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1. Introduction

In educational testing research, specialized latent class models for
cognitive diagnosis have been developed to classify mastery or non-mastery
of each attribute in a set of attributes the exam is designed to assess. The
ultimate goal of applying diagnostic models is to classify subjects into one
of several different categories describing their attribute profiles. These at-
tributes can take many forms, depending on the application, but often cor-
respond one-to-one with specific skills needed to answer items on an exam.
Classification according to these fine-grained skills is desired when specific
information on knowledge states is required, and one important expectation
is that it can lead to more efficient remediation.

Specialized latent class models for cognitive diagnosis are derived
under assumptions on which attributes are needed for which items, and how
the attributes are utilized to construct a response, and recognize that data
generally do not correspond to the ideal response patterns. Ideal response
patterns are the specific item response patterns that would be observed if
item responses corresponded exactly to the attributes an examinee possesses
and the attributes required for an item. In the case of conjunctive models,
the ideal response for an item would be correct if the examinee possessed
all the items required for the item and would be incorrect otherwise. In the
disjunctive case, having at least 1 of the required attributes would suffice for
a correct response. To address the fact that data do not generally appear to
correspond exactly to such ideal response patterns, stochastic elements are
built into the models, that allow deviations from purely deterministic mod-
els, giving rise to incorrect answers when a correct one would be expected,
or correct answers when an incorrect answer would be expected. A criticism
of cognitive diagnosis modeling is that these terms that allow for random de-
viations from what one would expect can sometimes be large, which raises
validity concerns about the assumed model and cognitive structure. Ideally,
the stochastic terms should allow for some departures from ideal responses,
but not so much that the theory becomes doubtful. However, when this is
the case, the ideal response pattern may well be the most likely response,
according to the likelihood function of the model, and classification based
on deviations from the ideal responses can be effective, without making a
single assumption about the parametric form of the model. The practical
implication is that no difficult model fitting is required and simple and fast
software may be used for classification. This makes cognitive diagnosis fea-
sible in a much wider array of settings, perhaps all the way down to the
classroom instruction level, especially considering that the performance of
the method is independent of sample size.
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The objective of this research is to utilize measures of distance be-
tween observed item response vectors and ideal response patterns that can
provide effective nonparametric classification, under a wide variety of pos-
sibilities for the underlying cognitive diagnosis model responsible for gen-
erating the data. Classification done in this manner depends upon how much
noise is expected in the data, and we study the parameter values of under-
lying models for which this nonparametric technique is useful. Its behavior
is perfect when item responses are deterministic functions of the attribute
profile, and the question becomes how far can we stretch the stochastic ele-
ments of models that may be responsible for the data, while still achieving
accurate nonparametric classifications.

In the next section, a review of cognitive diagnosis models is given,
followed by a section detailing the proposed nonparametric technique. The
fourth section concerns a simulation study comparing nonparametric clas-
sification to maximum likelihood estimates derived under the true model as
well as misspecified models. A real data analysis of fraction subtraction data
is then presented to show how nearly model-based and nonparametric clas-
sification agree, and we conclude with a section discussing the implications
of the results on practice.

2. Cognitive Diagnosis Models

Though the method we present can be viewed as nonparametric, aside
from identifying which attributes are required for each item, we present a
review of cognitive diagnosis models, particularly those that are used in the
simulation section for comparisons to the nonparametric technique. Let the
attribute profile vector α be a K-dimensional vector for which entry k, αk,
indicates mastery or non-mastery of attribute k, for k = 1, 2, · · · ,K. The
cognitive diagnosis models we discuss require specification of a J ×K Q-
matrix (Tatsuoka 1985). Entry qjk denotes if item j requires the kth attribute.
The 2K possible values of α are the latent classes for which classification
is desired. Models differ according to how subjects utilize their attributes to
create responses.

An example of a conjunctive model is the DINA model (Junker and
Sijtsma 2001). The item response function of the DINA model is,

P (Yij = 1|αi) = (1− sj)
ηijg

(1−ηij )
j ,

where for the ith subject, sj = P (Yij = 0|ηij = 1) and gj = P (Yij =
1|ηij = 0) are the probabilities of slipping and guessing, respectively, for the
jth item. Parameter ηij is the ideal response which associates the attribute
pattern possessed by the ith subject and the elements of Q according to
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ηij =

K∏
k=1

α
qjk
ik .

The ideal response pattern ηij indicates whether the ith subject possesses
all the attributes needed for answering the particular item. In fact, ideal re-
sponse patterns will be defined in this manner for all the cognitive diagnosis
models we consider, aside from the disjunctive DINO model described be-
low. This is because when we strip away all the parameters that account for
random responses, all models collapse into the same deterministic model
from which ideal responses are defined.

The NIDA model, introduced in Maris (1999), differs from the DINA
by defining slips and guesses at the subtask level. Let ηijk indicate whether
the ith subject correctly applied the kth attribute in completing the jth item.
Slipping and guessing parameters are indexed by attribute, and are defined
by

sk = P (ηijk = 0 | αik = 1, qjk = 1) and
gk = P (ηijk = 1 | αik = 0, qjk = 1).

In the NIDA model an item response Yij is 1 if all ηijk’s are equal to
1, Yij =

∏K
k=1 ηijk. The item response function has the form

P (Yij = 1 | αi, s,g) =

K∏
k=1

P (ηijk = 1 | αik, sk, gk)

=

K∏
k=1

[
(1− sk)

αikg1−αik

k

]qjk
.

The NIDA model is somewhat restrictive and implies that item re-
sponse functions must be the same for all items sharing the same attributes.
It seems unrealistic that this could apply to many datasets, because it im-
plies that item difficulty levels would be exactly the same for many items,
and is not something one expects to observe in practice. A generalization of
this that allows parameters to differ item-by-item is a reduced version of the
Reparameterized Unified Model, called the Reduced RUM (Hartz, Rous-
sos, Henson, and Templin 2005). In the Reduced RUM, the item response
function is

P (Yij = 1 | αi) = π∗
j

K∏
k=1

r
∗qjk(1−αik)
jk .

Here π∗
j denotes the probability of answering correctly for someone who

possesses all of the required attributes, and r∗jk can be thought of as a penalty
parameter and reduces the probability of a correct response by a factor some-
where between 0 and 1 for those not possessing the kth attribute.
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Conjunctive models require the intersection of a set of attributes. In
contrast, disjunctive models require possession of at least one of the mea-
sured attributes. Templin and Henson (2006), introduced the DINO (Deter-
ministic Input, Noisy Output “Or” gate) model. The item response function
of the DINO model is expressed as

P (Yij = 1|αi) = g
(1−ωij)
j (1− sj)

ωij , (1)

where ωij = 1−∏K
k=1(1−αik)

qjk and indicates whether at least one of the
attributes corresponding to the item is possessed.

These are some specific models, some of which will be considered
in a heuristic theory for justifying the nonparametric method of the next
section, and are used in the section on simulation. All of these models and
an even greater variety of models can be represented in a log-linear model
framework developed by Henson, Templin, and Willse (2009).

Parametric latent class modeling for cognitive diagnosis has some dis-
advantages. Estimation often requires highly specialized and proprietary
software. In addition, software relies on the EM algorithm or Markov Chain
Monte Carlo (MCMC) for fitting the parameters of the model. MCMC can
consume excessive CPU time, and convergence is often difficult to establish.
The EM algorithm often converges to locally-optimal extrema. In addition
to problems with estimation, there is always the concern that parametric
models are simply incorrect and do not fit. Motivated by these obstacles,
some researchers have proposed to avoid likelihood-based parametric mod-
els, and use nonparametric techniques for assigning examinees to attribute
profiles. These methods are less restrictive and often computationally more
efficient. In addition, many nonparametric classification algorithms can be
easily implemented in major statistical software packages.

