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Abstract: The paper presents a methodology for classifying three-way dissimilarity 
data, which are reconstructed by a small number of consensus classifications of the 
objects each defined by a sum of two order constrained distance matrices, so as to 
identify both a partition and an indexed hierarchy. 
 

Specifically, the dissimilarity matrices are partitioned in homogeneous classes and, 
within each class, a partition and an indexed hierarchy are simultaneously fitted. 
 

The model proposed is mathematically formalized as a constrained mixed-integer 
quadratic problem to be fitted in the least-squares sense and an alternating least-
squares algorithm is proposed which is computationally efficient.  
 

Two applications of the methodology are also described together with an extensive 
simulation to investigate the performance of the algorithm. 
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 D. Vicari and M. Vichi 

1. Introduction 

Cluster analysis methodologies usually detect a unique classification 
model1 (e.g., covering, partition, hierarchy, fuzzy partition) within the ob-
served dissimilarity data, chosen in the class of classification models of the 
same type. The aim is to reconstruct the original observed dissimilarity 
matrix by a new one which is constrained to identify (one-to-one) a classi-
fication structure. However, it may be unrealistic that a single classifica-
tion model is representative of the taxonomic information of the data. Sev-
eral classification structures often coexist, because objects are generally 
described by several variables which can specify different classification 
models (e.g., each categorical variable induces a partition and a group of 
variables may specify nested partitions of objects). Multiple classification 
structures may exist and one desires to synthesize such clusterings into a 
single “consensus”; more frequently, such multiple classification structures 
are not observable and need to be detected (Gordon 1999, chapter 4.4; for 
high-dimensional data, see Strehl and Ghosh 2002; Fern and Brodley 
2003; Fred and Jain 2003). In other terms, the observed dissimilarity ma-
trix may be thought of as a “combination” of dissimilarity matrices corres-
ponding to variables or subsets of variables related to similar contexts 
(e.g., economic, demographic, social, psychological) and each of such dis-
similarity matrices may be properly reconstructed by a different classifica-
tion model. According to this perspective, a clustering algorithm should 
identify not only a unique classification structure, but the most relevant 
ones possibly present in the observed dissimilarity matrix. Several interest-
ing papers have faced this approach in the case of two-way one-mode dis-
similarity matrices. Hubert and Arabie (1994) propose to approximate the 
observed dissimilarity matrix through a sum of a small number of symme-
tric order-constrained matrices in the class of the Robinson matrices. Hu-
bert, Arabie and Meulman (1998) fitted more order-constrained matrices 
such as strongly-(anti)-Robinson matrices to permit a representation of the 
fitted values which has the nice and useful property to improve and enrich 
the interpretability of the results by graphical displays.  

As a further development within this approach, it could be assumed 
that several classification models of different types may be identified in a 
dissimilarity matrix. In particular, in this paper we will suppose that a par-
tition and an indexed hierarchy can properly reconstruct the most relevant 
taxonomic information present in the data. We focus on these two kinds of 
structures since they are the most widely used and easy to be interpreted 
and, for reasons of parsimony, we impose to fit only one single partition

______________ 
 
1 Classification models and classification structures are hereafter used inter-changeably. 
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and one single indexed hierarchy to the observed dissimilarity data. How-
ever, straightforward modifications of the algorithm here proposed enable 
fitting other models with several partitions and/or several indexed hierar-
chies. 

Of course, along with this approach it is necessary to verify whether 
such classification models are appropriate to describe and reconstruct the 
taxonomy present in the observed data, by evaluating the fit of the models 
to the data and the validity of the results.  

In this paper we will also suppose that K dissimilarity matrices be-
tween pairs of the same set of I objects are observed so as to form a three-
way dissimilarity array D={D1,…, DK}. Large data sets of this type may be 
complex to analyze and specific methodologies are necessary to extract re-
levant information. Classification methodologies for three-way dissimilari-
ty data assume, as for the two-way case, a unique common underlying 
classification structure in the data. However, since the taxonomy may 
change from occasion to occasion (e.g., preferences towards products giv-
en by different customers), the hypothesis that a single classification mod-
el can reconstruct the whole information in D appears even more unrealis-
tic than in the two-way case.  

To overcome this problem Carroll and Arabie (1983) introduced the 
INDCLUS model to extract overlapping clusters from a set of symmetric 
proximity matrices. Specifically, the model assumes that the objects are 
placed in a common (possibly overlapping) set of classes which are 
weighted differently by different observers (occasions). 

Later, POP (Partitions Of Partitions) and PARSCLA (PARtition and 
least-Squares Consensus cLassifications Analysis) have been proposed by 
Gordon and Vichi (1998) and Vichi (1999), where a partition (termed 
“secondary”) of the observed dissimilarity matrices forming D is found 
and a consensus classification model (termed “primary”), which can be a 
partition or a hierarchy, for each class of the secondary partition is also de-
tected. 

This paper can be placed in the same framework, by including the 
idea to find a secondary partition of D={D1,…, DK} in classes of homoge-
neous dissimilarity matrices and, within each class, primary classifications 
of the objects. Specifically, within each of such classes of occasions, two 
constrained distance matrices are fitted corresponding to partitions and in-
dexed hierarchies of the objects. 

The novelty lies in the fact that the primary classification may itself 
exist of a combination of classification structures (i.e. hierarchies and par-
titions, instead of a hierarchy or a partition).  

Without loss of generality and for the sake of simplicity and clarity, 
we fully discuss the case of fitting a single partition (P) and a single in-
dexed hierarchy (U), since a more general model can be easily fitted by a 
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slight modification of the algorithm proposed. In fact, the algorithm is 
based on successive residualizations of the given three-way data matrix: 
within each class of occasions, one matrix is fitted, obtaining the residual 
dissimilarities from it and then the second matrix is fitted to these residu-
als. The general case with several partitions and/or indexed hierarchies fol-
lows straightforwardly. 

The simultaneous fitting of P and U is motivated by the underlying 
hypothesis that the variables characterizing dissimilarities can be assumed 
to be partitioned into two subsets not related to each other: one describing 
the “evolutionary” features of the objects, which motivates the use of the 
indexed hierarchy, and the remaining subset of variables inducing homo-
geneous clusters which motivates the use of a partition (see Gordon 1999 
or Kaufman and Rousseeuw 2005).  

For example, in biological studies on animals or vegetation two tax-
onomies may be reasonably expected: the first generated by evolutionary 
characteristics specifying an evolutionary tree of the animals and the 
second by experimental variables identifying a partition of the animals or 
plants (e.g., with respect to a reaction to a pharmacological agent).  

In Section 5.1 an illustrative application on zoological data, taken 
from the UCI Machine Learning repository (http://www.ics.uci.edu/ 
~mlearn/MLRepository.html), is presented to show the coexistence of two 
different taxonomies in the data.  

The proposed model is formalized in a statistically model-free least-
squares context, by a quadratic minimization mixed-integer problem with 
four sets of constraints. The first two sets guarantee the identification of a 
partition of D in homogeneous classes of dissimilarity matrices and the 
remaining two sets impose hierarchical and partitioning order constraints 
on triplets of dissimilarities to detect a consensus partition and a consensus 
indexed hierarchy within each homogeneous class. 

