalized Procrustes analysis (GPA) was proposed 

for combining the results of PCA in multiple imputation as an alternative 
to the earlier used Mean Varimax method (MVM) and the Mean 
correlation matrix (MCM). An advantage of GPA compared to MVM is 
that it automatically corrects for sign reversals and order changes and also 
rotates solutions optimally towards each other. MCM does not have the 
problem of sign reversals and order changes either, but it does not preserve 
information about the amount of uncertainty due to the missing data. 

Because GPA provides transformation matrices, scale factors, and 
centroids within the same framework (i.e., using one loss function), fit 
measures can be derived that give additional indications of the amount of 
uncertainty caused by the missing data, as well as the surfaces of the 
convex hulls  indicating  the variability in the loadings due to missing data.  
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Figure 2. Scatter Plot of ACHS Resulting from GPA (x-axis) Plotted Against ACHS 
Resulting from MVM (y-axis), Using 100 Imputations. 
 

 
 

Such fit measures are discussed by Lingoes and Borg (1978), Gower 
(1975) and Commandeur (1991). These fit measures can be very useful 
when an applied researcher wants to draw conclusions about the quality of 
individual items in a questionnaire. Suppose an item has a small loading in 
the centroid solution but fit measures and loading plots indicate a high 
amount of uncertainty of this point estimate. In that case the researcher 
may conclude that the missing data simply introduces too much 
uncertainty to conclude that it was unrelated to any of the components, and 
that more research is needed to draw conclusions about its quality. Without 
such information the researcher would have concluded that the item has 
low quality and that it needs to be removed from the questionnaire. 

In the first simulation study the performance of GPA was compared 
with MVM and MCM in three different populations with different factorial 
structures. Two other factors in this study were sample size and percentage 
of missingness. This study showed that for MVM sign reversals and order 
changes of components indeed occurred. For this reason MVM should be 
avoided. 

The only remaining question of the first study is which of the two 
remaining methods GPA and MCM should be preferred. The root mean 
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squared bias and the mean bias do not provide a clear answer because 
GPA produced the smallest root mean squared bias, whereas MCM 
produced the smallest mean bias. However, the authors prefer the GPA 
approach because this method preserves information about the uncertainty 
due to missing data, which was the topic of the second simulation study. 

In the second study we looked at how GPA represents the 
uncertainty about the loadings as a result of the missing data. Here, it 
turned out that 5 imputations are too few to capture a fair amount of the 
loadings. Simulations were run with 20 and 100 imputations as well, and it 
turned out that at 100 imputations about 80% of the loadings were 
captured. To get some impression whether these results generalize to data 
sets with other properties (different dimensional structures, different 
number of items), we also looked at the results for five-dimensional data 
(results not shown). These results indicated that for these data sets about 
80% of the loadings were captured as well. Thus, for now we can give a 
rough guideline that for 15% missing data 100 imputations should be used 
if the researcher wants to capture about 80% of the loadings using the 
convex hulls. However, more research on this is still needed. 

The second study also showed that when convex hulls are computed 
using MVM, they capture slightly more loadings than convex hulls 
resulting from GPA do. However, it turned out that in some individual 
cases MVM produced substantially larger convex hulls than GPA did in 
the same data set due to sign reversals that were discussed before. Since 
larger convex hulls are also more likely to capture loadings of the original 
sample data, this larger coverage has probably little meaning and could be 
seen as an artifact. However, to show that this really is an artifact one 
would have to impute an infinite number of times. If for an infinite number 
of imputations the average percentage of captured loadings is 100% for 
GPA and the average convex hull surface is smaller for GPA than for 
MVM, this means that GPA is superior to MVM. If, on the other hand, the 
average percentage of captured loadings of GPA is not 100%, then it 
means that this method produces bias in the loadings. 