The rule space methodology (Tatsuoka 1983, 1990; Tatsuoka and Tat-
suoka 1987, 1997) is an early contribution to diagnostic testing. In this
method, Boolean descriptive functions are utilized to establish the relation-
ship between the examinee’s attribute pattern and the observed response pat-
tern through the Q-matrix. Inspired by this method, Barnes (2010) attempted
to construct the Q-matrix by applying a hill-climbing algorithm to extract the
Q-matrix based on examinees’ responses. However, the resulting Q-matrix
consists of entries in the interval from 0 to 1, unlike the other parametric and
nonparametric methods we discuss.

A more recent stream of research in nonparametric cognitive diagno-
sis applies cluster analysis to classify examinees. Willse, Henson, and Tem-
plin (2007), for example, apply K-means clustering to cognitive diagno-
sis data generated by the reduced Reparameterized Unified Model (RUM).
Ayers, Nugent, and Dean (2008) test the performance of various common
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clustering methods in classifying examinees. Chiu, Douglas, and Li (2009)
conducted a theoretical and empirical evaluation of hierarchical agglomer-
ative and K-means clustering for grouping examinees into clusters having
similar attribute patterns. They established conditions for clusters to match
perfectly with corresponding latent classes with probability approaching 1
as test length increases.

3. Methods

In this section we propose classification based on examining proxim-
ity of observed response vectors to the ideal response vectors. To be specific,
a classification α̂ is made by minimizing some measure of distance over all
possible ideal response vectors, and determining the α associated with the
nearest ideal response vector. This nonparametric method based on ideal
response patterns makes no direct use of item parameters of any cognitive
diagnosis model, and can be conducted just as well with any sample size.

To formally define the procedure, let ηij =
∏K

k=1 α
qjk
ik , be the jth

component of the ideal response pattern for the ith subject, and let ηi de-
note this pattern. We see that ηi depends only on the Q-matrix, and is a
function of the unobservable αi. We can construct all possible ideal re-
sponse patterns, η(1),η(2), ...,η(2K), for all 2K possible values for αi. The
problem of obtaining an estimator α̂i amounts to minimizing the distance
between the observed item response vector and the ideal response pattern,
d(yi,η

(m)), for m = 1, 2, ..., 2K . That is, we define α̂i to be the value of
α that results in an ideal response pattern that is as similar as possible to
the observed response pattern. Of course, determining the most appropriate
distance measure d(·) is critical to this, and it should recognize the issues of
slipping and guessing, as well as other issues.

With binary data, a very natural and widely used distance measure
for clustering is Hamming distance, which simply counts the number of
times two vectors disagree. Hamming distance could prove useful for this
application, and is given by

dh(y,η) =

J∑
j=1

|yj − ηj |. (2)

However, it is likely that the responses of some items will have more
variability than others. If this is the case, a weighted version of Hamming
distance that places more weight on terms associated with items having
smaller variance might be more efficient. Let p̄j denote the proportion cor-
rect on the jth item. Then we define weighted Hamming distance by weight-
ing according to the inverse sample variance,

dwh(y,η) =

J∑
j=1

1

p̄j(1− p̄j)
|yj − ηj |. (3)
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In our simulations, we found that weighted Hamming distance per-
forms slightly better than Hamming distance, and does not result in nearly
as many ties. It is the primary measure used in the simulation study to fol-
low, and we also consider weighting differently for departures from the ideal
response model that would result from slips versus guesses. For example,
in the case of open-ended responses in which guessing may not be possible,
it makes sense to penalize a guess, which is a 1 in the response vector cor-
responding to a 0 in the ideal response vector, more than the opposite form
of disagreement. On a multiple-choice exam, perhaps guessing should not
be penalized as much as a disagreement of the form yj = 0 when ηj = 1,
which is sometimes referred to as a slip. For a general family of distance
measures, define wg to be the weight assigned to a guess, and ws the weight
assigned to a slip. We define a distance measure, called penalized Hamming
distance, such that when wg = ws = 1 it reduces to Hamming distance, but
can assign more weight to guesses when g < s and more weight to slips
when g > s,

dgs(y,η) =

J∑
j=1

wgI[yj = 1]|yj − ηj |+
J∑

j=1

wsI[yj = 0]|yj − ηj|. (4)

To make this even more general, depending possibly on varied item types
within an exam, one could let weights be specific to items, and replace wg

and ws in Equation 4 with wgj and wsj , respectively.
We conclude this section with a heuristic justification for why and

when this method should be successful. Though cognitive diagnosis models
recognize that response patterns will differ from ideal response patterns, and
parameterize them accordingly, it is worth recognizing that a person’s most
likely response pattern may still be the ideal response pattern. Thus, we
would expect item response patterns to be nearer the modal value, the ideal
response pattern corresponding to the correct value of α, than the ideal re-
sponse pattern corresponding to an incorrect value of α. In fact, that is what
the simulations in the next section reveal. A critical observation is that a
model need not be nearly deterministic for this to work, and an analysis of
the particular parameter values for which the ideal response is most likely is
given for the DINA and NIDA models.

Let’s first consider when the ideal response pattern is the most likely
response pattern under the NIDA model. The same basic result holds for the
Fusion model, which is like the NIDA model but lets slip and guess parame-
ters vary item-by-item. First define ideal response pattern η = (η1, η2, η3, ...

ηJ)
′ with jth element ηj =

∏K
k=1 α

qjk
k . Now consider an arbitrary vector of

binary responses y = (y1, y2, y3, ..., yJ )
′ and consider sufficient conditions

for P (η|α) > P (y|α) for all y �= η. Certainly, by conditional indepen-
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dence, P (η|α) > P (y|α) if P (ηj |α) ≥ P (yj |α) for all j in 1,2,...,J , with
at least 1 of the inequalities being strict. Let Aj = {k : qjk = 1}, the set of
indices for the required attributes for the jth item.

Suppose ηj = 0 and yj = 1. Because P (0) = 1 − P (1), we need to
see when P (0) > .5, or equivalently P (1) < .5.

P (1) =
∏
k∈Aj

g
(1−αk)
k (1− sk)

αk .

The condition ηj = 0 implies that there must be at least one k′ ∈ Aj such
that αk′ = 0. Thus, P (1) < P (0) holds when gk′ < .5, a very reasonable
assumption for a valid model.

Now suppose ηj = 1 and yj = 0. We need to see that P (1) > .5.
When ηj = 1, we know that αk = 1 for all k ∈ Aj . Thus

P (1) =
∏
k∈Aj

(1− sk) > .5.

This is the condition we need, the product of all (1 − sk)s for required
attributes must be larger than 0.5.

Now suppose the item response function follow a DINA model. Again,
suppose ηj = 0 and yj = 1. We need to see when P (0) > .5, or equiva-
lently P (1) < .5. This is satisfied exactly when the guessing parameter gj
is less than 0.5. For ηj = 1 and yj = 0, we must have P (1) > .5 and this
holds precisely when the slipping parameter is less than 0.5. So, in the case
of the DINA model, the ideal response pattern will always be the most like
pattern, unless some slipping or guessing values exceed 0.5.