An outline of the material in this paper is as follows. Section 2 de-
scribes the model for fitting the sum of a hierarchy and a partition to the 
three-way data set D. The model is estimated by solving a constrained 
least-squares problem. Section 3 extends the model to detect a “secondary” 
partition of the set of dissimilarity matrices forming D and, simultaneous-
ly, both a consensus indexed hierarchy and a consensus partition within 
each class of such a secondary partition of D. A numerical algorithm, 
based on alternating least-squares strategy, is also described in Section 4. 
The models discussed in Sections 2 and 3 are illustrated through the appli-
cation of the algorithm on two well-known data sets which are analyzed in 
Section 5. In Section 6 the results of an extensive simulation study are also 
included to evaluate the performances of the algorithm. Finally, Section 7 
includes comments and a discussion of the proposed methodology. 
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2. Fitting a Single Partition and a Single Indexed Hierarchy to  
Three-Way Dissimilarity Data 

 
For the convenience of the reader, the basic terminology used is 

listed here: 
 

I, K   number of objects and occasions, respectively; 
C   number of classes of the secondary partition of D, i.e.     
  number of the classes of occasions (C ≤ I); 
O ={o1,…, oI}  set of I objects to be classified; 
D=[dijk] (I x I x K) array specifying dissimilarities between (oi,oj), 

(i,j=1,…,I) at the kth occasion (k=1,…,K); the array D can 
be written as a set of K (I x I) dissimilarity matrices i.e., 
D=[D1,…,DK], where Dk=[dijk: i,j=1,…,I]; 

wk weight of the kth occasion or dissimilarity data set 
(k=1,…,K). 

 

We consider here only the standard case where the diagonal values 
of the dissimilarity and distance matrices are equal to zero.  

There are different classification models that are commonly adopted 
for a set O of objects: a hierarchical partition, which is a set of disjoint or 
nested subsets of O uniquely associated with an ultrametric matrix U (i.e. 
U=[uil], uil ≥ 0, uil = uli, uil ≤ max(uij, ujl),  (i,l,j) O) or a non-
hierarchical partition (see Gordon 1999). The latter can be uniquely asso-
ciated to a 2-ultrametric matrix P, i.e., a constrained ultrametric matrix 
with at most two different off-diagonal values: P=[pil], pil ≥ 0, pil = pli, pil ≤ 
max(pij, plj)  (i,l,j)O and pil {0, a, b} where a ≤ b (Vicari and Vichi 
2000). Therefore, the non-hierarchical partition can be regarded as a con-
strained hierarchy where only two levels of aggregation are allowed.  

The two classification structures (hierarchies and partitions) con-
sidered for a given set O, define cones, i.e. subsets closed under non-
negative scalar multiplication. In particular, the set of ultrametrics U is a 
non-convex closed cone. Obviously, the set of 2-ultrametrics pU (i.e., the 
set of the ultrametric matrices with at most two different off-diagonal en-
tries) is included in U , i.e., pU U. 

In this paper we consider that the taxonomic structure of D is speci-
fied both by a secondary partition of the K occasions into C classes and by 
a total of 2C (specifically, C hierarchies and C partitions) consensus pri-
mary classifications of the I objects. 

We are now in position to state the model for reconstructing the 
classification structure of D. In this Section we consider the simplest mod-
el where only one class of the secondary partition (C=1) is specified and 
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M+L matrices Pm and Ul are supposed to reconstruct the set of dissimilarity 
matrices according to the following model 
 

                          
1 1

M L

k m l k
m l= =

= + +å åD P U E      (k=1,...,K), (1) 

where Ek is a square matrix of error components.  
For the sake of simplicity, we will fully discuss only the simplest 

case where M=L=1, i.e. the model 
 

              Dk = P + U + Ek              (k=1,...,K), (2) 

where only two matrices P and U are assumed to reconstruct the set of dis-
similarity matrices.  

The presentation of the model (2) with respect to the more general 
model (1) does not imply lack of generality, because its extension is 
straight-forward and conversely the notation would become too burden-
some. 

The three terms in (2) explain portions of the original dissimilarity 
matrix Dk. The first term pertains to what can be explained by a consensus 
partition of O, the second term by a consensus indexed hierarchy of O, the 
third term by neither P nor U. However, there might be redundancy in the 
model, due to the inclusion between the two classification structures above 
examined. In particular, if Dk has the structure of a (non-hierarchical) par-
tition, i.e. Dk  pU, it follows that the fitted P̂  and Û  identify the same 
classification model, because of the mentioned inclusion. Thus, the first 
term is subsumed under the other term. When Dk U, but not to pU, the 
two structures are different and there is no redundancy.  

The problem of fitting the two order-constrained distance matrices P 
and U in (2) can be formalized by the following weighted quadratic con-
strained minimization problem with respect to P and U  

         2

1

min || ||
K

k k

k

w
=

- -å D P U   [P1] 

 subject to  

 P  pU  

 U  U, 
 
where wk is the positive weight of matrix Dk. Suitable choices for possible 
weights depend on the particular applications and may be, for example, 
frequencies, subjective weights or the reciprocals of the sum-of-squares of 
the individual proximity matrices. 
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By adding and subtracting the weighted mean of the dissimilarity 
matrices, the objective function of [P1] can be rewritten  

         

2

2

1 1 1

1

|| ||
K K K

k
k k k k kK

k k k
k

k

w
w w

w= = =

=

- - = - +å å å
å

D P U D D   

        

2

1 1

1

,
K K

k
k kK

k k
k

k

w
w

w= =

=

- -å å
å

D P U  

where only the second term on the right hand side depends on P and U and 
has to be minimized.  

Problem [P1] can be directly solved by a Sequential Quadratic Pro-
gramming (SQP) algorithm (Powell 1983). However, a direct solution of 
the problem poses computational complexity problems and it is particu-
larly useful to study an alternative coordinate descent algorithm developed 
specifically for this method. An alternating least-squares algorithm will be 
discussed in Section 4 which solves problem [P1].  

The methodology here presented will be termed structural classifi-
cation analysis. 

 
 

3. Fitting Secondary Partition, Consensus Partitions and Indexed  
    Hierarchies to Three-Way Data 

 
Model (2) is correctly formulated under the hypothesis that a single 

partition and a single indexed hierarchy are sufficient to synthesize the 
taxonomic structure in the three-way array D. However, as discussed in the 
introduction, the assumption that a single classification can describe a 
complex taxonomic structure may be often unrealistic, especially for three-
way data, where different taxonomic information frequently corresponds 
to different occasions. 

Therefore, a more flexible scheme is based on the idea that for some 
occasions of the three-way observed dissimilarity data, the taxonomic 
structure changes systematically, but in other occasions it differs only for 
some errors (e.g., sampling or measurement). Under this second hypothe-
sis, it is useful to partition the set of dissimilarity matrices {D1,…,DK} into 
C disjoint homogeneous classes with similar taxonomic structure and iden-
tify both consensus indexed hierarchies and consensus partitions within 
each class. From now on, this problem will be discussed. 
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Given the three-way array D, a partition of the set of the K dissimi-
larity matrices {D1,…,DK} in C disjoint classes is determined, so that each 
class is synthesized by both a set of M consensus partitions and a set of L 
consensus hierarchies, each identified by an order-constrained distance 
matrix. The problem is mathematically formalized according to the follow-
ing model  
 

   
1 1

M L

k mc lc k
m l= =

= + +å åD P U E ,    Dk Gc,      c=1,...,C;      k=1,...,K, (3) 

where Ek is a square matrix of error components. 
According to model (3), each matrix Dk belongs to a class Gc of the 

secondary partition of D and the dissimilarities in Dk are supposed to be 
reconstructed (at least approximately) by a number of distance matrices 
Pmc and Umc with order constraints on the triplets of objects, specifying M 
partitions and L hierarchies, respectively. 

As in Section 2, for the sake of clarity we will fully discuss the case 
M=L=1, i.e. the model  
 

       Dk =   Pc + Uc + Ek,     Dk  Gc,     c=1,...,C;     k=1,...,K, (4) 
 
where each matrix Dk belonging to a class Gc of the secondary partition of 
D is assumed to be reconstructed (at least approximately) by two distance 
matrices Pc and Uc with order constraints on the triplets of objects, identi-
fying a partition and a hierarchy, respectively. The generalization to model 
(3) is straightforward. 

