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The Haar Wavelet Transform of a Dendrogram
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Abstract: We describe a new wavelet transform, for use on hierarchies onyioated
trees. The theoretical framework of this approach to data analysis dsiloes  Case
studies are used to further exemplify this approach. A first set of atigitstudies deals
with data array smoothing, or filtering. A second set of application studlages to hier-
archical tree condensation. Finally, a third study explores the waveletgjgosition, and
the reproducibility of data sets such as text, including a new perspectie generation
or computability of such data objects.
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1. Introduction

In this paper, the new data analysis approach to be desaréretle un-
derstood as a transform which maps a hierarchical clugtérto a transformed
set of data; and this transform is invertible, meaning thatriginal data can be
exactly reconstructed. Such transforms are very often usddta analysis and
signal processing because processing of the data may lieafadiby carrying
out such processing in transform space, followed by recoctidn of the data
in some “good approximation” sense.

Dimitri Zervas converted the hierarchical clustering and new Haar leatransform into
C/C++ from the author's R and Java codes.

Author’s Address: Department of Computer Science, Royal HollpWayversity of Lon-
don, Egham TW20 0EX, England, e-mail: fmurtagh@acm.org
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Consider data smoothing as a case in point of such processingoth-
ing of data is important for exploratory visualization, f@d&ta understanding
and interpretation, and as an aid in model fitting (e.g., iretseries analysis
or more generally in regression modeling). The wavelet fransis often used
for signal (and image) smoothing in view of its “energy comipan” proper-
ties, i.e., large values tend to become larger, and smalegamaller, when the
wavelet transform is applied. Thus a very effective apprdadignal smooth-
ing is to selectively modify wavelet coefficients (for exampgbut small wavelet
coefficients to zero) before reconstructing an approximatsion of the data.
See Hardle (2000), Starck and Murtagh (2006).

The wavelet transform, developed for signal and image psingshas
been extended for use on relational data tables and muéitSional data sets
(Vitter and Wang 1999; Joe, Whang and Kim 2001) for data surizatzon
(micro-aggregation) with the goal of anonymization (ortistecal disclosure
limitation) and macrodata generation; and data summaéoizatith the goal of
computational efficiency, especially in query optimizatiof survey of data
mining applications (including applications to image aighal content-based
information retrieval) can be found in Tao Li, Qi Li, Shenghuo zZmd Ogihara
(2002).

A hierarchical representation is used by us, as a first phabke pfocess-
ing, (i) in order to cater for the lack of any inherent rowiomin order in the
given data table and to get around this obstacle to freefygusiwavelet trans-
form; and (ii) to take into account structure and interielahips in the data.
For the latter, a hierarchical clustering furnishes an aidbd set of clusters,
and obviates any need for a priori fixing of number of clustédsice this is
done, the hierarchy is wavelet transformed. The approachauaal and inte-
gral one.

Our innovation is to apply the Haar wavelet transform to abjrrooted
tree (viz., the clustering hierarchy) in terms of the follogyalgorithm: recur-
sively carry out pairwise averaging and differencing atdbguence of levels in
the tree.

A hierarchy may be constructed through use of any constechiier-
archical clustering algorithm (Beégri 1979; Johnson 1967; Murtagh 1985).
In this work we will assume that some agglomerative criteii® satisfactory
from the perspective of the type of data, and the nature ofitlta analysis
or processing. In a wide range of practical scenarios, th@nmmim variance
(or Ward) agglomerative criterion can be strongly recomdeeihdue to its data
summarizing properties (Murtagh 1985).

The remainder of this article is organized as follows. Sestidrand
3 present important background context. Section 4 presemtaaw wavelet
transform. In Section 5, illustrative case studies are usddrther discuss the
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new approach. Section 6 deals with the application to dass amoothing, or
filtering. Section 7 deals with the application to hierarchicee condensation.
Section 8 explores the wavelet decomposition, and linkag&s@producibility
or recreation of data sets such as text.

2. Wavelets on Local Fields

Wavelet transform analysis is the determining of a “useh#dsis for
L?(R™) which is induced from a discrete subgroupRf, and uses transla-
tions on this subgroup, and dilations of the basis functions

Classically (Frazier 1999; Debnath and Mikuski 1999; Strang and
Nguyen 1996) the wavelet transform avails of a wavelet fionat(z) € L%(R),
where the latter is the space of all square integrable fanston the reals.
Wavelet transforms are bases b(R™), and the discrete lattice subgro#fy
(m-dimensional integers) is used to allow discrete groupslafetl translation
operators to be induced d&™. Discrete lattice subgroups are typical of 2D
images (where the lattice is a pixelated grid) or 3D imagdsefe the lattice is
a voxelated grid) or spectra or time series (the lattice@sstt of time steps, or
wavelength steps).

Sometimes it is appropriate to consider the constructionesilet bases
on L?(G) whereG is some group other thdR. In Foote, Mirchandani, Rock-
more, Healy and Olson (2000a, 2000b; see also Foote 2085k ttione for the
group defined by a quadtree, in turn derived from a 2D image.ofhsider the
wavelet transform approach not in a Hilbert space but rathkercally-defined
and discrete spaces we have to change the specification ofedeivainction in
L?(R) and instead usé?(G).

Benedetto (2004) and Benedetto and Benedetto (2004) ayeslith de-
tail the groupG as a locally compact abelian group. Analogous to the integer
grid, Z™, a compact subgroup is used to allow a discrete group of tpsra
to be defined onl?(G). The property of locally compact (essentially: finite
and free of edges) abelian (viz., commutative) groups thatast important is
the existence of the Haar measure. The Haar measure allogggation, and
definition of a topology on the algebraic structure of the grou

Among the cases of wavelet bases constructed via a sulitsguse the
following (Benedetto 2004).

e Wavelet basis o.?(R™) using translation operators defined on the dis-
crete lattice,Z™. This is the situation that holds for image processing,
signal processing, most time series analysis (i.e., wittakkpngth time
steps), spectral signal processing, and so on. As pointetyo&oote
(2005), this framework allows the multiresolution anadyisi L?(R™) to
be generalized t&?(R™) for Minkowski metricL? other than Euclidean
L2,
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o Wavelet basis orLQ(@p), where@Q, is the p-adic field, using a discrete
set of translation operators. This case has been studied byréo2002,
2004; Altaisky 2004, 2005. See also the interesting ovendgeWhren-
nikov and Kozyrev (2006).

e Finally the central theme of Benedetto (2004) is a wavelestmasL? (G)
where(G is a locally compact abelian group, using translation cjpesa
defined on a compact open subgroup (or operators that can Heasse
such on a compact open subgroup); and with definition of anreya
automorphism replacing the traditional use of dilation.

