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1. Introduction

A cluster is a set of data points that are similar, in some sense, and
clustering is a process of partitioning a data set into disjoint clusters.

Clustering is a basic tool in statistics and machine learning, and has
been applied in pattern recognition, medical diagnostics, data mining, biol-
ogy, finance and other areas.

We take data points to be vectors x = (x1, . . . , xn) ∈ R
n, and inter-

pret “similar” as “close”, in terms of a distance function d(x,y) in R
n, such

as
d(x,y) = ‖x − y‖, ∀x,y ∈ R

n, (1)

where the norm ‖ · ‖ is elliptic, defined for u = (ui) by

‖u‖ = 〈u, Qu〉1/2, (2)

with 〈·, ·〉 the standard inner product, and Q a positive definite matrix. In
particular, Q = I gives the Euclidean norm,

‖u‖ = 〈u,u〉1/2, (3)

and the Mahalanobis distance corresponds to Q = Σ−1, where Σ is the
covariance matrix of the data involved.

Example 1. A data set in R
2 with N = 200 data points is shown in Figure 1.

The data was simulated, from normal distributions N(µi, Σi), with:

µ1 = (0, 0), Σ1 =
(

0.1 0
0 1

)
, (100 points) ,

µ2 = (3, 0), Σ2 =
(

1 0
0 0.1

)
, (100 points) .

This data will serve to illustrate Examples 2–5 below.

The clustering problem is, given a dataset D consisting of N data
points

{x1, x2, . . . ,xN} ⊂ R
n,

and an integer K, 1<K <N , to partition D into K clusters C1, . . . , CK .
Data points are assigned to clusters using a clustering criterion. In

distance clustering, abbreviated d–clustering, the clustering criterion is met-
ric: With each cluster Ck we associate a center ck, for example its centroid,
and each data point is assigned to the cluster to whose center it is the near-
est. After each such assignment, the cluster centers may change, resulting in
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Figure 1. A data set in R
2

re–assignments. Such an algorithm will therefore iterate between updating
the centers and re–assignments.

A commonly used clustering criterion is the sum–of–squares of Euclid-
ean distances,

K∑
k=1

∑
xi∈Ck

‖ xi − ck ‖2, (4)

to be minimized by the sought clusters C1, . . . , CK . The well known k–
means clustering algorithm (Hartigan 1975) uses this criterion.

In probabilistic clustering the assignment of points to clusters is “soft”,
in the sense that the membership of a data point x in a cluster Ck is given as a
probability, denoted by pk(x). These are subjective probabilities, indicating
strength of belief in the event in question.

Let a distance function
dk( · , · ) (5)

be defined for each cluster Ck. These distance functions are, in general,
different from one cluster to another. For each data point x ∈ D, we then
compute:

• the distance dk(x, ck), also denoted by dk(x) (since dk is used only for
distances from ck), or just dk if x is understood, and

• a probability that x is a member of Ck, denoted by pk(x), or just pk.

Various relations between probabilities and distances can be assumed,
resulting in different ways of clustering the data. In our experience, the fol-
lowing assumption has proved useful: For any point x, and all k = 1, · · · , K

pk(x) dk(x) = constant, depending on x .
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This model is our working principle in what follows, and the basis of
the probabilistic d–clustering approach of Section 2.

The above principle owes its versatility to the different ways of choos-
ing the distances dk(·). It is also natural to consider increasing functions of
such distances, and one useful choice is

pk(x)edk(x) = constant, depending on x ,

giving the probabilistic exponential d–clustering approach of Section 3.
The probabilistic d–clustering algorithm is presented in Section 4. It

is a generalization, to several centers, of the Weizsfeld method for solv-
ing the Fermat–Weber location problem, see Section 2.5, and convergence
follows as in Kuhn (1973). The updates of the centers use an extremal prin-
ciple, described in Section 2.3. The progress of the algorithm is monitored
by the joint distance function, a distance function that captures the data in
its low contours, see Section 2.2. The centers updated by the algorithm are
stationary points of the joint distance function.

