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Abstract: Clustering of multivariate spatial-time series should consider: 1) the 
spatial nature of the objects to be clustered; 2) the characteristics of the feature space, 
namely the space of multivariate time trajectories; 3) the uncertainty associated to the 
assignment of a spatial unit to a given cluster on the basis of the above complex 
features. The last aspect is dealt with by using the Fuzzy C-Means objective function, 
based on appropriate measures of dissimilarity between time trajectories, by 
distinguishing the cross-sectional and longitudinal aspects of the trajectories. In order 
to take into account the spatial nature of the statistical units, a spatial penalization 
term is added to the above function, depending on a suitable spatial proximity/ 
contiguity matrix. A tuning coefficient takes care of the balance between, on one 
side, discriminating according to the pattern of the time trajectories and, on the other 
side, ensuring an approximate spatial homogeneity of the clusters. A technique for 
determining an optimal value of this coefficient is proposed, based on an appropriate 
spatial autocorrelation measure. Finally, the proposed models are applied to the 
classification of the Italian provinces, on the basis of the observed dynamics of some 
socio-economical indicators. 
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1. Introduction 
 

This work aims at proposing a new clustering model for 
classifying spatial units, based on a set of quantitative features observed at 
several time occasions. In accomplishing this task, the following aspects of 
the problem should be taken into account: 1) the spatial nature of the 
objects to be clustered; 2) the characteristics of the feature space, i.e. the 
space of multivariate time trajectories; 3) the uncertainty associated to the 
assignment of spatial units to specific clusters, which is increased by the 
complexity of the feature space. Concerning the first aspect, the main 
problem is how to exploit the spatial information in the clustering 
procedure, integrating this information with the one provided by the 
observed time trajectories pertaining to each spatial unit. One component 
of the spatial information is usually expressed in terms of a “spatial 
proximity” matrix (often represented by a “contiguity” matrix). Another 
component is linked to the spatial autocorrelation of the feature vectors, 
which should be incorporated in the procedure. The second aspect is 
related to the treatment of the specific information contained in the 
observed multivariate time series. In the classification framework it is 
essential to define appropriate measures of dissimilarity between time 
trajectories. These are in fact utilized to assess the internal homogeneity of 
the clusters and the heterogeneity of different clusters. As to the third 
aspect, the basic requirement is that the clustering technique should allow 
for a certain degree of flexibility in assigning the spatial units to the 
clusters, taking into account the complex nature of the information to be 
utilized to this purpose. 

In the present paper, the last problem is dealt with by means of a 
fuzzy clustering technique, namely the Fuzzy C-Means model suitably 
modified in order to consider the above mentioned spatial information (as 
we will describe in the sequel). As a consequence, the uncertainty related 
to the assignment of a unit to a cluster will be expressed in terms of the 
respective degree of membership, adequately tuned according to an 
appropriately established fuzziness coefficient. Since the adoption of the 
Fuzzy C-Means criterion requires the introduction of dissimilarity 
measures on the feature space, constituted by the multivariate time 
trajectories, these measures are suitably defined. In this respect two types 
of dissimilarities are described according to whether we want to emphasize 
the “cross-sectional” or “longitudinal” aspects of the trajectories. 

The problem of embodying the spatial information in the cluster-
ing procedure is tackled by the introduction of a “regularization/ 
penalization” term in the Fuzzy C-Means objective function. This consists 
of adding to the traditional part of the function a term which tends to 
increase the degrees of membership of the units, which are more “close” to 
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a given spatial unit, in the same clusters in which the given spatial unit has 
higher degrees of membership. This regularization term is tuned by means 
of a multiplicative coefficient (“spatial penalty” coefficient) which weights 
its importance within the clustering criterion. The proposed clustering 
procedure provides a method for determining this coefficient, which 
exploits the information related to the spatial autocorrelation of the 
trajectories. 

The paper is organized as follows. In Section 2 the approach based 
on the Fuzzy C-Means criterion with the spatial penalization term is 
described, with reference to the traditional feature space constituted by 
multivariate vectors. In Section 3 the above clustering model is extended 
to the treatment of multivariate time trajectories, by distinguishing the 
cross-sectional and longitudinal cases. In Section 4 the choice of the 
spatial penalty coefficient is discussed and a method for its determination, 
based on the spatial autocorrelation of the trajectories, is illustrated. In 
Section 5 the proposed clustering models are applied to the classification 
of the Italian provinces, on the basis of the observed dynamics of some 
socio-economical indicators. Some concluding remarks are made in Sec-
tion 6. 
 

2. Fuzzy C-Means Clustering Models for Spatial Units:  
The “Spatial Penalty” Approach 

 
Several works devoted to the development of clustering models for 

spatial units have been proposed in the literature. In general, the 
peculiarity of these methodologies consists of their capability to suitably 
deal with the distinguishing characteristics of spatial data, that is, spatial 
dependence and spatial heterogeneity. A primary distinction among clus-
tering models for spatial data can be made with respect to the objects to be 
classified:   
1) Geographical areas (usually defined by means of administrative 

boundaries); 
2) Pixels (image segmentation).  
In class 1), the clustering models aim at determining groups of geo-
graphical areas such that the within group dispersion is minimized with the 
additional assumption that the configuration of the obtained clusters 
should satisfy particular spatial constraints (e.g., that the obtained clusters 
are formed by spatially contiguous areas). The empirical evidence suggests 
that spatial data are often characterized by positive spatial autocorrelation: 
neighbouring sites tend to have similar features. If such a spatial auto-
correlation affects the observed data, this should be explicitly dealt with in 
the clustering model (instead of arbitrarily ignoring it) so that the resulting 
clusters may detect it. See, for instance, Gordon (1996). In class 2), the 
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clustering models basically aim at assigning the pixels (i.e. the observation 
units) in an image to different classes according to their features. The 
standard clustering models do not take into account the information given 
by the spatial distribution of the pixels, but only the one given by the 
observed features. To overcome this problem, clustering algorithms have 
been adapted by suitably taking into account spatial information.  

The clustering models with spatial information are thus distin-
guished with respect to the standard models in the sense that the features 
under investigation are both what we may call the “non-spatial” and the 
“spatial” ones. In particular, when fuzzy clustering techniques are adopted, 
the risk due to the possible presence of noise is reduced because the spatial 
information permits to increase or decrease the membership degree of a 
certain observation unit in a specific cluster according to the membership 
degrees of its neighbours. 

With no claim of completeness, the following works may be 
assigned to class 1): Lefkovitch (1980), Ferligoj and Batagelj (1982, 1983, 
1992), Murtagh (1985), Gordon (1996), Molenaar and Cheng (2000), 
Costanzo (2001), Di Nola, Loia, and Staiano  (2002), Ng and Han (2002), 
Pilevar and Sukumar (2005), Ayala, Epifanio, Simó, and Zapater (2006), 
Hu and Sung (2006), Duan, Xu, Guo, Lee, and Yan (2007), Lawson, 
Simeon, Kulldorff, Biggeri, and Magnani (2007). Among the literature 
belonging to class 2), it is fruitful to mention Ambroise and Govaert 
(1998), Tolias and Panas (1998a,b), Pham and Prince (1999), Liew, Leung, 
and Lau (2000, 2003), Pham (2001), Liew and Yan (2003), Allende and 
Galbiati (2004), Cinque, Foresti, and Lombardi (2004), Kontos and 
Megalooikonomou (2005), Marçal and Castro (2005), Tran, Wehrens, and 
Buydens (2005), Chuang, Tzeng, Chen, Wu, and Chen (2006), Permuter, 
Francos, and Jermyn (2006), Krooshof, Tran, Postma, Melssen, and 
Buydens (2006), Xia, Feng, Wang, Zhao, and Zhang (2007). Notice, 
however, that the assignment of a few papers to either of the classes is 
somewhat questionable. 

In the sequel, we focus our attention on the popular C-Means 
clustering model, suitably generalized to the case of spatial units. Two 
versions of the C-means clustering model are available in the literature: a) 
in the Hard C-Means (HCM) clustering model (MacQueen 1967), the 
observation units are assigned to exactly one of the C clusters; b) in the 
Fuzzy C-Means (FCM) clustering model (Bezdek 1981), the observation 
units are assigned to each and every cluster according to the so-called 
degree of membership.  

