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The Haar Wavelet Transform of a Dendrogram
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Abstract: We describe a new wavelet transform, for use on hierarchies or binary rooted
trees. The theoretical framework of this approach to data analysis is described. Case
studies are used to further exemplify this approach. A first set of application studies deals
with data array smoothing, or filtering. A second set of application studies relates to hier-
archical tree condensation. Finally, a third study explores the wavelet decomposition, and
the reproducibility of data sets such as text, including a new perspective onthe generation
or computability of such data objects.

Keywords: Multivariate data analysis; Hierarchical clustering; Data summarization; Data
approximation; Compression; Wavelet transform; Computability.

1. Introduction

In this paper, the new data analysis approach to be describedcan be un-
derstood as a transform which maps a hierarchical clustering into a transformed
set of data; and this transform is invertible, meaning that the original data can be
exactly reconstructed. Such transforms are very often used in data analysis and
signal processing because processing of the data may be facilitated by carrying
out such processing in transform space, followed by reconstruction of the data
in some “good approximation” sense.

Dimitri Zervas converted the hierarchical clustering and new Haar wavelet transform into
C/C++ from the author’s R and Java codes.

Author’s Address: Department of Computer Science, Royal Holloway, University of Lon-
don, Egham TW20 0EX, England, e-mail: fmurtagh@acm.org
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Consider data smoothing as a case in point of such processing. Smooth-
ing of data is important for exploratory visualization, fordata understanding
and interpretation, and as an aid in model fitting (e.g., in time series analysis
or more generally in regression modeling). The wavelet transform is often used
for signal (and image) smoothing in view of its “energy compaction” proper-
ties, i.e., large values tend to become larger, and small values smaller, when the
wavelet transform is applied. Thus a very effective approachto signal smooth-
ing is to selectively modify wavelet coefficients (for example, put small wavelet
coefficients to zero) before reconstructing an approximate version of the data.
See Ḧardle (2000), Starck and Murtagh (2006).

The wavelet transform, developed for signal and image processing, has
been extended for use on relational data tables and multidimensional data sets
(Vitter and Wang 1999; Joe, Whang and Kim 2001) for data summarization
(micro-aggregation) with the goal of anonymization (or statistical disclosure
limitation) and macrodata generation; and data summarization with the goal of
computational efficiency, especially in query optimization. A survey of data
mining applications (including applications to image and signal content-based
information retrieval) can be found in Tao Li, Qi Li, Shenghuo Zhuand Ogihara
(2002).

A hierarchical representation is used by us, as a first phase ofthe process-
ing, (i) in order to cater for the lack of any inherent row/column order in the
given data table and to get around this obstacle to freely using a wavelet trans-
form; and (ii) to take into account structure and interrelationships in the data.
For the latter, a hierarchical clustering furnishes an embedded set of clusters,
and obviates any need for a priori fixing of number of clusters.Once this is
done, the hierarchy is wavelet transformed. The approach is anatural and inte-
gral one.

Our innovation is to apply the Haar wavelet transform to a binary rooted
tree (viz., the clustering hierarchy) in terms of the following algorithm: recur-
sively carry out pairwise averaging and differencing at thesequence of levels in
the tree.

A hierarchy may be constructed through use of any constructive, hier-
archical clustering algorithm (Benzécri 1979; Johnson 1967; Murtagh 1985).
In this work we will assume that some agglomerative criterion is satisfactory
from the perspective of the type of data, and the nature of thedata analysis
or processing. In a wide range of practical scenarios, the minimum variance
(or Ward) agglomerative criterion can be strongly recommended due to its data
summarizing properties (Murtagh 1985).

The remainder of this article is organized as follows. Sections 2 and
3 present important background context. Section 4 presents our new wavelet
transform. In Section 5, illustrative case studies are used to further discuss the
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new approach. Section 6 deals with the application to data array smoothing, or
filtering. Section 7 deals with the application to hierarchical tree condensation.
Section 8 explores the wavelet decomposition, and linkages with reproducibility
or recreation of data sets such as text.

2. Wavelets on Local Fields

Wavelet transform analysis is the determining of a “useful”basis for
L2(Rm) which is induced from a discrete subgroup ofRm, and uses transla-
tions on this subgroup, and dilations of the basis functions.

Classically (Frazier 1999; Debnath and Mikusiński 1999; Strang and
Nguyen 1996) the wavelet transform avails of a wavelet functionψ(x) ∈ L2(R),
where the latter is the space of all square integrable functions on the reals.
Wavelet transforms are bases onL2(Rm), and the discrete lattice subgroupZm

(m-dimensional integers) is used to allow discrete groups of dilated translation
operators to be induced onRm. Discrete lattice subgroups are typical of 2D
images (where the lattice is a pixelated grid) or 3D images (where the lattice is
a voxelated grid) or spectra or time series (the lattice is the set of time steps, or
wavelength steps).

Sometimes it is appropriate to consider the construction of wavelet bases
onL2(G) whereG is some group other thanR. In Foote, Mirchandani, Rock-
more, Healy and Olson (2000a, 2000b; see also Foote 2005) this is done for the
group defined by a quadtree, in turn derived from a 2D image. To consider the
wavelet transform approach not in a Hilbert space but ratherin locally-defined
and discrete spaces we have to change the specification of a wavelet function in
L2(R) and instead useL2(G).

Benedetto (2004) and Benedetto and Benedetto (2004) considered in de-
tail the groupG as a locally compact abelian group. Analogous to the integer
grid, Zm, a compact subgroup is used to allow a discrete group of operators
to be defined onL2(G). The property of locally compact (essentially: finite
and free of edges) abelian (viz., commutative) groups that is most important is
the existence of the Haar measure. The Haar measure allows integration, and
definition of a topology on the algebraic structure of the group.

Among the cases of wavelet bases constructed via a sub-structure are the
following (Benedetto 2004).

• Wavelet basis onL2(Rm) using translation operators defined on the dis-
crete lattice,Zm. This is the situation that holds for image processing,
signal processing, most time series analysis (i.e., with equal length time
steps), spectral signal processing, and so on. As pointed out by Foote
(2005), this framework allows the multiresolution analysis inL2(Rm) to
be generalized toLp(Rm) for Minkowski metricLp other than Euclidean
L2.
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• Wavelet basis onL2(Qp), whereQp is the p-adic field, using a discrete
set of translation operators. This case has been studied by Kozyrev 2002,
2004; Altaisky 2004, 2005. See also the interesting overviewof Khren-
nikov and Kozyrev (2006).

• Finally the central theme of Benedetto (2004) is a wavelet basis onL2(G)
whereG is a locally compact abelian group, using translation operators
defined on a compact open subgroup (or operators that can be used as
such on a compact open subgroup); and with definition of an expansive
automorphism replacing the traditional use of dilation.

In Murtagh (2006) the latter theme is explored: a p-adic representation
of a dendrogram is used, and an expansive operator is defined, which, when
applied to a level of a dendrogram enables movement up a level.