4. Simulation Studies

We investigated the performance of the nonparametric method under
various conditions through a wide range of simulations. First, we examined
the effect of weighted Hamming distances. Second, we studied to what ex-
tent guessing-slipping penalized Hamming distances can improve the classi-
fication of examinees in situations where one of the parameters in the given
model is much smaller than the other, or even missing. The third simula-
tion concerned the robustness of the nonparametric method when the given
Q-matrix of a test is misspecified. In a fourth study, we compared the effect
of conjunctive and disjunctive ideal response vectors on the classification of
examinees; finally, we also explored the effect of a large number of skills.
Classification results for the nonparametric method were evaluated by com-
parison with those obtained through maximum likelihood estimation (MLE)
of class membership (i.e., α) that can be regarded as a “best case” sce-
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nario because the true model underlying the data and all parameters must be
known. We emphasize that this provides a rather conservative assessment of
the relative efficiency of the nonparametric method, and mimics what might
take place when item banks are calibrated using very large samples. For the
robustness simulation (with misspecified Q-matrix), MLE does not provide
the best possible classification; hence, we used the EM algorithm to obtain
a standard of reference.

4.1 Simulation Design

The simulation conditions were formed by crossing test length, the
number of attributes, the data generation model, and the expected depar-
ture from ideal response patterns governed by the level of random slips and
guesses. For each condition, 25000 subjects were simulated using either the
DINA or generalized NIDA model. The generalized NIDA model is equiv-
alent to the Reduced RUM model, but employs a different parameterization
and allows slipping and guessing parameters to vary for each item. In addi-
tion, the DINO model was adopted as the data generating model for one of
the simulations to study the effectiveness of the nonparametric method when
relying on disjunctive ideal response patterns. For each data set, K = 3 or
4 attributes were required and response profiles consisting of J = 20 or 40
items were sampled for N = 1000 examinees from a designated distribution
(recall that we also conducted one simulation with K = 8 to evaluate the
performance of the nonparametric method when K is large).

Examinees’ attribute profiles were generated in two different ways.
The first sampled attribute patterns, α, from a uniform distribution of 2K

possible values, each with probability 1/2K . The second approach, referred
to as multivariate normal threshold model, was used to mimic a realistic
situation where attributes are correlated and of unequal prevalence. The
discrete α were linked to an underlying multivariate normal distribution,
MVN(0K ,Σ), with covariance matrix, Σ, structured as

Σ =

⎛
⎜⎝
1 ρ

. . .
ρ 1

⎞
⎟⎠ ,

and ρ = 0.5. Let θi = (θi1, θi2, · · · , θiK)′ denote the K-dimensional
vector of latent continuous scores for examinee i. The attribute pattern
αi = (αi1, αi2, · · · , αiK) was determined by

αik =

{
1, if θik ≥ Φ−1( k

K+1);
0, otherwise.

(5)
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Another critical factor affecting the classification results is the distri-
bution of item parameters. The item parameters for the DINA and general-
ized NIDA models can both be set so that responses are nearly deterministic.
In this case, using ideal response patterns will work nearly perfectly. How-
ever, from a practical point of view, it is important to investigate how far
we can stretch these parameters and still obtain good nonparametric classi-
fications. Therefore, except for the simulations taking specific distributions
to generate guessing and slipping parameters for evaluating the use of the
penalized weights, the guessing and slipping parameters in the other simu-
lations were generated from uniform distributions with left endpoints of 0
and right endpoints, denoted as Max.s, either 0.1, 0.3, or 0.5, representing
conditions of low, medium, and high perturbations.

For the simulations with penalized-weighted Hamming distance (i.e.,
non-equal weights for guessing and slipping parameters), as formulated in
Equation 4, the data were generated with the assumption that one parameter
was much less than the other or even missing. Specifically, to mimic the
type of tests where guessing is close to 0 (e.g., open-ended test), the guess-
ing parameters were set to 0 and the slipping parameters were generated
from Unif(0, 0.4). Under the setup, a flip from ideal response 0 to observed
response 1 represents the condition where the probability of success is con-
tributed only by the guessing, and therefore deserves a larger penalty. In
terms of Equation 4, wg should take a value greater than ws. wg was thus set
to 6 and ws to 1 in the simulation. On the other hand, for conditions where
guessing plays a major role to answer the items correctly, and when slipping
rarely happens, the guessing parameters were generated from Unif(0, 0.4)
and slipping parameters from Unif(0, 0.1).

The Q-matrices for tests of 20 items with K = 3 and 4 were designed
as in Table 1, and those for tests of 40 items were obtained by doubling the
length of the Q matrices in Table 1. For the simulation with misspecified
Q-matrices, 10% or 20% of misspecified q entries were randomly arranged
in the Q-matrix for each replication.

For K = 8, there are 28 = 256 possible attribute combinations, and
to include all of them in a single test is impractical. We therefore considered
only include one-, two-, and three-skill items. Specifically, if J = 40, the
Q-matrix consisted of all eight one-skill and 28 two-skill items; in addition,
four three-skill items were randomly selected from the list of 56 possible
three-skill items. Similarly, if J = 60, the Q-matrix included 16 one-skill
items (each of the possible items repeated twice), 28 two-skill items and 16
randomly chosen three-skill items.

We also studied the effectiveness of the nonparametric method when
relying on disjunctive ideal response patterns. For the simulation, data were
generated from the DINO model, as described in Equation 1. The nonpara-
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Table 1. Q-matrices for test of 20 items

K=3 K=4
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 1 0
1 1 0 0 0 0 1
1 0 1 1 0 0 0
0 1 1 0 1 0 0
1 0 0 0 0 1 0
0 1 0 0 0 0 1
0 0 1 1 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1
0 1 1 0 1 1 0
1 0 0 0 1 0 1
0 1 0 0 0 1 1
0 0 1 1 1 1 0
1 1 0 1 1 0 1
1 0 1 1 0 1 1
0 1 1 0 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

metric method links the observed response patterns to the disjunctive ideal
response patterns ω, in which the element for the ith examinee who took the
jth item is defined as

ωij = 1−
K∏
k=1

(1− αik)
qjk. (6)

Note that the expected results are independent of sample size because
no item parameter was estimated and all classifications were statistically
independent of the others. The large sample size of 25,000 used here is
merely to eliminate any substantial Monte Carlo error.

4.2 Results

Results are summarized in terms of two indices reflecting the agree-
ment between the obtained and the known true classification. The first we
call pattern-wise agreement rate (PAR) denoting the proportion of attribute

patterns accurately estimated: PAR =
∑N

i=1
I[α̂i=αi]

N . Attribute-wise

agreement rate (AAR), defined as AAR =
∑N

i=1

∑K
k=1

I[αik=α̂ik]
NK , refers

to the proportion of individual attributes that were classified correctly. For
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both, PAR and AAR, we also computed their “relative efficiency” as the ra-
tio of nonparametric versus MLE indices. The tables below report the PAR,
AAR, and their relative efficiencies for the nonparametric method and MLE.
We would like to emphasize that any analysis of classification results should
always take into consideration the level of accuracy that can be attained by
chance alone (i.e., in ignoring the data) to provide a rationale frame of ref-
erence for the interpretation. For example, under the assumption of latent
proficiency classes following a uniform distribution (i.e., classes are equally
likely), for 8 classes (based on K = 3), a PAR of 0.125 can be obtained
solely through random classification (or PAR = 0.0625 when K = 4, with
16 classes); the corresponding chance AAR equals 0.5.

For the various conditions of the simulation study, Table 2 summa-
rizes the average CPU times observed when classifying a data set consist-
ing of 1000 examinees by the nonparametric method: even under the most
extreme condition (i.e., (K, J , Max.s) = (4, 40, 0.5)), the nonparametric
method needs only about 1 second per data set—a very encouraging find-
ing.