In Murtagh (2006) the latter theme is explored: a p-adicesentation
of a dendrogram is used, and an expansive operator is defiriéch,wvhen
applied to a level of a dendrogram enables movement up a level

In our case we are looking for a new basis f&f(G) whereG is the set
of all equivalent representations of a hierarcHy,onn terminals. Denoting the
level index of H asv (sov : H — R™, whereR™ are the positive reals), and
v = 0 is the level index corresponding to the fine partition of séghs, then
this hierarchy will also be denoted &&,_,. Let I be the set of observations.
Let the succession of clusters associated with node ipe denoted) =
{¢1,92,-..,q.—1}. We haven — 1 non-singleton nodes i/, associated with
the clustersqy. At each node we can interchange left and right subnodescdHen
we have2”~! equivalent representations Bf, or, again, members in the group,
G, that we are considering.

So we have the group of equivalent dendrogram represengatioi, .
We have a series of subgrougs,, > H,,,.,,, for0 <k <n —1. Symmetries
(in the group sense) are given by permutations at each leyelf hierarchy
H. Collecting these furnishes a group of symmetries on theitexl set of any
given (non-terminal) node i# .

We want to process dendrograms, and we want our processbgite
variant relative to any equivalent representation of argikendrogram.

Denote the permutation at levelby P,. Then the automorphism group
is given by:

G = Pn—l WT Pn—2 WI ... Wr P2 WT Pl,
where wr denotes the wreath product.

Foote et al. (2000a, 200b) and Foote (2005) consider thethvpeaduct
group of a tree representation of data, including the qeadivhich is a tree
representation of an image. Just as for us here, the oftspddes of any given
node in such a tree can be “rotated” ad lib. Group action ansotmcyclic
shifts or adjacency-preserving permutations of the ofifgpnodes. The group
in this case is referred to as the wreath product group.

We will introduce and study a wavelet transform bf(G) whereG is the
wreath product group based on the hierarchy or rooted bineeyH .
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3. Hierarchy, Binary Tree, and Ultrametric Topology

A short set of definitions follow, showing how a hierarchy ikda in the
form of a binary tree, and the particular form of binary tresed here is often
termed a dendrogram. By small abuse of terminology, we 8i#lid to denote
this hierarchy, and the ultrametric topology that it représ.

A hierarchy, H, is defined as a binary, rooted, unlabeled, node-ranked
tree, also termed a dendrogram (Beoiz 1979; Johnson 1967; Lerman 1981,
Murtagh 1985). A hierarchy defines a set of embedded subsetgjigén set,

1. However these subsets are totally ordered by an indexitumet which is
a stronger condition than the partial order required by thiesst relation. A
bijection exists between a hierarchy and an ultrametricespa

Let us show these equivalences between embedded subseaschye
and binary tree, through the constructive approach of imguf on a setl.

Hierarchical agglomeration on observation vectors, € I, involves
aseriesofl,2,...,n — 1 pairwise agglomerations of observations or clusters,
with the following properties. A hierarchfl = {q|q € 2’} suchthat (i)} € H,

(i) « € H Vi, and (iii) foreachy € H,q' € H : qnNg # 0 = q C ¢’ orq¢’ C q.
Here we have denoted the power set of B&ty 2. An indexed hierarchy is
the pair(H, v) where the positive function defined d#, i.e.,v : H — RT,
satisfies:v(i) = 0if « € H is a singleton; and (iiy C ¢ = v(q) < v(¢).
Here we have denoted the positive reals, including QRby Functionv is the
agglomeration level. Take C ¢/, letq C ¢” andq’ C ¢”, and letq” be the
lowest level cluster for which this is true. Then if we defibé¢q, ¢') = v(¢"),
D is an ultrametric. In practice, we start with a Euclidean deodissimilarity,
use some criterion such as minimizing the change in varia@salting from
the agglomerations, and then defing) as the dissimilarity associated with
the agglomeration carried out.

4. The Hierarchic Haar Wavelet Transform Algorithm: Description

Linkages between the classical wavelet transform, as ussdynal
processing, and multivariate data analysis, were invagtehin Murtagh (1998).
The wavelet transform to be described now is fundamentafferént, and
works on a hierarchy.

The traditional Haar wavelet transform can be simply descrin terms
of the following algorithm: recursively carry out averagiand differencing of
adjacent pairs of data values (pixels, voxels, time steps), at a sequence of
geometrically (factor 2) increasing resolution levels.mantioned in the Intro-
duction, our innovation is to apply the Haar wavelet transfto the clustering
hierarchy, and this algorithm is the recursive carryingafytairwise averaging
and differencing at the sequence of levels in the hieraatiiee.
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4.1 Short Description of the Algorithm

A dendrogram om terminal nodes, associated with observation vectors,
hasn — 1 non-terminal nodes. We proceed through each of these moniAt
nodes in turn, starting at the node corresponding to theesglly first ag-
glomeration, continuing to the node corresponding to tlisatially second
agglomeration, and so on, until we finally reach the root ngteeach node,
we define a vector as the (unweighted) average of the vectats w¥o child
nodes. So the vector associated with the very first non-teimide will be
the (unweighted) average of the vectors comprising thigisdagvo (terminal)
child nodes.

For subsequent non-terminal nodes, their child nodes magrbgnal
or non-terminal. In all cases, this procedure is well-defindé continue the
procedure until we have processedrall- 1 non-terminal nodes.

We now have an increasingly smooth vector correspondingtb aode
in the dendrogram, or hierarchl,. We term this vector at each node gmooth
signalor justsmoothat each node.

The detail signal or detail, at each node is defined as tector differ-
encebetween the vector at a (non-terminal) node, and the vetit @erminal
or non-terminal) child node. By consistently labeling laftd right child subn-
odes, by construction the left child subnode will have aitigetor which is
just the negative of the detail vector of the right subnodené¢, with consis-
tency of left and right labeling, we just need to store onéhest detail vectors.

Because of the way that the detail signal has been defined jemthe
smooth signal associated with the root node (the node wihesee number
n — 1), we can easily see the following: to reconstruct the odbdata, used
to set this algorithm underway, we need just the set of allitlsignals, and the
final, or root node, smooth signal.

4.2 Definition of Smooth Signals and Detail Signals

Consider any hierarchical clustering,, represented as a binary rooted
tree. For each cluster associated with a non-terminal ngdeyith offspring

(terminal or non-terminal) nodesandq’, we defines(¢”) through application
1

of the low-pass fiIte/< ? > which can be implemented as a scalar product:

2
w1 ny _ [ 0.5 ! s(q)
@) =5 6+ = (02 ) (249 ) @
The application of the low-pass filter is carried out in ordeinafeasing

node number (i.e., from the smallest non-terminal nodegutjin to the root
node). For a terminal nodé, allowing us to notationally say that = ¢ or
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thatq’ = 4, the signal smooth(7) is just the given vector, and this aspect is
addressed further below, in subsection 4.3.
Next for each clusteq” with offspring nodes; andq’, we define detalil

1
coefficientsd(¢") through application of the band-pass fil<er ? ):
2

aw) == 03) (M) @

Again, increasing order of node number is used for appboatif this
filter.