The paper concludes with a small example, Section 5, analyzing the
liberal–conservative divide of the U.S. Supreme Court.

For other approaches to probabilistic clustering see the surveys in
Höppner, Klawonn, Kruse, and Runkler (1999), Tan, Steinbach, and Ku-
mar (2006), and the seminal article by Teboulle (2007) unifying clustering
methods in the framework of modern optimization theory.

2. Probabilistic D–Clustering

There are several ways to model the relationship between distances
and probabilities. The simplest model, and our working principle (or ax-
iom), is the following:

Principle 1. For each x ∈ D, and each cluster Ck,

pk(x) dk(x) = constant, depending on x . (6)

Cluster membership is thus more probable the closer the data point
is to the cluster center. Note that the constant in (6) is independent of the
cluster k.

2.1 Probabilities

From Principle 1, and the fact that probabilities add to one, we get

Theorem 1. Let the cluster centers {c1, c2, . . . , cK} be given, let x be a
data point, and let {dk(x) : k = 1, . . . , K} be its distances from the given
centers. Then the membership probabilities of x are
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pk(x) =

∏
j �=k

dj(x)

K∑
t=1

∏
j �=t

dj(x)
, k = 1, . . . , K. (7)

Proof. Using (6) we write for t, k

pt(x) =
(

pk(x)dk(x)
dt(x)

)
.

Since
K∑

t=1
pt(x) = 1,

pk(x)
K∑

t=1

(
dk(x)
dt(x)

)
= 1.

∴ pk(x) =
1

K∑
t=1

(
dk(x)
dt(x)

) =

∏
j �=k

dj(x)

K∑
t=1

∏
j �=t

dj(x)
.

�

In particular, for K = 2,

p1(x) =
d2(x)

d1(x) + d2(x)
, p2(x) =

d1(x)
d1(x) + d2(x)

, (8)

and for K = 3,

p1(x) =
d2(x)d3(x)

d1(x)d2(x) + d1(x)d3(x) + d2(x)d3(x)
, etc. (9)

Note: See Heiser (2004) for related work in a different context. In particular,
our equation (8) is closely related to equation (5) in Heiser.

2.2 The Joint Distance Function

We denote the constant in (6) by D(x), a function of x. Then

pk(x) =
D(x)
dk(x)

, k = 1, . . . , K.
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Since the probabilities add to one we get,

D(x) =

K∏
k=1

dk(x, ck)

K∑
t=1

∏
j �=t

dj(x, cj)
. (10)

The function D(x), called the joint distance function (abbreviated
JDF) of x, has the dimension of distance, and measures the distance of x
from all cluster centers. Here are special cases of (10), for K = 2,

D(x) =
d1(x) d2(x)

d1(x) + d2(x)
, (11)

and for K = 3,

D(x) =
d1(x) d2(x) d3(x)

d1(x) d2(x) + d1(x) d3(x) + d2(x) d3(x)
. (12)

The JDF of the whole data set D is the sum of (10) over all points,
and is a function of the K cluster centers, say,

F (c1, c2, · · · , cK) =
N∑

i=1

K∏
k=1

dk(xi, ck)

K∑
t=1

∏
j �=t

dj(xi, cj)
. (13)

Example 2. Figure 2 shows level sets of the JDF (11), with Mahalanobis
distances

dk(x, ck) =
√

(x − ck)T Σ−1
k (x − ck) , (14)

c1 = µ1, c2 = µ2, and Σ1, Σ2 as in Example 1.

Notes:
(a) The JDF D(x) of (10) is a measure of the classifiability of the point x in
question. It is zero if and only if x coincides with one of the cluster centers,
in which case x belongs to that cluster with probability 1. If all the distances
dk(x, ck) are equal, say equal to d, then D(x) = d/k and all pk(x) = 1/K,
showing indifference between the clusters. As the distances dk(x) increase,
so does D(x), indicating greater uncertainty about the cluster where x be-
longs.
(b) The JDF (10) is, up to a constant, the harmonic mean of the distances in-
volved, see Arav (2008) for an elucidation of the role of the harmonic mean
in contour approximation of data. A related concept in ecology is the home
range, shown in Dixon and Chapman (1980) to be the harmonic mean of the
area moments in question.
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Figure 2. Level sets of a joint distance function

2.3 An Extremal Principle

For simplicity consider the case of two clusters (the results are easily
extended to the general case.)

