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1. Introduction

1.1 Background

Let us suppose a situation in which one observes pairwise relationships
amongn objects. The entire set of data takes a form ofn × n data matrix
D = (dij) wheredij is a nonnegative numerical value, indicating the degree
of relationship of an ordered pair[i, j]. There are often cases for whichD is
asymmetric, that is,dij 6= dji. For examples of such asymmetric measures,
we mention brand switching, psychological (dis)similarity, social exchange, ci-
tation and so on (Zielman and Heiser 1996; Saito and Yadohisa 2005). For
analysis of asymmetric data, researchers have developed models and methods
by a variety of approaches, such as multidimensional scaling, clustering, net-
work analysis, graphical representation techniques (Saitoand Yadohisa 2005).

1.2 Purpose

We are concerned with clustering of asymmetric data. Referring to Saito
and Yadohisa (2005), it is found that there have been developed many methods
and algorithms to deal with the asymmetric clustering. It isnoted that some of
them have been given in terms of agglomerative hierarchicalclustering algo-
rithms (AHCA).

In this paper we are interested in extensions of the asymmetric AHCA
and their evaluations. In Section 2, we provide asymmetric updating formu-
las to define asymmetric AHCA. Then we generalize asymmetric AHCA in a
comprehensive framework, and present the representation of asymmetric den-
drograms to show the results of asymmetric AHCA. In Section 3,we turn to
measures of the goodness of fit for asymmetric AHCA in order to evaluate the
clustering results. With some measures to indicate the degree of asymmetry of
data, we suggest three measures for the evaluation. In Section 4, we present
numerical examples for illustrative purposes of asymmetric AHCA. In Section
5, we summarize our contribution to asymmetric AHCA.

In passing extension of average linkage algorithms (Anderberg 1973) for
symmetric case to asymmetric case is briefly described in Section 2. It requires
some development of formulas which is provided in Appendix.

1.3 Notation

In what follows, we consider the situation in which the relationship be-
tween a pair of objects is given by an asymmetric dissimilarity measure. How-
ever, all the description of this paper can be applied to asymmetric similarity
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measures. Letdij denote the dissimilarity for an ordered pair[i, j]. Then, the
asymmetry means that there exists at least one pair of objects i and j such
that dij 6= dji. It is assumed that there exist no missing values. We will
not deal with diagonal elements in the clustering algorithms. However, we
let dii = 0 (i = 1, 2, · · · , n) to define some measures of goodness of fit for
asymmetric AHCA in Section 3. We use a natural numberI to indicate the
I-th cluster, such asCI . Let nI be the number of objects which belong toCI .
Expressioni ∈ CI states that objecti belongs toCI . Let dIJ denote the dis-
similarity for an ordered pair[CI , CJ ]. Note thatdIJ 6= dJI in general. LethI

be the combined distance at the stage whenCI was generated in a clustering
process (Yadohisa et al. 1999). When the result of the clustering is represented
by a dendrogram,hI indicates the height ofCI . WhenCI is merged withCJ ,
the resultant cluster is written asCIJ = CI ∪ CJ .

2. Asymmetric AHCA and Representation of Clustering Results

Researchers proposed so far some updating formulas for symmetric or
asymmetric AHCA. The updating formula proposed by Lance and Williams
(1966, 1967) for symmetric case is widely used since it implies many cluster-
ing algorithms by suitable selection of some parameters. Letus abbreviate it
LWUF.

In this section, we describe briefly those symmetric and asymmetric up-
dating formulas. Then we define a more general updating formulato represent
asymmetric AHCA. Further, we give a representation of the asymmetric AHCA
by using the new updating formula. Clustering results of theasymmetric AHCA
are shown by asymmetric dendrograms.