Let X be the  JI   data matrix concerning a set of I observation 
units on which the values taken by J variables are recorded. In its standard  
form, the FCM clustering model assigns I observation units to C clusters 
by minimizing the following loss function: 
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with respect to U and H. In (1) xi denotes the generic i-th row of X per-
taining to the i-th observation unit and hc the generic c-th row of H, the 
centroids matrix of order  JC  , characterizing the c-th cluster. In FCM, 
the loss function in (1) is minimized subject to appropriate constraints on  
the  CI   membership degrees matrix U with generic element icu , 
raised to the parameter 1m , which controls the extent of membership 
sharing between fuzzy clusters. In particular, we impose that  
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For the generic observation unit i and cluster c, if the degree of member-
ship is close to 1, it follows that the observation unit strongly belongs to 
the cluster at hand. Instead, the HCM clustering model consists of 
minimizing (1) with m=1 under the following constraints 
 

                         { }
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C

ic ic
c
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=
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In the recent years, the FCM version has received a great deal of attention 
because of its flexibility in handling the real world complexity and 
uncertainty. To corroborate the previous statement, it can be said, as 
remarked by Hwang, De Sarbo, and Takane (2007), that the fuzzy cluster-
ing approach offers other major advantages over traditional clustering me-
thods. First, the fuzzy clustering algorithm is computationally more effi-
cient because dramatic changes in the value of cluster membership are less 
likely to occur in estimation procedures (McBratney and Moore 1985). 
Second, fuzzy clustering has been shown to be less afflicted by local opti-
ma problems (Heiser and Groenen 1997). Finally, the memberships for any 
given set of respondents indicate whether there is a second-best cluster al-
most as good as the best cluster—a result which traditional clustering me-
thods cannot uncover (Everitt, Landau, and Leese 2001). Thus, in the 
sequel, we shall consider the FCM to deal with spatial units.  

In order to suitably incorporate the spatial information in the 
clustering procedure, an important issue to be analyzed is connected with 
the available information regarding the spatial units. To this purpose a 
square matrix of order I, say P, is introduced. In case of image analysis, P 
is usually constructed as follows (first lag contiguity matrix). It is a 
symmetric matrix with zero diagonal elements and with off-diagonal 
elements given by ( , 1, ;i i I i i   ):  
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1 if pixel  is contiguous to pixel ,

0 otherwise.ii
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               (4) 

 
Notice that the diagonal elements of P are conventionally set equal to zero 
in order to allow the algebraic manipulation of P within the objective 
function and exploit the essential information provided by the contiguity 
between different spatial units. Thus, every row (column) of P contains 8 
elements equal to 1 and I-8 zero elements. Obviously, in case of image 
analysis, the pixels have equal sizes and borderlines. When the spatial 
units are geographical areas, these are often constructed according to 
administrative boundaries. Thus, they usually have different sizes and 
shapes. It follows that several possible matrices describing the spatial 
information can be built. However, the contiguity matrix in (4) is almost 
always adopted. Thus, for each geographical area, one can set 1iip , if 

iNi   ( iN  denotes the set of geographical areas contiguous to area i) and 
0iip , otherwise (and 0iip = ). Several alternatives can be also con-

sidered. For instance, it may be useful to assume that the score iip ¢  
concerning spatial units i and i¢  increases according to the increase of the 
length of their borderline or according to monotone functions of the 
inverse of their distance. Notice that the specification of P when dealing 
with geographical areas has been extensively discussed in Gordon (1999). 

A way for extending the FCM clustering model to spatial data 
consists of adding a suitable spatial penalty term in the minimization 
problem (1). In fact, (1) is replaced by  
                                          ( ) ( ), , , ,SJ J+U H X U P X ,                             (5) 
 
where ( ), ,SJ U P X  represents the spatial penalty term. The objective 
function in (5) is minimized with respect to U and H under the constraints 
given by (2). The component ( ), ,SJ U P X  can be constructed according to 
a twofold objective. On one side, it should act in such a way that the 
membership degree of an observation unit in a given cluster is negatively 
correlated with the membership degrees of the neighbouring observation 
units in the other clusters. On the other side, it should also take into 
account the existing spatial autocorrelation registered on the data set at 
hand.  

Notice that the use of a spatial penalty term does not generally 
constrain the obtained clusters to be solely formed by neighbouring spatial 
units. Instead it possibly leads to clusters formed by neighbouring spatial 
units. More specifically, suppose that matrix P is a contiguity matrix as 
defined in (4). The spatial penalty term does not imply that contiguous 
areas strictly belong to the same cluster (in the sense that the respective 
membership degrees are close to 1 or, at least, higher than 0.5). The spatial 
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penalty term tries to suitably determine clusters with contiguous areas. 
Nonetheless, when a few spatial units are characterized by features 
remarkably different from those of the neighbouring spatial units, the 
clustering procedure does not prohibit assigning these particular spatial 
units to different clusters. In this respect, it appears to be very flexible 
because it takes into account the spatial constraints to a certain extent, 
limiting the risk of altering the obtained clusters. In the literature, a 
reasonable choice for the spatial penalty term in (5) has been developed by 
Pham (2001). Such a proposal has been introduced for solving the image 
segmentation problem. However, it appears to be applicable also to the 
case of geographical areas. In fact, we have   

                  ( ) ( )
1 1 1

, , ,
2

c

I C I
m m

S S ic ii i c

i c i c C

J J u p u¢ ¢ ¢
¢ ¢= = = Œ

b
= = ÂÂ ÂÂU P X U P , (6) 

 
with 0b ≥  and { }1, , 1, 1, ,cC c c C= - +  . Notice that multiplying  
by one half is useful for mathematical reasons when determining the 
optimal values of the membership degrees as it will be clear in the next 
section. The spatial penalty term in (6) is based on the following 
assumption. When a spatial unit i belongs to cluster c with a high 
membership degree, then (6) forces the neighbouring spatial units (w.r.t. 
spatial unit i) to have high membership degrees in cluster c, as much as 
possible. In other words, it is expected that a spatial unit with high (low) 
membership degree in cluster c, will have neighbouring areas with low 
(high) membership degrees in the remaining clusters, that is in clusters 

ck CŒ . It follows that (6) attempts to determine a spatially smoothed 
membership degrees matrix under the empirical evidence that neigh-
bouring areas are often characterized by approximately similar features. 
Nonetheless, it may also occur that neighbouring geographical areas are 
described by pretty diverse profiles. In this respect, the parameter  plays 
the role of increasing or decreasing the emphasis of the spatial penalty 
term in the minimization of (5). It should be clear that the choice of the 
spatial parameter  is a complex and relevant issue. In fact, it is desirable 
that the value of , to be chosen in advance, would be relatively high in 
case of concordance between the features of neighbouring geographical 
areas and relatively low in the opposite case. It is fruitful to observe that, 
when 0b = , the spatial smoothness does not act in the clustering problem 
and (6) reduces to the classical FCM clustering model given in (1) and (2). 
Extremely high values of  may lead to abnormal results of the clustering 
procedure in the sense that the spatial units are assigned to the clusters 
taking into account only the spatial constraints, ignoring, in practice, the 
observed features. In his work, Pham (2001) recognizes the problem due to 
the control of the trade-off between the spatial smoothing and the cluster 
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interpretation. In order to solve it, a cross-validation procedure is 
suggested. See, for further details, Pham (2001). However, such a 
procedure appears to be of very limited use in case of geographical areas 
characterized by heterogeneous sizes, shapes and numbers of neighbouring 
areas. A possible alternative will be proposed in Section 4. It is a heuristic 
procedure which involves a measure of the spatial autocorrelation 
registered in the data at hand. In this respect, the choice of the optimal 
value of  is influenced by the observed data X, through the measure of 
spatial autocorrelation computed within each and every cluster, for any 
fuzzy partition considered in the procedure. It follows that our proposal 
leads to a spatial penalty term ( ), ,

S
J U P X  as in (5), which suitably takes 

into account not only the membership degrees matrix U and the spatial 
information contained in P but also the data matrix X. Such a procedure 
will be adopted with reference to the clustering problem for geographical 
areas in case of three-way information, which, contrary to what concerns 
the two-way case, has received negligible attention in the literature. In the 
next Section, we will introduce a class of FCM models for clustering 
multivariate time trajectories observed on a set of spatial units. To this 
purpose we will suitably apply the spatial penalty term proposed by Pham 
(2001). Then, in Section 4, we will illustrate an appropriate method for 
choosing the value of the mixing parameter β, taking into account the 
spatial autocorrelation behaviour of the time trajectories. 
 

3. Fuzzy C-means Clustering Models for Multivariate  
Spatial Time Trajectories 

 
3.1 Spatial Time Data Array and Multivariate Spatial Time  
      Trajectories 
 

By considering an exploratory approach, we analyze the three-way 
data array of type “same objects × same quantitative variables × occa-
sions”, in which the objects are spatial units (geographical or territorial 
areas, pixels, etc.) and the occasions are times. This type of three-way data 
array is called spatial-time data array. For instance, suppose that a set of 
countries is analyzed with respect to some economic indicators during 
several years. This information can be stored in a spatial-time data array in 
which the objects are countries, the variables are economic indicators and 
the occasions are years. 