Table 3 documents the effectiveness of the nonparametric method and
MLE when applied to responses generated from the DINA model. In support
of the theoretical prediction, both approaches produce nearly perfect classi-
fications when slipping and guessing parameters are less than 0.1. Not too
surprising, classification performance generally deteriorates at larger noise
levels. Still, we should point out that the relative efficiency of PAR for the
nonparametric method remains above 0.94 as long as the parameter settings
for slipping and guessing do not exceed 0.3 (notice that the relative effi-
ciency of AAR appears to be even less susceptible to the slipping and guess-
ing settings)—an indication of the robustness of the proposed nonparametric
method (to be discussed in greater detail below). As an aside, but similarly
remarkable, the relative efficiency of PAR for the nonparametric method
is larger when the data were generated by the multivariate normal thresh-
old model (that incorporates a far more realistic scenario than the uniform
distribution model). A heuristic explanation of the impressive performance
of the nonparametric method for DINA data can be derived from the proof
given in the previous section: as long as the slipping and guessing parame-
ter settings do not exceed 0.5, the ideal response pattern suggests the most
likely choice for the proficiency class. In summary, the nonparametric tech-
nique only requiring knowledge of the Q-matrix of a given test appears to be
quite competitive for DINA data in comparison with MLE that rather repre-
sents a best-case scenario in its reliance on complete knowledge of all model
parameters.

The results for the generalized NIDA model are presented in Table
4. The nonparametric and MLE classifications are excellent when slips and
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Table 2. Average CPU time in seconds for nonparametric classification with datasets of
N=1000

J = 20 J = 40
K = 3 K = 4 K = 3 K = 4

Max.s = 0.1 0.5340 0.9120 0.6996 1.0596
Max.s = 0.3 0.5656 0.8844 0.7192 1.0704
Max.s = 0.5 0.6264 0.9404 0.7500 1.0732

Table 3. Agreement of classification between the nonparametric method and MLE with data
generated from the DINA model

Relative Efficiency
Nonparametric MLE (Nonpar./MLE)

J K Max.s PAR AAR PAR AAR PAR AAR
Uniform Attribute Patterns

20

3
0.1 0.9926 0.9973 0.9928 0.9975 0.9998 0.9998
0.3 0.9261 0.9715 0.9459 0.9801 0.9791 0.9912
0.5 0.8400 0.9349 0.9222 0.9703 0.9109 0.9635

4
0.1 0.9612 0.9895 0.9688 0.9916 0.9922 0.9979
0.3 0.8324 0.9494 0.8766 0.9656 0.9496 0.9832
0.5 0.6168 0.8669 0.7108 0.9083 0.8678 0.9544

40

3
0.1 0.9990 0.9997 0.9996 0.9999 0.9994 0.9998
0.3 0.9796 0.9928 0.9859 0.9952 0.9936 0.9976
0.5 0.8648 0.9469 0.9331 0.9753 0.9268 0.9709

4
0.1 0.9942 0.9985 0.9979 0.9995 0.9963 0.9990
0.3 0.9186 0.9773 0.9564 0.9881 0.9605 0.9891
0.5 0.7334 0.9126 0.8451 0.9542 0.8678 0.9564

Multivariate Normal Attribute Patterns

20

3
0.1 0.9971 0.9990 0.9976 0.9992 0.9995 0.9998
0.3 0.9250 0.9733 0.9284 0.9744 0.9963 0.9989
0.5 0.6984 0.8724 0.7399 0.8983 0.9439 0.9712

4
0.1 0.9772 0.9940 0.9801 0.9947 0.9970 0.9993
0.3 0.8082 0.9411 0.8128 0.9432 0.9943 0.9978
0.5 0.6138 0.8672 0.7236 0.9178 0.8483 0.9449

40

3
0.1 0.9986 0.9995 0.9994 0.9998 0.9992 0.9997
0.3 0.9684 0.9890 0.9790 0.9927 0.9892 0.9963
0.5 0.8932 0.9612 0.9340 0.9766 0.9563 0.984

4
0.1 0.9940 0.9985 0.9979 0.9995 0.9961 0.9990
0.3 0.9612 0.9899 0.9610 0.9897 1.0002 1.0002
0.5 0.6971 0.9006 0.7901 0.9359 0.8823 0.9623

guesses are bounded by 0.1. If these bounds are increased, then the PAR
scores of both methods tend to decline (although, the AAR scores remain
high). In comparison with the application to DINA data, the nonparamet-
ric method appears generally less tolerant of larger slipping and guessing
parameter settings in NIDA data, presumably, because in case of the latter
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Table 4. Agreement of classification between the nonparametric method and MLE with data
generated from the generalized NIDA model

Relative Efficiency
Nonparametric MLE (Nonpar./MLE)

J K Max.s PAR AAR PAR AAR PAR AAR
Uniform Attribute Patterns

20

3
0.1 0.9875 0.9957 0.9927 0.9975 0.9948 0.9982
0.3 0.8888 0.9575 0.9424 0.9792 0.9431 0.9778
0.5 0.6868 0.8787 0.8653 0.9495 0.7937 0.9254

4
0.1 0.9502 0.9866 0.9670 0.9914 0.9826 0.9952
0.3 0.6648 0.8989 0.7836 0.9384 0.8484 0.9579
0.5 0.4366 0.8095 0.6693 0.9044 0.6523 0.8951

40

3
0.1 0.9991 0.9997 0.9998 0.9999 0.9993 0.9998
0.3 0.9417 0.9794 0.9837 0.9943 0.9573 0.9850
0.5 0.6890 0.8796 0.9178 0.9705 0.7507 0.9063

4
0.1 0.9937 0.9984 0.9987 0.9997 0.9950 0.9987
0.3 0.8506 0.9604 0.9508 0.9870 0.8946 0.9730
0.5 0.5391 0.8580 0.8066 0.9450 0.6684 0.9079

Multivariate Normal Attribute Patterns

20

3
0.1 0.9925 0.9974 0.9940 0.9980 0.9985 0.9994
0.3 0.8436 0.9444 0.9089 0.9675 0.9282 0.9761
0.5 0.6238 0.8526 0.7618 0.9109 0.8189 0.9360

4
0.1 0.9556 0.9886 0.9653 0.9909 0.9900 0.9977
0.3 0.7348 0.9268 0.8373 0.9557 0.8776 0.9698
0.5 0.4777 0.8362 0.6939 0.9114 0.6884 0.9175

40

3
0.1 0.9996 0.9999 0.9998 0.9999 0.9998 1.0000
0.3 0.9624 0.9874 0.9934 0.9978 0.9688 0.9896
0.5 0.8179 0.9369 0.9582 0.9854 0.8536 0.9508

4
0.1 0.9941 0.9985 0.9969 0.9992 0.9972 0.9993
0.3 0.8157 0.9521 0.9388 0.9840 0.8689 0.9676
0.5 0.4592 0.8284 0.7150 0.9170 0.6422 0.9034

slipping and guessing operate at the subtask level and can have a multi-
plicative effect. Hence, a one-to-one comparison of the classification results
obtained from the nonparametric method for DINA and NIDA data does not
appear particularly viable. Finally, we notice that the performance of the
nonparametric method when applied to NIDA data seems also to depend on
the size of K.