2.1 Symmetric Updating Formulas

Let us state LWUF for dissimilarityd(IJ)K between clusterCIJ and an-
other clusterCK as

d(IJ)K = αIdIK + αJdJK + βdIJ + γ |dIK − dJK | , (1)

where parametersαI , αJ , β andγ are either constants or functions ofnI , nJ

andnK . This formula implies many symmetric AHCA including single linkage
algorithm (Sneath 1957), complete linkage algorithm (McQuitty 1960), group
average algorithm and weighted average algorithm (McQuitty 1967), Ward’s
algorithm (Ward 1963), centroid algorithm (Gower 1967), median algorithm
and flexible algorithm (Lance and Williams 1966).
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Jambu (1978) extended LWUF for dissimilarityd(IJ)K between cluster
CIJ and another clusterCK as

d(IJ)K = αIdIK +αJdJK +βdIJ +γ |dIK − dJK |+δIhI +δJhJ +εhK , (2)

whereαI , αJ , β andγ are the same in LWUF, and newly addedδI , δJ , ε are
also parameters to define the algorithms.

By using this formula, several algorithms such as mean dissimilarity al-
gorithm (Podani 1989) and sum of squares algorithm (Jambu 1978; Podani
1989) are stated, which cannot be represented by LWUF. See Jambu and Lebeaux
(1983) and Gordon (1996) for details of symmetric AHCA. Notethat the dis-
similarities are assumed to be symmetric in the descriptionof this subsection.

2.2 Asymmetric Updating Formulas

For asymmetric case, an extended updating formula was proposed by
Yadohisa (2002). Incorporating the asymmetry into the formulation gives rise to
two types of updating formulas. The updating formula for dissimilarity d(IJ)K

for [CIJ , CK ] is written as

d(IJ)K = α
(1)
I f (1)(dIK , dKI) + α

(1)
J f (1)(dJK , dKJ) + β(1)g(1)(dIJ , dJI)

+γ(1)|f (1)(dIK , dKI) − f (1)(dJK , dKJ)|. (3)

The updating formula for dissimilaritydK(IJ) for [CK , CIJ ] is written as

dK(IJ) = α
(2)
I f (2)(dIK , dKI) + α

(2)
J f (2)(dJK , dKJ) + β(2)g(2)(dIJ , dJI)

+γ(2)|f (2)(dIK , dKI) − f (2)(dJK , dKJ)|. (4)

Hereα(1)
I , α(1)

J , α(2)
I , α(2)

J , β(1), β(2), γ(1), γ(2) are constants or functions
in terms ofnI , nJ andnK , which are specified prior to analysis, andf (1),
f (2), g(1), g(2) are functions of two dissimilarities determined prior to analysis.
This pair of formulas is called extended updating formula (EUF).

In the same way as the symmetric case, we update the dissimilarities by
using EUF, calculating the dissimilarities between clusters at stagem + 1 on
the basis of the dissimilarities at stagem. Unlike the symmetric case, these
formulas updated(IJ)K anddK(IJ) separately. In the same way as LWUF, the

parameters such asα(1)
I control the combination of the clusters. In addition,

functionsf (1), f (2), g(1) andg(2) control some weighting of the asymmetric
relationship between a pair of clusters. The EUF implies a large number of
asymmetric AHCA (see Saito and Yadohisa (2005) for details).

As is shown later, EUF cannot represent some of the asymmetricAHCA
dealt with in this paper. Then let us propose a more general asymmetric updat-
ing formula to state comprehensive treatments of the asymmetric AHCA.
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Definition 1 (Asymmetric updating formula):

The updating formula for dissimilarityd(IJ)K for [CIJ , CK ] is written as

d(IJ)K = α
(1)
I f (1)(dIK , dKI) + α

(1)
J f (1)(dJK , dKJ) + β(1)g(1)(dIJ , dJI)

+γ(1)|f (1)(dIK , dKI) − f (1)(dJK , dKJ)|

+δ
(1)
I hI + δ

(1)
J hJ + ε(1)hK + ζ(1). (5)

The updating formula for dissimilaritydK(IJ) for [CK , CIJ ] is written as

dK(IJ) = α
(2)
I f (2)(dIK , dKI) + α

(2)
J f (2)(dJK , dKJ) + β(2)g(2)(dIJ , dJI)

+γ(2)|f (2)(dIK , dKI) − f (2)(dJK , dKJ)|

+δ
(2)
I hI + δ

(2)
J hJ + ε(2)hK + ζ(2). (6)

Hereα(1)
I , α(1)

J , α(2)
I , α(2)

J , β(1), β(2), γ(1), γ(2), δ(1)I , δ(2)I , δ(1)J , δ(2)J , ε(1), ε(2),
ζ(1), andζ(2) are constants or functions ofnI , nJ andnK , which are specified
prior to analysis, andf (1), f (2), g(1) andg(2) are functions of two dissimilari-
ties determined prior to analysis. We call these pairs of formulas asymmetric
updating formula (AUF) hereafter. Figure 1 shows asymmetric dissimilarities
between clusters.