The scheme followed is illustrated in Figure 1, which showshieear-
chy (constructed by the median agglomerative method, adthahis plays no
role here), using for display convenience just the first 8 olad®wn vectors in
Fisher's iris data (Fisher 1936).

We call our algorithm a Haar wavelet transform becausejtioadlly,
this wavelet transform is defined by a similar set of averagesdifferences.
The former, low-pass filter, is used to set the center of the twsters being
agglomerated; and the latter, band-pass filter, is used ttheadeviation or
discrepancy of these two clusters from the center.

4.3 The Input Data

We now return to the issue of how we start this scheme, i.e. wew
defines(7), or the “smooth” of a terminal node, representing a singletaster.
Let us consider two cases:

1. s(7) is a vector inR™, and theith row of a data table.

2. s(7) is ann-dimensional indicator vector. So the third, in sequencepbu
a population ofx = 8 observations has indicator vect@0100000}. We
can of course take a data table of all indicator vectors: gétear that the
data table is symmetric, and is none other than the identityira

Our hierarchical Haar wavelet transform can easily hanileecase,
depending on the input data table used.

While we have considered two cases of input data, we may hetfot-
lowing. Having the clustering hierarchy built on the sampuindata as used
for the hierarchical Haar transform is reasonable when ceagon of the in-
put data is our target. However, if the hierarchical Haangfarm is used for
data approximation, cf. section 8. below, then we are attljtte use different
data for the hierarchical clustering and for the Haar tramsf The hierarchy
is built from a set of observation vectors Ri"*. Then it is used in the Haar
wavelet transform as a structure on another set of vectdR&in(with m’ not
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Figure 1. Dendrogram on 8 terminal nodes constructed from firsti&saf Fisher iris data.
(Median agglomerative method used in this case.) Detail or waveleticierfs are denoted
by d, and data smooths are denoted 0y The observation vectors are denotedsbgnd are
associated with the terminal nodes. Ea@nal smooths, is a vector. The (positive or negative)
detail signalsd, are also vectors. All these vectors are of the same dimensionality.

necessarily equal to:). We will not pursue this line of investigation further
here.

4.4 The Inverse Transform

Constructing the hierarchical Haar wavelet transformed dareferred
to as the forward transform. Reconstructing the input dataferred to as the
inverse transform.

The inverse transform allows exact reconstruction of thetigata. We
begin withs,,_1. If this root node has subnodesindq’, we used(q) andd(q’)
to form s(q) ands(q’).

We continue, step by step, until we have reconstructed atbve associ-
ated with terminal nodes.

4.5 Matrix Representation

Let our input data be a set afpoints inR™ given in the form of matrix

X. We have:
e have X =CD+ 8o, 3)

whereD is the matrix collecting all wavelet projections or detaibfficients d.
The dimensions ab are(n—1) xm. The dimensions of' are:nx (n—1). C'is
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a characteristic matrix representing the dendrogram. &dinr{2006) provides
an introduction taC, which will be summarized here. In Figure 2, the O or 1
coding works well when we also take account of the existeridbeonode at
that particular level. Other forms of coding can be used, Modagh (2006)
uses a ternary code, viz;1 and —1 for left and right branches (replacing O
and 1 in Figure 2, respectively), and 0 to indicate non-eristeof a node at
that particular level.

Matrix C, describing the branching codes,l and —1, and an absent
or non-existent branching given ity uses a set of values; wherei € I,
the indices of the object set; ande {1,2,...,n — 1}, the indices of the
dendrogram levels or nodes ordered increasingly. For Figuse therefore
have:

1 1 0 0 1 0 1
1 1 0 0 1 0 1

O -1 0 0 1 0 1

o 0 1 1 -1 0 1

C = {cij} = 0o 0 -1 1 -1 0 1 (4)

0 0 0 -1 -1 0 1

O 0 0 0 0 1 -1

0O 0 0 0 0 -1 -1

For given levelj, Vi, the absolute valugs;;| give the membership func-
tion either by nodej, which is therefore read off columnwise; or by object
index,s which is therefore read off rowwise.

If s,,_1 is the final data smooth, in the limit for very largea constant-
valued m-component vector, then l&f, | be then x m matrix with s, 1
repeated on each of therows.

Consider theth coordinate of then-dimensional observation vector cor-
responding ta. For anyd(g;) we have:), d(g;)r = 0, i.e. the detail coeffi-
cient vectors are each of zero mean.

In the case where out input data consista-wfimensional indicator vec-
tors (i.e., theith vector contains 0-values except for locatiowhich has a 1-
value), then our initial data matriX is none other than the x n dimensional
identity matrix. We will write X, 4 for this identity matrix.

The wavelet transform in this case &j,q = CD + S, 1.

Xing is of dimensions: x n.

C, exactly as before, is a characteristic matrix represgritie dendro-
gram used, and is of dimensions< (n — 1).

D, of necessity different in values from case 1, is of dimensio —

1) x n.
Sn_1, of necessity different in values from case 1, is of dimemsiox n.
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4.6 Computational Complexity Properties

The computational complexity of our algorithms are as folowhe hier-
archical clustering i€)(n?). The forward hierarchical Haar wavelet transform
is O(n). Finally, the inverse wavelet transform @(n?). On Macintosh G4
or G5 machines, all phases of the processing took typicallyminutes for an
array of dimension$2000 x 400.

An exemplary pipeline of C and R code used in this work is aidd at
the following address: http://astro.u-strasbg-frhurtagh/mda-sw

5. Hierarchical Haar Wavelet Transform: Case Studies

In a practical way, using small data sets, we will describernmw hier-
archical Haar wavelet transform in this section.

Let us begin with the indicator vectors case. Thus in Figure ;2=
{100000000}, andg; = {11000000}. Note that this is our definition af;
etc. (and is not read off the tree), and from the definitiom0dndx, we have
definedq;. This form of coding was used by Nabben and Varga (1994).

Now we use equations 1 and 2.

5.1 Case Study 1

In Figure 2, we have:
s(q1) = 3(z1+22) = (33000000).
Also: s(q1) = 2q1,
s(@) = 5(s(a) +z3) = <ﬁ%00000>~
Also: s(g2)
(

(2611+$3) 4Q1+ ixs,
s(q3) = 3(z4+25)= (0003 2000).
Also: s(g3) = g3,

s(q1) = 3(s(a3) + w6) = (0001 2 L 00),
s(qs) = 3(s(q2) +s(qa) = (3§ 35 00),
s(qe) = 3(z7+28) = (0000001 1),
s(ar) = 3(a5 +6) = (35 16 5 16 16 5 1 1) -

Next we turn attention to the detail coefficients.
d(q1) = 1(961 —x9) = (f —7000000)
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Figure 2. Labeled, ranked dendrogram on 8 terminal nodes. Bearlaheled 0 and 1.

Alternatively, for¢” = ¢ U ¢/, the detail coefficients are defined as:
d(q") = s(q") = s(¢') = = (s(¢") — s(q))-

Thusd(q1) = s(q1) —22 = (33000000)—(01000000) =
(3 —3000000).