In our case we are looking for a new basis forL2(G) whereG is the set
of all equivalent representations of a hierarchy,H, onn terminals. Denoting the
level index ofH asν (soν : H −→ R+, whereR+ are the positive reals), and
ν = 0 is the level index corresponding to the fine partition of singletons, then
this hierarchy will also be denoted asHν=0. Let I be the set of observations.
Let the succession of clusters associated with nodes inH be denotedQ =
{q1, q2, . . . , qn−1}. We haven − 1 non-singleton nodes inH, associated with
the clusters,q. At each node we can interchange left and right subnodes. Hence
we have2n−1 equivalent representations ofH, or, again, members in the group,
G, that we are considering.

So we have the group of equivalent dendrogram representations onHν=0.
We have a series of subgroups,Hνk

⊃ Hν(k+1)
, for 0 ≤ k < n− 1. Symmetries

(in the group sense) are given by permutations at each level,ν, of hierarchy
H. Collecting these furnishes a group of symmetries on the terminal set of any
given (non-terminal) node inH.

We want to process dendrograms, and we want our processing tobe in-
variant relative to any equivalent representation of a given dendrogram.

Denote the permutation at levelν by Pν . Then the automorphism group
is given by:

G = Pn−1 wr Pn−2 wr . . . wr P2 wr P1,

where wr denotes the wreath product.
Foote et al. (2000a, 200b) and Foote (2005) consider the wreath product

group of a tree representation of data, including the quadtree which is a tree
representation of an image. Just as for us here, the offspring nodes of any given
node in such a tree can be “rotated” ad lib. Group action amounts to cyclic
shifts or adjacency-preserving permutations of the offspring nodes. The group
in this case is referred to as the wreath product group.

We will introduce and study a wavelet transform onL(G) whereG is the
wreath product group based on the hierarchy or rooted binarytree,H.
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3. Hierarchy, Binary Tree, and Ultrametric Topology

A short set of definitions follow, showing how a hierarchy is taken in the
form of a binary tree, and the particular form of binary tree used here is often
termed a dendrogram. By small abuse of terminology, we will useH to denote
this hierarchy, and the ultrametric topology that it represents.

A hierarchy,H, is defined as a binary, rooted, unlabeled, node-ranked
tree, also termed a dendrogram (Benzécri 1979; Johnson 1967; Lerman 1981;
Murtagh 1985). A hierarchy defines a set of embedded subsets ofa given set,
I. However these subsets are totally ordered by an index function ν, which is
a stronger condition than the partial order required by the subset relation. A
bijection exists between a hierarchy and an ultrametric space.

Let us show these equivalences between embedded subsets, hierarchy,
and binary tree, through the constructive approach of inducingH on a setI.

Hierarchical agglomeration onn observation vectors,i ∈ I, involves
a series of1, 2, . . . , n − 1 pairwise agglomerations of observations or clusters,
with the following properties. A hierarchyH = {q|q ∈ 2I} such that (i)I ∈ H,
(ii) i ∈ H ∀i, and (iii) for eachq ∈ H, q′ ∈ H : q∩q′ 6= ∅ =⇒ q ⊂ q′ or q′ ⊂ q.
Here we have denoted the power set of setI by 2I . An indexed hierarchy is
the pair(H, ν) where the positive function defined onH, i.e., ν : H → R+,
satisfies:ν(i) = 0 if i ∈ H is a singleton; and (ii)q ⊂ q′ =⇒ ν(q) < ν(q′).
Here we have denoted the positive reals, including 0, byR+. Functionν is the
agglomeration level. Takeq ⊂ q′, let q ⊂ q′′ andq′ ⊂ q′′, and letq′′ be the
lowest level cluster for which this is true. Then if we defineD(q, q′) = ν(q′′),
D is an ultrametric. In practice, we start with a Euclidean or other dissimilarity,
use some criterion such as minimizing the change in varianceresulting from
the agglomerations, and then defineν(q) as the dissimilarity associated with
the agglomeration carried out.

4. The Hierarchic Haar Wavelet Transform Algorithm: Description

Linkages between the classical wavelet transform, as used insignal
processing, and multivariate data analysis, were investigated in Murtagh (1998).
The wavelet transform to be described now is fundamentally different, and
works on a hierarchy.

The traditional Haar wavelet transform can be simply described in terms
of the following algorithm: recursively carry out averaging and differencing of
adjacent pairs of data values (pixels, voxels, time steps, etc.) at a sequence of
geometrically (factor 2) increasing resolution levels. Asmentioned in the Intro-
duction, our innovation is to apply the Haar wavelet transform to the clustering
hierarchy, and this algorithm is the recursive carrying outof pairwise averaging
and differencing at the sequence of levels in the hierarchical tree.
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4.1 Short Description of the Algorithm

A dendrogram onn terminal nodes, associated with observation vectors,
hasn− 1 non-terminal nodes. We proceed through each of these non-terminal
nodes in turn, starting at the node corresponding to the sequentially first ag-
glomeration, continuing to the node corresponding to the sequentially second
agglomeration, and so on, until we finally reach the root node.At each node,
we define a vector as the (unweighted) average of the vectors ofits two child
nodes. So the vector associated with the very first non-terminal node will be
the (unweighted) average of the vectors comprising this node’s two (terminal)
child nodes.

For subsequent non-terminal nodes, their child nodes may beterminal
or non-terminal. In all cases, this procedure is well-defined. We continue the
procedure until we have processed alln− 1 non-terminal nodes.

We now have an increasingly smooth vector corresponding to each node
in the dendrogram, or hierarchy,H. We term this vector at each node thesmooth
signalor justsmoothat each node.

Thedetail signal, or detail, at each node is defined as thevector differ-
encebetween the vector at a (non-terminal) node, and the vector at its (terminal
or non-terminal) child node. By consistently labeling leftand right child subn-
odes, by construction the left child subnode will have a detail vector which is
just the negative of the detail vector of the right subnode. Hence, with consis-
tency of left and right labeling, we just need to store one of these detail vectors.

Because of the way that the detail signal has been defined, and given the
smooth signal associated with the root node (the node with sequence number
n − 1), we can easily see the following: to reconstruct the original data, used
to set this algorithm underway, we need just the set of all detail signals, and the
final, or root node, smooth signal.

4.2 Definition of Smooth Signals and Detail Signals

Consider any hierarchical clustering,H, represented as a binary rooted
tree. For each cluster associated with a non-terminal node,q′′, with offspring
(terminal or non-terminal) nodesq andq′, we defines(q′′) through application

of the low-pass filter

(

1
2
1
2

)

which can be implemented as a scalar product:

s(q′′) =
1

2

(

s(q) + s(q′)
)

=

(

0.5
0.5

)t (

s(q)
s(q′)

)

. (1)

The application of the low-pass filter is carried out in order ofincreasing
node number (i.e., from the smallest non-terminal node, through to the root
node). For a terminal node,i, allowing us to notationally say thatq = i or
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that q′ = i, the signal smooths(i) is just the given vector, and this aspect is
addressed further below, in subsection 4.3.

Next for each clusterq′′ with offspring nodesq andq′, we define detail

coefficientsd(q′′) through application of the band-pass filter

(

1
2

−1
2

)

:

d(q′′) =
1

2
(s(q) − s(q′)) =

(

0.5
−0.5

)t (

s(q)
s(q′)

)

. (2)

Again, increasing order of node number is used for application of this
filter.