Let x be a given data point with distances d1(x), d2(x) to the cluster
centers. Then the probabilities in (8) are the optimal solutions p1, p2 of the
extremal problem

Minimize d1(x) p2
1 + d2(x) p2

2 (15)

subject to p1 + p2 = 1
p1, p2 ≥ 0

Indeed, the Lagrangian of this problem is

L(p1, p2, λ) = d1(x) p2
1 + d2(x) p2

2 − λ(p1 + p2 − 1) (16)

and setting the partial derivatives (with respect to p1, p2) equal to zero gives
the principle (6),

p1 d1(x) = p2 d2(x) .

Substituting the probabilities (8) in the Lagrangian (16) we get the
optimal value of (15),

L∗(p1(x), p2(x), λ) =
d1(x) d2(x)

d1(x) + d2(x)
, (17)

which is the JDF (11) again.
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The extremal problem for a data set D = {x1, x2, . . . , xN} ⊂ R
n

is, accordingly,

Minimize
N∑

i=1

(
d1(xi) p1(xi)2 + d2(xi) p2(xi)2

)
(18)

subject to p1(xi) + p2(xi) = 1,

p1(xi), p2(xi) ≥ 0, i = 1, . . . , N.

This problem separates into N problems like (15), and its optimal value is

N∑
i=1

d1(xi) d2(xi)
d1(xi) + d2(xi)

(19)

the JDF (13) of the data set, with K = 2.

Note: The explanation for the strange appearance of “probabilities squared”
above, is that (15) is a smoothed version of the “real” clustering problem,
namely,

min {d1, d2},
which is nonsmooth, see Teboulle (2007) for a unified development of smoothed
clustering methods.

2.4 Centers

We write (18) as a function of the cluster centers c1, c2,

f(c1, c2) =
N∑

i=1

(
d1(xi, c1) p1(xi)2 + d2(xi, c2) p2(xi)2

)
. (20)

If a point xi coincides with a center, say xi = c1, then d1(xi) =
0, p1(xi) = 1 and p2(xi) = 0. This point contributes zero to the summation.

For the special case of Euclidean distances, the minimizers of (20)
assume a simple form as convex combinations of the data points.

Theorem 2. Let the distance functions d1, d2 in (20) be Euclidean,

dk(x, ck) = ‖x − ck‖ , k = 1, 2 , (21)

so that

f(c1, c2) =
∑

i=1,...,N

(‖xi − c1‖ p1(xi)2 + ‖xi − c2‖ p2(xi)2
)

, (22)
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and let the probabilities be given for i = 1, . . . , N . We make the following
assumption about the minimizers c1, c2 of (22):

c1, c2 do not coincide with any of the points xi, i = 1, . . . , N . (23)

Then the minimizers c1, c2 are given by

ck =
∑

i=1,...,N

⎛
⎜⎝ uk(xi)∑

j=1,...,N

uk(xj)

⎞
⎟⎠xi , (24)

where

uk(xi) =
pk(xi)2

dk(xi, ck)
, (25)

for k = 1, 2, or equivalently, using (8),

u1(xi) =
d2(xi, c2)2

d1(xi, c1) (d1(xi, c1) + d2(xi, c2))2
,

u2(xi) =
d1(xi, c1)2

d2(xi, c2) (d1(xi, c1) + d2(xi, c2))2
. (26)

Proof. The gradient of d(x, c) = ‖x − c‖ with respect to c is, for x �= c,

∇c ‖x − c‖ = − x − c
‖x − c‖ = − x − c

d(x, c)
. (27)

By Assumption (23), the gradient of (22) with respect to ck is

∇ck
f(c1, c2) = −

∑
i=1,...,N

xi − ck

‖xi − ck‖ pk(xi)2

= −
∑

i=1,...,N

xi − ck

dk(xi, ck)
pk(xi)2 , k = 1, 2 .