For anyd(q;) we have:), d(g;)r = 0, i.e. the detail coefficient vectors
are each of zero mean.

Let us redo in vector and matrix terms this description of tieegnchical
Haar wavelet transform algorithm.

We take our initial or input data as follows.

L1
L2
r3
L4
L5
L6
L7
T8

(5)

SO OO O OO
OO OO O oo
SO OO o+~ OOo
OO OO OO Oo
OO O OO OO
OO OO O Ooo
OR OO oo oo
OO0 0o o oo
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The hierarchical Haar wavelet transform of this input dathén as fol-
lows.

d(q1)

d(g2)

d(g3)

d(gs) —

d(gs) |

d(gs)

d(gr)

87
i -2 0 0 0 0 0 0
i -2 o0 o0 o0 o0 o0
o 0 0 4 -3 0 0 0
o o o 3 -+ 0 o )
R N
o o o o0 o0 o0 3 —1
i1 1 1 1 1 1 1
16 16 8 16 16 8 4 4
i1 1 11111
16 16 8 16 16 8 4 4

As already noted in this subsection, the succession-of wavelet coef-
ficient vectors are of zero mean. Therefore, due to the inpatuisgd (relation
(5)), each row of the right hand matrix in equation 6 is of zewean.

Note that this transform is a function of the hierarch, Here we are
using the hierarchy of Figure 2H is needed to define the structure of the
right hand matrix in equation 6. (This is closely related te thscussion in
subsection 4.5. Further discussion can be found in Murta@b)20

5.2 Case Study 2

In Tables 1 and 2 we directly transform a small data set ctingisf the
first 8 observations in Fisher’s iris data.

Note that in Table 2 it is entirely appropriate that at moresth levels
(i.e., as we proceed through levels d1, d2, d6, d7) the values become more
“fractionated” (i.e., there are more values after the detipoint).

The minimum variance agglomeration criterion, with Eucliddatance,
is used to induce the hierarchy on the given data. Each digadlss of dimen-
sionm = 4 wherem is the dimensionality of the given data. The smooth signal
is of dimensionalitym also. The number of detail or wavelet signal levels is
given by the number of levels in the labeled, ranked hiergriok. n — 1.
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Table 1. First 8 observations of Fisher’s iris data. L and W refer to leagthwidth.

Sepal.L SepalW Petal.L Petal. W
1 51 35 1.4 0.2
2 4.9 3.0 1.4 0.2
3 4.7 3.2 1.3 0.2
4 4.6 3.1 1.5 0.2
5 5.0 3.6 1.4 0.2
6 54 3.9 1.7 0.4
7 4.6 34 1.4 0.3
8 5.0 34 1.5 0.2

Table 2. The hierarchical Haar wavelet transform resulting from tifeedirst 8 observations of
Fisher's iris data shown in Table 1. Wavelet coefficient levels are ddmtitéhrough d7, and the
continuum or smooth component is denoted s7.

s7 d7 dé d5 d4 d3 dz2 di

Sepal.L 5.146875 0.253125  0.13125 0.137%0.025 0.05 —0.025 0.05
SepalW 3.603125 0.296875  0.168750.1375  0.125  0.05 —0.075 —-0.05

Petal.L 1.562500 0.137500 0.02500 0.0000 0.06®@.10 0.050  0.00

Petal. W 0.306250 0.093750-0.01250 —0.0250 0.050 0.00 0.000 0.0p

5.3 Traditional versus Hierarchical Haar Wavelet Transforms

Consider a set of 8 input data objects, each of which is sc@ér48, 16,
32,56, 56,48,24). A traditional Haar wavelet transform of this data can be
quickly done, and gives{43, —3, 16, 10,8, —8,0, 12). Here, the first value is
the final smooth, and the remaining values are the waveleficieets read off
by a traversal from final smooth towards the input data valig&sowing the
output in the same way, the hierarchical Haar wavelet tmansiof the same
data gives1(40, 14,6, —6,—4,4,0,0).

A little reflection shows that the greater number of zeros i hierar-
chical Haar wavelet transform is no accident. In fact, whth tollowing condi-
tions: 10 different digits in the input data; processing nfalength string of
digits; equal frequencies of digits (if necessary, sumablily a supposition of
largen); and use of an unweighted average agglomerative critevienhave
the following.

The hierarchy begins with nodes that agglomerate identeales,n /2
of them; followed by agglomeration of the next roundgf values; followed
by n/8 agglomerations of identical values; etc. So we have, imdl,+n/4+
n/8 + ...+ n/2" 1 identical value agglomerations. All of these will give rise
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to O-valueddetail coefficients. For suitable, all save the very last round of 10
agglomerations will give rise to non-0 valuddtail coefficients.

This remarkable result points to the powerful data compoesgsotential
of the hierarchical Haar wavelet transform. We must notedhahat this rests
on the dendrogram, and the computational requirementsedatter are not in
any way bypassed.

6. Hierarchical Wavelet Smoothing and Filtering

Previous work on wavelet transforms of data tables includek@barti,
Garofalakis, Rastogi and Shim (2001) and Vitter and Wang{19%here are
problems, however, in directly applying a wavelet transfoo a data table. Es-
sentially, a relational table (to use database terminglogynatrix) is treated
in the same way as a 2-dimensional pixelated image, alththegformer case
is invariant under row and column permutation, whereasdtter case is not
(Murtagh, Starck and Berry 2000). Therefore there are imnegiablems re-
lated to non-unigueness, and data order dependence. Whawiéver, one or-
ganizes the data such that adjacency has a meaning? Thissrtipt similarly-
valued objects, and/or similarly-valued features, areetogether. This is what
we do, using any hierarchical clustering algorithm.

From a given input data array, the hierarchical wavalet franscreates
an output data array with the property of forcing similarued to be close
together. This transform is fully reversible. The proximitlysimilar values,
however, is with respect to the hierarchical tree which wsedun the forward
transform, and of course comes into play also in the invessestorm. Because
similar values are close together, the compressibilityhef transformed data
is enhanced. Separately, setting small values in the transfbdata to zero
allows for data smoothing or data “filtering”.

6.1 The Smoothing Algorithm

We use the following generic data analysis processing palttich is
applicable to any input tabular data array of numerical @sliWWe assume only
that there are no missing values in the data array.

1. Given a dissimilarity, induce a hierarchy on the set ofeobations. (We
generally use the Euclidean distance, and the minimum \@iagglom-
erative hierarchical clustering criterion, in view of thgnsptic proper-
ties, Murtagh 1985. Additionally the vectors used in thestéting can be
weighted: we use identical weights in this work.)
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2. Carry out a Haar wavelet transform on this hierarchy. Thisga tree-
based compaction of energy (Starck and Murtagh 2006: lalgev#end
to become larger, and small values tend to become smallenriniata.
Filter the wavelet coefficients (i.e., carry out wavelet regren or smooth-
ing, here using hard thresholding (see e.g. Starck and Mu2ag6) by
setting small wavelet coefficients to zero).