Let V=[vkc] be the (KxC) binary matrix specifying the secondary 
partition of D, where vkc=1, if matrix Dk belongs to class Gc, and vkc=0, 
otherwise. 

The primary classification structures Pc=[pijc] and Uc=[uijc] and the 
secondary partition V=[vkc] in model (4) can be estimated according to the 
following least-squares fitting problem 

 
 
 
 
 
 
 
 
 
 
 

   2

1 1

min || ||
K C

k c c k kc

k c

w v
= =

- -åå D P U                                                      [P2] 

    subject to  

   (a) vkc {0, 1}   k=1,…,K,   c=1,...,C;                       

         
1

1
C

kc
c

v
=

=å     k=1,…,K; 
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  (b) uijc ≤  max(uilc, ujlc) 

          ujlc ≤  max(uijc, uilc)  i=1,…,I,j=i,…,I, l=j,…,I; c=1,...,C;  

          uilc ≤  max(uijc, ujlc)    

  (c) pijc {0, ac, bc}  i,j=1,…,I,   c=1,...,C; 

 pijc ≤  max(pilc, pjlc) 

 pjlc ≤  max(pijc, pilc)  i=1,…,I,j=i,…,I, l=j,…,I; c=1,...,C; 

 pilc ≤  max(pijc, pjlc)    
 
where: 
 

 the first two sets of constraints (a) guarantee that a partition of the 
set {D1,…,DK} into K disjoint classes is defined;  

 the second set of triplets of constraints (b) ensures that Uc is an  
ultrametric matrix identifying an indexed hierarchy; 

 the third set of constraints (c) guarantees that Pc is a 2-ultrametric 
matrix, identifying a hierarchy with only two levels (i.e., a parti-
tion).  
 

Now, matrix Pc can be rewritten  

                           Pc = bc (11- McMc) + ac (McMc – I) (5) 

where 1 is a vector of I ones, I is the (I x I) identity matrix and Mc=[milc] is 
a (I x Cc) matrix of binary values milc specifying the membership of object 
oi to the lth group of the cth consensus partition into Cc groups of objects 
(c=1,…,C). Substituting (5) into problem [P2], we have 
 

' ' 2min || [ ( ' ) ( )] ||
1 1

K C
b a w v

k c c c c c c c k kc
k c

- - + - -å å
= =

D 11 M M M M I U

 
                                                                                                   [P2’] 
subject to  

(a) vkc {0, 1}   k=1,…,K,   c=1,...,C; 

            
1

1
C

kc
c

v
=

=å     k=1,…,K; 

(b)  2

( , , ) ( )

( ) 0
c

ilc jlc
i j l

u u
ÎG

- =å
U

  c=1,…,C; 
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(c) bc ≥ ac > 0   c=1,...,C; 

           milc 0, 1}   i=1,…,I,   l=1,…,Cc,   c=1,...,C; 

            
1

1
cC

ilc
l

m
=

=å    i=1,…,I,   c=1,...,C, 

 
where (Uc) = {(i,j,l) : 1 ≤ i,j,l ≤ I, i ≤j ≤ l : uijc ≤ min(uilc, ujlc)}, c=1,…,C, 
that is the set of the triplets of objects having the two largest values equal 
(or, equivalently, identifying acute isosceles triangles).  

It can be noted that problem [P2’] has a much smaller number of 
constraints than [P2]. In practice the O(I3) constraints on the triplets of Uc 
are synthesized by only one constraint since for each triplet the largest two 
values must be equal and their squared difference is null. Furthermore, the 
O(I3) constraints pertaining to matrix Pc are reduced to O(ICc), because we 
can properly reformulate constraints (c) in terms of the binary membership 
matrices Mc, according to (5). 

Problem [P2’] could be solved using a Sequential Quadratic Pro-
gramming algorithm, even though it is not specific to solve mixed integer 
quadratic constrained problems; moreover, it quickly becomes infeasible 
and therefore, it is worthwhile to develop an alternative coordinate descent 
algorithm to solve problem [P2’], as described in the following Section. 
 
4. An Alternating Least-Squares Algorithm 
 

Problem [P2’] can be solved using a coordinate descent algorithm 
also known as Alternating Least-Squares algorithm, which splits the dis-
crete and continuous optimization problems into parts easier to be solved.  

The algorithm here proposed detects a partition of occasions and, 
within each of such classes, it fits two constrained distance matrices. After 
a first step where the partition of occasions is determined, the algorithm is 
based on successive residualizations of the given three-way data matrix: 
within each class of occasions, one matrix is fitted, obtaining the residual 
dissimilarities from it and then the second matrix is fitted to these resi-
duals. The two steps are alternated and iterated until convergence. 

Briefly, three steps are repeated in turn as follows:  
a) The partition of occasions (secondary classification) is determined 

(Updating of matrix V );    
b) Within each class c of occasions, the hierarchy is determined (Updat-

ing of matrix Uc); 
c) Within each class c of occasions, the partition is determined (Updating 

of matrix Pc). 
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Steps b) and c) are performed on the residuals of the data matrix from the 
previous step. 

The generalization of the algorithm to the case where more than two 
classification structures are assumed in the model (1) is straightforward. It 
is simply carried out by adding supplementary steps where each of the 
constrained distance matrices is estimated on the residuals from the pre-
vious ones. 

The algorithm fully described below has been implemented in 
MATLAB and it is available upon request to the authors. 

Given initial values V̂ , cM̂ , câ , cb̂ (c=1,..,C) the objective function 
of problem [P2’] 
 

F(V, Mc, Uc, ac, bc) =                                                                                         

2

1 1

''|| [ ( ) ( )] ||'
K C

k k kc
k c

c c c c c ccb a w v
= =

- - + - -åå D 11 M M M M I U  
              

can be minimized with respect to:  

d) U1,…,UC, given the current V̂ , cM̂ , câ , cb̂  (c=1,..,C); 

e) M1,…,MC, given the current V̂ , câ , cb̂ , cÛ (c=1,…,C); 

f) a1,…,aC, b1,…, bC, given the current V̂ , cÛ , cM̂ (c=1,…,C); 

g) V, given cÛ , cM̂ , câ , cb̂  (c=1,..,C). 
 

The four steps are repeated in turn. At each step the objective func-
tion F(V, Mc, Uc, ac, bc, c=1,…,C) does not increase and generally de-
creases. The process continues until it monotonically converges to a sta-
tionary point which turns out to be at least a local minimum of the problem 
[P2’], being F a function bounded below. 

A more formal description of this sequential algorithm is given on 
the next page. 

Let us now describe how the different sub-problems are solved.  
Sub-problem a 

In order to simplify the notation, let   
'ˆˆ ˆ ˆ( )'c c c cb= - +P 11 M M  'ˆ ˆˆ ( )cc ca -M M I   

be the current estimate of matrix P and  
 

1

1

ˆˆ
ˆ

K
k kc

c k c K
k

k kc
k

w v

w v=

=

é ù= -ê úë ûå
å

R D P  

 
denote the mean residual dissimilarities from cP̂ . 
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Alternating Least-Squares Algorithm 
 

 

Initialization         Initial estimates of problem [P2’]: V̂ , ˆ
c

M , ˆ
c

a ,
ĉ

b (c=1,..,C) are given. 