The scheme followed is illustrated in Figure 1, which shows thehierar-
chy (constructed by the median agglomerative method, although this plays no
role here), using for display convenience just the first 8 observation vectors in
Fisher’s iris data (Fisher 1936).

We call our algorithm a Haar wavelet transform because, traditionally,
this wavelet transform is defined by a similar set of averages and differences.
The former, low-pass filter, is used to set the center of the two clusters being
agglomerated; and the latter, band-pass filter, is used to setthe deviation or
discrepancy of these two clusters from the center.

4.3 The Input Data

We now return to the issue of how we start this scheme, i.e. howwe
defines(i), or the “smooth” of a terminal node, representing a singleton cluster.

Let us consider two cases:

1. s(i) is a vector inRm, and theith row of a data table.

2. s(i) is ann-dimensional indicator vector. So the third, in sequence, out of
a population ofn = 8 observations has indicator vector{00100000}. We
can of course take a data table of all indicator vectors: it isclear that the
data table is symmetric, and is none other than the identity matrix.

Our hierarchical Haar wavelet transform can easily handle either case,
depending on the input data table used.

While we have considered two cases of input data, we may note the fol-
lowing. Having the clustering hierarchy built on the same input data as used
for the hierarchical Haar transform is reasonable when compression of the in-
put data is our target. However, if the hierarchical Haar transform is used for
data approximation, cf. section 8. below, then we are at liberty to use different
data for the hierarchical clustering and for the Haar transform. The hierarchy
is built from a set of observation vectors inRm. Then it is used in the Haar
wavelet transform as a structure on another set of vectors inRm′

(with m′ not
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x1 x3 x4 x6x8x2 x5x7

0
1

s7

s6

s5

s4
s3

s2
s1

-d7

-d6
-d5

-d4
-d3-d2

-d1

+d7

+d6

+d5

+d4 +d3
+d2 +d1

Figure 1. Dendrogram on 8 terminal nodes constructed from first 8 values of Fisher iris data.
(Median agglomerative method used in this case.) Detail or wavelet coefficients are denoted
by d, and data smooths are denoted bys. The observation vectors are denoted byx and are
associated with the terminal nodes. Eachsignal smooth, s, is a vector. The (positive or negative)
detail signals, d, are also vectors. All these vectors are of the same dimensionality.

necessarily equal tom). We will not pursue this line of investigation further
here.

4.4 The Inverse Transform

Constructing the hierarchical Haar wavelet transformed data is referred
to as the forward transform. Reconstructing the input data is referred to as the
inverse transform.

The inverse transform allows exact reconstruction of the input data. We
begin withsn−1. If this root node has subnodesq andq′, we used(q) andd(q′)
to forms(q) ands(q′).

We continue, step by step, until we have reconstructed all vectors associ-
ated with terminal nodes.

4.5 Matrix Representation

Let our input data be a set ofn points inRm given in the form of matrix
X. We have:

X = CD + Sn−1 , (3)

whereD is the matrix collecting all wavelet projections or detail coefficients,d.
The dimensions ofD are(n−1)×m. The dimensions ofC are:n×(n−1). C is
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a characteristic matrix representing the dendrogram. Murtagh (2006) provides
an introduction toC, which will be summarized here. In Figure 2, the 0 or 1
coding works well when we also take account of the existence of the node at
that particular level. Other forms of coding can be used, andMurtagh (2006)
uses a ternary code, viz.,+1 and−1 for left and right branches (replacing 0
and 1 in Figure 2, respectively), and 0 to indicate non-existence of a node at
that particular level.

Matrix C, describing the branching codes,+1 and−1, and an absent
or non-existent branching given by0, uses a set of valuescij wherei ∈ I,
the indices of the object set; andj ∈ {1, 2, . . . , n − 1}, the indices of the
dendrogram levels or nodes ordered increasingly. For Figure2 we therefore
have:

C = {cij} =

























1 1 0 0 1 0 1
−1 1 0 0 1 0 1

0 −1 0 0 1 0 1
0 0 1 1 −1 0 1
0 0 −1 1 −1 0 1
0 0 0 −1 −1 0 1
0 0 0 0 0 1 −1
0 0 0 0 0 −1 −1

























. (4)

For given levelj, ∀i, the absolute values|cij | give the membership func-
tion either by node,j, which is therefore read off columnwise; or by object
index,i which is therefore read off rowwise.

If sn−1 is the final data smooth, in the limit for very largen a constant-
valuedm-component vector, then letSn−1 be then × m matrix with sn−1

repeated on each of then rows.
Consider thejth coordinate of them-dimensional observation vector cor-

responding toi. For anyd(qj) we have:
∑

k d(qj)k = 0, i.e. the detail coeffi-
cient vectors are each of zero mean.

In the case where out input data consists ofn-dimensional indicator vec-
tors (i.e., theith vector contains 0-values except for locationi which has a 1-
value), then our initial data matrixX is none other than then× n dimensional
identity matrix. We will writeXind for this identity matrix.

The wavelet transform in this case is:Xind = CD + Sn−1.
Xind is of dimensionsn× n.
C, exactly as before, is a characteristic matrix representing the dendro-

gram used, and is of dimensionsn× (n− 1).
D, of necessity different in values from case 1, is of dimensions (n −

1) × n.
Sn−1, of necessity different in values from case 1, is of dimensionsn×n.
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4.6 Computational Complexity Properties

The computational complexity of our algorithms are as follows. The hier-
archical clustering isO(n2). The forward hierarchical Haar wavelet transform
is O(n). Finally, the inverse wavelet transform isO(n2). On Macintosh G4
or G5 machines, all phases of the processing took typically 4–5 minutes for an
array of dimensions12000 × 400.

An exemplary pipeline of C and R code used in this work is available at
the following address: http://astro.u-strasbg.fr/∼fmurtagh/mda-sw

5. Hierarchical Haar Wavelet Transform: Case Studies

In a practical way, using small data sets, we will describe our new hier-
archical Haar wavelet transform in this section.

Let us begin with the indicator vectors case. Thus in Figure 2,x1 =
{100000000}, andq1 = {11000000}. Note that this is our definition ofx1

etc. (and is not read off the tree), and from the definition ofx1 andx2 we have
definedq1. This form of coding was used by Nabben and Varga (1994).

Now we use equations 1 and 2.

5.1 Case Study 1

In Figure 2, we have:

s(q1) = 1
2
(x1 + x2) = (1

2
1
2

0 0 0 0 0 0) .

Also: s(q1) = 1
2
q1 ,

s(q2) = 1
2
(s(q1) + x3) = (1

4
1
4

1
2

0 0 0 0 0) .

Also: s(q2) = 1
2
(1
2
q1 + x3) = 1

4
q1 + 1

2
x3 ,

s(q3) = 1
2
(x4 + x5) = (0 0 0 1

2
1
2

0 0 0) .

Also: s(q3) = 1
2
q3 ,

s(q4) = 1
2
(s(q3) + x6) = (0 0 0 1

4
1
4

1
2

0 0) ,

s(q5) = 1
2
(s(q2) + s(q4)) = (1

8
1
8

1
4

1
8

1
8

1
4

0 0) ,

s(q6) = 1
2
(x7 + x8) = (0 0 0 0 0 0 1

2
1
2
) ,

s(q7) = 1
2
(q5 + q6) = ( 1

16
1
16

1
8

1
16

1
16

1
8

1
4

1
4
) .