3. Determine the inverse of the wavelet transform, in ordeéetonstruct an
approximation to the original multidimensional data value

6.2 Fisher Iris Data and Uniformly Distributed Values of Same Array
Dimensions

In this first filtering study we use Fisher’s iris data (Fisher )93 ar-
ray of dimensiond 50 x 4, in view of its well known characteristics. if;; is
a typical data value, then the energy of this datg/igim) >, ; :):sz = 15.8988.

If we set wavelet coefficients to zero based on a hard threskinéesh a very

large number of coefficients may be set to zero with minor iogtions for ap-

proximation of the input data by the filtered output. (A harcehold uses a
step function, and can be counterposed to a soft threshsildg some other,
monotonical increasing, function. A hard threshold, usetable 3, is straight-
forward and, in the absence of any further a priori inforimatthe most reason-
able choice.) The minimum variance hierarchical clustenrathod was used
as the first phase of the processing, followed by the secondletaransform,

phase. Then followed wavelet coefficient truncation, andmstraction or the

inverse transform. We see that a mean square error betweetraind output of

value 0.1040 is the global approximation quality, when lye@8% of wavelet

coefficients are zero-valued.

To further illustrate what is happening in this approxiroatby the wave-
let filtered data, Table 4 shows the last 10 iris observatiasgjiven for input,
and as filtered. The numerical precisions shown are as gedendiee recon-
struction, which explains why we show some values to 4 ddgnaees, and
some to 6.

To show that wavelet filtering is effective, we will next compavavelet
filtering with direct filtering of the given data. By “directly fdred” we mean
that we processed the original data without recourse torareigical clustering.
This is intended as a simple, default baseline with which weamampare our
results.

Taking theoriginal Fisher data, we find the median value to be 3.2.
Putting values less than this median value to 0, we find the MSE 20154567,
i.e., implying a far less satisfactory fit to the data. (Thrddimgy by using<
versus< median had no effect.)
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Table 3. Hierarchical Haar smoothing results for Fish&s8 x 4 iris data.

Filt. threshold % coeffs. setto zero mean square efror
0 16.95 0
0.1 70.13 0.0098
0.2 91.95 0.0487
0.3 97.15 0.0837
0.4 97.82 0.1040Q

Table 4. Last 10 values of input data, and of the approximation to theasel lom the hierarchical
Haar wavelet transform filtering with a hard threshold of 0.1, implyindl3% of the wavelet
coefficients equaling 0.

Sepal.L  SepalW Petal.L Petal.\

140 6.9 3.1 5.4 2.1
141 6.7 3.1 5.6 2.4
142 6.9 3.1 5.1 2.3
143 5.8 2.7 5.1 19
144 6.8 3.2 59 2.3
145 6.7 3.3 5.7 2.5
146 6.7 3.0 5.2 2.3
147 6.3 2.5 5.0 1.9
148 6.5 3.0 5.2 2.0
149 6.2 3.4 5.4 2.3
150 59 3.0 5.1 1.8

140 6.739063 3.119824 5.4125 2.239258
141 6.782813 3.307324 5.7250 2.564258
142 6.839063 3.119824 5.1125 2.239258
143 5.737500 2.808496 5.0000 2.039258
144 6.782813 3.307324 5.8250 2.314258
145 6.782813 3.307324 5.7250 2.564258
146 6.639063 3.119824 5.1125 2.239258
147 6.196875 2.480371 5.0000 1.964258
148 6.364063 3.019824 5.2625 2.089258
149 6.320313 3.307324 5.4750 2.439258
150 5.937500 3.008496 5.1375 1.864258

Table 5. Hierarchical Haar filtering results for uniformly distributed x 4 data.

Filt. threshold % coeffs. setto zero mean square efror

0 0 0
0.1 14.77 0.0022
0.2 31.54 0.0249
0.3 42.79 0.0622

0.4 53.52 0.1261
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6.3 Uniform Realization of Same Dimensions as Fisher Data

We next generated an array of dimensi®f8 x 4 of uniformly distrib-
uted random values df, 7.9], where 7.9 was the maximum value in the Fisher
iris data. The energy of this data set was 21.2097. Resultstefirid are
shown in Table 5. The minimum variance hierarchical clusgermethod was
used. Again good approximation properties are seen, evte ifompression
is not as impressive as for the Fisher data.

Uniformly distributed data coordinate values are a taxisggs since such
data are very unlike data with clear cluster structures gabe case for the
Fisher iris data).

In the next subsection we will further explore this aspedtternal struc-
ture in our data.

6.4 Inherent Clustering Structure in a Data Array: Implications for
Wavelet Filtering

First we show that the influence of numbers of rows or columnaiin o
data array is very minor in regard to the wavelet filtering.

When a data set is inherently clustered (and possibly imtigrbierar-
chically clustered) then the energy compaction propedighe wavelet trans-
formed data ought to be correspondingly stronger. We wilskhis through
the processing of data sets containing cluster structlaéve to the process-
ing of data sets containing uniformly distributed valuasd(dence providing a
baseline for no cluster structure).

Firstly we verified that data set size is relatively unimpariarterms of
wavelet-based smoothing. We took artificially generatedormly distributed
in [0, 1], random data matrices of dimensiof80 x 40, 1000 x 40, 1500 x 40,
and 2000 x 40. For each we applied a fixed threshold of 0.1 to the wavelet
coefficients, setting values less than or equal to this tistdgb 0, and retaining
wavelet coefficient values above this threshold, beforenstrocting the data.
Then we checked mean square error between reconstructeahdidtze original
data. For the four different data matrix dimensions, we thu®.463, 0.461,
0.465, 0.466. (MSE used here wak/n ), .(i; — z;7)%, wherez is the
filtered data array value, is the number of observations indexedibandz is
the input data value.)

From the clustering point of view, the foregoing data matriaee simply
clouds of 500, 1000, 1500 and 2000 points in 40-dimensi@slspace, dR*°.
To check if space dimensionality could matter we checkedntean square
error for a data matrix of uniformly distributed values wittmension2000 x
400, the mean square error was found to be 0.458. (Compare tttie tmean
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square error of 0.466 for th2000 x 40 data array, discussed in the previous
paragraph. A constant 10 divisor was used, for companaloiitesults, for the
2000 x 400 data.)

We conclude that neither embedding spatial dimensionakty number
of columns in the data matrix, nor also data set size as giyghdnumber of
rows, are inherent determinants of the smoothing proesfieur new method.

So what is important? Clearly if the hierarchical clusteriagulling
large clusters together, and facilitating the “energy caatipn” properties of
the wavelet transform, then what is important is clustesingcture in our data.