Step a Given the current estimates V̂ , ˆ
c

M , ˆ
c

a ,
ĉ

b  (c=1,..,C), new values Uc (c=1,..,C), 
are estimated by solving the following quadratic sub-problem 

 min 2

1

' 'ˆ ˆ ˆ ˆ ˆˆ ˆ|| [ ( ' ) ( )] ||
K

k k kc

k

c c c c c ccb a w v
=

- - + - -å D 11 M M M M I U   

subject to   
 Uc U    c=1,..,C;           [P2a] 

Step b  Given the current estimates V̂ , ˆ
c

U , ˆ
c

a ,
ĉ

b  (c=1,..,C), new values Mc (c=1,..,C) 
are estimated by solving the following quadratic sub-problem 

 min 2

1

' 'ˆ ˆˆ ˆ|| [ ( ' ) ( )] ||
K

k k kc

k

c c c c c c cb a w v
=

- - + - -å D 11 M M M M I U    

 subject to      
 milc { 0, 1 }  i=1,…,I,   l=1,…,Cc,   c=1,...,C 

 
1

1
c

C

ilc

l

m
=

=å   i=1,…,I,   c=1,...,C;           [P2b] 

Step c Given the current estimates V̂ , ˆ
c

U , ˆ
c

M (c=1,…,C), new values ac and bc are 
estimated by solving the following sub-problem 

 min 2

1

' 'ˆ ˆ ˆ ˆ ˆ ˆ|| [ ( ) ( )] ||'
K

k k kc

k

c c c c c c cb a w v
=

- - + - -å D 11 M M M M I U    

 subject to    
 bc ≥ ac > 0  c=1,...,C;                    [P2c] 

Step d Given the current estimates ˆ
c

U , ˆ
c

M , ˆ
c

a ,
ĉ

b  (c=1,…,C), a new V is estimated by 
solving the following sub-problem  

 min 2

1

' 'ˆ ˆ ˆ ˆ ˆ ˆˆ|| [ ( ) ( )] ||'
K

k k kc

k

c c c c c c cb a w v
=

- - + - -å D 11 M M M M I U   

 subject to     
 vkc {0, 1}   k=1,…,K,   c=1,...,C 

 
1

1
C

kc
c

v
=

=å    k=1,…,K.         [P2d] 

Stopping rule The objective function value is computed for the current values of 
ˆˆ ˆ ˆ ˆ, , , , , ( 1, ..., ).c c c ca b c C=V M U  When the objective function has not decreased con-

siderably with respect to a small convergence tolerance value, the process has converged. 
Otherwise, steps a-d are repeated in turn. 
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Note that the objective function of the problem [P2a] can be written  

2

1

ˆ ˆ|| ||
K

k c c k kc
k

w v
=

- -å D P U
2

1

ˆ
K

c c k kc
k

w v
=

æ ö÷ç= - ÷ç ÷ç ÷çè øåR U +  (6) 

    
2

1

ˆ ˆ( )
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where only the first term of the right hand side depends on Uc.  
Thus, expanding the expression of Rc, it remains to optimize the  

following problem equivalent to [P2a] 
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subject to    
Uc U  c=1,..,C, 

 
which can be solved through the algorithm by DeSoete (1984). However, 
this algorithm becomes computationally unfeasible when the number of 
objects to be classified is large (more than 100). Thus, for larger problems 
an alternative solution for [P2a’] has to be found and it is provided as fol-
lows. 

Let Uc be written: )'( I11UU  hcc , where cU  is a pseudo-
ultrametric matrix that can have negative off-diagonal entries still satisfy-
ing the ultrametric inequalities and h is a non-negative constant chosen to 
guarantee the non-negativity of Uc. 

Therefore, the objective function of [P2a’] can be written 

           1UR1URUR )('2)1(222
cccccc hIIh        (7) 

where 1 is a vector of I ones and the terms involving )( ctr U  and )( ctr R  
vanish, because the diagonal values of all the dissimilarity and distance 
matrices are zero.  

If 
2

cc UR   is minimized with respect to cU  by using the group 

average link clustering (UPGMA), the last term of (7) vanishes because 
the sum of the residual dissimilarities in Rc equals the sum of the fitted 
 ultrametric values (the UPGMA is based on the average values of dissimi-
larities between the two clusters being merged). 
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Therefore, without loss of generality, problem [P2a’] can be equiva-
lently solved by carrying out the UPGMA clustering on matrix Rc, so ob-
taining the optimal pseudo-ultrametric cÛ . Finally, the optimal cÛ  is ob-
tained by adding the minimum non-negative constant to the off-diagonal 
entries of cÛ , so that the non-negativity constraint on cÛ  is still satisfied. 

Since [P2 a] has a non-convex feasible region (ultrametric cone) and 
it is known to be an NP-hard classification problem, the global minimum 
solution for [P2] or [P2’] cannot be always guaranteed and the convergent 
sequence of ALS can be broken by a local minimum for [P2a]. This prob-
lem is overcome by retaining for [P2a] only solutions where the objective 
function does not increase. 
 
Sub-problem b 
 

The objective function of [P2b] can be written as above for the prob-
lem [P2a] in terms of mean residual dissimilarities from Û  (say *

cR ) and 
solved with respect to Mc (c=1,…,C) 

 

   F(Mc; V̂ , cÛ , câ , cb̂ )
2* ' 'ˆ ˆ[ ( ) ( )]'c c c c c c cb a= - - + -R 11 M M M M I . 

 
Thus, problem [P2b] can be equivalently written as follows 

 min F(Mc ; V̂ , cÛ , câ , cb̂ )   [P2b’] 
 subject to    
 milc  0, 1 }  i=1,…,I,   l=1,…,Cc,   c=1,...,C 

 
1

1
cC

ilc
l

m
=

=å    i=1,…,I   c=1,...,C. 

 
This problem can be solved sequentially for the ith row (i=1,…,I) of 

Mc, by setting 
            milc=1        if F([milc], V̂ , cÛ , câ , cb̂ )  

                  = min{F([mitc], V̂ , cÛ , câ , cb̂ ) : t=1,…,Cc} 

           milc=0        otherwise. 

It has to be observed that in this way it is not guaranteed to find the 
optimal solution of the NP-hard problem [P2b’]. However, the objective 
function never decreases, thus maintaining the monotonicity property of 
the algorithm. 
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Sub-problem c 
 

Problem [P2c], rewritten as problem [P2b’] and solved with respect 
to ac and bc, simply reduces to an ordinary linear regression problem with 
two predictors. The least-squares estimators in closed form are 
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c=1,...,C 
where 

ci
I  denotes the size of the group ic of the cth consensus partition into 

Cc groups. 
It is worth noticing that the estimates câ  and cb̂ , given the current 

estimates of the other parameters, represent, respectively, the average of 
the within-class and between-class residual dissimilarities from Uc related 
to the partition identified by Mc. When the partition is well-defined, (i.e. 
with clusters compact and separated) the constraint cc ba ˆˆ  holds. There-
fore, it is not necessary to impose this constraint because it is sufficient to 
start from a feasible partition where cc ba ˆˆ  , i.e. the average of the within-
class dissimilarities is not greater than the average of the between-class 
dissimilarities. In this way, since in the following step b) a partition is de-
fined by the new cM̂  minimizing the objective function, then at the next 
updating of the levels of fusion, the new values ˆˆ and c ca b  will still reflect 
the compactness and separation of the groups and consequently the con-
straint cc ba ˆˆ   (c=1,…,C). 

Since even in this case the non-negativity constraint is not imposed 
on ac, an appropriate constant can be finally added at the optimal solution 

cP̂ , if necessary, as in problem [P2a’]. 
 

Sub-problem d 

Problem [P2d] can be solved as an assignment problem for each dis-
similarity matrix by assigning Dk (k=1,..,K) to the class Gc where 
 
vkc=1   if { }2 2ˆ ˆ ˆ ˆ|| || min || || 1, ...,:k c c k k l l kw w l C- - = - - =D P U D P U  
vkc=0   otherwise.  
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It has to be noted that, since this assignment problem is solved se-
quentially for the different rows of V, it is not guaranteed to find the global 
optimal solution, but the monotonicity property of the algorithm is as-
sured. 