(28)

Setting the gradient equal to zero, and summing like terms, we get

∑
i=1,...,N

(
pk(xi)2

dk(xi, ck)

)
xi =

⎛
⎝ ∑

i=1,...,N

pk(xi)2

dk(xi, ck)

⎞
⎠ ck , (29)

proving (24)–(26).

�

The same formulas for the centers c1, c2 hold if the norm used in (22)
is elliptic.
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Corollary 1. Let the distance functions d1, d2 in (20) be elliptic,

dk(x, ck) = 〈(x − ck), Qk(x − ck)〉1/2 , (30)

with positive–definite matrices Qk. Then the minimizers c1, c2 of (20) are
given by (24)–(26).

Proof. The gradient of d(x, c) = 〈(x − c), Q(x − c)〉1/2 with respect to c
is, for x �= c,

∇c d(x, c) = −Q(x − c)
d(x, c)

.

Therefore the analog of (28) is

∇ck
f(c1, c2) = −Qk

∑
i=1,...,N

xi − ck

dk(xi, ck)
pk(xi)2 , (31)

and since Qk is nonsingular, it can be “cancelled” when we set the gradient
equal to zero. The rest of the proof is as in Theorem 2.
�

Corollary 1 applies, in particular, to the Mahalanobis distance (14)

dk(x, ck) =
√

(x − ck)T Σ−1
k (x − ck) ,

where Σk is the covariance matrix of the cluster Ck.
The formulas (24)–(25) are also valid in the general case of K clus-

ters, where the analog of (20) is

f(c1, c2, · · · , cK) =
∑

i=1,...,N

K∑
k=1

dk(xi, ck) pk(xi)2 . (32)

Corollary 2. Let the distance functions dk in (32) be elliptic, as in (30), and
let the probabilities pk(xi) be given. Then the minimizers c1, c2, · · · , cK of
(32) are given by (24)–(25) for k = 1, 2, · · · , K.

Proof. The proof of Corollary 1 holds in the general case, since the mini-
mizers are calculated separately.
�

2.5 The Weiszfeld Method

In the case of one cluster (where the probabilities are all 1 and there-
fore of no interest) the center formulas (24)–(25) reduce to

c =
∑

i=1,...,N

⎛
⎜⎝ 1/d(xi, c)∑

j=1,...,N

1/d(xj , c)

⎞
⎟⎠xi , (33)
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giving the minimizer of f(c) =
N∑

i=1
d(xi, c). Formula (33) can be used

iteratively to update the center c (on the left) as a convex combination of
the points xi with weights depending on the current center. This iteration
is the Weiszfeld method (Weiszfeld 1937) for solving the Fermat–Weber
location problem, see Weiszfeld (1937), and Love, Morris, and Wesolowsky
(1988). Convergence of Weiszfeld’s method was established in Kuhn (1973)
by modifying the gradient ∇f(c) so that it is always defined, see Ostresh
(1978) for further details. However, the modification is not carried out in
practice since, as shown by Kuhn, the set of initial points c for which it ever
becomes necessary is denumerable.

In what follows we use the formulas (24)–(25) iteratively to update
the centers. Convergence can be proved by adapting the arguments of Kuhn
(1973), but as there it requires no special steps in practice.

2.6 The Centers and the Joint Distance Function

The centers given by (24)–(25) are related to the JDF (13) of the data
set. Consider first the case of K = 2 clusters, where (13) reduces to

F (c1, c2) =
N∑

i=1

d1(xi, c1) d2(xi, c2)
d1(xi, c1) + d2(xi, c2)

. (34)

The points ck where ∇ck
F (c1, c2) = 0, k = 1, 2, are called stationary

points of (34).

Theorem 3. Let the distances d1, d2 in (34) be elliptic, as in (30). Then the
stationary points of F (c1, c2) are given by (24)–(26).