The simulations reported so far all used weighted Hamming distances
for the nonparametric method; slipping and guessing parameters were drawn
from the same uniform distribution. We also studied the effectiveness of
the nonparametric method in comparison with MLE for alternative distance
measures, weighted Hamming and penalized-weighted Hamming distances,
when applied to data generated based on imbalanced guessing and slipping
parameter settings. Tables 5 and 6 report the classification agreements for
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Table 5. Agreement of classification between the nonparametric method with weighted and
penalized-weighted Hamming distances and MLE with data generated from the DINA model.
g=0, s=0.4, wg=6, ws=1

Relative Efficiency
Weighted Penalized-Weighted MLE (P-W/MLE)

J K PAR AAR PAR AAR PAR AAR PAR AAR
Uniform Attribute Patterns

20
3 0.9624 0.9873 0.9986 0.9995 0.9986 0.9995 1.0000 1.0000
4 0.7468 0.9304 0.9732 0.9932 0.9763 0.9940 0.9968 0.9992

40
3 0.9572 0.9857 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 0.9326 0.9829 0.9998 1.0000 1.0000 1.0000 0.9998 1.0000

Multivariate Normal Attribute Patterns

20
3 0.9222 0.9734 0.9983 0.9994 0.9984 0.9995 0.9999 0.9999
4 0.8633 0.9635 0.9878 0.9970 0.9880 0.9970 0.9998 1.0000

40
3 0.9477 0.9821 0.9999 1.0000 0.9999 1.0000 1.0000 1.0000
4 0.9576 0.9892 0.9998 1.0000 0.9999 1.0000 0.9999 1.0000

Table 6. Agreement of classification for the nonparametric method with weighted and
penalized-weighted hamming distances and MLE with data generated from the DINA model.
g=0.4, s=0.1, wg=1, ws=2

Relative Efficiency
Weighted Penalized-Weighted MLE (P-W/MLE)

J K PAR AAR PAR AAR PAR AAR PAR AAR
Uniform Attribute Patterns

20
3 0.8967 0.9607 0.9187 0.9690 0.9569 0.9836 0.9601 0.9852
4 0.7871 0.9353 0.8480 0.9521 0.8906 0.9675 0.9522 0.9642

40
3 0.9703 0.9908 0.9901 0.9966 0.9972 0.9991 0.9929 0.9975
4 0.8608 0.9612 0.9519 0.9860 0.9662 0.9907 0.9852 0.9953

Multivariate Normal Attribute Patterns

20
3 0.8328 0.9396 0.8707 0.9523 0.9403 0.9781 0.9260 0.9736
4 0.7734 0.9312 0.8307 0.9516 0.8786 0.9646 0.9455 0.9865

40
3 0.9847 0.9949 0.9973 0.9991 0.9982 0.9994 0.9991 0.9997
4 0.9288 0.9816 0.9810 0.9951 0.9836 0.9958 0.9974 0.9993

data generated from the DINA model. In Table 5, the guessing parameter
was set to 0, and the slipping parameter was drawn from Unif(0, 0.4). A
large number, 6, was chosen as the weight for guessing, while the weight
for slipping was set to 1. We observe that the weighted Hamming distance
performs fairly well; however, the use of the penalized-weighted Hamming
distance dramatically improves the classification agreement rate in compar-
ison with the regular weighted Hamming distance across all simulation con-
ditions. The difference between the two distance measures further increases
if the length of the test is reduced and a larger number of required skills is
used (e.g., for (J , K) = (20, 4), PAR(weighted Hamming) = 0.7468 versus
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PAR(penalized-weighted Hamming) = 0.9732). Most notable, the nonpara-
metric method with penalized-weighted Hamming distance performs almost
as well as MLE (indices of relative efficiency all greater than 0.99).

Table 6 lists the results for the other conditions, with slipping and
guessing parameters drawn from Unif(0, 0.1) and Unif(0, 0.4), respectively,
and weights chosen as 2 and 1. Not surprisingly, in this condition, classifica-
tion performance declines for all three techniques because the data contain
more noise. However, the nonparametric method with penalized-weighted
Hamming distances still outperforms weighted Hamming distances across
all conditions. Note that the differences in agreement of classification are
substantial when K is large. In addition, the nonparametric method com-
bined with penalized-weighted Hamming distances attains a classification
rate almost as good as MLE (indices of relative efficiency for PAR exceed
0.95 in 15 out of 16 conditions).

Tables 7 and 8 report the parallel results for test data generated from
the generalized NIDA model. With the guessing parameter set to 0, and the
slipping parameter generated from Unif(0, 0.4), using penalized-weighted
Hamming distances leads to superior classification in comparison with
weighted Hamming distances across all simulation conditions. Also, all
PAR relative efficiency indices (versus MLE) for penalized-weighted Ham-
ming distances exceed 0.98, while those for weighted Hamming distances
are at most equal to 0.70 when K = 4, or 0.90 when K = 3. Similar
results are obtained when slipping and guessing parameters are generated
from Unif(0, 0.1) and Unif(0, 0.4), respectively.

The simulation results reported here strongly suggest that the pro-
posed nonparametric method can compete with MLE-based classification
provided an appropriate distance measure is chosen (reflecting the character-
istics of the test). The weights of the slipping and guessing parameters were
determined based on the inspection of the relationship between the agree-
ment of classification and the actually chosen weight. The results reported
in Table 5 imply that a large weight on the guessing parameter improves
classification, while Table 6 rather suggests an inverted U-shaped relation-
ship between weight and agreement of classification (increasing up to some
value ranging between 1 and 3, but declining thereafter). Clearly, further
studies are warranted to generate solid evidence that will help determine the
weight for maximizing the effectiveness of the nonparametric method when
used with penalized-weighted Hamming distances.

The next simulation investigates the robustness of the nonparametric
method when some entries in the Q-matrix are misspecified. In each replica-
tion, 10% or 20% of the entries in a given Q-matrix were randomly changed.
The misspecified Q-matrix was used for classifying examinees through the
nonparametric method and DINA-EM. Tables 9 and 10 report the results
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Table 7. Agreement of classification between the nonparametric method with weighted and
penalized-weighted Hamming distances and MLE with data generated from the NIDA model.
g=0, s=0.4, wg=6, ws=1

Relative Efficiency
Weighted Penalized-Weighted MLE (P-W/MLE)

J K PAR AAR PAR AAR PAR AAR PAR AAR
Uniform Attribute Patterns

20
3 0.8866 0.9617 0.9976 0.9992 0.9987 0.9996 0.9989 0.9996
4 0.6952 0.9210 0.9748 0.9937 0.9956 0.9989 0.9791 0.9948

40
3 0.8684 0.9555 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 0.6760 0.9135 0.9932 0.9983 0.9992 0.9998 0.9940 0.9985

Multivariate Normal Attribute Patterns

20
3 0.7706 0.9196 0.9949 0.9983 0.9984 0.9995 0.9965 0.9988
4 0.6463 0.9018 0.9677 0.9918 0.9730 0.9932 0.9946 0.9986

40
3 0.9018 0.9668 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
4 0.6980 0.9188 0.9978 0.9994 0.9990 0.9998 0.9988 0.9996

Table 8. Agreement of classification for the nonparametric method with weighted and
penalized-weighted hamming distances and MLE with data generated from the NIDA model.
g=0.4, s=0.1, wg=1, ws=2

Relative Efficiency
Weighted Penalized-Weighted MLE (P-W/MLE)

J K PAR AAR PAR AAR PAR AAR PAR AAR
Uniform Attribute Patterns

20
3 0.9310 0.9752 0.9382 0.9770 0.9748 0.9913 0.9625 0.9856
4 0.7589 0.9303 0.7847 0.9335 0.8700 0.9624 0.9020 0.9700

40
3 0.9692 0.9895 0.9882 0.9959 0.9974 0.9991 0.9908 0.9968
4 0.9090 0.9760 0.9276 0.9806 0.9808 0.9950 0.9458 0.9855