A spatial-time data array can be algebraically formalized as 
follows: { }   :  1, ; 1, ; 1,i j tx i I j J t T∫ = = =X , where i (i=1,I ) indicates the spa-
tial unit, j (j=1,J) the variable, and t (t=1,T ) the time. Then, the generic 
element of X,   i j tx , represents the j-th variable observed on the i-th spatial 
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unit at time t. We can denote X also in the following way: 
{ }   :  i 1, ; 1,  i t I t T∫ = =X x , where    1     ( ,..., ,..., ) i t i t i j t i J tx x x ¢=x . The spatial-

time data array X can be represented by a bi-dimensional matrix (stacked 
matrix) by combining two of the three indices i, j, t on the rows and 
assigning the remaining index to the columns. The various types of stacked 
matrices are distinguished by their generic “elements”: 

 

{ }  :   1, ;  1,i i j tx j J t T∫ = =X , 

{ }  :  1, ; 1,j i j tx i I t T∫ = =X , and 

{ }  :  1, ; 1,t i j tx i I j J∫ = =X . 
 

Furthermore, the spatial-time data array X can be geometrically 
represented on a suitable vectorial space. By representing the elements of 
one of the three possible classification modes as vectors of a vectorial 
space, defined with regard to the other ones, we have three possible types 
of spaces (D’Urso 2000; Coppi and D’Urso 2001): space of the “spatial 
units” ( 1J +¬ ), space of the “variables” ( 1I +¬ ) and space of the “time 
occasions” ( I J¥¬ ).  

In this paper, we analyze only the case in which the spatial-time 
data array X is represented in the space of the “spatial units” 1J +¬  (the 
first J dimensions correspond to the J variables and the last dimension is 
referred to the time). In this space, each spatial unit i is represented, for 
each time t, by vector    1     ( , ..., , ..., , )i t i t i j t i J tx x x t ¢=y , 1, ;   1i I t ,T= = . For 
fixed t, matrix tX  is represented by scatter { } ( )  : 1,I i tS t i I∫ =y . Then 

{ }{ } ( )  : 1, : 1,I i tS t i I t T∫ = =y  represents the set of scatters located on T 
hyperplanes parallel to the co-ordinate sub-space J . For fixed i, matrix 

iX  is represented by scatter { } ( )  : 1,T i tS i t T∫ =y  that describes the 
trajectory of the i-th spatial unit during the T time occasions (spatial-time 
trajectory). Then, the set of scatters  

 
{ }{ } ( )  : 1, : 1,T i tS i t T i Iy = =  

 
represents the set of the time trajectories of the I spatial units (multivariate 
spatial-time trajectories). Each spatial-time trajectory crosses the T 
hyperplanes. In this connection, Figure 1 provides an example of the 
information contained in a spatial-time data array with I=4, J=2, T=4. In 
particular,  on  the  upper  left  side,  the map of the I=4 spatial units is 
displayed, whereas, on the upper right side, the “box” representing the 
three-way array is given. Finally, on the lower side of Figure 1, the set of 
scatters { }{ } ( )  : 1, : 1,I i tS t i I t T∫ = =y  is depicted.  
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Figure1. Example of map of spatial units, spatial-time array and spatial-time trajectory 

 
 

3.2 Fuzzy Clustering Models 
 

By considering two types of dissimilarity measures for multi-
variate trajectories (see, e.g., Coppi and D’Urso 2001, 2006; D’Urso 2005) 
- i.e. the cross sectional dissimilarity that compares the instantaneous 
(positional) features of the trajectories and the longitudinal dissimilarity 
that captures the differences concerning the evolutive features (i.e. the 
“variational” patterns) of the trajectories measured by means of their 
velocities - and following a fuzzy approach (D’Urso 2005; Coppi and 
D’Urso 2006), we propose two types of fuzzy clustering models for 
classifying spatial units on the basis of multivariate time-varying empirical 
information, i.e. models for clustering spatial-time trajectories. Notice that, 
in the clustering process, in the definition of spatial-time trajectory we do 
not take into account the co-ordinate t, because this does not affect the 
clustering procedure. Thus, { }  :  1,  i i t t T∫ =X x  represents the i-th time 
trajectory, where    1     ( ,..., ,..., ) i t i t i j t i J tx x x ¢=x , i=1,I; t=1,T. 
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In a fuzzy framework, in order to cluster I spatial units by 
considering the instantaneous characteristics of their multivariate time 
trajectories, i.e. the positions of the multivariate trajectories at each time 
occasion t (t=1, T) , we propose the following Cross-Sectional Fuzzy C-
Means clustering model for Spatial-Time Trajectories (CS-FCM-STT): 
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where { }  :  1, ; 1,  i cu i I c C∫ = =U  is the membership degrees matrix,          

ciu    denotes the membership degree of the i-th spatial-time trajectory in   
the c-th cluster; { } :  1, ; 1,  CS CS

t ct c C t T∫ = =H h  is the centroids matrix, 
CS

cth  is the vector of the c-th centroid at time t from the cross sectional 
point of view; 1( ,..., ,..., )CS CS CS CS

t Tw w ww  , CS
tw  is the t-th instantaneous 

weight associated to the instantaneous Euclidean distance   CS

i t ct-x h ; 
{ } :  , 1,  iip i i I¢ ¢∫ =P  is a square matrix (II) with non-negative elements 

and pii=0; m>1 is a weighting exponent that controls the fuzziness of the 
clustering; 0b ≥  is the penalty coefficient, which tunes the contribution of 
the spatial penalization term (see Section 2). Notice that, for the “optimal” 
choice of m and C, we can consider suitable cluster-validity criteria (see 
Remark 2 in the sequel); for the appropriate selection of b , see Section 4. 

The objective function in (7) is constituted by 2 terms:  

 ( )2

  
1 1 1

 
I C T

m CS CS

i c t i t ct
i c t

u w
= = =

-ÂÂ Â x h : this term, called instantaneous within 

cluster dispersion term, represents the objective function of the Cross-
Sectional Fuzzy C-Means clustering model suggested by D’Urso 
(2004, 2005). It is a measure of the within cluster (cross-sectional) 
dissimilarities of the multivariate trajectories w.r.t. the centroids, 
appropriately weighted by the degrees of membership (taking into 
account the fuzziness coefficient m). Therefore, by minimizing this 
term we maximize the internal cohesion of the clusters, conditional on 
allowing for a certain degree of flexibility as indicated by m. Notice 
that the dissimilarity measure: 

64 R. Coppi, P. D’Urso, and P. Giordani 



 

( ) ( )2 2

  

1 1

,  
T T

CS CS CS CS

w i t ct t i t ct

t t

d w
= =

= -Â Âx h x h  

is a sum of squared weighted Euclidean distances between object i and 
centroid c at each time point. It can be denominated “cross-sectional 
dissimilarity” between the observed time trajectory i and the centroid 
time trajectory c. We have that weight CS

tw  is intrinsically associated 
to the distance ( )2

 ,CS CS

w i t ctd x h  at time t, whileas the overall dissimilar-
ity is just a sum of the squares of these weighted distances. This 
allows us to appropriately tune the influence of the various times when 
computing the dissimilarity between trajectories. In the following it 
will be clear that the CS

tw ’s  will constitute specific parameters to be 
estimated within the clustering model. 
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ÂÂ ÂÂ : this represents the spatial penalty term 

(spatial regularization term). As it was explained in Section 2, the aim 
of this term is the following: for each spatial unit i and each cluster c, 
the sum of the membership degrees of the contiguous/neighboring 
spatial units (as indicated in matrix P) in all the clusters except cluster  
c (summarized in { }1,..., 1, 1,...,cC c c C- += ) is constrained to be as 
small as possible. We can observe that the parameter b  tunes the 
trade-off between internal cohesion based on the feature vectors xi and 
the spatial homogeneity of the clusters, i.e. 
 
o 0b >>   contiguous/neighboring spatial units tend to belong to 

the same cluster; 
o 0b =   the spatial regularization is not taken into account. 

 
The optimal iterative solution of (7)-(9) is: 
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The previous iterative solution can be obtained by solving the constrained 
optimization (minimization) problem (7)-(9). The procedure is as follows. 
By fixing CS

tw  and CS

cth , we set equal to zero the partial derivatives with 
respect to icu  and l  (Lagrange multiplier) of the Lagrangian function: 
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We get: 
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Notice that in (14) the coefficient (1/2) pertaining to   vanishes because 
the derivative results in a term corresponding to the product of uic and its 
neighbours, plus a term corresponding to the inverse product of the 
neighbours and uic. From (14) and by taking into account (15) we get (10). 
Then, by fixing  i cu  and CS

cth , we can compute CS

tw  in a similar manner. In 
fact, by setting equal to zero the partial derivatives with respect to CS

tw  and 
x  (Lagrange multiplier) of the Lagrangian function: 
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We get: 
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From (17) and using (18) we obtain (11). Finally, we can obtain (12) by 
solving an unconstrained minimization problem. The iterative algorithm 
for computing the optimal iterative solution is given in Table 1. 
 