Proof. Let the distances dk be Euclidean, dk(x) = ‖x− ck‖. It is enough to
prove the theorem for one center, say c1. Using (27) we derive

∇c1 F (c1, c2) =

N∑
i=1

(d1(xi) + d2(xi)) d2(xi)
(
−xi − c1

d1(xi)

)
+ d1(xi) d2(xi)

(
xi − c1

d1(xi)

)
(d1(xi) + d2(xi))2

=
N∑

i=1

−d2(xi)2 (xi − c1)
d1(xi) (d1(xi) + d2(xi))2

. (35)
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Setting (35) equal to zero, and summing like terms, we get⎛
⎝ N∑

j=1

d2(xj)2

d1(xj) (d1(xj) + d2(xj))2

⎞
⎠ c1 =

N∑
i=1

(
d2(xi)2

d1(xi) (d1(xi) + d2(xi))2

)
xi ,

duplicating (24)–(26). If the distances are elliptic, as in (30), then the analog
of (35) is,

∇c1 F (c1, c2) =
N∑

i=1

−d2(xi)2 Q1 (xi − c1)
d1(xi) (d1(xi) + d2(xi))2

and since Q1 is nonsingular, it can be “cancelled” when the gradient is set
equal to zero.
�

In the above proof the stationary points c1, c2 are calculated sepa-
rately, and the calculation does not depend on there being 2 clusters. We
thus have:

Corollary 3. Consider a data set with K clusters, and elliptic distances
dk. Then the stationary points of the JDF (13) are the centers ck given by
(24)–(25).

Note: The JDF (10) is zero exactly at the K centers {ck}, and is positive
elsewhere. These centers are therefore the global minimizers of (10). How-
ever, the function (10) is not convex, not even quasi–convex, and may have
other stationary points, that are necessarily saddle points.

2.7 Why d and Not d2?

The extremal principle (18), which is the basis of our work, is linear
in the distances dk,

Minimize
∑

k

dk p2
k.

We refer to this as the d–model.
In clustering, and statistics in general, it is customary to use the dis-

tances squared in the objective function,

Minimize
∑

k

d2
k.

We call this the d2–model.
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The d2–model has a long tradition, dating back to Gauss, and is en-
dowed with a rich statistical theory. There are geometrical advantages (Pytha-
goras Theorem), as well as analytical (linear derivatives).

The d–model is suggested by the analogy between clustering and lo-
cation problems, where sums of distances (not distances squared) are mini-
mized. Our center formulas (24)–(25) are thus generalizations of the Weisz-
feld Method to several facilities, see Section 2.5.

An advantage of the d–model is its robustness. Indeed the formula
(25), which does not follow from the d2–model, guarantees that outliers will
not affect the center locations.

2.8 Other Principles

There are alternative ways of modelling the relations between dis-
tances and probabilities. For example:

Principle 2. For each x ∈ D, and each cluster Ck, the probability pk =
pk(x) and distance dk = dk(x) are related by

pα
k dβ

k = constant, depending on x . (36)

where the exponents α, β are positive.

For the case of 2 clusters we get, by analogy with (8) and (18) respec-
tively, the probabilities

p1(x) =
d2(x)β/α

d1(x)β/α + d2(x)β/α
, p2(x) =

d1(x)β/α

d1(x)β/α + d2(x)β/α
, (37)

and an extremal principle,

Minimize
N∑

i=1

(
d1(xi)β p1(i)α+1 + d2(xi)β p2(i)α+1

)
(38)

subject to p1(i) + p2(i) = 1
p1(i), p2(i) ≥ 0

where p1(i), p2(i) are the cluster probabilities at xi.
The Fuzzy Clustering Method (Bezdek 1973, Bezdek 1981), which is

an extension of k-means method, uses β = 2 and allows different choices
of α. For α = 2, it gives the same probabilities as (7), however the center
updates are different than (24)–(25).
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3. Probabilistic Exponential D–Clustering

Any increasing function of the distance can be used in Principle 1.
The following model, with probabilities decaying exponentially as distances
increase, has proved useful in our experience.