Next we turn attention to the detail coefficients.

d(q1) = 1
2
(x1 − x2) = (1

2
− 1

2
0 0 0 0 0 0) .
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x1 x2 x3 x4 x5 x6 x7 x8

0
1

2
3

4
5

6
7

0

0

0

0

0

0

0

1

1

1

1

1

1

1

Figure 2. Labeled, ranked dendrogram on 8 terminal nodes. Branches labeled 0 and 1.

Alternatively, for q′′ = q ∪ q′, the detail coefficients are defined as:
d(q′′) = s(q′′) − s(q′) = −(s(q′′) − s(q)).

Thusd(q1) = s(q1) − x2 = (1
2

1
2

0 0 0 0 0 0) − (0 1 0 0 0 0 0 0) =

(1
2
− 1

2
0 0 0 0 0 0) .

For anyd(qj) we have:
∑

k d(qj)k = 0, i.e. the detail coefficient vectors
are each of zero mean.

Let us redo in vector and matrix terms this description of the hierarchical
Haar wavelet transform algorithm.

We take our initial or input data as follows.

























x1

x2

x3

x4

x5

x6

x7

x8

























=

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

























. (5)
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The hierarchical Haar wavelet transform of this input data isthen as fol-
lows. 























d(q1)
d(q2)
d(q3)
d(q4)
d(q5)
d(q6)
d(q7)
s7

























=

































1
2

−1
2

0 0 0 0 0 0
1
4

1
4

−1
2

0 0 0 0 0

0 0 0 1
2

−1
2

0 0 0

0 0 0 1
4

1
4

−1
2

0 0
1
8

1
8

1
4

−1
8

−1
8

−1
4

0 0

0 0 0 0 0 0 1
2

−1
2

1
16

1
16

1
8

1
16

1
16

1
8

−1
4

−1
4

1
16

1
16

1
8

1
16

1
16

1
8

1
4

1
4

































. (6)

As already noted in this subsection, the succession ofn−1 wavelet coef-
ficient vectors are of zero mean. Therefore, due to the input data used (relation
(5)), each row of the right hand matrix in equation 6 is of zeromean.

Note that this transform is a function of the hierarchy,H. Here we are
using the hierarchy of Figure 2.H is needed to define the structure of the
right hand matrix in equation 6. (This is closely related to the discussion in
subsection 4.5. Further discussion can be found in Murtagh 2006).

5.2 Case Study 2

In Tables 1 and 2 we directly transform a small data set consisting of the
first 8 observations in Fisher’s iris data.

Note that in Table 2 it is entirely appropriate that at more smooth levels
(i.e., as we proceed through levels d1, d2,. . ., d6, d7) the values become more
“fractionated” (i.e., there are more values after the decimal point).

The minimum variance agglomeration criterion, with Euclidean distance,
is used to induce the hierarchy on the given data. Each detail signal is of dimen-
sionm = 4 wherem is the dimensionality of the given data. The smooth signal
is of dimensionalitym also. The number of detail or wavelet signal levels is
given by the number of levels in the labeled, ranked hierarchy, i.e.n− 1.
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Table 1. First 8 observations of Fisher’s iris data. L and W refer to lengthand width.

Sepal.L Sepal.W Petal.L Petal.W
1 5.1 3.5 1.4 0.2
2 4.9 3.0 1.4 0.2
3 4.7 3.2 1.3 0.2
4 4.6 3.1 1.5 0.2
5 5.0 3.6 1.4 0.2
6 5.4 3.9 1.7 0.4
7 4.6 3.4 1.4 0.3
8 5.0 3.4 1.5 0.2

Table 2. The hierarchical Haar wavelet transform resulting from use of the first 8 observations of
Fisher’s iris data shown in Table 1. Wavelet coefficient levels are denoted d1 through d7, and the
continuum or smooth component is denoted s7.

s7 d7 d6 d5 d4 d3 d2 d1
Sepal.L 5.146875 0.253125 0.13125 0.1375−0.025 0.05 −0.025 0.05

Sepal.W 3.603125 0.296875 0.16875−0.1375 0.125 0.05 −0.075 −0.05

Petal.L 1.562500 0.137500 0.02500 0.0000 0.000−0.10 0.050 0.00
Petal.W 0.306250 0.093750−0.01250 −0.0250 0.050 0.00 0.000 0.00

5.3 Traditional versus Hierarchical Haar Wavelet Transforms

Consider a set of 8 input data objects, each of which is scalar: (64, 48, 16,
32, 56, 56, 48, 24). A traditional Haar wavelet transform of this data can be
quickly done, and gives:(43,−3, 16, 10, 8,−8, 0, 12). Here, the first value is
the final smooth, and the remaining values are the wavelet coefficients read off
by a traversal from final smooth towards the input data values.Showing the
output in the same way, the hierarchical Haar wavelet transform of the same
data gives:(40, 14, 6,−6,−4, 4, 0, 0).

A little reflection shows that the greater number of zeros in the hierar-
chical Haar wavelet transform is no accident. In fact, with the following condi-
tions: 10 different digits in the input data; processing of an n-length string of
digits; equal frequencies of digits (if necessary, supported by a supposition of
largen); and use of an unweighted average agglomerative criterion; we have
the following.

The hierarchy begins with nodes that agglomerate identical values,n/2
of them; followed by agglomeration of the next round ofn/4 values; followed
byn/8 agglomerations of identical values; etc. So we have, in all,n/2+n/4+
n/8 + . . .+ n/2n−1 identical value agglomerations. All of these will give rise
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to 0-valueddetailcoefficients. For suitablen, all save the very last round of 10
agglomerations will give rise to non-0 valueddetailcoefficients.

This remarkable result points to the powerful data compression potential
of the hierarchical Haar wavelet transform. We must note though that this rests
on the dendrogram, and the computational requirements of the latter are not in
any way bypassed.

6. Hierarchical Wavelet Smoothing and Filtering

Previous work on wavelet transforms of data tables includes Chakrabarti,
Garofalakis, Rastogi and Shim (2001) and Vitter and Wang (1999). There are
problems, however, in directly applying a wavelet transform to a data table. Es-
sentially, a relational table (to use database terminology; or matrix) is treated
in the same way as a 2-dimensional pixelated image, althoughthe former case
is invariant under row and column permutation, whereas the latter case is not
(Murtagh, Starck and Berry 2000). Therefore there are immediate problems re-
lated to non-uniqueness, and data order dependence. What if, however, one or-
ganizes the data such that adjacency has a meaning? This implies that similarly-
valued objects, and/or similarly-valued features, are close together. This is what
we do, using any hierarchical clustering algorithm.

From a given input data array, the hierarchical wavalet transform creates
an output data array with the property of forcing similar values to be close
together. This transform is fully reversible. The proximity of similar values,
however, is with respect to the hierarchical tree which was used in the forward
transform, and of course comes into play also in the inverse transform. Because
similar values are close together, the compressibility of the transformed data
is enhanced. Separately, setting small values in the transformed data to zero
allows for data smoothing or data “filtering”.