The final feasible (non-negative) solutions for cÛ  and cP̂ (c=1,...,C)  
can be obtained from the optimal fitted matrices  cÛ  and  cP̂  as explained 
in detail above in the sub-problems a and b by generally increasing the ob-
jective value. Note that when only one of the two fitted matrices has some 
negative entries, infinite solutions can be obtained, giving the same value 
of the objective function.  In this case,  without loss of generality, let  

cÛ  be the optimal pseudo–ultrametric matrix, while cP̂  be the optimal 2-
ultrametric matrix with positive entries for some class c of the secondary 
partition.  Furthermore, let -h<0 and câ >0 be the minimum off-diagonal 
entries of cÛ  and cP̂ , respectively. When h ≤ câ , the optimal objective 
function value  
 

* 2
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does not change if we consider the ultrametric and 2-ultrametric matrices 
with non-negative entries, 
 

)(ˆˆ I11UU  cc         and )(ˆˆ I11PP  cc  

for any α such that h ≤  α ≤ câ , determining infinite solutions correspond-
ing to the infinite values of α. 

This indeterminacy of the solution can be fruitfully exploited by 
choosing the value for α yielding the matrices cÛ  and cP̂  which together 
best account for portions of the original dissimilarities  
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subject to h ≤ α ≤ câ . 
The maximum is attained for ˆˆ ˆorca ha a= = , being the func-

tion (8) a parabola in α limited from above by its constrained maximum 
which corresponds to f(h) or f( câ ).  
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5. Applications 
 

5.1 Analysis of Zoological Data 

 
The well-known Richard Forsyth's (artificial) zoological dataset 

(UCI repository of machine learning databases, Asuncion and Newman 
2007) was analyzed by fitting model (2) in the relevant case of a two-way 
data matrix (K=1). This illustrative application aims to show the relevance 
of fitting multiple classification structures to a single proximity matrix, 
without considering for a moment about multiple proximity matrices. This 
issue will be considered in the second application.   

The dataset includes 101 animals characterized by 15 Boolean 
attributes, measuring some peculiar characteristics in terms of pres-
ence/absence (hair, feathers, eggs, milk, airborne, aquatic, predator, 
toothed, backbone, breathes, venomous, fins, tail, domestic, catsize) and 
one numeric-valued variable for the number of legs (set of values: 
{0,2,4,5,6,8}). The latter has been transformed into 5 binary variables of 
presence/absence of 2, 4, 5, 6, 8 legs, respectively, to avoid a different 
weight in determining the classification. 

A supplementary variable not used in the analysis is also available 
in the database, denoting which of 7 different classes each animal belongs 
to, corresponding to 7 well-known classes (1=mammals, 2=birds, 3= rep-
tiles, 4=fishes, 5=amphibians, 6=insects, 7=molluscs and arthropods). This 
variable was used to better interpret the results of the analysis.  

Such a dataset is appropriate to illustrate our structural classification 
analysis. In fact, different taxonomies (both hierarchical and non-
hierarchical) coexist based on different characteristics of the animals. 

The zoology data set contributed by Richard Forsyth has been used 
extensively (see UCI website for papers citing this data set), usually in a 
classification or pattern recognition context even if it is acknowledged that 
we are not aware of any correct structure (Koivisto and Sood 2004), 
probably because the variables included are not sufficient to exclusively 
classify the animals. So, the 7 classes given are assumed to be the cluster-
ing by biological experts. 

McKenzie and Forsyth (1995) who firstly analyzed the data set note 
that none of the methods were able to classify the reptiles correctly. Rep-
tiles tended to be misclassified as amphibians and fishes.  

Wang, Chaudhari and Patra (2004) analyzed the data set by an un-
supervised algorithm after transforming the numeric variable related to the 
number of legs into binary variables (as we did). They note that, for exam-
ple,  porpoise and dolphin are clustered with terrestrial animals by biology 
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experts, but with other oceanic animals by their method due to the value of 
attributes (hair, feathers, aquatic, fins, tail, leg, etc). The reptiles Pitviper, 
slowworm, tuatara are mixed up with some amphibians toad, newt, frog 
also because of their attributes. 

We firstly analyzed the data set by standard clustering methods.  
In the solution of k-means with c=6 clusters, in the largest group of 

mammals, porpoise and dolphin are not included but they are clustered to-
gether with one reptile (seasnake) and all the fishes. Reptiles and Am-
phibians are put together in the same group.  

In the average linkage solution, different criteria seem to lead the 
hierarchy: the presence of milk, backbone and eggs, but their effects are 
not completely separate.  In fact at level of two clusters we can find the 
gross division between mammals and non-mammals, and at level of three 
clusters the non mammals are divided in vertebrates and invertebrates. 
Then birds are split from the rest of oviparous animals.  

The algorithm proposed here was run on the matrix of the squared 
Euclidean distances computed from the 20 binary variables.  

To investigate the choice of the number of groups of the (primary) 
partition, the algorithm was run by setting the maximum number of groups 
equal to 8 (which is greater than the number of known classes of the sup-
plementary variable) and retaining the best solution in terms of objective 
function value, obtained from 3000 random starts of the algorithm. Since 
the best solution was found having 2 empty groups, we analyzed as effec-
tive solution the one with C=6 non-empty groups.  

For the optimal fitted matrices P̂  and Û , the proportions of the 
sum of squares of the original dissimilarities accounted for are computed:  

  
2 2 2

2 2 2

ˆ ˆ ˆ ˆ|| || || || || ||0.8709 , 0.1188, 1 0.9699.- -
= = - =
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D D D
 

In order to help the reader in the interpretation of the results, we 
have evaluated which of the 20 binary variables were more discriminating 
by a pseudo-F index:  
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where xj is the vector of the j-th variable and B is generally a binary mem-
bership matrix defining a partition. In this case, when considering the re-
sulting  optimal  partition  MB ˆ ,  otherwise,  in  evaluating  the  optimal 
hierarchy,  B   is  the  membership  matrix  corresponding  to  the  partition 
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Figure 1. Optimal hierarchy of the Zoological data (objects are labeled by the categories of 
the supplementary variable). 
 
 
 
 
obtained by cutting the dendrogram at a given height. The pseudo-F index 
accounts for the between-to-within ratio variability due to the partition and 
allows to detect which variables are more discriminant in terms of both 
separation between groups and cohesion within groups.  

Figure 1 displays the dendrogram of the optimal hierarchy resulting 
from the algorithm.  

By cutting the dendrogram at level of two classes emerges the dis-
tinction between the 41 mammals and the remaining 60 animals. In fact, 
the Pseudo-F index detects “milk” as the most relevant variable.  

The partition into 3 groups (Table 1a) is detected by splitting the 
largest class of 60 animals into 2 classes: 31 oviparous breathed non-
toothed animals (including birds, insects, one reptile {tortoise}, and two 
terrestrial molluscs {slug, worm}) and 29 mostly oviparous non-breathed 
toothed animals (including all fishes, amphibians, reptiles and most of the 
molluscs and arthropods), being such partition mainly discriminated by the 
variables “breathes” and “eggs”. 

The partition into 4 classes separates the {scorpion} from the class 
of 29 animals above: in fact, it is the only non-oviparous (but “milk ab-
sent”) animal. 
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Going down along the branches of the dendrogram at the level of 5 
groups the new two classes derive by splitting the class of 31 animals into 
the class of birds (plus {tortoise}) and the class of insects (plus {slug, 
worm}); here the separation is accounted for by the presence/absence of 
both feathers and backbone as pointed out by the Pseudo-F index, too. 

Actually, the hierarchy reflects the well-known taxonomy of the 
animals in agreement with the supplementary information in the dataset 
and provides nested partitions based on the zoological evolutionary tree, 
well interpretable with respect to some discriminating binary variables. 