Principle 3. For each x ∈ D, and each cluster Ck, the probability pk(x)
and distance dk(x) are related by

pk(x) edk(x) = E(x), a constant depending on x . (39)

Most results of Section 2 hold also for Principle 3, with the distance dk(x)
replaced by edk(x). Thus the analog of the probabilities (8) is

p1(x) =
ed2(x)

ed1(x) + ed2(x)
, p2(x) =

ed1(x)

ed1(x) + ed2(x)
, (40)

or equivalently

p1(x) =
e−d1(x)

e−d1(x) + e−d2(x)
, p2(x) =

e−d2(x)

e−d1(x) + e−d2(x)
. (41)

Similarly, since the probabilities add to 1, the constant in (39) is

E(x) =
ed1(x)+d2(x)

ed1(x) + ed2(x)
, (42)

called the exponential JDF.

3.1 An Extremal Principle

The probabilities (40) are the optimal solutions of the problem

min
p1,p2

{
ed1p2

1 + ed2p2
2 : p1 + p2 = 1 , p1, p2 ≥ 0

}
, (43)

whose optimal value, obtained by substituting the probabilities (40), is again
the exponential JDF (42).

The extremal problem for a data set D = {x1, x2, . . . , xN} ⊂ R
n,

partitioned into 2 clusters, is the following analog of (18)

Minimize
N∑

i=1

(
ed1(xi) p1(i)2 + ed2(xi) p2(i)2

)
(44)

subject to p1(i) + p2(i) = 1
p1(i), p2(i) ≥ 0
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where p1(i), p2(i) are the cluster probabilities at xi. The problem separates
into N problems like (43), and its optimal value is

N∑
i=1

ed1(xi)+d2(xi)

ed1(xi) + ed2(xi)
, (45)

the exponential JDF of the whole data set.
Alternatively, (39) follows from the “smoothed” extremal principle

min
p1,p2

{
2∑

k=1

pk dk +
2∑

k=1

pk log pk : p1 + p2 = 1 , p1, p2 ≥ 0

}
, (46)

obtained by adding an entropy term to
∑

pk dk. Indeed the Lagrangian of
(46) is

L(p1, p2, λ) =
2∑

k=1

pk dk +
2∑

k=1

pk log pk − λ (p1 + p2 − 1) .

Differentiation with respect to pk, and equating to 0, gives

dk + 1 + log pk − λ = 0

which is (39).

3.2 Centers

We write (44) as a function of the cluster centers c1, c2,

f(c1, c2) =
N∑

i=1

(
ed1(xi,c1) p1(xi)2 + ed2(xi,c2) p2(xi)2

)
(47)

and for elliptic distances we can verify, as in Theorem 2, that the minimizers
of (47) are given by,

ck =
N∑
i=1

⎛
⎜⎜⎜⎝ uk(xi)

N∑
j=1

uk(xj)

⎞
⎟⎟⎟⎠xi , (48)

where (compare with (25)),

uk(xi) =
pk(xi)2 edk(xi)

dk(xi)
, (49)
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or equivalently,

u1(xi) =
e−d1(xi)/d1(xi)

(e−d1(xi) + e−d2(xi))2
, u2(xi) =

e−d2(xi)/d2(xi)
(e−d1(xi) + e−d2(xi))2

.

(50)

As in Theorem 3, these minimizers are the stationary points of the JDF,
given here as

F (c1, c2) =
N∑

i=1

ed1(xi,c1)+d2(xi,c2)

ed1(xi,c1) + ed2(xi,c2)
. (51)

Finally we can verify, as in Corollary 2, that the results hold in the general
case of K clusters.

4. A Probabilistic D–clustering Algorithm

The ideas of Sections 2–3 are implemented in the following algorithm
for unsupervised clustering of data. A schematic description, presented – for
simplicity – for the case of 2 clusters, follows.

Initialization: given data D, any two points c1, c2, and ε > 0
Iteration:

Step 1 compute distances d1(x), d2(x) for all x ∈ D
Step 2 update the centers c+

1 , c+
2

Step 3 if ‖c+
1 − c1‖ + ‖c+

2 − c2‖ < ε stop
return to step 1

The algorithm iterates between the cluster centers, (24) or (48), and
the distances of the data points to these centers. The cluster probabilities,
(8) or (40), are not used explicitly.