6.1 The Smoothing Algorithm

We use the following generic data analysis processing path,which is
applicable to any input tabular data array of numerical values. We assume only
that there are no missing values in the data array.

1. Given a dissimilarity, induce a hierarchy on the set of observations. (We
generally use the Euclidean distance, and the minimum variance agglom-
erative hierarchical clustering criterion, in view of the synoptic proper-
ties, Murtagh 1985. Additionally the vectors used in the clustering can be
weighted: we use identical weights in this work.)
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2. Carry out a Haar wavelet transform on this hierarchy. This gives a tree-
based compaction of energy (Starck and Murtagh 2006: large values tend
to become larger, and small values tend to become smaller) inour data.
Filter the wavelet coefficients (i.e., carry out wavelet regression or smooth-
ing, here using hard thresholding (see e.g. Starck and Murtagh 2006) by
setting small wavelet coefficients to zero).

3. Determine the inverse of the wavelet transform, in order to reconstruct an
approximation to the original multidimensional data values.

6.2 Fisher Iris Data and Uniformly Distributed Values of Same Array
Dimensions

In this first filtering study we use Fisher’s iris data (Fisher 1936), an ar-
ray of dimensions150 × 4, in view of its well known characteristics. Ifxij is
a typical data value, then the energy of this data is1/(nm)

∑

ij x
2
ij = 15.8988.

If we set wavelet coefficients to zero based on a hard threshold, then a very
large number of coefficients may be set to zero with minor implications for ap-
proximation of the input data by the filtered output. (A hard threshold uses a
step function, and can be counterposed to a soft threshold, using some other,
monotonical increasing, function. A hard threshold, used in Table 3, is straight-
forward and, in the absence of any further a priori information, the most reason-
able choice.) The minimum variance hierarchical clusteringmethod was used
as the first phase of the processing, followed by the second, wavelet transform,
phase. Then followed wavelet coefficient truncation, and reconstruction or the
inverse transform. We see that a mean square error between input and output of
value 0.1040 is the global approximation quality, when nearly 98% of wavelet
coefficients are zero-valued.

To further illustrate what is happening in this approximation by the wave-
let filtered data, Table 4 shows the last 10 iris observations,as given for input,
and as filtered. The numerical precisions shown are as generated in the recon-
struction, which explains why we show some values to 4 decimal places, and
some to 6.

To show that wavelet filtering is effective, we will next compare wavelet
filtering with direct filtering of the given data. By “directly filtered” we mean
that we processed the original data without recourse to a hierarchical clustering.
This is intended as a simple, default baseline with which we can compare our
results.

Taking theoriginal Fisher data, we find the median value to be 3.2.
Putting values less than this median value to 0, we find the MSE to be 2.154567,
i.e., implying a far less satisfactory fit to the data. (Thresholding by using<
versus≤ median had no effect.)
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Table 3. Hierarchical Haar smoothing results for Fisher’s150 × 4 iris data.

Filt. threshold % coeffs. set to zero mean square error
0 16.95 0

0.1 70.13 0.0098
0.2 91.95 0.0487
0.3 97.15 0.0837
0.4 97.82 0.1040

Table 4. Last 10 values of input data, and of the approximation to these based on the hierarchical
Haar wavelet transform filtering with a hard threshold of 0.1, implying 70.13% of the wavelet
coefficients equaling 0.

Sepal.L Sepal.W Petal.L Petal.W
140 6.9 3.1 5.4 2.1
141 6.7 3.1 5.6 2.4
142 6.9 3.1 5.1 2.3
143 5.8 2.7 5.1 1.9
144 6.8 3.2 5.9 2.3
145 6.7 3.3 5.7 2.5
146 6.7 3.0 5.2 2.3
147 6.3 2.5 5.0 1.9
148 6.5 3.0 5.2 2.0
149 6.2 3.4 5.4 2.3
150 5.9 3.0 5.1 1.8

140 6.739063 3.119824 5.4125 2.239258
141 6.782813 3.307324 5.7250 2.564258
142 6.839063 3.119824 5.1125 2.239258
143 5.737500 2.808496 5.0000 2.039258
144 6.782813 3.307324 5.8250 2.314258
145 6.782813 3.307324 5.7250 2.564258
146 6.639063 3.119824 5.1125 2.239258
147 6.196875 2.480371 5.0000 1.964258
148 6.364063 3.019824 5.2625 2.089258
149 6.320313 3.307324 5.4750 2.439258
150 5.937500 3.008496 5.1375 1.864258

Table 5. Hierarchical Haar filtering results for uniformly distributed150 × 4 data.

Filt. threshold % coeffs. set to zero mean square error
0 0 0

0.1 14.77 0.0022
0.2 31.54 0.0249
0.3 42.79 0.0622
0.4 53.52 0.1261
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6.3 Uniform Realization of Same Dimensions as Fisher Data

We next generated an array of dimensions150 × 4 of uniformly distrib-
uted random values on[0, 7.9], where 7.9 was the maximum value in the Fisher
iris data. The energy of this data set was 21.2097. Results of filtering are
shown in Table 5. The minimum variance hierarchical clustering method was
used. Again good approximation properties are seen, even ifthe compression
is not as impressive as for the Fisher data.

Uniformly distributed data coordinate values are a taxing case, since such
data are very unlike data with clear cluster structures (as is the case for the
Fisher iris data).

In the next subsection we will further explore this aspect ofinternal struc-
ture in our data.

6.4 Inherent Clustering Structure in a Data Array: Implications for
Wavelet Filtering

First we show that the influence of numbers of rows or columns in our
data array is very minor in regard to the wavelet filtering.

When a data set is inherently clustered (and possibly inherently hierar-
chically clustered) then the energy compaction propertiesof the wavelet trans-
formed data ought to be correspondingly stronger. We will show this through
the processing of data sets containing cluster structure relative to the process-
ing of data sets containing uniformly distributed values (and hence providing a
baseline for no cluster structure).

Firstly we verified that data set size is relatively unimportant in terms of
wavelet-based smoothing. We took artificially generated, uniformly distributed
in [0, 1], random data matrices of dimensions:500×40, 1000×40, 1500×40,
and2000 × 40. For each we applied a fixed threshold of 0.1 to the wavelet
coefficients, setting values less than or equal to this threshold to 0, and retaining
wavelet coefficient values above this threshold, before reconstructing the data.
Then we checked mean square error between reconstructed dataand the original
data. For the four different data matrix dimensions, we found: 0.463, 0.461,
0.465, 0.466. (MSE used here was:1/n

∑

i,j(x̂ij − xij)
2, wherex̂ is the

filtered data array value,n is the number of observations indexed byi; andx is
the input data value.)

From the clustering point of view, the foregoing data matrices are simply
clouds of 500, 1000, 1500 and 2000 points in 40-dimensional real space, orR40.
To check if space dimensionality could matter we checked themean square
error for a data matrix of uniformly distributed values withdimensions2000 ×
400, the mean square error was found to be 0.458. (Compare this tothe mean
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square error of 0.466 for the2000 × 40 data array, discussed in the previous
paragraph. A constant 10 divisor was used, for comparability of results, for the
2000 × 400 data.)