2.3 Asymmetric AHCA

Let us formulate asymmetric AHCA by using AUF. LetCS andCR be
arbitrary clusters, anddSR anddRS denote asymmetric dissimilarities between
them. ConsiderCIJ andCK , particular clusters to be combined at a stage (see
Figure 1). Without loss of generality, it is assumed that cluster CK may be
a singleton, or was formed before clusterCIJ has been formed. To include
many algorithms in this formulation, we introduce functionW . The function
W defines a combining criterion of two asymmetric dissimilarities between
clusters (see formula (7)). For example it may bemax, min, mean, and so on.

The algorithms consist of recursion of two steps; the first stepfor selec-
tion of the objects for combining and the second step for updating the asym-
metric dissimilarity between clusters.

Definition 2 (Asymmetric AHCA):

The clustering algorithms determined by recursion of the following two steps
are called asymmetric AHCA. Suppose that an asymmetric dissimilarity matrix
is given.
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Figure 1. Asymmetric dissimilarities between clusters

Step 1 : For a given asymmetric dissimilarity matrix, find[CI , CJ ] such that it
attains the minimum ofW values over all the pairs of clusters. For clarity,
writing

vIJ = min
S<R

W (dSR, dRS), (7)

we determine[CI , CJ ] which satisfiesvIJ = W (dIJ , dJI).

Step 2 : Join the two clusters which are selected in Step 1 and updated(IJ)K

anddK(IJ) by AUF.

The entire process repeats Step 1 and Step 2 until all the objectsform a cluster.
ThevIJ value in (7) is called combined distance at the stage.

By using AUF (5) and (6), we can extend several symmetric AHCAto
asymmetric ones, for example, average linkage algorithms (Anderberg 1973),
mean dissimilarity algorithm (Podani 1989), and sum of squares algorithm
(Jambu 1978). It should be noted that these asymmetric AHCA cannot be rep-
resented by EUF. The average linkage between the merged groupsalgorithm
and the average linkage within the new group algorithm in Anderberg (1973)
are called group average algorithm and total average algorithm, respectively, in
this paper.

We characterize some of asymmetric AHCA in Table 1 with specified pa-
rameters in AUF. In Table 1, algorithm names are abbreviatedas single linkage
algorithm (SL), complete linkage algorithm (CL), weighted average algorithm
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Table 1. Asymmetric AHCA by AUF parameters
Algorithm α(1)

I α(1)

J β(1) γ(1) δ(1)

I δ(1)

J ε(1) ζ(1)

(= α(2)

I ) (= α(2)

J ) (= β(2)) (= γ(2)) (= δ(2)

I ) (= δ(2)

J ) (= ε(2)) (= ζ(2))

ASLW

1

2

1

2
0 −

1

2
0 0 0 0

ACLW

1

2

1

2
0

1

2
0 0 0 0

AWAW

1

2

1

2
0 0 0 0 0 0

ACEW

nI

nIJ

nI

nIJ

−
nInJ

n2
IJ

0 0 0 0 0

AMD W

1

2

1

2
−

1

4
0 0 0 0 0

AWDW

nIK

nIJK

nJK

nIJK

−
nK

nIJK

0 0 0 0 0

AFXW

1 − β

2

1 − β

2
β (< 1) 0 0 0 0 0

AGAW

nI

nIJ

nJ

nIJ

0 0 0 0 0 0

ATAW

(

nIK

2

)

(

nIJK

2

)

(

nJK

2

)

(

nIJK

2

)

(

nIJ

2

)

(

nIJK

2

) 0 0 0 0
−s∗

(

nIJK

2

)

ASSW

nIK

nIJK

nJK

nIJK

nIJ

nIJK

0
−nI

nIJK

−nJ

nIJK

−nK

nIJK

0

ADIW

(

nIK

2

)

(

nIJK

2

)