Notes:
(a) The distance used in Step 1 can be Euclidean or elliptic (the formulas
(24)–(26), and (48)–(50), are valid in both cases.)

(b) In Step 2, the centers are updated by (24)–(26) if Principle 1 is used, and
by (48)–(50) for Principle 3.

(c) In particular, if the Mahalanobis distance (14)

d(x, ck) =
√

(x − ck)T Σ−1
k (x − ck)

is used, the covariance matrix Σk of the k th–cluster, can be estimated at each
iteration by
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Σk =

N∑
i=1

uk(xi)(xi − ck)(xi − ck)T

N∑
i=1

uk(xi)
(52)

with uk(xi) given by (26) or (50).
(d) The computations stop (in Step 3) when the centers stop moving, at
which point the cluster membership probabilities may be computed by (8)
or (40). These probabilities are not needed in the algorithm, but may be used
for classifying the data points, after the cluster centers have been computed.

(e) Using the arguments of Kuhn (1973) it can be shown that the objective
function (32) decreases at each iteration, and the Algorithm converges.

(f) The cluster centers and distance functions change at each iteration, and
so does the function (13) itself, which decreases at each iteration. The JDF
may have stationary points that are not minimizers, however such points
are necessarily saddle points, and will be missed by the Algorithm with
probability 1.

Example 3. We apply the algorithm, using d–clustering as in Section 2 and
Mahalanobis distance, to the data of Example 1. Figure 3 shows the evolu-
tion of the joint distance function, represented by its level sets. The initial
function, shown in the top-left pane, corresponds to the (arbitrarily chosen)
initial centers and initial covariances Σ1 = Σ2 = I . The covariances
are updated at each iteration using (52), and by iteration 8 the function is
already very close to its final form, shown in the bottom-right pane. For a
tolerance of ε = 0.01 the algorithm terminated in 12 iterations.

Example 4. In Figure 4 we illustrate the movement of the cluster centers
for different initial centers. The centers at each run are shown with the final
level sets of the joint distance function found in Example 3.

The algorithm gives the correct cluster centers, for all initial starts.
In particular, the two initial centers may be arbitrarily close, as shown in
the top-left pane of Figure 4.

Example 5. The class membership probabilities (8) were then computed us-
ing the centers determined by the algorithm. The level sets of the probability
p1(x) are shown in Figure 5. The curve p1(x) = 0.5, the thick curve shown
in the left pane of Figure 5, may serve as the clustering rule. Alternatively,
the 2 clusters can be defined as

C1 = {x : p1(x) ≥ 0.6}, C2 = {x : p1(x) ≤ 0.4} ,

with points {x : 0.4 < p1(x) < 0.6} left unclassified, see the right pane of
Figure 5.
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Figure 3. The level sets of the evolving joint distance function at iteration 0 (top left), iteration
1 (top right), iteration 2 (bottom left) and iteration 12 (bottom right)
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Figure 4. Movements of the cluster centers for different starts. The top–right pane shows the
centers corresponding to Fig. 3. The top–left pane shows very close initial centers.
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Figure 5. The level sets of the probabilities p1(x) and two clustering rules.

5. The Liberal-Conservative Divide of the Rehnquist Court

In many applications the data is given as similarity matrices. A small
example of this type is considered next.

The Rehnquist Supreme Court was analyzed by Hubert and Steinley
in 2005, where the justices were ranked as follows, from most liberal to most
conservative.

Liberals Conservatives
1. John Paul Stevens (St) 5. Sandra Day O’Connor (Oc)
2. Stephen G.Breyer (Br) 6. Anthony M. Kennendy (Ke)
3. Ruth Bader Ginsberg (Gi) 7. William H. Rehnquist (Re)
4. David Souter (So) 8. Antonin Scalia (Sc)

9. Clarence Thomas (Th)

The data used in the analysis is a 9 × 9 similarity matrix, giving the
percentages of non-unanimous cases in which justices agreed, see Table 1 (a
mirror image of Table 1 in Hubert and Steinley (2005), listing the disagree-
ments.)