Remark 1 (Weights CS

tw ) 

Looking at the solution equation (11), we observe that the time weights 
have a statistical meaning. In fact, they appear to mirror the heterogeneity 

of the total intracluster “deviances” (i.e. 
2

  
1 1

I C
m CS

i c i t ct
i c

u
= =

-ÂÂ x h ) across the 

different times. In particular, weight CS
tw  increases as long as the total 

intracluster “deviance” at time t decreases (compared with the remaining 
time occasions). Thus, the optimization procedure tends to give more 
emphasis to the time occasions capable to increase the within cluster 
similarity among the trajectories. 
 
Remark 2 (Particular Cases) 
From model (7)-(9), we can derive the following particular cases: 
 Cross-Sectional Fuzzy C-Means clustering model for Time Trajec-

tories (D’Urso 2004, 2005): by assuming that the I objects are not 
spatial or territorial units (=0); 

 Spatial Fuzzy C-Means clustering model (Pham 2001): by putting in 
(7) T=0 (see more detailed comparative comments in Sec. 6); 

 “Traditional” Fuzzy C-Means clustering model (Bezdek 1981): by 
assuming that the I objects are not spatial or territorial units (=0) and 
by putting in (7) T=0. 
 

Remark 3 (Preprocessing) 
In several occasions, the scores of the variables present artificial differ-
ences.  Obviously,  this  may  cause  biased  results.  We  thus  suggest  to 
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Table 1: Iterative algorithm for determining the optimal solution (CS-FCM-STT) 
 

Step 0 Fix m, C. Randomly generate a suitable membership degrees matrix 
( )a

U  with 
0a = ; 

Step 1 Update the centroids 
( )1CS a

ct

+
h  according to (12); 

Step 2 Update the time weights 
( )1CS a

t
w

+
 according to (11); 

Step 3  Update the degrees of membership 
( )1a

ic
u

+
 according to (10); 

Step 4 If 
( ) ( )1a a t+

- <U U , where  > 0 is fixed in advance, then the algorithm has 

converged; otherwise set 1a a= +  and go to Step 1. 
 

 
 
preprocess the data by normalization. More specifically, let 1, ;,

ijt
x i I= 

 
1, ; 1,j J t T= = , be the generic element of the observed three-way data 

matrix. We then get the generic normalized datum as: 

ijt

j

x

x◊ ◊

, 1, ; 1, ; 1,i I j J t T= = = ; where 1 1

I T

ijt
i t

j

x

x
IT

= =
◊ ◊ =

ÂÂ
. 

Notice, however, that alternative pre-processing procedures can also be 
adopted (for more details, see, e.g, Coppi and D’Urso (2006)).  
 
Remark 4 (Local Optima) 
It should be underlined that the iterative algorithm given in Table 1 con-
verges to, at least, a local optimum. To limit the risk of hitting local 
optima, more than one random start is recommended. However, it is recog-
nized that fuzzy C-means clustering algorithms present a minor tendency 
of hittting local optima with respect to their traditional counterparts (see 
e.g., Bezdek, Keller, Krisnapuram, and Pal 1999). Moreover, empirical 
studies have shown that the fuzzy clustering algorithm is an efficient 
starting point for traditional clustering (Heiser and Groenen 1997).  
 

For classifying a set of I spatial-time trajectories in a fuzzy 
manner, by taking into account the inter-temporal variations of the 
trajectories, we propose the following Longitudinal Fuzzy C-Means 
Clustering model for Spatial-Time Trajectories (L-FCM-STT):  
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where { } :  1, ; 1,  L L

ct
c C t T∫ = =H h  is the centroids velocity matrix, L

cth  is 
the velocity vector of the trajectory of the c-th centroid in [ ]1,  t t-  from 
the longitudinal point of view and   1( )i t i t i t-= -v x x  is the velocity vector 
of the trajectory of the i-th spatial unit; 1( ,..., ,..., )L L L L

t Tw w w ¢∫w , L

tw  is a 

weight in [ ]1, t t-  (“velocity” weight);  

L

i t ct-v h  is the Euclidean distance 

between the velocities of the time trajectory of the i-th spatial unit and the 

c-th centroid in [ ]1,  t t- . In this case, ( )2

  

1 1 1

 
I C T

m L L

i c t i t ct

i c t

u w
= = =

-ÂÂ Â v h  

represents the longitudinal within cluster dispersion term.  
In the longitudinal case, the optimal iterative solution of model 

(19)-(21) is: 
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The analytic proof for obtaining the previous iterative solution (22)-(24) is 
similar to the one illustrated in the cross-sectional case. Also the iterative 
algorithm is the same.  
Remark 5 (Weights L

tw ) 

As noticed in Remark 1, time weights L
tw  (now referring to pairs of 

successive time occasions) are connected with the heterogeneity of the 
total intracluster “deviances”. In the longitudinal case this is obviously 
related to the trajectories of “velocities”. Larger weights are then given to 
the time intervals which increase the within cluster similarity among the 
above trajectories.  

We can take into account, simultaneously, the information 
provided by the cross sectional and longitudinal models by considering a 
consensus method or a mixed clustering model that summarizes suitably 
the instantaneous and longitudinal features of the spatial-time trajectories 
in the clustering process. In this case, the benefits of the cross sectional 
and longitudinal models are inherited by the mixed model.  
 

4. A Method for Selecting the Penalty Coefficient 
 

As we already observed in Section 2, the selection of the optimal 
value of b  is a complex issue. A possible way to solve it is represented by 
the following heuristic procedure. Notice that we assume that the values of 
C and m have already been chosen. For every specified value of β, the 
obtained clusters are constructed in such a way that the within cluster 
dispersion is minimized. However, it would be also desirable that all 
clusters are characterized by the maximal within cluster spatial 
autocorrelation. To this purpose, for fixed values of C and m, it is 
advisable to run the clustering algorithm for increasing values of β (e.g. 
from 0 to βMax, with βMax>0 chosen in advance and with increasing steps 
equal to βInc>0) and to choose the optimal value of β in such a way that the 
within cluster spatial autocorrelation is maximized. 
 
4.1. Cross-Sectional Case 
 

In order to evaluate the spatial autocorrelation, we define a sort of 
“compromise” matrix XComp over the T time occasions using the optimal 

weights , 1,CS

tw t T= .  Thus, we get 

                                          1

T
CS

Comp t t

t

w
=

= ÂX X ,                                (25) 

which has order ( )I J¥ . In other words, XComp is a weighted mean of the 
data matrices collected during all the time occasions with weights given by 

CS

t
w ’s. 
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In the univariate case (J=1), matrix XComp reduces to vector xComp 
and for the generic c-th cluster, 1,c C= , a measure of the (univariate) 
spatial autocorrelation can be computed as  

                

( ) ( )
( ) ( ) ( )

1 2 1 2

1 2 1 2

c c

c

c c

Comp Comp Comp Comp

Comp Comp Comp Compdiag
r

x x U PU x x

x x U P P U x x

¢- -
=

¢ ¢- -
,         (26) 

 
where 

Comp
x  denotes the I-vector with elements equal to the average over I 

of the values 
Comp

x  and Uc is the square diagonal matrix of order I with 

generic diagonal element 
 

=
c ii ic

u u , 1,i I= . Finally, diag() is the operator 

that creates a diagonal matrix whose elements in the main diagonal are the 
same as those of the square matrix in the argument. If P is a contiguity 
matrix as defined in (4), every diagonal element of ( )diag ¢P P  contains 

the number of neighboring areas for the associated spatial unit. In order to 
take into account the structure of the c-th cluster, it is worth observing that 
in (26) the scores of P are scaled by means of the membership degrees of 
the spatial units in the cluster involved. It is important to observe that (26) 
is very similar to the measure proposed by Moran (1950). The main 
difference concerns matrix Uc, which tunes the contribution of the 
neighbours. Also notice that measure (26) resembles the one proposed in 
Smouse and Peakall (1999) of which it represents a possible extension. 

In order to develop a measure of spatial autocorrelation for the 
multivariate case (J > 1), it is convenient to rewrite (26) as   
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c
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¢ ¢

Qx U PU Qx

Qx U P P U Qx

.                 (27) 

  

in which I I

I
I

¢
= -

1 1
Q I  is the centering operator, where II is an identity 

matrix of order I and 1I is a column-vector of order I with unit elements. 
Taking into account (27), the spatial autocorrelation measure for the c-th 
cluster can be suitably extended as 
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In order to determine an overall spatial autocorrelation measure for 
the obtained partition, we can compute the weighted mean of the measures 
in (26) or (28) with weights equal to the sum over the I spatial units of the 
membership degrees in the C clusters. Specifically, we obtain: 

                                      

1 1

1

C C

c c c c
c c

Overall C

c
c

s s

I
s

= =

=

= =
Â Â

Â

r r
r ,                      (29) 

with 
1

I

c ic
i

s u
=

= Â . After running the clustering models for increasing values 

of β, we choose that value βOpt such that Overallr , as defined in (29), is 

maximal. Summing up, the following algorithm can be adopted. 
 