Unfortunately it is not possible to impute an infinite number of 
times so that it remains speculative whether the findings of the second 
study are due to artifacts. However, the superiority of the GPA approach 
follows directly from its theoretical properties (filtering out variability due 
to sign reversals, order changes, and rotational freedom) and the 
theoretical properties of the convex hulls. Also, note that the purpose of 
the second study was only to illustrate that the surfaces of the convex hulls 
produced by MVM suffer from sign reversals, order changes, and 
rotational freedom, and to investigate whether the convex hulls capture a 
fair amount of the loadings. 

Finally we will address a number of points of discussion. Firstly, in 
this study the data were imputed using the multivariate normal model 
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(Schafer 1997, Chap. 5). Although it may safely be assumed that PCA 
loadings obtained from discrete questionnaire data are unaffected by using 
this model for multiple imputation, the resulting multiply imputed data sets 
may not be suited for subsequent analyses for categorical data. It should be 
kept in mind though that the imputation method used is of less relevance 
for our comparisons since this study was about investigating the quality of 
combination techniques used after multiple imputation, not about studying 
the quality of one or more multiple-imputation methods. However, if 
analyses for categorical data are to be carried out after PCA, it may be 
better to either round the imputed values or to use a method that can 
impute categorical data, such as Predictive Mean Matching (Little 1988; 
Rubin 1986). In this study it was decided not to round the imputed values 
because for PCA this is not necessary and because we did not want to 
introduce additional rounding errors.  

Secondly, the differences between methods were extremely small. 
This raises the question whether higher percentages of missing data could 
have made the differences between methods more clearly visible. 
Although not realistic, 30% missingness was also studied for some design 
cells (results not shown). These results revealed that for 30% missingness 
differences in mean bias between methods were bigger than for lower 
percentages, but the relations among methods remained the same. For 
example, MCM had a slightly lower mean bias than GPA at low 
percentages of missingness. The same was the case at 30% missingness, 
only the differences between both methods were somewhat larger. For root 
mean square bias, the interaction between percentage of missingness 
(including 30%) and pooling technique was not even significant. It should 
be mentioned that neither of the above-mentioned effects met Cohen’s 
criteria for effect sizes. In short it may be concluded that when using 
multiple imputation the influence of missing data on PCA results is small. 
We think that this is because PCA itself is a very robust technique that 
directs anomalies to later components. 

As a third point of discussion Varimax rotated pooled solutions 
were studied throughout because we needed a common base for 
comparison of all proposed methods (MVM, MCM, and GPA). For the 
comparison of the final two selected methods, GPA and MCM, neither 
Varimax nor Oblique rotations play a role since the pooling is done for the 
unrotated loadings, which is not the case for MVM. However, for 
interpretational reasons the resulting pooled unrotated solutions may both 
be Varimax and Obliquely rotated. 

A fourth point of discussion concerns the uncertainty about the 
loadings, represented by convex hulls. In multiple imputation it is common 
to study confidence intervals, since multiple imputation was explicitly 
invented to correct confidence intervals for the extra uncertainty due to 
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missing data (Rubin 1987, p. 2). In our study we only looked at the 
uncertainty of the component loadings due to the missing data using 
convex hulls. The variability so depicted differs from confidence intervals 
in the usual sense in that they provide an indication about the uncertainty 
of the sample loadings. However, in most cases confidence intervals 
represent uncertainty about a population parameter. This difference in 
studying variability is inherently related to the fact that in most principal 
component analyses no distributional assumptions are made, and the 
technique is used in an exploratory manner. If one desires real confidence 
intervals for population loadings, one should turn to bootstrap confidence 
intervals in PCA as discussed in Timmerman, Kiers, and Smilde (2007) 
which then should also be placed in the context of multiple imputation. 
See the companion paper by Van Ginkel and Kiers (2011)1, who also 
studied the GPA and MCM approach for computing component loadings 
for multiply imputed data sets, but used this in combination with bootstrap 
confidence intervals of the population loadings. 