Multivariate Normal Attribute Patterns

20
3 0.8123 0.9361 0.9508 0.9836 0.9993 0.9998 0.9515 0.9838
4 0.6864 0.9136 0.8490 0.9609 0.9821 0.9955 0.8645 0.9652

40
3 0.8660 0.9550 0.9882 0.9961 1.0000 1.0000 0.9882 0.9961
4 0.7752 0.9410 0.9337 0.9834 1.0000 1.0000 0.9337 0.9834

for DINA data with attribute patterns generated from uniform distributions
and multivariate normal threshold models, respectively. Table 9 shows that
both methods result in low classification agreement rates when a misspeci-
fied Q-matrix is used. The nonparametric method does not perform well as
the DINA-EM when the upper bound of guessing and slipping parameters
and K are large, but does outperform the DINA-EM under some cases with
20% of misspecification. The impact of K and J on classification accu-
racy is similar to that found in other simulations. The relative efficiency of
the nonparametric method versus DINA-EM ranges from 0.78 to 1.26 when
10% of the q-entries are misspecified, and from 0.73 to 1.05 with 20% of
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Table 9. Classification results for nonparametric classification and DINA-EM with DINA
data and a uniform distribution on α when Q is misspecified

Relative Efficiency
Nonparametric DINA-EM (Nonpar./DINA-EM)

J K Max.s PAR AAR PAR AAR PAR AAR
10% misspecified q entries

20

3
0.1 0.9188 0.9717 0.9620 0.9870 0.9551 0.9845
0.3 0.7910 0.9186 0.8576 0.9485 0.9223 0.9685
0.5 0.6182 0.8398 0.6261 0.8477 0.9874 0.9907

4
0.1 0.7836 0.9374 0.8868 0.9678 0.8836 0.9686
0.3 0.6684 0.8915 0.7352 0.9165 0.9091 0.9727
0.5 0.4566 0.8032 0.5837 0.8631 0.7823 0.9306

40

3
0.1 0.9698 0.9899 0.9973 0.9991 0.9724 0.9908
0.3 0.9001 0.9651 0.9682 0.9888 0.9297 0.9760
0.5 0.8149 0.9286 0.9209 0.9716 0.8849 0.9557

4
0.1 0.8997 0.9738 0.9746 0.9935 0.9231 0.9802
0.3 0.7999 0.9425 0.9112 0.9753 0.8779 0.9664
0.5 0.5540 0.8497 0.4401 0.8081 1.2588 1.0515

20% misspecified q entries

20

3
0.1 0.7472 0.9045 0.8538 0.9476 0.8751 0.9545
0.3 0.6715 0.8679 0.7810 0.9188 0.8598 0.9446
0.5 0.4502 0.7472 0.4767 0.7760 0.9444 0.9629

4
0.1 0.5321 0.8484 0.6323 0.8904 0.8415 0.9528
0.3 0.3702 0.7468 0.3532 0.7477 1.0481 0.9988
0.5 0.2531 0.6787 0.2502 0.6797 1.0116 0.9985

40

3
0.1 0.8124 0.9360 0.9652 0.9883 0.8417 0.9471
0.3 0.7742 0.9157 0.8995 0.9649 0.8607 0.9490
0.5 0.5967 0.8231 0.6602 0.8681 0.9038 0.9482

4
0.1 0.6504 0.8967 0.8898 0.9695 0.7310 0.9249
0.3 0.5680 0.8612 0.7290 0.9184 0.7791 0.9377
0.5 0.4619 0.8042 0.6064 0.8736 0.7617 0.9206

misspecifications. Moreover, the degree of q-misspecification tends to dete-
riorate less in classification rate for the nonparametric method than for the
DINA-EM. Under some conditions, relative efficiency increases along with
the upper bound of the parameters, independent of the number of misspeci-
fied q-entries.

When examinees’ attribute patterns were generated from the multi-
variate normal threshold model, the agreements of classification for the non-
parametric method appear to be higher than those obtained from data with
uniform attribute patterns, but are lower for the DINA-EM particularly when
the upper bound of the parameters is moderate or small, as shown in Table
10. Relative efficiency of PAR (nonparametric method versus DINA-EM)
ranges from 0.82 to 1.01 when 10% of the q-entries are misspecified, and
from 0.78 to 1.03 when 20% are misspecified.
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Table 10. Classification results for nonparametric classification and DINA-EM with DINA
data and a threshold normal distribution on α when Q is misspecified

Relative Efficiency
Nonparametric DINA-EM (Nonpar./DINA-EM)

J K Max.s PAR AAR PAR AAR PAR AAR
10% misspecified q entries

20

3
0.1 0.9530 0.9839 0.9392 0.9795 1.0147 1.0045
0.3 0.8354 0.9375 0.8364 0.9422 0.9988 0.9950
0.5 0.6830 0.8744 0.7544 0.9083 0.9054 0.9627

4
0.1 0.8679 0.9614 0.8700 0.9637 0.9976 0.9976
0.3 0.5998 0.8612 0.6671 0.8983 0.8991 0.9587
0.5 0.4689 0.8079 0.6017 0.8710 0.7793 0.9276

40

3
0.1 0.9752 0.9917 0.9953 0.9984 0.9798 0.9933
0.3 0.9256 0.9736 0.9340 0.9776 0.9910 0.9959
0.5 0.7578 0.9043 0.8196 0.9342 0.9246 0.9680

4
0.1 0.9196 0.9789 0.9547 0.9883 0.9632 0.9905
0.3 0.8514 0.9582 0.8957 0.9722 0.9505 0.9856
0.5 0.6069 0.8675 0.7390 0.9225 0.8212 0.9404

20% misspecified q entries

20

3
0.1 0.8103 0.9334 0.8024 0.9331 1.0098 1.0003
0.3 0.7206 0.8850 0.7173 0.8953 1.0046 0.9885
0.5 0.5315 0.7852 0.5145 0.7943 1.0330 0.9885

4
0.1 0.6366 0.8818 0.6648 0.8958 0.9576 0.9844
0.3 0.4620 0.7943 0.5348 0.8399 0.8639 0.9457
0.5 0.3487 0.7317 0.4458 0.8001 0.7822 0.9145

40

3
0.1 0.8910 0.9632 0.8820 0.9606 1.0102 1.0027
0.3 0.8466 0.9417 0.8726 0.9568 0.9702 0.9842
0.5 0.6820 0.8682 0.6778 0.8812 1.0062 0.9852

4
0.1 0.7881 0.9390 0.8122 0.9495 0.9703 0.9889
0.3 0.5796 0.8629 0.6453 0.8894 0.8982 0.9702
0.5 0.5207 0.8332 0.6122 0.8691 0.8505 0.9587

Tables 11 and 12 summarize the findings for the data generated from
the generalized NIDA model. However, as an important detail, we need to
point out that we estimated examinees’ proficiency class based on DINA-
EM, trying to emulate a scenario where data are fitted by an inappropriate
model (i.e., fitting NIDA-data by DINA-EM) to stress a different aspect of
robustness of the nonparametric method; namely, its superiority in the spe-
cific case where an elaborate maximum likelihood approach is used that,
however, relies on the wrong model.

As shown in the tables, the nonparametric classification method does
not perform as well as the DINA-EM. The multiplicative effect of the NIDA
model appears to have a severe impact on the nonparametric method in clas-
sification.