(

nJK

2

)

(

nIJK

2

)

(

nIJ

2

)

(

nIJK

2

) 0
−

(

nI

2

)

(

nIJK

2

)

−
(

nJ

2

)

(

nIJK

2

)

−
(

nK

2

)

(

nIJK

2

) 0

In the table, definitions are given asf (1)(x, y) = x, f (2)(x, y) = y, g(1)(x, y) =
g(2)(x, y) = W (x, y). HereW stands for a function such asmax,min,mean, etc. The
symbol

( )

means a binomial coefficient.nIJ = nI +nJ , nIJK = nI +nJ +nK , s
∗ =

sI + sJ + sK . For definitions ofsI , sJ andsK , refer to Appendix.

(WA), centroid algorithm (CE), median algorithm (MD), flexible algorithm
(FX), group average algorithm (GA), total average algorithm(TA), sum of
squares algorithm (SS), and mean dissimilarity algorithm (DI). For each of
them, we code the corresponding asymmetric clustering algorithm by attach-
ing “A”, for example, ACL for asymmetric CL and so on. One may realize the
advantage of AUF to EUF, that ATA, ASS and ADI are incorporated only by us-
ing AUF. Regarding asymmetric TA, in particular, we providethe formulation
and its updating formula in Appendix.
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2.4 Asymmetric Dendrogram

To illustrate the result of asymmetric AHCA, we may considerseveral
extensions of the customary dendrogram. We make use of a general dendro-
gram (Saito and Yadohisa 2005) in the following sections. In the dendrogram,
some distance information is provided to customary dendrogram (see Figure
2). The height of continuous bars in the figure shows combined distancevIJ .
In addition,dIJ anddJI are also displayed by dotted bars at each combining
stage. These three values at each stage are used for evaluations of the clustering
results in what follows. The left dendrogram shows the case for dIJ > dJI ,
and the right one shows the case fordIJ < dJI . Note that the continuous bar
might coincide with one of the dotted bars whenvIJ is set asmax(dIJ , dJI) or
min(dIJ , dJI). For details about the general dendrogram, see Saito and Yado-
hisa (2005).

3. Measures of the Goodness of Fit for Asymmetric AHCA

In order to evaluate clustering results derived by asymmetric AHCA, let
us consider some measures. At first we like to use measures of the degree of
asymmetry in the data matrixD = (dij). Define a symmetricS = (sjk) and a
skew-symmetricA = (ajk) as

S = (D + D
′)/2, (8)

A = (D − D
′)/2, (9)

whereD
′ is the transposed matrix ofD. Then we see that

D = S + A, (10)

‖D‖2 = ‖S‖2 + ‖A‖2, (11)

and

Var({djk}) = Var({sjk}) + Var({ajk}) , (12)

where|| · ||2 and Var({·}) are concerned withn2 elements of each matrix. For
measures of asymmetry of data, we choose to use the followingindices:

θ = ‖A‖2/‖D‖2, (13)

φ = Var({ajk})/Var({djk}), (14)

which were suggested by Saito and Yadohisa (2005). The values of these in-
dices are bounded as

0 ≤ θ ≤ 1, (15)

0 ≤ φ ≤ 1. (16)
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Figure 2. Asymmetric dendrograms

It is noticed that formulas from (8) to (14) are valid even fordata matrices
including nonzero diagonal elements. Other measures of asymmetry of data
might be used (Gower 1977).

Next we consider measures of the fit of an asymmetric dendrogram to
the data to which a certain asymmetric AHCA has been applied.Let us explain
basic ideas by referring to Figure 3, which illustrates the example of an asym-
metric dendrogram. ByvIJ , we denote the combined distance at each merger
of two clusters,CI andCJ . Then we have the resultant symmetric dissimilarity
matrixV , such as

V =









0 vAB v(AB)(CD) v(AB)(CD)

vAB 0 v(AB)(CD) v(AB)(CD)

v(AB)(CD) v(AB)(CD) 0 vCD

v(AB)(CD) v(AB)(CD) vCD 0









. (17)

To state the process of clustering, we have another matrix ofthe resultant asym-
metric dissimilarity matrix such as

U =









0 uAB u(AB)(CD) u(AB)(CD)

uBA 0 u(AB)(CD) u(AB)(CD)

u(CD)(AB) u(CD)(AB) 0 uCD

u(CD)(AB) u(CD)(AB) uDC 0









. (18)

With V andU , we like to consider some measures to indicate the fit.
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Figure 3. Example of an asymmetric dendrogram

Now we think of the general case of a result of AHCA, and letU = (uij)
be the resultant asymmetric dissimilarity whereuij elements are read from the
asymmetric dendrogram. We retain the original dissimilarity matrixD = (dij).