4.2. Longitudinal Case 
 

In the longitudinal case, the three-way data matrix to be managed 
contains the velocities pertaining to the trajectories of the spatial units in 

 1,t t , 2,t T . In fact, the data corresponding to every interval of time 

 1,t t  are displayed in the (two-way) velocity matrices:  
 
        1; 1, ; 1,t ijt ijt ijtv x x i I j J    V , 2,t T . 
 
The compromise matrix can then be defined as the weighted mean 

of matrices tV ’s using weights L
tw ’s. Therefore, we have: 

                                                  2

T
L

Comp t t

t

w
=

= ÂV V .                              (30) 

 
The spatial autocorrelation measure for the c-th cluster can then be derived 
using CompV  instead of XComp, as it was in (28), which is replaced by 
 

                              

( ) ( )( )
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Comp c c Comp

c

Comp c c Comp
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Once again, a measure of the overall spatial autocorrelation can be 
determined according to (29) using, of course, (31). A similar algorithm to 
the one described in Table 2 can be adopted. 
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Table 2: Iterative algorithm for determining the optimal value of β (CS-FCM-STT) 

 
Fix m, C, βMax and βInc. Set β = 0, βOpt = 0  and ρOpt = 0; 
 
While   β≤βMax; do:  

 
Run the CS-FCM-STT model and compute ρOverall(β) according to (29);  
 
If ρOverall(β)>ρOpt; ρOpt := ρOverall(β) and βOpt := β; 
 
β : = β + βInc; 

End.  
 

 

             

 
5. Application 

 
In order to show how our models work in practice, the results of an 

application to Italian socio-demographical data are presented and 
discussed. Specifically, the data under investigation refer to the values of 
J=7 variables observed on I=103 Italian provinces during T=5 time 
occasions (years 1995-1999). The J=7 variables on which our analysis is 
carried out are: Number of Foreign Residents per 1.000 inhabitants 
(hereinafter NFR), Rate of Natural Increase (RNI), Divorce Rate (DR), 
Number of Suicides per 100.000 inhabitants (NS), Average Expense per 
inhabitant for Theatrical and Musical Performances (ETMP), Number of 
Movie Halls open per 100.000 inhabitants (NMH), Rate of Unemployment 
(RU). Note that the data considered have been previously normalized as 
described in Remark 3. We need preprocessing them because the scores of 
the indicators at hand present artificial differences. Before performing the 
analysis, we expect that the data under examination present a high spatial 
autocorrelation. In fact, the features of the Italian provinces are usually 
highly affected by their geographical positions. Therefore, the use of the 
FCM clustering models with spatial penalty term seems to be a reasonable 
choice in view of obtaining clusters embodying spatial information. 
 
5.1. Cross-Sectional Case 
 

In order to determine groups of provinces characterized by 
homogeneous features together with a high spatial autocorrelation we first 
perform the CS-FCM-STT clustering model using the contiguity matrix as 
defined in (4). We decide to set C=3 and m=1.5. The choice of C=3 can be 
explained by observing that the Italian socio-demographical structure is 
usually distinguished with respect to three main areas: Northern Italy, 
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Central Italy and Southern Italy. We expect that the clustering models will 
approximately find these three clusters of geographical areas on the basis 
of the variables at hand. Furthermore, we set m=1.5 because some prior 
investigations with the preprocessed data indicated that this allows us both 
to well determine homogeneous spatial units belonging to the given 
clusters and, at the same time, to detect those spatial units for which the 
memberships in the given clusters are rather fuzzy. Those spatial units will 
have relatively low membership degrees in all the clusters. If the maximal 
membership degree will be lower than 0.50, we conclude that the features 
of the corresponding spatial unit do not permit to exactly assign it to any 
cluster. Instead, when the maximal membership degree will be slightly 
higher than 0.50, the spatial unit at hand is assigned to a given cluster 
(hard clustering), but the extent to which it belongs to the cluster involved 
is pretty low and, implicitly, the associated fuzziness is high. 

Finally, in order to select β in such a way that the within cluster 
spatial autocorrelation measure is maximized, we run the procedure 
described in Section 4.1 setting βMax=7 and βInc=0.05. The values of the 
spatial autocorrelation measure according to (29), obtained by using 
increasing values of β from 0 to 7, are displayed in Figure 2. Notice that 
for each value of β, we run the clustering algorithm using 100 random 
starts in order to limit the risk of hitting local optima. 

By inspecting Figure 2, we can observe that the spatial auto-
correlation measure first increases (for β ≤ 0.65) and takes the maximal 
value (0.44) when βOpt = 0.65. In fact, for values of β higher than 0.65 we 
find that Overallr  strictly decreases until β=3.80 (with value 0.36). Then, for 

values of β higher than 3.80, a decreasing trend is visible, which however 
seems to converge on value 0.33.  

It is interesting to stress that, for low values of β, the obtained 
clusters are not formed by spatial units for which the overall spatial 
autocorrelation measure is high. Specifically, the resulting clusters are 
only partially composed by neighboring spatial units. Of course, it follows 
that Overallr  takes low values because the more neighboring spatial units do 
not belong to the same clusters, the more the elements of 1 2 1 2

c cU PU  are 
close to 0 and, therefore, the numerator of (28) (on which (29) is based) 
takes small values. By contrast, for high values of β, the clusters tend to be 
solely formed by neighboring spatial units. In this case, the features of the 
spatial units play a limited role in the clustering process because the 
resulting clusters are mainly determined according to the spatial informa-
tion. This implies that the values of Overallr  are low because the within 
cluster spatial autocorrelation is low (the numerator of (28) is small 
because   every   cluster   is  formed  by  spatial  units  with  heterogeneous 
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Figure 2.  Value of the spatial autocorrelation measure according to (29) based on (28) 
 

 
observed features). Finally, the clusters obtained in correspondence of βOpt 
are constructed in such a way that the neighboring spatial units belonging 
to a given cluster are those with the more similar features, leading to the 
highest within cluster spatial autocorrelation. Therefore, in our application, 
we perform the CS-FCM-STT clustering model setting β = 0.65 (with C=3 
and m=1.5). The obtained centroids (after applying the inverse pre-
processing procedure) are displayed in Figure 3 and the membership 
degrees of the provinces in the clusters are summarized in Figure 4. Figure 
4 is helpful in order to determine the memberships of the various provinces 
in the clusters and the associated (maximal) degrees. In particular, the 
colours (dark grey, grey or light grey) of the provinces highlight the 
assigned cluster in the hard clustering sense (membership degree higher 
than 0.50). In order to show the membership degrees of the provinces in 
the clusters, we report the associated (maximal) membership degrees. 
Moreover, some spatial units are not assigned to any cluster (all the 
membership degrees are lower than 0.50). These are depicted by white  
surfaces. 

By inspecting Figure 4, we can observe that Cluster 3 (light grey 
coloured) is totally formed by provinces located in Southern Italy. 
Therefore, such a result seems to corroborate the existence of different 
patterns between Northern and Southern Italy. For what concerns the 
features under investigation, Figure 3 shows that the provinces belonging 
to Cluster 3 cohabit with an ever-during high rate of unemployment (19% 
on average).  The population  is  getting  older  (the  RNI  values  decrease 
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Figure 3. Centroids (after applying the inverse preprocessing procedure) resulting from CS-
FCM-STT with β = 0.65, C = 3 and m = 1.5.  

 
 

during the reference time starting from score 0.00 in 1995) and the number 
of foreign residents (NFR) is uniformly lower if compared with those of 
the other provinces. With respect to the other socio-demographical 
variables, we can see that the divorce rate (DR) is very low as well as the 
number of suicides (NS). The latter finding is an established sociological 
result: there exists an empirical trade-off between the number of suicides 
and the rate of unemployment. In other words, when the well-being 
increases, glum conditions more frequently arise. Finally, the ETMP and 
NMH scores are the lowest ones (if compared with those pertaining to the 
centroids of the other two clusters), thereby emphasizing a lower cultural 
level of Southern Italy with respect to the Northern area.  

Clusters 1 (dark grey coloured) and 2 (grey coloured) are mainly 
composed by provinces located, respectively, in Northern and Central 
Italy,  except  for  Caserta  (membership degree = 0.72)  and Ragusa (0.78) 
belonging to Cluster 1. Going into detail, Cluster 1 is mostly formed by the 
provinces belonging to some regions located in Northern-Eastern and 
Central areas of Italy (Lombardy, Veneto, Trentino Alto Adige, Marche, 
Emilia-Romagna and Tuscany).  Notice  that  these  provinces  form  a few 
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Figure 4. Membership degrees resulting from CS-FCM-STT with β = 0.65, C = 3 and m = 
1.5. 
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contiguous areas. In fact, together with the above-mentioned Southern 
provinces (Caserta and Ragusa), the only exception is Aosta. Therefore, 
Clusters 1 and 3 appear to be strongly affected by the spatial information. 
This holds to a smaller degree with respect to Cluster 2. In fact, all the 
provinces assigned to such a cluster are located in Northern and Central 
Italy. Nonetheless, some of them can be found in the Western part of Italy 
(regions Piedmont and Liguria) and some others in the Eastern part of Italy 
(Friuli Venezia Giulia). Moreover, some provinces of Emilia-Romagna 
and Tuscany (those not belonging to Cluster 1) also form Cluster 2. 