The analysis of the optimal partition into 6 classes (Table 1b) re-
flects mainly the backbone-related classification of the animals into verte-
brates and invertebrates with the structural features specific of these 
classes:  

 
Class 1 contains 7 tailed (except one) toothed non-flying vertebrates;  
Class 2 includes 2 (non-tailed) primates;  
Class 3 is formed by 56 mostly tailed, mostly toothed non-flying ver-

tebrates; 
Class 4 has 18 tailed non-toothed flying vertebrates; 
Class 5 includes 16 non-tailed (except one), mostly non-flying inverte-

brates  
Class 6 is formed by 2 flying invertebrates.  

Such a partition is well characterized by several features of the ani-
mals (presence/absence of backbone, tail, teeth, wings) as pointed out by 
the Pseudo-F index. 

It is important to note that such a taxonomy is based on features of 
the animals which are different from the ones underlying the hierarchy.  
 
5.2 Analysis of the Kinship Terms Data 
 

As an application of the structural classification analysis of three-
way dissimilarity data the well-known data set analyzed by Rosenberg and 
Kim (1975) has been used, where 85 students were asked to sort the fol-
lowing 15 kinship terms into categories “on the basis of some aspect of 
meaning”: grandfather (GrF), grandmother (GrM), grandson (GrS), grand-
daughter (GrD), brother (Bro), sister (Sis), father (Fat), mother (Mot), son 
(Son), daughter (Dau), nephew (Nep), niece (Nie), uncle (Unc), aunt (Aun) 
and cousin (Cou). 

The students actually described only 39 different partitions of the 15 
kinship terms, 11 of such partitions being provided more than once. There-
fore the frequency of each of these K=39 different “categories” has been 
used as weight wk (k=1,…,39). 

For each of the 39 categories a dissimilarity matrix was defined by 
considering a binary matrix Dk (k=1,…,39) where dijk=1 (respectively, 0) if 
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oi and oj do not belong (respectively belong) to the same observed class of 
kinship terms.  
 
5.2.1 Fitting a Single Partition and a Single Indexed Hierarchy to the Kin-
ship Terms Data  

Model (2) was fitted to the Kinship Terms Data to find both a parti-
tion and an indexed hierarchy able to describe the taxonomy present in the 
data. As far as the choice of the partition is concerned, the algorithm was 
run by varying the number of groups from 2 to 7 and the best solution was 
retained over 100 random starts of the algorithm. The minimum value of 
the objective function was achieved by requiring 6 groups but, since 3 of 
them were empty, actually the proper groups of the partition were the re-
maining three (the corresponding objective function value divided by the 
squared Euclidean norm of matrix D is equal to 0.1321). 

The optimal fitted matrices Û  and P̂  are obtained according to (8) 
by considering the solutions which best account for the sum of the portions 
of the original dissimilarities: 
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In Figures 2(a)2 and 2(b) the consensus partition (represented as a 2-
dendrogram) and the consensus hierarchy are displayed, respectively. They 
represent the best (least-squares) reconstruction of the dissimilarity data by 
two order-constrained matrices, i.e., a 2-ultrametric and an ultrametric ma-
trix.  

The partition (Figure 2(a)) identifies two gender-related classes, plus 
a singleton cluster formed by the gender-ambiguous term “cousin”,  
 Male terms  (GrF, GrS, Bro, Fat, Son, Nep, Unc), 
 Female terms (GrM, GrD, Sis, Mot, Dau, Nie, Aun),  
 Neutral term (Cou). 
______________  
2 To enhance the clarity of the graphical display, the off-diagonal elements of the matrix P 
have been augmented of 0.01 to have the first level of fusion slightly greater than 0.  
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The dendrogram in Figure 2(b) detects, at a high level of fusion 3 
classes:   
   Nuclear family terms        (Mot, Fat, Bro, Sis, Son, Dau);  
   Grands (ie, + 2 generations from ego)      (GrF, GrM, GrS, GrD);  
   Collateral kinship terms       (Aun, Cou, Nie, Nep, Unc),  
 
but at a low level is also evident a gender effect due to pairs of terms de-
noting equivalent relationship, but opposite gender (e.g., Mot/Fat).  

It can be observed that the interpretation of the results derives di-
rectly from the graphical representations (Figure 2).  

In the papers by Gordon and Vichi (1998, 2001) the same data set 
was also analyzed to detect hard and fuzzy consensus partitions of the kin-
ship terms, respectively. In the first analysis, the solution found in case of 
only one class of subjects was: (GrF, GrM), (GrS, GrD), (Bro, Sis), (Fat, 
Mot, Son, Dau), (Nep, Nie), (Unc, Aun, Cou), where both the gender ef-
fect and the closeness of the relationship are present, but not completely 
distinguishable. 

In the second paper, where a fuzzy consensus partition was fitted to 
the same data set, the hard partition, which the consensus partition is clos-
est to, comprises the same three classes: “grands”, “nuclear family” and 
“collateral relatives”, as here in the dendrogram of Figure 2(b). But, in that 
paper it was also noted that “…the methods of analysis also show a “gend-
er” effect essentially because differences in the membership functions 
were found for terms related to different gender”.  

Hubert and Arabie (1994) also analyzed the same data set by fitting 
two models which reconstruct the dissimilarities as approximate sums of 
two Robinson and two circular Robinson matrices, respectively. By cutting 
the two hierarchical structures they find overlapping clusters mostly simi-
lar with the ones we obtain, showing the complexity of the data set and the 
necessity to fit more than one structure to deeply understand the nature of 
the data. Their resulting structures are quite difficult to be interpreted but 
highlight the different ways of judgements of the subjects which can be 
better analyzed only when the subjects are partitioned, too. 

Here, the proposed methodology manages to split the two effects 
(gender and degree of kinship) through the two classification structures, 
emphasizing different aspects present in the data set.  

 
5.2.2. Secondary Partition, Consensus Partitions and Indexed Hierarchies 
for the Kinship Terms Data 
 

In the Kinship Terms Data several authors have observed that dif-
ferent criteria for classifying terms have been defined by the 85 subjects.  

Carroll and Arabie (1983), fitting INDCLUS model to the three-way 
data, detected that more than one criterion was being used and summarized 
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a) Optimal partition  

 

b) Optimal hierarchy  

Figure 2. Rosenberg and Kim Kinship Terms Data. 
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relationships between kinship terms implied by the different criteria. How-
ever this work did not directly identify which subjects were using each cri-
terion. This information is provided by the methodology proposed here 
where the most relevant classification structures are found. 

Problem [P2’] has been solved by using the ALS algorithm illu-
strated in the previous Section and choosing C=3 classes for the secondary 
partition of the set {D1,…,D39}. This choice is consistent with the solution 
given in Gordon and Vichi (1998, 2001), because consensus classifications 
(partitions and hierarchies) in a larger number of classes displayed similar 
patterns. To investigate the choice of the numbers of groups of the primary 
partitions, at first the algorithm was run 300 times by requiring 8 groups 
within each class of occasions, being 8 the maximum number of groups 
indicated by the students. Since the best solution obtained had empty 
groups in some classes of the secondary partition (the non-empty groups 
were 3, 7 and 8, respectively), the algorithm was run again with different 
numbers of groups by taking into account these results and the ones ob-
tained by Gordon and Vichi (1998, 2001). The algorithm was run 100 
times for each different choice of the number of groups (Cc=3,5,8, 
Cc=3,4,8, Cc=3,5,4, Cc=3,5,3) and the best solution in terms of objective 
function was retained which corresponds to Cc =3,5,3 with the objective 
function value divided by the square Euclidean norm of matrix D equal to 
0.0741.  

The optimal fitted matrices cÛ  and cP̂  (c=1,2,3) are obtained ac-
cording to (8) by considering the solutions which best account for the sum 
of the portions of the original dissimilarities: 
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The assignment of the 39 different original partitions to the three 

classes as obtained by the best solution is reported in Table 2. 
It has to be noted that the algorithm frequently stops at local optima 

and to enhance the probability to obtain the optimal  solution,  the  analysis 

145



 D. Vicari and M. Vichi 

Table 2. Assignments of the 85 subjects into three classes whose consensus hierarchies and 
partitions are given in Figure 3. 