6.5 Compressibility of the Transformed Data

We generated structure by placing Gaussians centered &tlkbwing
row, column locations in 4200 x 400 data array: 300,100; 800,300; 1000,200;
500,150; 900,150. These bivariate Gaussians were of totali1®in each case.
A full width at half maximum (equal to 2.35482 times the starttideviation of
a Gaussian), was used in each case, respectively: 20, 50000125. We will
call this the data array containing structure. Figure 3 shawshematic view
of it. Next we added uniformly distributed random noise, vehthe values in
the former (Gaussians) data set scaled down by a constaat & 0. Figure
4 shows the data set we will now work on. (We added noise inrdodbave a
non-trivial data set for our compressibility experiments.

In Murtagh et al. (2000) it was noted how row and column pemagut
of a data table allows application of any wavelet transfonunere we take the
data table as a 2-dimensional image. For a 3-way data arvegyelet working
on a 3-dimensional image volume is directly applicable. Tiffecdlty in using
an image processing technique on a data array is that (i) we optimally
permute data table rows and columns, which is known to be adyfplete
problem, or (ii) we must accept that each alternative ddtie taow and column
permutation will lead to a different result.

To exemplify this situation, we take the data generated ssrieed above,
which is by construction optimally row/column permuted. Utig 4 shows the
data used, generated as having structure (i.e., contiglmilar values, which
can still be visually appreciated) but also subject to aaldétl uniformly dis-
tributed noise. The noise notwithstanding, there is stillttire present in this
data which can be exploited for compression purposes. Wiedaut assess-
ments with the Lempel-Ziv run length encoding compressioorityn, which
is used in the gzip command in Unix.

The data array of Figure 4 was of size 1,923,840 bytes. A random
row/column permuted version of this array was of identi¢zé¢ sThis random
row/column permuting used uniformly distributed ranks.alhcases consid-



Haar Wavelet Transform of a Dendrogram 21

Figure 3. Visualization of the artificial structure defined from 5 diffet®atussian distributions,
before noise was added. Data array dimensia280 x 400 (portrayed transposed here).

Figure 4. Data array dimension$200 x 400 (portrayed transposed). Structure is visible, and
added uniform noise.

ered here, 32-bit floating point storage was used, and eaaf, atored as an
image, contained a small additional ascii header.

Applying Lempel-Ziv compression to these data tables vyielgiag-
compressed files of size, respectively, 1,720,368 and 282hytes. There is
not a great deal of compressibility present here. The rowrfaolpermutation,
as expected, is not of help.

Next, we used our hierarchical wavelet transform, whereptitput is of
exactly the same dimensions as our input (hé280 x 400). Again we stored
this transformed data in an image format, using 32-bit flgapoint storage.
So the size of the transformed data was again exactly 1,92®8és. This is
irrespective of any wavelet filtering (by setting wavelensBrm coefficients
to 0), and is solely due to the file size, based on so much dath,\edue of
which is stored as a 32-bit floating point value.

Then we compressed, using Lempel-Ziv, the wavelet transfoten Wée
looked at three alternatives: no wavelet filtering used; \evdtering such
that coefficients with value up to 0.05 were set to 0; and wavdtering such
that coefficients with value up to 0.1 were set to O.
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The Lempel-Ziv compressed files were respectively of sizes:01912,
1,435,477, and 1,108,743 bytes. We see very clearly that ee#ip run length
encoding is benefiting from our wavelet filtering, providedtttieere is suffi-
cient filtering.

It is useful to proceed further with this study, to see if sienfiltering,
similar to what we are doing in wavelet space, can be applsedta the original
data (or, for that matter, the permuted data).

Table 6 shows what we found. The mean square error (MSE) here is
> (&5 —xij)?/ 3255 ;- What is noticeable is that in the 2nd and 3rd rows of
the table processing the original data is seen to hateerMSE coupled with
worsecompressibility. A fortiori we claim that for thesameMSE we would
have everworsecompressibility.

Our wavelet approach therefore has performed better insthidy than
direct processing of the given data. Furthermore, relatialbitrary permuting
of the rows and columns, our given data represents a rdiafaeorable case.
In practice, we have no guarantee that rows and columns iameged such that
like values are contiguous. But by design we have such adal@situation
here.

In concluding this study, we note the following work whictess Fourier
transform, rather than a wavelet transform, on a hierarchpated tree. Kar-
gupta and Park (2004) study the situation when a decisierigrgiven to begin
with, and apply a Fourier transform to expedite compresdian our purposes,
a hierarchical tree is determined in order to structure #ita,dand comprises
the first part of a data processing pipeline. A subsequenppéne processing
pipeline is the wavelet transform of the hierarchicallystured data.

7. Wavelet-Based Multiway Tree Building: Approximating a Hierarchy
by Tree Condensation

Deriving a partition from a hierarchical clustering has ajs been a cru-
cial task in data analysis (an early example is Mojena 19T this section
we will explore a new approach to deriving a partition from endrogram.
Deriving a partition from a dendrogram is equivalent to fapking” a strictly
binary tree into a non-binary or multiway tree. Now, condeiptarchies are in-
creasingly used to expedite search in information retlj@specially in cross-
disciplinary domains where a specification of the varioumieologies used
can be helpful to the user. For concept hierarchies, a naarpior multivay
tree is preferred for this purpose, and may, in practice, dierchined from a
binary tree (as do Chuang and Chien 2005).

It is interesting to note that Lerman (1981, pp. 298—-299) eskls this
same issue of the “condensation of a tree to the levels gonekng to its
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Table 6. Columns from left to right: Haar wavelet transform thresholgieg to transformed

data, with values lower than or equal to this set to 0; mean square etveedreinput data and

reconstructed, filtered data; compression size in bytes of the recctestriltered data; threshold
applied to the original data, with values lower than or equal to this set to Op sweare error

between input data and thresholded data; compression size in bytegdlofetieolded data. See
text for discussion.

HWT thresh. MSE Comp. size  Orig. thresh. MSE Comp. size
0 0 1,780,912 0 0 1,720,368
0.05 0.0032 1,435,477 0.25 0.0028 1,447,984
0.1 0.0119 1,108,743 0.39 0.0111 1,252,793

significant nodes”, and then proceeds to discuss the glotiation used (for
instance, in an agglomerative hierarchical algorithmjasgs a local criterion
(where the latter is used to judge whether a node is signifimamot). There is
a clear parallel between this way of viewing the “collapsiohgsters” problem
and our way of tackling it.

A binary rooted treeH, onn observations has precisely— 1 levels;
or H contains precisely, — 1 subsets of the set of observations. The inter-
pretation of a hierarchical clustering often is carried loyicutting the tree to
yield any one of thex — 1 possible partitions. Our hierarchical Haar wavelet
transform affords us a neat way to approximatausing a smaller number of
possible partitions.

Consider the detail vector at any given level: e.g., as eXéiegin Table
2. Any such detail vector is associated with (i) a node of timady tree; (ii)
the level or height index of that node; and (iii) a clustersabset of the ob-
servation set. With the goal of “collapsing” clusters, r&moving clusters that
are not unduly valuable for interpretation, we will imposkaad threshold on
each detail vectortf the norm of the detail vector is less than a user-specified
threshold, then set all values of the detail vector to zero.