Hubert and Steinley used two methods, unidimensional scaling (map-
ping the data from R

9 to R), and hierarchical classification.
We applied our method to the Rehnquist Court, with Justices rep-

resented by points x in R
9 (the columns of Table 1), using the Euclidean

distance in R
9. Our results are given in Table 2, listing the clusters and their

membership probabilities.
The membership probability of a Justice in a cluster is, by (6), pro-

portional to the proximity to the cluster center, and is thus a measure of the
agreement of the Justice with others in the cluster.

Since not all non–unanimous cases were equally important, or equally
revealing of ideology, we should not read into these probabilities more than
is supported by the data. For example, Justice Kennedy (probability 0.7540)
is not “more conservative” than Justice Scalia (probability 0.7173), but per-
haps “more conformist” with the “conservative center”.
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Table 1. Similarities among the nine Supreme Court justices

St Br Gi So Oc Ke Re Sc Th
1 St 1.00 .62 .66 .63 .33 .36 .25 .14 .15
2 Br .62 1.00 .72 .71 .55 .47 .43 .25 .24
3 Gi .66 .72 1.00 .78 .47 .49 .43 .28 .26
4 So .63 .71 .78 1.00 .55 .50 .44 .31 .29
5 Oc .33 .55 .47 .55 1.00 .67 .71 .54 .54
6 Ke .36 .47 .49 .50 .67 1.00 .77 .58 .59
7 Re .25 .43 .43 .44 .71 .77 1.00 .66 .68
8 Sc .14 .25 .28 .31 .54 .58 .66 1.00 .79
9 Th .15 .24 .26 .29 .54 .59 .68 .79 1.00

Table 2. The liberal–conservative divide of the Rehnquist Court

Cluster Justice Membership
Probability

Liberal Ruth Bader Ginsburg 0.8685
David Souter 0.8390
Stephen Breyer 0.7922
John Paul Stevens 0.7144

Conservative William Rehnquist 0.8966
Anthony Kennedy 0.7540
Clarence Thomas 0.7220
Antonin Scalia 0.7173
Sandra Day O’Connor 0.6740

Similarly, Justice Stevens, ranked “most liberal” in Hubert and Stein-
ley (2005), is in our analysis the “least conformist” in the liberal cluster.

Overall, the liberal cluster is tighter, and more conformist, than the
conservative cluster.

6. Related work

There are applications where the cluster sizes (ignored here) need to
be estimated. An important example is parameter estimation in mixtures of
distributions. The above method, adjusted for cluster sizes, is applicable,
and in particular presents a viable alternative to the EM method, see Iyigun
and Ben-Israel (2008a) and Iyigun and Ben-Israel (2008).

As noted at the end of Section 2.4, our method allows an extension
of the classical Weiszfeld method to several facilities. This is the subject of
Iyigun and Ben-Israel (2008b), giving the solution of multi-facility location
problems, including the capacitated case (which corresponds to given cluster
sizes.)

A simple and practical criterion for clustering validity, determining
the “right” number of clusters that fit a given data, is given in Iyigun and
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Ben-Israel (2008c). This criterion is based on the monotonicity of the JDF
(13) as a function of the number of clusters.

Semi–supervised clustering is a framework for reconciling supervised
learning, using any prior information (“labels”) on the data, with unsuper-
vised clustering, based on the intrinsic properties and geometry of the data
set. A new method for semi-supervised clustering, combining probabilistic
distance clustering for the unlabelled data points and a least squares criterion
for the labelled ones, is given in Iyigun and Ben-Israel (2008d).

7. Conclusions

The probabilistic distance clustering algorithm presented here is sim-
ple, fast (requiring a small number of cheap iterations), robust (insensitive
to outliers), and gives a high percentage of correct classifications.

It was tried on hundreds of problems with both simulated and real data
sets. In simulated examples, where the answers are known, the algorithm,
starting at random initial centers, always converged – in our experience – to
the true cluster centers.

Results of our numerical experiments, and comparisons with other
distance–based clustering algorithms, will be reported elsewhere.
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