Besides bootstrap confidence intervals one can also extend the 
convex hulls presented here to confidence intervals with specific lower- 
and upperbounds. They may be constructed using convex hull peeling 
(Green 1981), or confidence ellipses. Also, see Josse, Pagès, and Husson 
(2011), who used the latter procedure in a similar context. It should be 
noted that such confidence intervals differ from regular confidence 
intervals in that they tell us with a certain degree of certainty between 
which lower- and upperbounds the sample loadings fall (not population 
loadings), had the data been complete. One condition for using this 
procedure is that more imputations are used than the number of 
imputations in this study. For example, 1000 imputations are more 
appropriate, like bootstrap confidence intervals are usually computed using 
1000 bootstrap samples. This makes these approaches inappropriate for 
smaller numbers of imputations. Convex hulls on the other hand, can be 
computed at all times. 

As a fifth point of discussion it may be wondered whether MVM 
has had a fair chance in this study. When researchers average loadings of 
multiply imputed data sets, one may wonder whether sign reversals and 
order changes are never detected. An alert researcher may notice this 
anomaly and may decide to change the order of components and reverse 
signs of loadings manually. We have looked into this option as well 
(MVM with manual correction for sign reversals and order changes of 
components) and it is our experience that making these corrections 
manually is a daunting task. In some ambiguous cases it can be extremely 

__________ 
1 The research in this paper was conducted after this study but the paper was published 
earlier. 
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difficult if not impossible to correct for order- and sign changes using the 
naked eye. 

Alternatively one could consider developing an automated 
procedure for these corrections using some criterion, and implementing 
this procedure in statistical software packages. An example of such a 
criterion is maximizing the sum of congruence coefficients (Tucker 1951). 
However, a disadvantage of such a procedure is that it only solves the 
problems of sign reversals and order changes and not the problem of 
rotational freedom among PCA solutions (see also, Timmerman, Kiers, 
and Smilde 2007). Given that the GPA approach also solves the rotational 
problem, it automatically follows that there is little merit implementing 
MVM with such a correction procedure in statistical software packages. 

As a final point of discussion, a possible next step in evaluating the 
performance of GPA for pooling multiple imputation results is comparing 
its performance with other methods for dealing with missing data (not 
necessarily based on multiple imputation). This may be done in a wide 
variety of contexts such as different missingness mechanisms, different 
numbers of extracted components, and different strengths of the internal 
structure of the data set. This will be the topic of future research. 

 
8. Appendix 

 
The artificial populations of the simulation study were created from 

the two NICHD (1996) data sets and the data from Alisic et al. (2008) in 
the following way: 

 
1. For each item score in both data sets an error was added using a 

multinomial distribution with the following properties. Suppose εij 
denotes a random error for item score ijX  of person i on item j, 

then εij has the following distribution: P(εij = -2) = 0.01, P(εij = -1) 
= 0.04,  P(εij = 0) = 0.90, P(εij = 1) = 0.04, and P(εij = 2) = 0.01. If 
the resulting item score was outside the range of 1-5, the item 
score was replaced with the closest score within this range. In this 
way a completely new data set was created from the original data 
set of the same size, and with similar properties. 
 

2. Step 1 was repeated 999 times. Together with the original data 
sets, these replications formed three artificial populations of sizes 
N = 1,016,000, N = 1,278,000, and N = 1,515,000, denoted 
Population 1 for the Child-Parent Relation Scale data, Population 
2 for the Self Scale data, and Population 3 for the KIDSCREEN-
27 data, respectively. 

 
The idea behind this procedure is that respondents are 90% 

confident of their given answers and that only in rare occasions they will 
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choose either one of the adjacent answer categories (8% of the times) or 
the answer categories above or below the adjacent answer categories (2% 
of the times). By repeating this a large number of times, simulated 
respondents are created who are similar to the respondents in the data set, 
with respect to response behavior. Also, see Kroonenberg (1983, Chap. 2) 
who used a similar procedure for simulating data. 
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