Other rules could be chosen, in particular rules relatesttly to the ag-
glomerative clustering criterion used, but our choice & thresholded norm
is a reasonable one. Our norm-based rule is not directlyec:ta the agglom-
erative criterion for the following reasons: (i) we seek a@gc interpretative
aid, rather than an optimal but criterion-specific rule; &ii) optimal, criterion-
specific rule would in any case be best addressed by studyengwrall op-
timality measure rather than availing of the stepwise stibwa hierarchical
clustering; and (iii) from naturally occurring hierarchjeas occur in very high
dimensional spaces (cf. Murtagh 2004), the issue of an augylative criterion
is not important.

Following use of the norm-based cluster collapsing rule, répresen-
tation of the reconstructed hierarchy is straightforwattte hierarchy’s level
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index is adjusted so that tipeeviouslevel index additionally takes the place of
the given level index. Examples discussed below will exein tis.

7.1

Properties of the approach include the following:

. Rather than misleading increase in agglomerative cingtealue or level,

we examine instead clusters (or nodes in the hierarchy).

. This implies that we explore a cluster at a time, rather thpartition at

a time. So the resulting retained clusters may well come frdfardnt
original partitions.

. We take a strictly binary (2-way, agglomeratively cousted) tree as in-

put and determine a simplified, multiway tree as output.

. A single scalar value filtering threshold — a user-set patam- is used to

derive this output, simplified, multiway tree from the inpindry tree.

. The filtering is carried out on the wavelet-transformed;teawl then the

output, simplified tree is reconstructed from the waveletdfarm values.

. The filtering is carried out on each node (in wavelet spacsegguence.

Hence the computational complexity is linear.

. Upstream of the wavelet transform, and hierarchicaltehirsy, we use

correspondence analysis to take frequency of occurreneeimjaut, ap-
ply appropriate normalization, and map the data of interdstan (un-
weighted) Euclidean space. (See Murtagh 2005.)

. Again upstream of the wavelet transform, for the binagg tve use min-

imal variance hierarchical clustering. This agglomeratisigerion favors
compact clusters.

. Our hierarchical clustering accommodates weights orinppet observ-

ables to be clustered. Based on the normalization used icotliespon-
dence analysis, by design these weights here are constant.

Properties of Derived Partition

A partition by definition is a set of clusters (sets) such tlwatenare over-

lapping, and their union is the global set considered. So inr€i§ the upper
left hierarchy is cut, and shown in the lower left, to yield thartition consisting
of clusters(7,8,5,6), (1,2) and(3,4). Traditionally, deriving such a partition
for further exploitation is a common use of hierarchicaktduing. Clearly the
partition corresponds to a height or agglomeration thriesho

In a multiway hierarchy, such as the one shown in the top rginiel in

Figure 5, consider the same straight line drawn from left gbtri at approxi-

mately the same height or agglomeration threshold. It idyesesen that such a
partition is the same as that represented by the non-straigte of the lower

right panel.
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Figure 5. Upper left: original dendrogram. Upper right, multiway trésitag from one collapsed
cluster or node. Lower left: a partition derived from the dendrograee (ext for discussion).
Lower right: corresponding partition for the multiway tree.

From this illustrative example, we draw two conclusionsir(ijhe case
of a multiway tree a partition is furnished by a horizontal otithe multiway
tree —accomplished exactly as in the case of the strictlgritree; and (i) this
horizontal cut of a multiway tree is identical to a nonlinearve of the strictly
binary tree. We can validly term the nonlinear curve a pieseWworizontal one.

Note that the nonlinear curve used in Figure 5, lower rightghanas
nothing whatsoever to do with nonlinear cluster separaiorany ambient
space in which the clusters are embedded), nor with nonlimegping.

7.2 Implementation and Evaluation

We took Aristotle’sCategorieqsee Aristotle 350BC; Murtagh 2005) in
English containing 14,483 individual words. We broke up ti into 24 files,
in order to study the sequential properties of the argumewneldped in this
short philosophical work. In these 24 files, there were 126@ueawords.
We selected 66 nouns of particular interest. With frequescif occurrence
in parentheses we had (sample only): man (104), contrary, &&ne (71),
subject (60), substance (58), species (54), knowledge (@@lities (47), etc.
No stemming or other preprocessing was applied on the geotivad singular
and plurals could well indicate different semantic contefigeneric “quantity”
versus the set of specific, particular “quantities”.

The termsx subtexts data array waeubled(Murtagh 2005) to produce
a66 x 48 array: for each subtext with term frequencies of occurreneg;,



26 F. Murtagh

frequencies from a “virtual subtext” were definedas = max; a;; — a;;. In

this way the mass of term) defined as proportional to the associated row sum,
is constant. Thus what we have achieved is to weight all tedenstically. (We
note in passing thaermvectors therefore cannot be of zero mass.)

A correspondence analysis was carried out on6the: 48 table of fre-
quencies with the aim of taking the set of 66 nouns endowell thvéy > metric
(i.e., a weighted Euclidean distance betweperfiles the weighting is defined
by the inverse subtext frequencies) into a factor spaceveediovith the (un-
weighted) Euclidean metric. (We note in passing thatsubtextof zero mass
must be removed from the analysis beforehand; otherwisrsewsubtext fre-
guency cannot be calculated.) Correspondence analysiglpsoa convenient
and general way to “euclideanize” the data, and any altemabuld be con-
sidered also (e.g., as discussed in section 5.1 of Heiset)2@0hierarchical
clustering (minimum variance method) was carried out onféwtor coordi-
nates of the 66 nouns. Such a hierarchical clustering is elgthinary (i.e.
2-way), rooted tree.

The norms of detail vectors had minimum, median and maximulm va
ues as follows: 0.0758, 0.2440 and 0.6326, and these infldeheechoice of
threshold. Applying thresholds of 0, 0.2, 0.3 and 0.4 gase to the follow-
ing numbers of “collapsed” clusters with, in brackets, theam squared error
between approximated data and original input data: 0 (28)0.0054), 44
(0.0147), and 55 (0.0164). Figure 6 shows the correspondeanstructed and
approximated hierarchies.

In the case of the threshold 0.3 (lower left in Figure 6) we hasted that
44 clusters were collapsed, leaving just 21 partitions. tased the objective
here is precisely to approximate the dendrogram outputstaiature in order
to facilitate further study and interpretation of thesetitians.

Figure 7 shows the sequence of agglomerative levels whetepezae|
corresponds to the respective panel in Figure 6. It is clear Why these ag-
glomerative levels are very problematic if used for chogsingood partition:
they increase with agglomeration, simply because theearsinters are get-
ting more and more spread out as the sequence of agglonmsrgiioceeds.
Directly using these agglomerative levels has been a wagitveda partition
for a very long time (Mojena 1977). To see how the detail noused by us
here are different, see Figure 8.