 
Class Partition(frequency>1)    Number of 

     subjects 
I 11, 12, 14, 15, 16, 17, 18(2), 19, 21(2), 22, 23, 24, 25(9), 

26(7), 27, 30, 31, 32, 33, 37, 39 
37 

II 1, 2, 3(12), 4, 5, 6, 7, 8(2), 9(5), 10(5), 13(5), 20(2), 28, 29, 
35, 36, 38 

42 

III 34(6) 6 
 

 
 
was repeated starting from different initial random solutions. In practice a 
detailed study was carried out to investigate the possibility that the solu-
tion was locally rather than globally optimal. The algorithm was run from 
other 100 different randomly generated values of V and it still converged 
to the same solution (the starting values for Mc (c=1,2,3) were computed 
as the solutions of the k-means algorithm within each class of the random 
secondary partition). 

The partition in Table 2 coincides with the secondary partition pro-
vided by the algorithm proposed by Gordon and Vichi (1998) where only 
one consensus partition for each class of the secondary partition was fitted. 

Figure 3(a)3 displays the 2-dendrogram corresponding to the con-
sensus partition into 3 groups of the kinship terms within the first class of 
the secondary partition. It refers to the same partition of the terms in Nuc-
lear family terms (Mot, Fat, Bro, Sis, Son, Dau), Grands (GrF, GrM, GrS, 
GrD) and Collateral kinship terms (Aun, Cou, Nie, Nep, Unc), already 
found for C=1 in Section 4. But examining the original 37 partitions pro-
vided by the students belonging to this class, it can be observed that 9 of 
them identify exactly the partition of Figure 3(a) and the remaining stu-
dents considered different criteria to cluster the terms. This information is 
subsumed in the dendrogram of Figure 3(b), which depicts the optimal 
consensus hierarchy fitted in the first class of the secondary partition. At a 
low level of fusion a partition corresponding to a strong gender effect due 
to opposite parallel terms (gender-dyads) is shown. At a higher level of fu-
sion such gender-dyads are grouped together according to a gender-related 
criterion related to generation (senior and junior relatives).  

Gender seems the most relevant criterion that induced a few of the 
85 students to classify the kinship terms. However, as shown further, this 
is not the only one considered by all the subjects. 

______________  
3 To enhance the clarity of the graphical displays of Figure 3, the off-diagonal elements of 
the ultrametric and 2-ultrametric matrices have been augmented of 0.01, to have the first 
levels of fusions slightly greater than 0. 
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a) Consensus 2-dendrogram in class 1  b) Consensus dendrogram in class 1 

c) Consensus 2-dendrogram in class 2  d) Consensus dendrogram in class 2 

e) Consensus 2-dendrogram in class 3 
 
 
Figure 3. Rosenberg and Kim kinship terms data: consensus dendrograms associated to the 
3 classes of the secondary partition of the dissimilarity matrices {D1,…,D39}. 
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The dendrogram in Figure 3(b) has at low levels of fusion the same 
topology of the consensus dendrogram (found for C=1) in Figure 2(b), but 
the higher part of the tree reveals a different pattern followed by the stu-
dents in partitioning the terms. 

Note also that the consensus partition of the 2-dendrogram in Figure 
3(a) is dissimilar to any other partition present in the dendrogram in Figure 
3(b).  

Figures 3(c) and 3(d) refer to the second class of the secondary par-
tition which includes 42 students, but only 17 different partitions provided 
by them. The 2-dendrogram in Figure 3(c) shows again a classification 
based on the relationship (Grands, Core Nuclear family, Core Collateral 
relatives) with the difference that two parallel-gender groups are also indi-
cated: (Bro, Sis) and (Nep, Nie) that these 42 students perceived distinct 
from the whole Nuclear and Collateral groups, respectively. The dendro-
gram in Figure 3(d), which depicts the optimal hierarchy in the second 
class of subjects, mainly identifies dyads different from those in Figure 
3(b), because they are formed by the terms that within the same gender re-
flect a type of reciprocity where one type of kin must exist to define the 
second (e.g., Aun/Nie; Fat/Son).  

The third class of dissimilarity matrices is a singleton formed by 
matrix D34, which has frequency 6. Since in this application each dissimi-
larity matrix defines a partition by construction (each student was asked to 
provide a partition), in this case D34pU (cone of the 2-ultrametrics) and 
the consensus hierarchy collapses into a partition defined by matrix D34 
itself. Such partition is reported as a 2-dendrogram in Figure 3(e). In this 
case the consensus partition and hierarchy are coincident and it is suffi-
cient to show only a unique consensus classification. 

Figure 3(e) shows the same gender-related consensus partition 
found for C=1 in Section 4, discriminating between female and male kin-
ship terms, and leaving alone the gender ambiguous term “Cousin”.  

The results confirm the presence of underlying dimensions (Meul-
man and Heiser 2004) related to gender, generation and degree of separa-
tion of each of the terms but it is more evident here how these aspects play 
roles within each class of subjects. 
 

6. A Simulation Study 
 

A Monte Carlo experiment was performed to test how well the algo-
rithm for the structural classification analysis of three-way dissimilarity 
data performs. A number of data sets (K = 20,50) of dissimilarities pertain-
ing to I=20 objects were generated as in model (4) by setting C=2. Each 
occasion was drawn from one of two different multivariate normal distri-
butions, according to random binary membership matrices (matrix V). 

148



Structural Classification Analysis 

Such two multinormal distributions had mean vectors c (c=1,2) and cova-
riance matrices hdiag(c)2, (h=0.5, 1, 1.5, 2) where the constant h allowed 
to set different error levels in terms of the coefficients of variation of each 
dimension. The mean vector g was set by half vectorizing (i.e. by vecto-
rizing only the lower triangular part of) matrix c = Pc + Uc (c=1,2) where 
Pc and Uc (c=1,2) were generated as follows. In order to obtain well sepa-
rated groups of objects in defining Pc, a data matrix was randomly gener-
ated following the procedure proposed by Milligan and Cooper (1985). 
The membership matrix Mc and two levels ac and bc forming Pc were de-
rived by setting C1=2 and C2=3 groups of objects for c=1, 2, respectively4. 

The same generating process of Milligan and Cooper was used to 
have a data matrix with well-separated nested groups of objects on which 
the group average link clustering was applied providing the ultrametric 
matrix Uc. 

The model was fitted to each dissimilarity data set, by using as input 
the true underlying number of classes (C=2) for the secondary partition 
and the true numbers of groups (C1=2 and C2=3, respectively) for the con-
sensus primary partitions of objects. 

In each analysis, we chose as initialization for the binary member-
ship matrix of the secondary partition V, the solution of the k-means algo-
rithm (McQueen 1967), applied to the (KXI(I-1)/2) matrix whose rows are 
the vectors containing the generated dissimilarities The starting values for 
Mc (c=1,2) were computed as the solutions of the k-means algorithm with-
in each class of the random starting secondary partition. Consequently, the 
computation of the starting values for ac and bc (c=1,2) follow.  

The performance of the method has been evaluated by using the fol-
lowing measures.  

 
 MRand(V, V̂ ): Modified Rand Index (Hubert and Arabie 1985) 

between true and fitted membership matrices of the secondary par-
tition; 

 MRand(Mc, cM̂ ): Modified Rand Index between true and fitted 
membership matrices of the primary partitions; 

 Coph(Uc, cÛ ): Cophenetic Coefficient (Sokal and Rohlf 1962) be-
tween true and fitted ultrametric matrices of the primary classifica-
tions; 

 VAF (Variance Accounted For) between true and fitted dissimilari-
ty values. 

 
The number of iterations before convergence has also been recorded.  