We conclude that neither embedding spatial dimensionality, i.e., number
of columns in the data matrix, nor also data set size as given by the number of
rows, are inherent determinants of the smoothing properties of our new method.

So what is important? Clearly if the hierarchical clusteringis pulling
large clusters together, and facilitating the “energy compaction” properties of
the wavelet transform, then what is important is clusteringstructure in our data.

6.5 Compressibility of the Transformed Data

We generated structure by placing Gaussians centered at thefollowing
row, column locations in a1200×400 data array: 300,100; 800,300; 1000,200;
500,150; 900,150. These bivariate Gaussians were of total 10units in each case.
A full width at half maximum (equal to 2.35482 times the standard deviation of
a Gaussian), was used in each case, respectively: 20, 50, 10,100, 125. We will
call this the data array containing structure. Figure 3 showsa schematic view
of it. Next we added uniformly distributed random noise, where the values in
the former (Gaussians) data set scaled down by a constant factor of 10. Figure
4 shows the data set we will now work on. (We added noise in order to have a
non-trivial data set for our compressibility experiments.)

In Murtagh et al. (2000) it was noted how row and column permuting
of a data table allows application of any wavelet transform,where we take the
data table as a 2-dimensional image. For a 3-way data array, awavelet working
on a 3-dimensional image volume is directly applicable. The difficulty in using
an image processing technique on a data array is that (i) we must optimally
permute data table rows and columns, which is known to be an NP-complete
problem, or (ii) we must accept that each alternative data table row and column
permutation will lead to a different result.

To exemplify this situation, we take the data generated as described above,
which is by construction optimally row/column permuted. Figure 4 shows the
data used, generated as having structure (i.e., contiguoussimilar values, which
can still be visually appreciated) but also subject to additional uniformly dis-
tributed noise. The noise notwithstanding, there is still structure present in this
data which can be exploited for compression purposes. We carried out assess-
ments with the Lempel-Ziv run length encoding compression algorithm, which
is used in the gzip command in Unix.

The data array of Figure 4 was of size 1,923,840 bytes. A random
row/column permuted version of this array was of identical size. This random
row/column permuting used uniformly distributed ranks. Inall cases consid-
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Figure 3. Visualization of the artificial structure defined from 5 differentGaussian distributions,
before noise was added. Data array dimensions:1200 × 400 (portrayed transposed here).

Figure 4. Data array dimensions:1200 × 400 (portrayed transposed). Structure is visible, and
added uniform noise.

ered here, 32-bit floating point storage was used, and each array, stored as an
image, contained a small additional ascii header.

Applying Lempel-Ziv compression to these data tables yieldedgzip-
compressed files of size, respectively, 1,720,368 and 1,721,284 bytes. There is
not a great deal of compressibility present here. The row/column permutation,
as expected, is not of help.

Next, we used our hierarchical wavelet transform, where theoutput is of
exactly the same dimensions as our input (here:1200 × 400). Again we stored
this transformed data in an image format, using 32-bit floating point storage.
So the size of the transformed data was again exactly 1,923,840 bytes. This is
irrespective of any wavelet filtering (by setting wavelet transform coefficients
to 0), and is solely due to the file size, based on so much data, each value of
which is stored as a 32-bit floating point value.

Then we compressed, using Lempel-Ziv, the wavelet transform data. We
looked at three alternatives: no wavelet filtering used; wavelet filtering such
that coefficients with value up to 0.05 were set to 0; and wavelet filtering such
that coefficients with value up to 0.1 were set to 0.
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The Lempel-Ziv compressed files were respectively of sizes: 1,780,912,
1,435,477, and 1,108,743 bytes. We see very clearly that Lempel-Ziv run length
encoding is benefiting from our wavelet filtering, provided that there is suffi-
cient filtering.

It is useful to proceed further with this study, to see if simple filtering,
similar to what we are doing in wavelet space, can be applied also to the original
data (or, for that matter, the permuted data).

Table 6 shows what we found. The mean square error (MSE) here is
∑

ij(x̂ij −xij)
2/

∑

ij x
2
ij . What is noticeable is that in the 2nd and 3rd rows of

the table processing the original data is seen to havebetterMSE coupled with
worsecompressibility. A fortiori we claim that for thesameMSE we would
have evenworsecompressibility.

Our wavelet approach therefore has performed better in thisstudy than
direct processing of the given data. Furthermore, relative to arbitrary permuting
of the rows and columns, our given data represents a relatively favorable case.
In practice, we have no guarantee that rows and columns are arranged such that
like values are contiguous. But by design we have such a favorable situation
here.

In concluding this study, we note the following work which uses a Fourier
transform, rather than a wavelet transform, on a hierarchy or rooted tree. Kar-
gupta and Park (2004) study the situation when a decision tree is given to begin
with, and apply a Fourier transform to expedite compression. For our purposes,
a hierarchical tree is determined in order to structure the data, and comprises
the first part of a data processing pipeline. A subsequent partof the processing
pipeline is the wavelet transform of the hierarchically structured data.

7. Wavelet-Based Multiway Tree Building: Approximating a Hierarchy
by Tree Condensation

Deriving a partition from a hierarchical clustering has always been a cru-
cial task in data analysis (an early example is Mojena 1977).In this section
we will explore a new approach to deriving a partition from a dendrogram.
Deriving a partition from a dendrogram is equivalent to “collapsing” a strictly
binary tree into a non-binary or multiway tree. Now, concepthierarchies are in-
creasingly used to expedite search in information retrieval, especially in cross-
disciplinary domains where a specification of the various terminologies used
can be helpful to the user. For concept hierarchies, a non-binary or multiway
tree is preferred for this purpose, and may, in practice, be determined from a
binary tree (as do Chuang and Chien 2005).

It is interesting to note that Lerman (1981, pp. 298–299) addresses this
same issue of the “condensation of a tree to the levels corresponding to its
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Table 6. Columns from left to right: Haar wavelet transform threshold applied to transformed
data, with values lower than or equal to this set to 0; mean square error between input data and
reconstructed, filtered data; compression size in bytes of the reconstructed, filtered data; threshold
applied to the original data, with values lower than or equal to this set to 0; mean square error
between input data and thresholded data; compression size in bytes of thethresholded data. See
text for discussion.

HWT thresh. MSE Comp. size Orig. thresh. MSE Comp. size
0 0 1,780,912 0 0 1,720,368
0.05 0.0032 1,435,477 0.25 0.0028 1,447,984
0.1 0.0119 1,108,743 0.39 0.0111 1,252,793

significant nodes”, and then proceeds to discuss the global criterion used (for
instance, in an agglomerative hierarchical algorithm) vis-à-vis a local criterion
(where the latter is used to judge whether a node is significantor not). There is
a clear parallel between this way of viewing the “collapsingclusters” problem
and our way of tackling it.

A binary rooted tree,H, on n observations has preciselyn − 1 levels;
or H contains preciselyn − 1 subsets of the set ofn observations. The inter-
pretation of a hierarchical clustering often is carried outby cutting the tree to
yield any one of then − 1 possible partitions. Our hierarchical Haar wavelet
transform affords us a neat way to approximateH using a smaller number of
possible partitions.