As extension of Cophenetic correlation coefficient (Sokal andRohlf 1962)
in the case of symmetric clustering to the case of asymmetricclustering, we set

r∗ =
Cov({dij}, {vij})

(Var({dij})Var({vij}))
1

2

, (19)

where variance and covariance terms are concerned with onlyn(n − 1) off-
diagonal elements. This convention is applied to formulas including those terms
later. We note the following relations:

Cov({dij}, {vij}) = Cov({sij}, {vij}) + Cov({aij}, {vij}), (20)

Cov({aij}, {vij}) =
∑

i6=j

aijvij −
1

n(n− 1)

∑

i6=j

aij

∑

i6=j

vij = 0, (21)

∑

i6=j

aijvij = 0 ,
∑

i6=j

aij = 0. (22)
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Then we have
Cov({dij}, {vij}) = Cov({sij}, {vij}). (23)

Hence the cophenetic correlation coefficient is stated as

r∗ =
Cov({sij}, {vij})

(Var({dij})Var({vij}))
1

2

. (24)

As another measure of fit, let us propose the sum of squared errors ratio
ψ∗ (Hartigan 1967). Through simple manipulation, we have

‖D − V ‖2 = ‖S − V ‖2 + ‖A‖2, (25)

because
tr[(S − V )A] = 0. (26)

Then we presentψ∗ as

ψ∗ =
‖D − V ‖2

‖D‖2
. (27)

It turns out that both (24) and (27) indicate the fit ofV to S for a dendrogram.
Therefore it is realized that we should useU , asymmetric information given by
the dendrogram. This consideration gives rise to a suggestion of two measures
such as

r =
Cov({dij}, {uij})

(Var({dij})Var({uij}))
1

2

(28)

and

ψ =
‖D − U‖2

‖D‖2
. (29)

Let us transformψ to ω by

ω =
1

1 + ψ
, (30)

which indicates the degree of goodness of fit.
As a third measure of fit, it is suggested to compute rank correlation co-

efficient between{uij} and{dij}, using Spearman’sρ and Kendall’sτ . As
shown in (18), many ties occur in the values ofU matrix. In view of this prop-
erty, we incorporate the correction factors of Siegel (1956)for the computation
of ρ andτ .

Let us provide numerical illustrations for what have been suggested so
far. Given an asymmetric dissimilarity matrix

D =









0 30 80 90
10 0 70 100
110 90 0 80
120 110 60 0









, (31)
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we have its symmetric partS and skew-symmetric partA. FromD andA, the
degrees of asymmetry of the data are indicated byθ = 0.018 andφ = 0.050.
When we set the arithmetic mean for functionW , for example, we can perform
the asymmetric complete linkage algorithm (abbrev. ACLmean) to the data. Then
the result is represented by the asymmetric dendrogram in Figure 4. From the
dendrogram, we derive

V =









0 20 110 110
20 0 110 110
110 110 0 70
110 110 70 0









and U =









0 30 100 100
10 0 100 100
120 120 0 80
120 120 60 0









, (32)

according to (17) and (18). GivenD andU , the goodness of fit for ACLmeanis
evaluated byr = 0.951, ω = 0.972, ρ = 0.898 andτ = 0.823.

4. Numerical Examples

Let us give numerical examples by using some of asymmetric AHCA and
measures of the goodness of fit for clustering results.