______________ 
4 In particular, (I x 5) data matrices were generated following the generating process by 
Milligan and Cooper (1985) by setting the parameters rd=0.01 and rad=2. 
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The best solution in terms of objective function in a number of dif-
ferent runs of the algorithm was retained to prevent from falling in local 
optima due to the starting solutions.  

A preliminary simulation was performed just to investigate the in-
fluence of the starting solution on the recovery of the true classification 
structures in case of no error (h=0 in the covariance matrices). The num-
bers of occasions and objects were set to 50 and 20, respectively and the 
averages of the performance measures were computed in 100 replications, 
by retaining in each replication the best solution in 5, 10, 15, 20, 50 runs of 
the algorithm, respectively.  

Table 3 displays the results of the first simulation experiment: the 
averages of the performance measures show a significant improvement 
when the best solution is retained in an increasing number of runs. The 
improvement is particularly evident in the recovery of the true primary 
partitions measured in terms of MRand index. Furthermore, from a de-
tailed analysis of all the results it turns out that when the number of runs is 
50, actually only one case over 100 fails in recovering the true structure. A 
very good performance is reached already when the optimal solution is re-
tained over 20 runs of the algorithm. Thus, in the following simulation this 
value has been considered to retain the best solution when the algorithm 
has been run with different error levels and number of occasions.  

In the second simulation experiment for each of the 2 (numbers of 
occasions) x 4 (error levels) factors, 100 data sets were constructed, giving 
a total of 800 data sets. The algorithm ran 16000 times in total. 

Table 4 displays the outcomes of the simulation experiment: for all 
conditions, the averages of the indices over all replications are given, 
which exhibit a good performance of the algorithm, even when the error 
level is quite high. The performance is better, as expected, when the num-
ber of occasions is higher, since a large amount of information is available 
to fit the model.  
 

7. Discussion 
 

Dissimilarity data observed or computed on a set of I multivariate 
objects are frequently analyzed by cluster analysis techniques that fit a 
unique theoretical structure of classification (e.g., partition, hierarchy, 
covering) to the dissimilarity matrix. 

It can be noted that each single variable describing the objects de-
termines a dissimilarity matrix which is a part of the whole dissimilarity 
matrix relative to all variables. However, a dissimilarity matrix associated 
to a single variable may induce a classification different from the one ob-
tained on the entire set of variables and, consequently, a classification of a 
set of multivariate objects can be seen as a consensus classification of 
those obtained by different variables describing the same objects.  
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Table 3. Results of the first simulation experiment. The averages are computed over 100 
runs of the algorithm. 

 
 
 

Number of 
runs to re-

tain the 
best solu-

tion 

 
Average  
MRand  

(Secondary 
Partition) 

 
Average  
MRand  

(Primary 
Partition) 
in Class 1 

 
Average 
MRand 

(Primary
Partition)
in Class 2

Average 
Cophenetic 
Coefficient
(Primary 

Hierarchy)
in Class 1

Average 
Cophenetic 
Coefficient
(Primary 

Hierarchy)
in Class 2

 
 

Average 
VAF 

 
Average  

number of 
iterations 

5 1 0.9057 0.8892 0.9762 0.9655 0.9838 22.74 

10 1 0.9512 0.9565 0.9906 0.9818 0.9843 23.53 

15 1 0.9834 0.9683 0.9942 0.9866 0.9848 21.75 

20 1 0.9930 0.9784 0.9970 0.9898 0.9842 21.47 

50 1 0.9974 0.9960 0.9987 0.9977 0.9846 22.16 

 

Number of 
runs to re-

tain the 
best solu-

tion 

 

Number of times when the measures are equal to >0.99 

5 100 81 72 81 73 18  

10 100 91 89 91 89 15  

15 100 97 92 97 92 26  

20 100 99 95 99 95 21  

50 100 99 99 99 99 18  

 

Number of 
runs to re-

tain the 
best solu-

tion 

 

Number of times when the measures are > 0.98 

5 100 81 72 81 73 82  

10 100 91 89 91 89 76  

15 100 97 92 97 92 76  

20 100 99 95 99 95 74  

50 100 99 99 99 99 75  
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Table 4. Results of the second simulation experiment. The averages are computed over 100 
runs of the algorithm. 
 

 
Number 

of  
Occa-
sions 

 
Error 
Levels 

 
Average 
MRand  

(Secondary 
Partition)

 
Average  
MRand  

(Primary 
Partition) 
in Class 1 

 
Average 
MRand  

(Primary
Partition)
in Class 2

Average  
Cophenetic 
Coefficient
(Primary 

Hierarchy)
in Class 1

Average  
Cophenetic  
Coefficient 
(Primary 

Hierarchy) 
in Class 2 

 
 

Aver-
age  
VAF 

 
Average 
number 

of  
itera-
tions 

 

 

20 

0.5 0.9537 0.8980 0.7002 0.9600 0.8690 0.6642 17.22 

1 0.6193 0.7281 0.7538 0.8282 0.3769 0.4936 14.90 

1.5 0.5193 0.6373 0.6662 0.6199 0.3101 0.3931 12.77 

2 0.4594 0.6158 0.6309 0.4904 0.2646 0.3322 11.33 

 

 

50 

0.5 0.9836 0.9868 0.9650 0.9951 0.9832 0.6588 22.33 

1 0.8887 0.9263 0.8135 0.9772 0.9116 0.4984 20.87 

1.5 0.7148 0.8604 0.7654 0.9460 0.6305 0.3982 18.51 

2 0.5929 0.7543 0.7855 0.8782 0.3870 0.3290 15.41 

 
 
 

Moreover, variables describing the objects explain different aspects 
and frequently define very different classifications of the objects when 
taken alone. In this situation a single theoretical classification is not suffi-
cient to describe the taxonomic information present in the data and we 
suppose that the most relevant classification structures have to be detected.  

Furthermore, since we deal with more complex data (three-way dis-
similarity data) a more flexible technique of classification is required to 
account also for the heterogeneity along the different occasions (Gordon 
and Vichi 1998; Vichi 1999), by partitioning the set of dissimilarity ma-
trices {D1,…,DK} into disjoint classes with similar classification structure 
that can be properly summarized by a consensus classification.  

Here we suppose that such a consensus classification is defined by 
the sum of two order-constrained distance matrices representing, respec-
tively, a hierarchy and a partition. 

The model proposed detects a partition of occasions and, within 
each of such classes, it fits two constrained distance matrices. The algo-
rithm is based on successive residualizations of the given three-way data 
matrix: within each class of occasions, one matrix is fitted, obtaining the 
residual dissimilarities from it and then the second matrix is fitted to these 
residuals. The two steps are alternated and iterated until convergence. 

Obviously, within each class of the secondary partition, a sum of 
more than two order-constrained matrices (even of the same type) could be 
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fitted to the three-way dissimilarity matrix. The ALS algorithm here pro-
posed could be easily generalized by considering several constrained dis-
tance matrices corresponding to different classification structures and tak-
ing into account, even in this case, the possible occurrence of nested struc-
tures.  

Since the proposed algorithm overcomes the efficiency problems of 
a standard quadratic problem by relaxing the positiveness-constraint on the 
matrices P and U, the ALS procedure can be generally used in other con-
texts where efficient alternative approaches are not available. 

The proposed methodology can be applied even for large data sets, 
(in terms of both objects and occasions) because the coordinate descent al-
gorithm presented in this paper includes: the partitioning step d (step b) for 
the occasions (objects), which is solved as an assignment problem in linear 
time (and two simple linear regressions); the hierarchical step a, which is 
solved by carrying out the UPGMA clustering in time complexity 
O(I2log(I)). 

However, when the number of objects is large, even in the simplest 
case of a two-way dissimilarity matrix, that is, a three-way dissimilarity 
matrix with a single occasion, the resulting indexed hierarchy often be-
comes hard to interpret (even though recently more and more used as for 
example in a microarray data context). 
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