Consider the detail vector at any given level: e.g., as exemplified in Table
2. Any such detail vector is associated with (i) a node of the binary tree; (ii)
the level or height index of that node; and (iii) a cluster, orsubset of the ob-
servation set. With the goal of “collapsing” clusters, i.e.removing clusters that
are not unduly valuable for interpretation, we will impose ahard threshold on
each detail vector:If the norm of the detail vector is less than a user-specified
threshold, then set all values of the detail vector to zero.

Other rules could be chosen, in particular rules related directly to the ag-
glomerative clustering criterion used, but our choice of the thresholded norm
is a reasonable one. Our norm-based rule is not directly related to the agglom-
erative criterion for the following reasons: (i) we seek a generic interpretative
aid, rather than an optimal but criterion-specific rule; (ii)an optimal, criterion-
specific rule would in any case be best addressed by studying the overall op-
timality measure rather than availing of the stepwise suboptimal hierarchical
clustering; and (iii) from naturally occurring hierarchies, as occur in very high
dimensional spaces (cf. Murtagh 2004), the issue of an agglomerative criterion
is not important.

Following use of the norm-based cluster collapsing rule, the represen-
tation of the reconstructed hierarchy is straightforward:the hierarchy’s level
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index is adjusted so that thepreviouslevel index additionally takes the place of
the given level index. Examples discussed below will exemplify this.

Properties of the approach include the following:

1. Rather than misleading increase in agglomerative clustering value or level,
we examine instead clusters (or nodes in the hierarchy).

2. This implies that we explore a cluster at a time, rather thana partition at
a time. So the resulting retained clusters may well come from different
original partitions.

3. We take a strictly binary (2-way, agglomeratively constructed) tree as in-
put and determine a simplified, multiway tree as output.

4. A single scalar value filtering threshold – a user-set parameter – is used to
derive this output, simplified, multiway tree from the input binary tree.

5. The filtering is carried out on the wavelet-transformed tree; and then the
output, simplified tree is reconstructed from the wavelet transform values.

6. The filtering is carried out on each node (in wavelet space) insequence.
Hence the computational complexity is linear.

7. Upstream of the wavelet transform, and hierarchical clustering, we use
correspondence analysis to take frequency of occurrence data input, ap-
ply appropriate normalization, and map the data of interestinto an (un-
weighted) Euclidean space. (See Murtagh 2005.)

8. Again upstream of the wavelet transform, for the binary tree we use min-
imal variance hierarchical clustering. This agglomerativecriterion favors
compact clusters.

9. Our hierarchical clustering accommodates weights on theinput observ-
ables to be clustered. Based on the normalization used in thecorrespon-
dence analysis, by design these weights here are constant.

7.1 Properties of Derived Partition

A partition by definition is a set of clusters (sets) such that none are over-
lapping, and their union is the global set considered. So in Figure 5 the upper
left hierarchy is cut, and shown in the lower left, to yield the partition consisting
of clusters(7, 8, 5, 6), (1, 2) and(3, 4). Traditionally, deriving such a partition
for further exploitation is a common use of hierarchical clustering. Clearly the
partition corresponds to a height or agglomeration threshold.

In a multiway hierarchy, such as the one shown in the top rightpanel in
Figure 5, consider the same straight line drawn from left to right, at approxi-
mately the same height or agglomeration threshold. It is easily seen that such a
partition is the same as that represented by the non-straight curve of the lower
right panel.
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Figure 5. Upper left: original dendrogram. Upper right, multiway tree arising from one collapsed
cluster or node. Lower left: a partition derived from the dendrogram (see text for discussion).
Lower right: corresponding partition for the multiway tree.

From this illustrative example, we draw two conclusions: (i)in the case
of a multiway tree a partition is furnished by a horizontal cut of the multiway
tree – accomplished exactly as in the case of the strictly binary tree; and (ii) this
horizontal cut of a multiway tree is identical to a nonlinearcurve of the strictly
binary tree. We can validly term the nonlinear curve a piecewise horizontal one.

Note that the nonlinear curve used in Figure 5, lower right panel, has
nothing whatsoever to do with nonlinear cluster separation(in any ambient
space in which the clusters are embedded), nor with nonlinear mapping.

7.2 Implementation and Evaluation

We took Aristotle’sCategories(see Aristotle 350BC; Murtagh 2005) in
English containing 14,483 individual words. We broke up the text into 24 files,
in order to study the sequential properties of the argument developed in this
short philosophical work. In these 24 files, there were 1269 unique words.
We selected 66 nouns of particular interest. With frequencies of occurrence
in parentheses we had (sample only): man (104), contrary (72), same (71),
subject (60), substance (58), species (54), knowledge (50), qualities (47), etc.
No stemming or other preprocessing was applied on the grounds that singular
and plurals could well indicate different semantic content; cf. generic “quantity”
versus the set of specific, particular “quantities”.

The terms× subtexts data array wasdoubled(Murtagh 2005) to produce
a 66 × 48 array: for each subtextj with term frequencies of occurrenceaij ,
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frequencies from a “virtual subtext” were defined asa′ij = maxij aij − aij . In
this way the mass of termi, defined as proportional to the associated row sum,
is constant. Thus what we have achieved is to weight all terms identically. (We
note in passing thattermvectors therefore cannot be of zero mass.)

A correspondence analysis was carried out on the66 × 48 table of fre-
quencies with the aim of taking the set of 66 nouns endowed with theχ2 metric
(i.e., a weighted Euclidean distance betweenprofiles; the weighting is defined
by the inverse subtext frequencies) into a factor space endowed with the (un-
weighted) Euclidean metric. (We note in passing that anysubtextsof zero mass
must be removed from the analysis beforehand; otherwise inverse subtext fre-
quency cannot be calculated.) Correspondence analysis provides a convenient
and general way to “euclideanize” the data, and any alternative could be con-
sidered also (e.g., as discussed in section 5.1 of Heiser 2004). A hierarchical
clustering (minimum variance method) was carried out on thefactor coordi-
nates of the 66 nouns. Such a hierarchical clustering is a strictly binary (i.e.
2-way), rooted tree.

The norms of detail vectors had minimum, median and maximum val-
ues as follows: 0.0758, 0.2440 and 0.6326, and these influenced the choice of
threshold. Applying thresholds of 0, 0.2, 0.3 and 0.4 gave rise to the follow-
ing numbers of “collapsed” clusters with, in brackets, the mean squared error
between approximated data and original input data: 0 (0.0),23 (0.0054), 44
(0.0147), and 55 (0.0164). Figure 6 shows the corresponding reconstructed and
approximated hierarchies.

In the case of the threshold 0.3 (lower left in Figure 6) we havenoted that
44 clusters were collapsed, leaving just 21 partitions. As stated the objective
here is precisely to approximate the dendrogram output datastructure in order
to facilitate further study and interpretation of these partitions.

Figure 7 shows the sequence of agglomerative levels where each panel
corresponds to the respective panel in Figure 6. It is clear here why these ag-
glomerative levels are very problematic if used for choosing a good partition:
they increase with agglomeration, simply because the cluster centers are get-
ting more and more spread out as the sequence of agglomerations proceeds.
Directly using these agglomerative levels has been a way to derive a partition
for a very long time (Mojena 1977). To see how the detail normsused by us
here are different, see Figure 8.