A deeper insight into Clusters 1 and 2 can be attained by exam-
ining Figure 3. The analysis of the centroids allows us to state that the 
cultural life is pretty much the same as well as for the RU values, even if 
to a lesser extent. The figures concerning the DR and NS scores show that 
a more negative condition can be found in the provinces assigned to 
Cluster 2. This is also confirmed by the RNI values, which are uniformly 
decreasing and always lower than 0 during years 1995-1999. The NFR 
scores for Cluster 2 are increasing but always lower than those pertaining 
to Cluster 1. It is useful to notice that the RNI scores for Cluster 1 are 
always positive. This can be probably explained taking into account the 
continuously increasing number of foreign residents, which entails a high 
number of births (due to the younger age of the immigrants).  

Finally, only five provinces are not assigned to any clusters. These 
are Rieti, Pescara and Catania (the maximal membership degrees are, 
respectively, 0.46, 0.45 and 0.49 in Cluster 1), Massa-Carrara (its member-
ship degree in Cluster 2 is 0.49) and Cuneo (with membership degree in 
Cluster 2 slightly lower than 0.50).  

The obtained time weights are as follows: 1 0.21,CSw =  

2 3 4 0.20,  0.21,  0.24CS CS CSw w w= = =  and 5 0.14. CSw =  Thus, the first four 
time occasions approximately play a similar role in the clustering process, 
whereas the information concerning year 1999 appears to be less important 
(lowest time weight). 

Let us now compare the above results with those obtained 
performing CS-FCM-STT without spatial penalty term, that is setting β = 
0. In this case, the here-proposed clustering model coincides with the one 
introduced by D’Urso (2004). We now aim at evaluating whether a 
geographical classification of the Italian provinces can be still detected. 
We thus investigate to which extent the clusters can be interpreted in terms 
of the spatial location of the provinces. For comparative purposes, once 
again we set C = 3 and m = 1.5 and 100 random starts are considered. The 
centroids and the membership degrees are given in Figures 5 and 6, 
respectively.  
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Figure 5. Centroids (after applying the inverse preprocessing procedure) resulting from 
from CS-FCM-STT with β = 0, C = 3 and m = 1.5.  

 
 
The optimal time weights are 1 20.22,  0.21,  CS CSw w= =   

3 40.22, 0.22CS CSw w= =   and 5 0.13CSw = . Therefore, as for the spatial case, 
 the relevance of the information concerning year 1999 is lower than those 
of the first four years under examination. More remarkable differences can 
be found by observing the resulting centroids and membership degrees, 
even if the two solutions are comparable to some limited extent. In fact, 
once again, Cluster 3 (light grey coloured) is formed by most of the 
provinces located in Southern Italy. However, in addition, it also contains 
several provinces from both Northern and Central Italy. By observing 
Figure 5, it is easy to see that, similarly to the centroid of Cluster 3 (in 
Figure 3), such a centroid is characterized by the lowest values for NFR, 
RNI, ETMP and NMH and by the highest values for RU during  all  the  
time  occasions  if compared with the centroids of the other two clusters. 
Also the DR values are lower than those pertaining to the other centroids, 
but such differences are less remarkable as compared to those resulting 
from Figure 3. Instead, the NS values of the centroids are almost equal 
and, thus, do not help in distinguishing the obtained clusters.  

By inspecting Figures 4 and 6, we can emphasize some links 
between Clusters 1 (dark grey coloured) determined by  applying  the clus- 
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Figure 6. Membership degrees resulting from CS-FCM-STT with β = 0, C = 3 and m = 1.5. 
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tering models with or without spatial penalty terms. In fact, 24 provinces 
are assigned to Cluster 1 in both cases. These provinces are principally 
located in the Northern side of Italy but a few Central (among them 
Pescara (membership degree = 0.98), Chieti (0.95) and Rome (0.78)) and 
Southern provinces (among them Bari (0.92), Salerno (0.91) and Naples 
(0.60)) are visible. Unfortunately, by comparing the centroids of Cluster 1 
in Figures 3 and 5, some conflicting results can be seen. This especially 
occurs with respect to the NFR and RNI values, which are no longer the 
highest ones. Moreover, the RU values are not the lowest ones, as occurs 
for the solution with  = 0.65. These differences can be explained by 
observing that a lot of wealthy provinces are now assigned to a different 
cluster, i.e. Cluster 2. Some of these are Bolzano (0.99) and Trento (0.99) 
from Trentino Alto Adige, Vicenza (0.99) and Treviso (0.99) from Veneto, 
Bergamo (1.00), Brescia (0.99), Lodi (0.99) and Lecco (0.98) from 
Lombardy and Rimini (0.95), Modena (0.95) and Reggio Emilia (0.92) 
from Emilia Romagna.  

The biggest differences between the solutions of the spatial and 
non spatial models can be found with respect to Cluster 2 (grey coloured). 
In fact, there does not exist any province belonging to Cluster 2 in both 
cases  = 0 and  = 0.65. We can approximately state that, in the non 
spatial case, Cluster 2 is composed by most of the provinces located in 
Trentino Alto Adige, Veneto, Lombardy (those previously mentioned 
along with many others), Emilia Romagna (only the above-mentioned 
three provinces) and in regions from Central Italy. The strong presence of 
provinces located in Northern Italy explains the values of the features 
under examination, as it can be depicted from Figure 5. Specifically, some 
of them have an excellent socio-economical profile: the RU values are the 
lowest ones whereas the ETMP and NMH are the highest ones, thus 
denoting a high cultural level of life. Moreover, the presence of foreign 
residents is the highest one as well as the rate of natural increase.  

Finally, it should be noticed that in the non spatial case only one 
province (Catania) is not well assigned to any cluster. Also in the spatial 
case, Catania did not clearly belong to any cluster. 

All in all, we can conclude that the clustering model with spatial 
penalty term has allowed us to determine a more reasonable partition of 
the Italian provinces in the sense that the provinces from Southern Italy are 
almost all assigned to exactly one cluster (Cluster 3). This seems to be 
consistent with the empirical evidence that the socio-demographical 
features (and, indeed, those under investigation) of the provinces located in 
Southern Italy are pretty different from those of the remaining parts of 
Italy. To a certain extent, in the spatial case, the two clusters (Clusters 1 
and 2) composed by provinces from Northern and Central Italy seem to 
distinguish the highly productive areas (Cluster 1) from the remaining ones 
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(Cluster 2). On the contrary, the above spatial typology is not clearly 
recovered when the spatial information is ignored (β = 0). 
 
5.2. Longitudinal case 
 

The application of the CS-FCM-STT model with spatial penalty 
term showed that three geographically structured clusters can be found. 
These were constructed according to the levels of the variables during the 
time occasions under investigation. The clusters were thus obtained 
considering the T=5 ‘pictures’ of the Italian provinces with respect to the 
examined socio-demographical variables in years 1995-1999. In this 
section, once more, we aim at clustering the Italian provinces. However, in 
this case, the information to be used concerns the variations (of the 
examined socio-demographical variables) during all the pairs of two 
consecutive years. Therefore, the spatial units are no longer studied in 
terms of the observed levels of the variables, but are examined with 
respect to the observed changes. We thus perform the L-FCM-STT model. 

In the sequel we limit ourselves to briefly describing the relevant steps 
of the analysis and summarizing its results. First of all, after various runs 
of the procedures, we decided to set C=2 and m=2.2. Then, by applying the 
heuristic procedure proposed in Section 4.2, we obtained the optimal value 
β=3.70. Given this setting, the main features of the achieved classification 
are as follows. 
1) The most recent time intervals (1996-97 and 1997-98) play a more 

relevant role in the clustering task. 
2) A clear-cut distinction between provinces belonging to Northern and 

Central Italy (Cluster 1) on one side and provinces of Southern Italy 
(Cluster 2) on the other side, is obtained. 

3) Most provinces present a very high degree of membership in one of the 
two clusters. 

4) The analysis of the velocity centroids shows that in Cluster 1 the 
dynamics of NFR, RNI and DR is always positive. Instead, in Cluster 
2, an increasing pattern is recored for NS and RU. 

5) Ignoring the spatial information (by setting β = 0) and still using C=2 
and m=2.2, the results of the clustering procedure do not show a 
remarkable change as compared to those obtained with β=3.70. 
However, in the non-spatial case, the partition presents a very high 
level of fuzziness (contrary to what happens when we embody the 
spatial information in the procedure). 