In addition to studying the effectiveness of the nonparametric method
when relying on the conjunctive ideal pattern, we also investigated its per-
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Table 11. Classification results for nonparametric classification and DINA-EM with NIDA
data and a uniform distribution on α when Q is misspecified

Relative Efficiency
Nonparametric DINA-EM (Nonpar./DINA-EM)

J K Max.s PAR AAR PAR AAR PAR AAR
10% misspecified q entries

20

3
0.1 0.9202 0.9721 0.9704 0.9898 0.9483 0.9821
0.3 0.7305 0.8943 0.8056 0.9281 0.9068 0.9636
0.5 0.5310 0.8112 0.6740 0.8783 0.7878 0.9236

4
0.1 0.7238 0.9203 0.8455 0.9566 0.8561 0.9621
0.3 0.4567 0.8174 0.5216 0.8492 0.8756 0.9626
0.5 0.3386 0.7651 0.3708 0.7955 0.9132 0.9618

40

3
0.1 0.9629 0.9876 0.9977 0.9992 0.9651 0.9884
0.3 0.8505 0.9463 0.9463 0.9811 0.8988 0.9645
0.5 0.5913 0.8405 0.8281 0.9391 0.7140 0.8950

4
0.1 0.8853 0.9702 0.9805 0.9949 0.9029 0.9752
0.3 0.6439 0.8979 0.8483 0.9580 0.7590 0.9373
0.5 0.4142 0.8109 0.6027 0.8869 0.6872 0.9143

20% misspecified q entries

20

3
0.1 0.7176 0.8971 0.8729 0.9554 0.8221 0.9390
0.3 0.6314 0.8536 0.7054 0.8915 0.8951 0.9575
0.5 0.3475 0.7012 0.4388 0.7739 0.7919 0.9061

4
0.1 0.4573 0.8183 0.6077 0.8793 0.7525 0.9306
0.3 0.3588 0.7715 0.4168 0.8088 0.8608 0.9539
0.5 0.2318 0.6879 0.2810 0.7365 0.8249 0.9340

40

3
0.1 0.7996 0.9323 0.9782 0.9926 0.8174 0.9393
0.3 0.6290 0.8635 0.8737 0.9554 0.7199 0.9038
0.5 0.4130 0.7506 0.5715 0.8434 0.7227 0.8900

4
0.1 0.5950 0.8758 0.8608 0.9616 0.6912 0.9108
0.3 0.4568 0.8217 0.7102 0.9180 0.6432 0.8951
0.5 0.2770 0.7320 0.4254 0.8225 0.6512 0.8900

formance in association with the disjunctive ideal pattern (defined in Equa-
tion 6). Weighted Hamming distances were computed between all pos-
sible disjunctive ideal response patterns and each observed response pat-
tern generated from the DINO model. Class membership is determined by
choosing the attribute pattern resulting in the shortest distance. Table 13
records the agreements of classification obtained for DINO data when ap-
plying the conjunctive and disjunctive nonparametric methods in compari-
son with DINO-MLE. The results show that the conjunctive nonparametric
method can hardly classify disjunctive data correctly, as reflected by the low
agreement rates. The disjunctive nonparametric method, however, performs
almost as well as DINO-MLE (see the high relative efficiency rates). In
summary, if the correct link between examinee’s attribute patterns and the
given item skill patterns is specified (i.e., conjunctive or disjunctive), then
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Table 12. Classification results for nonparametric classification and DINA-EM with DINA
data and a threshold normal distribution on α when Q is misspecified

Relative Efficiency
Nonparametric DINA-EM (Nonpar./DINA-EM)

J K Max.s PAR AAR PAR AAR PAR AAR
10% misspecified q entries

20

3
0.1 0.9126 0.9690 0.9132 0.9700 0.9993 0.9990
0.3 0.7905 0.9231 0.8412 0.9442 0.9397 0.9777
0.5 0.6028 0.8364 0.6884 0.8864 0.8757 0.9436

4
0.1 0.7765 0.9363 0.8392 0.9571 0.9253 0.9783
0.3 0.6236 0.8848 0.6345 0.8983 0.9828 0.9850
0.5 0.3417 0.7641 0.4481 0.8290 0.7626 0.9217

40

3
0.1 0.9807 0.9935 0.9964 0.9988 0.9842 0.9947
0.3 0.8664 0.9522 0.9599 0.9863 0.9026 0.9654
0.5 0.6138 0.8496 0.7833 0.9256 0.7836 0.9179

4
0.1 0.9315 0.9818 0.9714 0.9928 0.9589 0.9889
0.3 0.6436 0.8967 0.8477 0.9589 0.7592 0.9351
0.5 0.4419 0.8248 0.5784 0.8811 0.7640 0.9361

20% misspecified q entries

20

3
0.1 0.7852 0.9196 0.8051 0.9335 0.9753 0.9851
0.3 0.6413 0.8537 0.6458 0.8719 0.9930 0.9791
0.5 0.4322 0.7484 0.5552 0.8275 0.7785 0.9044

4
0.1 0.6194 0.8702 0.6843 0.9024 0.9052 0.9643
0.3 0.4592 0.8143 0.4896 0.8257 0.9379 0.9862
0.5 0.2467 0.7093 0.4397 0.8013 0.5611 0.8852

40

3
0.1 0.8948 0.9645 0.9298 0.9765 0.9624 0.9877
0.3 0.6813 0.8812 0.7952 0.9298 0.8568 0.9477
0.5 0.5072 0.8087 0.6904 0.8929 0.7346 0.9057

4
0.1 0.6608 0.9019 0.8196 0.9530 0.8062 0.9464
0.3 0.5097 0.8436 0.7334 0.9254 0.6950 0.9116
0.5 0.2756 0.7412 0.4442 0.8353 0.6204 0.8873

the nonparametric method can be an effective alternative to a wide range of
CD models for classifying examinees.

The last part of the simulation concerns the effectiveness of the non-
parametric method when test items require a large number of skills. Data
were generated from the DINA model, with 40 or 60 items requiring 8 skills.
Table 14 reports CPU times, the agreements of classification for the non-
parametric method and MLE as well as their relative efficiency. The CPU
times confirm the computational efficiency of the nonparametric method
even when K is large. In addition, the relative efficiency indices demonstrate
that the nonparametric method performs well in comparison with MLE when
the data contain moderate or small amount of noise. But for noisy data,
MLE proves superior, which is not too surprising because NIDA and DINA
models actually share much similarities. Finally, when Max.s is large, the
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Table 13. Classification rates for the conjunctive and disjunctive nonparametric methods and
MLE with DINO data

Relative Efficiency
Con-Nonpar. Dis-Nonpar. DINO-MLE (Dis-Nonpar./MLE)

J K Max.s PAR AAR PAR AAR PAR AAR PAR AAR
Uniform Attribute Patterns

20

3
0.1 0.2419 0.6818 0.9913 0.9969 0.9924 0.9974 0.9989 0.9995
0.3 0.2864 0.7125 0.9336 0.9760 0.9524 0.9833 0.9803 0.9926
0.5 0.1928 0.6443 0.7357 0.8858 0.8366 0.9334 0.8794 0.9490

4
0.1 0.1635 0.6076 0.9622 0.9896 0.9732 0.9928 0.9887 0.9968
0.3 0.1620 0.6435 0.8087 0.9417 0.8395 0.9536 0.9633 0.9875
0.5 0.0938 0.6093 0.4718 0.8061 0.5489 0.8346 0.8595 0.9659

40

3
0.1 0.2692 0.6615 0.9994 0.9998 0.9998 0.9999 0.9996 0.9999
0.3 0.2716 0.6908 0.9800 0.9930 0.9907 0.9968 0.9892 0.9962
0.5 0.3720 0.7640 0.8469 0.9419 0.9084 0.9668 0.9323 0.9742