7.3 Collapsing Clusters Based on Detail Norms: Evaluation Vis-̀a-vis
Direct Partitioning

Our cluster collapsing algorithm is: wavelet-transform the hierarchical
clustering; for clusters corresponding to detail norm lessthan a set threshold, set
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Figure 6. Upper left: original hierarchy. Upper right, lower left, and lower right show increasing
approximations to the original hierarchy based on the “cluster collapsing”approach described.

Figure 7. Agglomerative clustering levels (or heights) for each of the hierarchies shown in Figure 6.
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Figure 8. Agglomerative levels (left; as upper left in Figure 7, and corresponding to the original –
upper left – hierarchy shown in Figure 6), and detail norms (right), for the hierarchy used. Detail
norms are used by us as the basis for “collapsing clusters”.

the detail norm to zero, and the corresponding increase in level in the hierarchy
also; reconstruct the hierarchy. We look at a range of threshold values. To begin
with, the hierarchical clustering is strictly binary. Reconstructed hierarchies are
multiway.

For each unique level of such a multiway hierarchy (cf. Figure6) how
good are the partitions relative to a direct, optimization-based alternative? We
use the algorithm of Hartigan and Wong (1979) with a requested number of
clusters in the partition given by the same number of clusters in the collapsed
cluster multiway hierarchy. In regard to the latter, we lookat all unique par-
titions. (In regard to initialization and convergence criteria, the Hartigan and
Wong algorithm implementation in the R package, www.r-project.org, was used.)

We characterize partitions using the average cluster variance,
1/|Q|

∑

i∈q;q∈Q 1/|q|‖i − q‖2. Alternatively we assessed the sum of squares:
∑

q∈Q ‖i − q‖2. Here,Q is partition,q is a cluster, and‖i − q‖2 is Euclidean
distance squared between a vectori and its cluster centerq. (Note thatq refers
both to a set and to a cluster center – a vector – here.) Although this is a
sum of squares criterion, as Späth (1985, p. 17) indicates, it is on occasion
(confusingly) termed the variance criterion. In either case, we target compact
clusters with this k-means clustering algorithm, which is also the target of our
hierarchical agglomerative clustering algorithm. A k-means algorithm aims to
optimize the criterion, in the Späth sense, directly.

In Table 7 we see that the partitions of our multiway hierarchy are about
half as good as k-means in terms of overall compactness (cf. columns 3 and 5).
Close inspection of properties of clusters in different partitions indicated why
this was so: with a poor or low compactness for one cluster very early on in
the agglomerative sequence, the stepwise algorithm used bythe multiway hi-
erarchy had to live with this cluster through all later agglomerations; and the
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Table 7. Analysis of the unique partitions in the multiway tree shown on the lowerleft of Figure
6. Partitions are benchmarked using k-means to construct partitions where k is the same value as
found in the multiway tree. SS = sum of squares criterion value.

Agglom. Multiway tree Multiway tree Partition K-means
level height partition SS cardinality partition SS

1 0.00034 0.095 65 0.062
2 0.00042 0.229 61 0.091
3 0.00051 0.340 60 0.146
4 0.00057 0.397 59 0.205
5 0.00059 0.485 58 0.156
6 0.00066 0.739 55 0.239
7 0.00077 1.115 53 0.347
8 0.00092 1.447 51 0.484
9 0.00099 1.723 48 0.582

10 0.00122 2.329 45 0.852
11 0.00142 2.684 43 0.762
12 0.00159 3.101 42 0.865
13 0.00161 3.498 39 1.161
14 0.00189 3.938 36 1.354
15 0.00201 4.954 32 1.873
16 0.00220 5.293 30 2.178
17 0.00234 6.957 25 3.007
18 0.00311 7.204 24 2.722
19 0.00314 8.627 21 3.497
20 0.00326 10.192 15 5.426
21 0.00537 18.287 1 18.287

biggest sized cluster (i.e. largest cluster cardinality) in the stepwise agglomer-
ative tended to be a little bigger than the biggest sized cluster in the k-means
result.

This is an acceptable result: after all, k-means optimizes this criterion
directly. Furthermore, the multiway hierarchy preserves embededness relation-
ships which are not necessarily present in any sequence of results ensuing from
a k-means algorithm. Finally, it is well-known that seeking to directly opti-
mize a criterion such as k-means will lead to a better outcomethan the stepwise
refinement used in the stepwise agglomerative algorithm.

If we ask whether k-means can be applied once, and then k-means ap-
plied to individual clusters in a recursive way, the answer is of course affirma-
tive – subject to prior knowledge of the number of levels and the value of k
throughout. It is precisely in such areas that our hierarchical approach is to be
preferred: we require less prior knowledge of our data, and we are satisfied with
the downside of global approximate fidelity between output structure and our
data.
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8. Wavelet Decomposition: Linkages with Approximation and
Computability

A further application of wavelet-transformed dendrogramsis currently
under investigation and will be briefly described here.

In domain theory (see Edalat 1997; 2003), a Scott model considers a
computer program as a function from one (input) domain to another (output)
domain. If this function is continuous then the computationis well-defined and
feasible, and the output is said to be computable. The Scott model is concerned
with real number computation, or computer graphics programming where, e.g.,
object overlap may be true, false, or unknown and hence best modeled with
a partially ordered set. In the Scott model, well-behaved approximation can
benefit therefore from function monotonicity.

An alternative, although closely related, structure with which domains
are endowed is that of spherically complete ultrametric spaces. The motivation
comes from logic programming, where non-monotonicity may well be relevant
(this arises, for example, with the negation operator). Trees can easily represent
positive and negative assertions. The general notion of convergence, now, is
related tospherical completeness(Schikhof 1984; Hitzler and Seda 2002). If
we have any set of embedded clusters, or any chain,qk, then the condition
that such a chain be non-empty,

⋂

k qk 6= ∅, means that this ultrametric space
is non-empty. This gives us both a concept of completeness, and also a fixed
point which is associated with the “best approximation” of the chain.

Consider our space of observations,X = {xi|i ∈ I}. The hierarchy,H,
or binary rooted tree, defines an ultrametric space. For each observationxi, by
considering the chain from root cluster to the observation,we see thatH is a
spherically complete ultrametric space.

Our wavelet transform allows us to read off the chains that make the ultra-
metric space a spherically complete one. A non-deterministic worst caseO(n)
data re-creation algorithm ensues, compared to a more usualnon-deterministic
worst caseO(m) data recreation algorithm. The importance of this result is
whenm >> n.

In our current work (Murtagh 2007) we are studying this perspective
based on (i) a body of texts from the same author, and (ii) a library of face
images.

9. Conclusion

We have described the theory and practice of a novel wavelet transform,
that is based on an available hierarchic clustering of the data table. We have
generally used Ward’s minimum variance agglomerative hierarchical clustering
in this work.
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We have described this new method through a number of examples, both
to illustrate its properties and to show its operational use.

A number of innovative applications were undertaken with this new ap-
proach. These lead to various exciting open possibilities inregard to data min-
ing, in particular in high dimensional spaces.
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