7.3 Collapsing Clusters Based on Detail Norms: Evaluation Vis-vis
Direct Partitioning

Our cluster collapsing algorithm is: wavelet-transforre thierarchical
clustering; for clusters corresponding to detail norm thas a set threshold, set
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Figure 6. Upper left: original hierarchy. Upper right, lower left, andéowight show increasing
approximations to the original hierarchy based on the “cluster collapsipgfoach described.
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Figure 7. Agglomerative clustering levels (or heights) for each of therdmichies shown in Figure 6.
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Figure 8. Agglomerative levels (left; as upper left in Figure 7, andasponding to the original —
upper left — hierarchy shown in Figure 6), and detail norms (right)ttfe hierarchy used. Detail
norms are used by us as the basis for “collapsing clusters”.

the detail norm to zero, and the corresponding increaseh ile the hierarchy
also; reconstruct the hierarchy. We look at a range of tluleslalues. To begin
with, the hierarchical clustering is strictly binary. Restructed hierarchies are
multiwvay.

For each unique level of such a multiway hierarchy (cf. Figgirénow
good are the partitions relative to a direct, optimizati@sed alternative? We
use the algorithm of Hartigan and Wong (1979) with a requkstember of
clusters in the partition given by the same number of clsstethe collapsed
cluster multiway hierarchy. In regard to the latter, we ladlall unique par-
titions. (In regard to initialization and convergence e, the Hartigan and
Wong algorithm implementation in the R package, www.r-pcbjorg, was used.)

We characterize partitions using the average cluster negia
1/1Q1 Y ieqiqeq 1/1allli — gl*. Alternatively we assessed the sum of squares:
> 4eo lli — qll*. Here,Q is partition,q is a cluster, andii — ¢|* is Euclidean
distance squared between a vedtand its cluster center. (Note thatg refers
both to a set and to a cluster center — a vector — here.) Altindhig is a
sum of squares criterion, as &p (1985, p. 17) indicates, it is on occasion
(confusingly) termed the variance criterion. In eitherezage target compact
clusters with this k-means clustering algorithm, whichlgoahe target of our
hierarchical agglomerative clustering algorithm. A k-mealgorithm aims to
optimize the criterion, in the $h sense, directly.

In Table 7 we see that the partitions of our multiway hiergrate about
half as good as k-means in terms of overall compactnessdlcimns 3 and 5).
Close inspection of properties of clusters in differenttiians indicated why
this was so: with a poor or low compactness for one clustey garly on in
the agglomerative sequence, the stepwise algorithm usddebmultiway hi-
erarchy had to live with this cluster through all later aggérations; and the



Haar Wavelet Transform of a Dendrogram 29

Table 7. Analysis of the unique partitions in the multiway tree shown on the leftesf Figure
6. Partitions are benchmarked using k-means to construct partitione Wiethe same value as
found in the multiway tree. SS = sum of squares criterion value.

Agglom. Multiway tree Multiway tree  Partition  K-means

level height partition SS cardinality partition SS
1 0.00034 0.095 65 0.062
2 0.00042 0.229 61 0.091
3 0.00051 0.340 60 0.146
4 0.00057 0.397 59 0.205
5 0.00059 0.485 58 0.156
6 0.00066 0.739 55 0.239
7 0.00077 1.115 53 0.347
8 0.00092 1.447 51 0.484
9 0.00099 1.723 48 0.582
10 0.00122 2.329 45 0.852
11 0.00142 2.684 43 0.762
12 0.00159 3.101 42 0.865
13 0.00161 3.498 39 1.161
14 0.00189 3.938 36 1.354
15 0.00201 4.954 32 1.873
16 0.00220 5.293 30 2.178
17 0.00234 6.957 25 3.007
18 0.00311 7.204 24 2.722
19 0.00314 8.627 21 3.497
20 0.00326 10.192 15 5.426
21 0.00537 18.287 1 18.287

biggest sized cluster (i.e. largest cluster cardinalitybhie stepwise agglomer-
ative tended to be a little bigger than the biggest sizedetun the k-means
result.

This is an acceptable result: after all, k-means optimizesdiiterion
directly. Furthermore, the multiway hierarchy preservebededness relation-
ships which are not necessarily present in any sequenceufsensuing from
a k-means algorithm. Finally, it is well-known that seekigdirectly opti-
mize a criterion such as k-means will lead to a better outcitwaue the stepwise
refinement used in the stepwise agglomerative algorithm.

If we ask whether k-means can be applied once, and then kgragan
plied to individual clusters in a recursive way, the answesficourse affirma-
tive — subject to prior knowledge of the number of levels amel value of k
throughout. It is precisely in such areas that our hieraaitapproach is to be
preferred: we require less prior knowledge of our data, a@dre satisfied with
the downside of global approximate fidelity between outputcstire and our
data.
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8. Wavelet Decomposition: Linkages with Approximation and
Computability

A further application of wavelet-transformed dendrogramsurrently
under investigation and will be briefly described here.

In domain theory (see Edalat 1997; 2003), a Scott model carssale
computer program as a function from one (input) domain tataro(output)
domain. If this function is continuous then the computatswell-defined and
feasible, and the output is said to be computable. The Scotthmdoncerned
with real number computation, or computer graphics prognarg where, e.g.,
object overlap may be true, false, or unknown and hence bedeled with
a partially ordered set. In the Scott model, well-behaved@pmation can
benefit therefore from function monotonicity.

An alternative, although closely related, structure withickh domains
are endowed is that of spherically complete ultrametricepaThe motivation
comes from logic programming, where non-monotonicity majl e relevant
(this arises, for example, with the negation operator)e3ian easily represent
positive and negative assertions. The general notion ofezgewnce, now, is
related tospherical completenegSchikhof 1984; Hitzler and Seda 2002). If
we have any set of embedded clusters, or any chainthen the condition
that such a chain be non-empfy,. ¢» # (, means that this ultrametric space
is non-empty. This gives us both a concept of completeneskakso a fixed
point which is associated with the “best approximation”red thain.

Consider our space of observatiois,= {x;|i € I}. The hierarchyH,
or binary rooted tree, defines an ultrametric space. For easéreation:;, by
considering the chain from root cluster to the observatiom see that{ is a
spherically complete ultrametric space.

Our wavelet transform allows us to read off the chains thddentlae ultra-
metric space a spherically complete one. A non-deternnigirst case)(n)
data re-creation algorithm ensues, compared to a more neoadeterministic
worst caseD(m) data recreation algorithm. The importance of this result is
whenm >> n.

In our current work (Murtagh 2007) we are studying this pectpe
based on (i) a body of texts from the same author, and (ii) @tjbof face
images.

9. Conclusion

We have described the theory and practice of a novel wavealesform,
that is based on an available hierarchic clustering of tha thble. We have
generally used Ward’s minimum variance agglomerativesnahical clustering
in this work.
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We have described this new method through a number of exanipéh
to illustrate its properties and to show its operational use

A number of innovative applications were undertaken wiik trew ap-
proach. These lead to various exciting open possibilitigegard to data min-
ing, in particular in high dimensional spaces.
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