4
0.1 0.1076 0.5480 0.9946 0.9986 0.9976 0.9994 0.9970 0.9992
0.3 0.1399 0.6181 0.8970 0.9702 0.9315 0.9812 0.9630 0.9888
0.5 0.0989 0.5985 0.7267 0.9144 0.8548 0.9581 0.8501 0.9544

Multivariate Normal Attribute Patterns

20

3
0.1 0.4119 0.7847 0.9904 0.9966 0.9926 0.9975 0.9978 0.9991
0.3 0.4166 0.7897 0.8943 0.9599 0.9055 0.9631 0.9876 0.9967
0.5 0.4184 0.7810 0.7544 0.9030 0.7895 0.9182 0.9555 0.9834

4
0.1 0.2814 0.6752 0.9563 0.9881 0.9698 0.9920 0.9861 0.9961
0.3 0.2193 0.6409 0.8522 0.9576 0.8732 0.9639 0.9760 0.9935
0.5 0.1914 0.6627 0.5822 0.8514 0.6368 0.8738 0.9143 0.9744

40

3
0.1 0.4346 0.7893 0.9994 0.9998 0.9996 0.9999 0.9998 0.9999
0.3 0.3977 0.7366 0.9759 0.9918 0.9864 0.9954 0.9894 0.9964
0.5 0.4229 0.7699 0.9150 0.9692 0.9578 0.9855 0.9553 0.9835

4
0.1 0.2784 0.6628 0.9937 0.9984 0.9949 0.9987 0.9988 0.9997
0.3 0.2706 0.6766 0.9215 0.9791 0.9488 0.9864 0.9712 0.9926
0.5 0.3426 0.7521 0.7973 0.9405 0.8577 0.9595 0.9296 0.9802

Table 14. Classification for the nonparametric method and MLE with data generated from
the DINA model (N=1000; K=8)

Relative Efficiency
Nonparametric MLE (Nonpar./MLE)

J Max.s CPU Time PAR AAR PAR AAR PAR AAR

40
0.1 6.9524 0.9580 0.9930 0.9702 0.9955 0.9874 0.9975
0.3 6.9720 0.6666 0.9364 0.7454 0.9563 0.8943 0.9792
0.5 6.9644 0.3492 0.8394 0.4683 0.8859 0.7457 0.9475

60
0.1 8.2652 0.9826 0.9976 0.9892 0.9986 0.9933 0.9990
0.3 8.2756 0.8503 0.9764 0.8980 0.9850 0.9469 0.9913
0.5 8.2984 0.5278 0.8997 0.6423 0.9288 0.8217 0.9687
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agreement rates for both methods dramatically drop; thus, none of the two
methods should be used when the level of noise approaches 0.5.

5. Real Data Analysis

Next we analyze the well known fraction subtraction data introduced
in Tatsuoka (1990). The data consist of responses to 20 items involving sub-
traction of fractions from 536 examinees, and were analyzed in de la Torre
and Douglas (2004). Using the same Q-matrix as in de la Torre and Douglas
(2004), 8 attributes are defined that amount to skills or operations needed
to subtract fractions. These are: (1) Convert a whole number to a fraction,
(2) Separate a whole number from fraction, (3) Simplify before subtracting,
(4) Find a common denominator, (5) Borrow from whole number part, (6)
Column borrow to subtract the second numerator from the first, (7) Subtract
numerators, (8) Reduce answers to simplest form. Based on these defini-
tions, the Q-matrix of attributes necessary to correctly answer each item are
given in Table 15.

In this analysis, classifications are made using the nonparametric tech-
nique with weighted Hamming distance, and are also made by maximum
likelihood estimation, using DINA parameters obtained by the Higher-Order
DINA model published in de la Torre and Douglas (2004). We report the
proportion of classifications that agree between these two techniques, both
vector-wise and attribute-wise in Table 16. Note that roughly 45 percent
of attribute pattern classifications were the same. Though this may not ap-
pear large at first glance, one must consider that with 8 attributes there are
256 different attribute patterns to choose from. Individual attributes were
classified the same 87 percent of the time.

By averaging over the components of the classified vectors, we can
tabulate the estimated proportion of mastery for each skill, as shown in Table
17. These marginal proportions appear quite similar for the two methods.

6. Conclusions

The educational importance of this research lies in its promise to make
simple methods of cognitive diagnosis available without the need for cali-
brating parametric models. It can be performed with any sample size, and
only requires a matrix that associates items with attributes. By specifying a
distance measure that can be used to estimate attribute patterns by examining
how far a response pattern lies from all of the ideal response patterns, one
can produce rapid classifications with no information other than this matrix.

An aim of this paper was to investigate how much noise can be tol-
erated while still making good use of simple distance measures, rather than
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Table 15. Q-Matrix for the fraction subtraction data

Attribute
Item 1 2 3 4 5 6 7 8

1 0 0 0 1 0 1 1 0
2 0 0 0 1 0 0 1 0
3 0 0 0 1 0 0 1 0
4 0 1 1 0 1 0 1 0
5 0 1 0 1 0 0 1 1
6 0 0 0 0 0 0 1 0
7 1 1 0 0 0 0 1 0
8 0 0 0 0 0 0 1 0
9 0 1 0 0 0 0 0 0

10 0 1 0 0 1 0 1 1
11 0 1 0 0 1 0 1 0
12 0 0 0 0 0 0 1 1
13 0 1 0 1 1 0 1 0
14 0 1 0 0 0 0 1 0
15 1 0 0 0 0 0 1 0
16 0 1 0 0 0 0 1 0
17 0 1 0 0 1 0 1 0
18 0 1 0 0 1 1 1 0
19 1 1 1 0 1 0 1 0
20 0 1 1 0 1 0 1 0

Table 16. Agreement between nonparametric classification and the Higher-Order DINA
model

N J K PAR AAR
536 20 8 0.4552 0.8701

Table 17. Proportion of subjects possessing each of the attributes

Attribute 1 2 3 4 5 6 7 8
Nonparametric 0.49 0.80 0.70 0.67 0.59 0.73 0.83 0.81

H-O DINA 0.56 0.81 0.68 0.69 0.60 0.72 0.83 0.79

relying on a parametric model. The simulation study suggested that when
data arise from the NIDA model or the DINA model, a moderate amount
of noise can be tolerated, while maintaining high efficiency, relative to the
best possible, but unrealistic case of knowing the true model and all of its
parameters. Because the nonparametric technique worked well under both
simulation models, as well as under the DINO in the disjunctive case, and
assumes nothing about the model other than a Q-matrix, it is possible that
it can actually outperform models in practice, if those models are somewhat
misspecified. As such, there is a potential for the nonparametric technique
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to be somewhat robust, provided the stochastic elements of the underlying
model are not too dominant.

Several distance measures were suggested, and weighted Hamming
distance was used in simulations and in the real data example. Distance
measures the weight differentially for slipping and guessing were also stud-
ied, and can be utilized to improve performance. There is certainly room
for investigating other distance measures that may produce higher classifi-
cation rates. Though this method requires no specification of a probability
model, which can be viewed as a strength in some ways, that also comes
with inherent limitations. For example, it is not possible to calculate pos-
terior probabilities of attribute mastery, which can be helpful as a measure
of the certainty of a classification. However, the most serious limitation to
the widespread use of cognitive diagnosis is in the calibration of cognitive
diagnosis models, which can require large sample sizes, and methods of
computation that are time-consuming. Determining when a method such as
the one we have proposed can be effective is critical. The promising results
suggest that there may be opportunities to implement cognitive diagnosis in
small and medium sized testing programs, where it is simply not feasible to
maintain reliably calibrated item banks for parametric cognitive diagnosis
models.
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