6) With reference to the comments in point 5, it should be underlined that, 
in contrast with the instantaneous approach, the longitudinal one looks 
at the variations between successive time occasions. Of course, the 
longer the observed time series, the higher is the possibility of finding 
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differences between velocity trajectories. In the present application, the 
small number of considered years limits this possibility and, conse-
quently, tends to lower the discriminative power of the trajectories. 
This is reflected by the low membership degrees provided by the 
clustering procedure with β = 0. Although the clustering structure is 
basically recovered, the associated fuzziness constitutes a sign of the 
uncertainty due to the relatively small differences between the velocity 
trajectories of the centroids of the two clusters. The partition 
coefficient: 

2

1 1

I C

ic
i c

u
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I

= ==
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by Bezdek (1974) is equal to 0.54. As it is well-known, PC takes values 
from 1C  in case of maximal fuzziness ( 1, ,icu C i c-= " ) to 1 in case of 
crisp partition. As 1 0.50C - = , we can conclude that the obtained 
partition is very fuzzy. The addition of spatial information has, in this 
case, the effect of dramatically decreasing the fuzziness of the 
classification while providing a clear-cut geographical partition of the 
Country. In fact, note that  0.82PC = . 

 
6. Concluding Remarks 

 
The classification of univariate or multivariate time series has 

received much attention in the recent literature (see, e.g., Maharaj 2000). 
Most of these works are based on the characteristics of the models fitted to 
the observed time series (autoregressive models, mixture models, spectral 
analysis). Thus, the obtained clusters are identified by means of the 
parametric features of the models selected for representing the time 
patterns of the observational units. In this respect, the approach adopted in 
the present paper is completely different. In fact, it relies on the observed 
patterns rather than on their representation through statistical models. A 
key contribution in this connection is provided by the introduction of 
appropriate measures of dissimilarity between multivariate time 
trajectories. In this connection, it could be interesting to compare the 
performance of our proposal, carried out in a fuzzy context, with those of 
existing model-based techniques for clustering multivariate time series. 
This may offer a deeper insight into the strengths and weaknesses of the 
two approaches. However, the distinguishing feature of the proposed 
clustering procedure consists of its capability to deal with the spatial 
nature of the units to be clustered. Indeed, the classification task is 
accomplished by searching for a reasonable trade-off between cluster 
homogeneity based on the time pattern of the observed variables and, on 
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the other side, cluster homogeneity based on spatial contiguity. The 
utilization of a fuzzy setting for this problem provides more flexibility to 
its solution, allowing for different degrees of membership in the various 
classes of the obtained typology. This characteristic also allows us to 
identify the spatial units which do not fit very well in the above typology 
(showing almost equal degrees of membership in the different clusters). 
The objective functions 1J  and 2J , respectively in (7) and (19), express 

the above mentioned trade-off through a mixture of two component 
functions: one measuring cluster homogeneity in the feature space (i.e. the 
space of multivariate trajectories) and the other one measuring spatial 
homogeneity of the clusters. The mixing parameter β plays a crucial role in 
determining the balance between these two components. Therefore, it is 
necessary to find an appropriate value for β. The procedure suggested in 
this paper is based on establishing a statistical link between the patterns 
recorded in the feature space (summarized by the average values across the 
time occasions) and the spatial proximities of the units. This link is 
expressed by the index of spatial intracluster autocorrelation introduced in 
(28). This index depends not only on the contiguity of the spatial units 
(represented by P), but also on the degrees of membership and the time 
weights, as calculated from the solution of problems (7) or (19). Therefore, 
if we look at the solution which presents the maximum spatial intraclass 
autocorrelation (i.e. maximum spatial homogeneity in terms of both spatial 
contiguity and similarity of the time trajectories within the clusters), we 
have to choose the value of β to which there is associated the solution 
which maximizes the autocorrelation index.  
In synthetic terms we can state that our method aims at maximizing:  
 [1]    intracluster features’ homogeneity subject to 
                simultaneously maximizing:  

[2] intracluster spatial neighborhood relationship;  
[3] intracluster spatial autocorrelation.  

Task [3] is accomplished by optimizing the mixing coefficient between the 
objective functions representing tasks [1] and [2], respectively. The way to 
solve the latter problem takes into account the charateristics of the time 
series to be clustered. In this connection, our proposal is specific for 
multivariate time trajectoeries as observed on spatial units, and differs 
from Pham (2001) model with respect to the following aspects: 
1) Pham’s model appears to be suitable mainly in the context of image 

segmentation;  
2) the way to cope with the determination of the mixing coefficient β is 

integrated within the optimization tasks to be achieved when 
minimizing the objective function (7) (see task [3] above). Instead, in 
the Pham’s model the problem of the mixing coefficient is formulated 
in a supplementary way in terms of a cross-validation procedure;  
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3) our model provides an organic integration between the technical 
features of fuzzy clustering of multivariate time trajectories and the 
specific features related to spatial information (neighborhood relation, 
spatial autocorrelation).  
Summing up, the illustrated clustering procedure appears to constitute 

a coherent exploratory tool for classifying time trajectories referring to 
spatial units. However, though the spatially penalized Fuzzy C-Means 
objective function seems to work well in practice and moreover it can be 
framed within the theory of the FCM models with penalization terms (see, 
e.g., Coppi and D’Urso 2006), by no means it can be considered the only 
possible way to account for spatial proximity in the clustering task. In this 
respect, the extension of the spatial FCM model by Liew et al. (2000, 
2003) appears to be a promising perspective of research. Both the Liew et 
al. (2000, 2003) and Pham (2001) models are generalizations of standard 
FCM for coping with the image segmentation problem. In both cases, the 
idea is to consider the spatial information in the clustering algorithm 
without imposing the clusters to be composed exclusively by contiguous 
pixels. Nonetheless, several differences can be highlighted. For instance, 
Liew et al. (2000, 2003) propose a new dissimilarity index to be embedded 
into the FCM objective function. Such a dissimilarity index is constructed 
by considering every window of nine pixels, that is the center pixel and its 
eight neighbouring pixels. In case of homogeneous features for the center 
pixel and its neighbours, the center pixel is smoothed by its neighbouring 
pixels when computing the membership degrees and the centroids. 
Otherwise, the influence of the neighbouring pixels on the centre pixel 
vanishes. It follows that the spatial FCM by Liew et al. (2000, 2003) is 
locally adaptive (with respect to every pixel) and tends to allow sharp 
boundaries between pixels. This is a relevant difference with respect to the 
spatial FCM model by Pham (2001), which can be seen as non-adaptive in 
the sense that the emphasis of the spatial information depending on β is 
evaluated with respect to the entire data set. Therefore, the extent to which 
the spatial information plays a relevant role in the clustering process does 
not vary among pixels. Among other things, another difference between 
the two clustering models regards, in Liew et al. (2000, 2003), the replace-
ment of the classical square distance of the FCM as given in (1) by the 
above-mentioned new dissimilarity index, whereas, in Pham (2001), the 
spatial information is taken into account by the penalty term. Unfor-
tunately, the extension of the Liew et al. (2000, 2003) model to the case of 
geographical units and, moreover, to spatial time series seems not to be 
straightforward. For instance, the spatial units and their neighbours will 
have different size, shape and border. A crucial point is whether it makes 
sense to take into account these characteristics in extending the 
dissimilarity index. It is not obvious how to do that, nor how to handle 
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spatial units that have not neighbours (for instance, islands). The extension 
of such a model along with the investigation of alternative approaches to 
this problem will form the objective of our future research in this domain. 

 
References 

 
ALLENDE, H. and GALBIATI, J. (2004), “A Non-Parametric Filter for Digital Image 

Restoration, Using Cluster Analysis”, Pattern Recognition Letters, 25, 841–847. 
AMBROISE, C. and GOVAERT, G. (1998), “Convergence of an EM-Type Algorithm for 

Spatial Clustering”, Pattern Recognition Letters, 19, 919–927. 
AYALA, G., EPIFANIO, I., SIMÓ, A., and ZAPATER, V. (2006), “Clustering of Spatial 

Point Patterns”, Computational Statistics and Data Analysis, 50, 1016–1032. 
BEZDEK, J.C. (1974), “Cluster Validity with Fuzzy Sets”, Journal of Cybernetics, 3, 58–

72. 
BEZDEK, J.C. (1981), Pattern Recognition with Fuzzy Objective Function Algorithms, 

New York: Plenum Press.  
BEZDEK, J.C., KELLER, J., KRISNAPURAM, R., and  PAL, N.R. (1999), Fuzzy Models 

and Algorithms for Pattern Recognition and Image Processing, The Handbooks of 
Fuzzy Sets, 4, New York: Kluwer. 

CHUANG, K.-S., TZENG, H.-L., CHEN, S., WU, J., and CHEN, T.J. (2006), “Fuzzy C-
means Clustering with Spatial Information for Image Segmentation”, Computerized 
Medical Imaging and Graphics, 30, 9–15. 

CINQUE, L., FORESTI, G., and LOMBARDI, L. (2004), “A Clustering Fuzzy Approach 
for Image Segmentation”, Pattern Recognition, 37, 1797–1807. 

COPPI, R. and D’URSO, P. (2001), “The Geometric Approach to the Comparison of 
Multivariate Time Trajectories”, in Advances in Data Science and Classification, 
eds. S. Borra, R. Rocci, M. Vichi, and M. Schader, Heidelberg: Springer-Verlag, 93–
100. 

COPPI, R. and D’URSO, P. (2006), “Fuzzy Unsupervised Classification of Multivariate 
Time Trajectories with the Shannon Entropy Regularization”, Computational 
Statistics and Data Analysis, 50, 1452–1477. 

COSTANZO, G.D. (2001), “A Constrained k-means Clustering Algorithm for Classifying 
Spatial Units”, Statistical Methods and Applications, 10, 237–256.  

DI NOLA, A., LOIA, V., and STAIANO, A. (2002), “An Evolutionary Approach to Spatial 
Fuzzy C-means Clustering”, Fuzzy Optimization and Decision Making, 1, 195–219. 

DUAN, L., XU, L., GUO, F., LEE, J., and YAN, B. (2007), “A Local-Density Based 
Spatial Clustering Algorithm with Noise”, Information Systems, 32, 978–986. 

D’URSO, P. (2000), “Dissimilarity Measures for Time Trajectories”, Journal of the Italian 
Statistical Society, 1–3, 1–31. 

D’URSO, P. (2004), “Fuzzy C-means Clustering Models for Multivariate Time-Varying 
Data: Different Approaches”, International Journal of Uncertainty, Fuzziness and 
Knowledge-Based Systems, 12, 287–326. 

D’URSO, P. (2005), “Fuzzy Clustering for Data Time Array with Inlier and Outlier Time 
Trajectories”, IEEE Transactions on Fuzzy Systems, 13, 583–604. 

EVERITT, B.S., LANDAU, S. ,and LEESE, M. (2001), Cluster Analysis (4th ed.), London: 
Arnold Press. 

FERLIGOJ A. and BATAGELJ, V. (1982), “Clustering with Relational Constraint”, 
Psychometrika, 47, 413–426. 

FERLIGOJ A. and BATAGELJ, V. (1983), “Some Types of Clustering with Relational 
Constraint”, Psychometrika, 48, 541–552. 

FERLIGOJ A. and BATAGELJ, V. (1992), “Direct Multicriteria Clustering Algorithm”, 
Journal of Classification, 9, 43–61. 

86 R. Coppi, P. D’Urso, and P. Giordani 



 

GORDON, A.D. (1996), “A Survey of Constrained Classification”, Computational 
Statistics and Data Analysis, 21, 17–29. 

GORDON, A.D. (1999), Classification, New York: Chapman & Hall/CRC. 
HEISER, W.J. and GROENEN, P.J.F. (1997), “Cluster Differences Scaling with a Within-

Clusters Loss Component and a Fuzzy Successive Approximation Strategy to Avoid 
Local Minima”, Psychometrika, 62, 63–83. 

HU, T. and SUNG, S.Y. (2006), “A Hybrid EM Approach to Spatial Clustering”, 
Computational Statistics and Data Analysis, 50, 1188–1205. 

HWANG, H., DE SARBO, W.S., and TAKANE Y. (2007), “Fuzzy Clusterwise Genera-
lized Structured Component Analysis”, Psychometrika, 72, 181–198. 

KONTOS, D. and MEGALOOIKONOMOU, V. (2005), “Fast and Effective 
Characterization for Classification and Similarity Searches of 2D and3D Spatial 
Region Data”, Pattern Recognition, 38, 1831–1846. 

KROOSHOF, P.W.T., TRAN, T.N., POSTMA, G.J., MELSSEN, W.J., and BUYDENS, 
L.M.C. (2006) ,“Effects of Including Spatial Information in Clustering Multivariate 
Image Cata”, Trends in Analytical Chemistry, 25, 1067–1080. 

LAWSON, A.B., SIMEON, S., KULLDORFF, M., BIGGERI, A., and MAGNANI, C. 
(2007), “Line and Point Cluster Models for Spatial Health Data”, Computational 
Statistics and Data Analysis, 51, 6027–6043. 

LEFKOVITCH, L.P. (1980), “Conditional Clustering”, Biometrics, 36, 43–58. 
LIEW, A.W.C., LEUNG, S.H., and LAU, W.H. (2000), “Fuzzy Image Clustering 

Incorporating Spatial Continuity”, IEE Proceedings of Visual Image Signal Process, 
147, 185–192. 

LIEW, A.W.C., LEUNG, S.H., and LAU, W.H. (2003), “Segmentation of Color Lip 
Images by Spatial Fuzzy Clustering”, IEEE Transactions on Fuzzy Systems, 11, 542–
549. 

LIEW, A.W.C. and YAN, H. (2003), “An Adaptive Spatial Fuzzy Clustering Algorithm for 
3-D MR image Segmentation”, IEEE Transactions on Medical Imaging, 22, 1063–
1075.  

MACQUEEN, J.B. (1967), “Some Methods for Classifilcation and Analysis of Multivariate 
Observations”, in Proceedings of the Fifth Berkeley Symposium on Mathematical 
Statistics and Probability, 2, 281–297. 

MARÇAL, A.R.S. and CASTRO, L. (2005) ,“Hierarchical Clustering of Multispectral 
Images Using Combined Spectral and Spatial Criteria”, IEEE Geoscience and 
Remote Sensing Letters, 2, 59–63. 

MAHARAJ, E.A. (2000), “Clusters of Time Series”, Journal of Classification, 17, 298–
314. 

MCBRATNEY, A.B. and MOORE, A.W. (1985), “Application of Fuzzy Sets to Climatic 
Classification”, Agricultural and Forest Meteorology, 35, 165–185. 

MOLENAAR, M. and Cheng, T. (2000), “Fuzzy Spatial Objects and Their Dynamics”, 
ISPRS Journal of Photogrammetry and Remote Sensing, 55, 164–175. 

MORAN, P.A.P. (1950), “A Test for the Serial Independence of Residuals”, Biometrika 37, 
178–181. 

MURTAGH, F. (1985), “A Survey of Algorithms for Contiguity-Constrained Clustering 
and Related Problems”, Computer Journal, 28, 82–88. 

NG, R.T. and HAN, J. (2002), “CLARANS: A Method for Clustering Objects for Spatial 
Data Mining”, IEEE Transactions on Knowledge and Data Engineering, 14, 1003–
1016. 

PERMUTER, H., FRANCOS, J., and JERMYN, I. (2006), “A Study of Gaussian Mixture 
Models of Color and Texture Features for Image Classification and Segmentation”, 
Pattern Recognition, 39, 695–166. 

PHAM, D.L. (2001), “Spatial Models for Fuzzy Clustering”, Computer Vision and Image 
Understandin, 84, 285–297. 

87A Fuzzy Clustering Model



 

PHAM, D.L. and PRINCE, J.L. (1999), “Adaptive Fuzzy Segmentation of Magnetic 
Resonance Images”, IEEE Transactions on Medical Imaging 18, 737–752. 

PILEVAR, A.H. and SUKUMAR, M. (2005), “GCHL: A Grid-Clustering Algorithm for 
High-dimensional Very Large Spatial Data Bases”, Pattern Recognition Letters, 26, 
999–1010. 

SMOUSE, P.E. and PEAKALL, R. (1999), “Spatial Autocorrelation Analysis of Individual 
Multiallele and Multilocus Genetic Structure”, Heredity, 82, 561–573. 

TOLIAS, Y.A. and PANAS, S.M. (1998), “On Applying Spatial Constraints in Fuzzy 
Image Clustering Using a Fuzzy Rule-based System”, IEEE Signal Processing 
Letters, 5, 245–247. 

TOLIAS, Y.A. and PANAS, S.M. (1998), “Image Segmentation by a Fuzzy Clustering 
Algorithm Using Adaptive Spatially Constrained Membership Functions”, IEEE 
Transactions on Systems, Man, and Cybernetics A, 28, 359–369. 

TRAN, T.N., WEHRENS, R., and BUYDENS, M.C. (2005), “Clustering Multispectral 
Images: A Tutorial”, Chemometrics and Intelligent Laboratory Systems, 77, 3–17. 

XIA, Y., FENG, D., WANG, T., ZHAO, R,. and ZHANG, Y. (2007), “Image Segmentation 
by Clustering of Spatial Patterns”, Pattern Recognition Letters, 28, 1548–1555. 

 

88 R. Coppi, P. D’Urso, and P. Giordani 


	A Fuzzy Clustering Model for Multivariate Spatial Time Series
	Abstract
	Introduction
	Fuzzy C-Means Clustering Models for Spatial Units: The “Spatial Penalty” Approach
	Fuzzy C-means Clustering Models for Multivariate Spatial Time Trajectories
	Spatial Time Data Array and Multivariate Spatial Time Trajectories
	Fuzzy Clustering Models

	A Method for Selecting the Penalty Coefficient
	Cross-Sectional Case
	Longitudinal Case

	Application
	Cross-Sectional Case
	Longitudinal case

	Concluding Remarks
	References