We take up the data of brand switching of soft drinks between two peri-
ods (DeSarbo 1982), which are reported in Table 2. The brands are eight soft
drinks (A: Coke, B: 7-up, C: Tab, D: Like, E: Pepsi, F: Sprite, G: Diet Pepsi,
H: Fresca). The data matrix in the table shows the brand switching in terms
of proportions with the rowwise sum being unity. As is seen, the matrix is
asymmetric and each entry means the similarity between a pair of brands. To
apply asymmetric AHCA to the data{oij}, it is required to transform them into
dissimilarity data{dij} by a monotone function,

dij = 1000 × (max
i6=j

(oij) − oij) + 1. (33)

We setdii = 0 (i = 1, · · · , 8). The results are given in Table 3. The degree
of asymmetry of the transformed data is shown byθ = 0.032 andφ = 0.180.
Thus the degree of skew-symmetry is small in terms of the norm,while it is
intermediate in terms of the variance.

For purposes of demonstration, we selected four typical algorithms (ASL,
ACL, AGA and ATA) among asymmetric AHCA, which are derived from sin-
gle linkage, complete linkage and average linkage, respectively. For investigat-
ing the effect ofW , we take up two most distinct functions,W = min and
W = max. Table 4 summarizes clustering processes of ASL, ACL, AGA and
ATA. The values in the columnvIJ indicate the combined distance at each stage.
In the table,CI andCJ show merged clusters. We illustrate the dendrograms
of clustering results for each algorithm in Figure 5.
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Figure 4. Numerical example of an asymmetric dendrogram

Let us mention some findings from Table 4 and Figure 5. Firstly, it is
stressed that the monotonicity for the combined distance isnot satisfied for
asymmetric algorithms ASLmax, AGAmax and ATAmax, for which the monotonic-
ity is known to hold in the case of symmetric AHCA. Secondly, the clustering
results are influenced by the function type ofW more than by the linkage type.
Thirdly, the present results of ASLmin and ASLmax do not show the chain ef-
fect in the sense of Lance and Williams (1967) that is frequently observed in
the case of symmetric SL. Fourthly, examining the values in terms ofr, ω and
ρ indices, we notice the following points. For the caseW = min, AGAmin

attains the best fit in terms ofr andω, and ACLmin does the best in terms of
ρ. For the caseW = max, AGAmax gives the best in terms ofr andω, while
ATAmax does the best in terms ofρ. Across cases ofW = min andW = max,
AGAmin shows the best fit in terms ofr andω and ATAmax does the best fit in
terms ofρ.

To investigate the points mentioned above, we performed another study,
using other algorithms of asymmetric AHCA. Changing the values of parame-
ters in AUF, we can implement various clustering algorithms, and then obtain
the corresponding results. To find the best result in these clusterings, we will
refer to the goodness of fit.
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Table 2. Soft drink brand switching data

Period[t + 1]
Period[t] A B C D E F G H
A : Coke .612 .107 .010 .033 .134 .055 .013 .036
B : 7-Up .186 .448 .005 .064 .140 .099 .012 .046
C : Tab .080 .120 .160 .360 .080 .040 .080 .080
D : Like .087 .152 .087 .152 .239 .043 .131 .109
E : Pepsi .177 .132 .008 .030 .515 .076 .026 .037
F : Sprite .114 .185 .029 .071 .157 .329 .029 .086
G : Diet Pepsi .093 .047 .186 .093 .116 .093 .256 .116
H : Fresca .226 .093 .053 .107 .147 .107 .067 .200

Table 3. Transformed data of dissimilarities (θ = 0.032, φ = 0.180)

Period[t + 1]
Period[t] A B C D E F G H
A : Coke 0 254 351 328 227 306 348 325
B : 7-Up 175 0 356 297 221 262 349 315
C : Tab 281 241 0 1 281 321 281 281
D : Like 274 209 274 0 122 318 230 252
E : Pepsi 184 229 353 331 0 285 335 324
F : Sprite 247 176 332 290 204 0 332 275
G : Diet Pepsi 268 314 175 268 245 268 0 245
H : Fresca 135 268 308 254 214 254 294 0

Let r, ω, ρ be index values of clustering results by using the nine al-
gorithms of asymmetric AHCA (ASL, ACL, AWA, ACE, AMD, AWD, AFX,
AGA, ATA), respectively. Examining the fit values in Table 5, let us summarize
findings as follows. For the caseW = min, the bestr is attained by AFXmin,
the bestω by both AWAmin and AGAmin, and the bestρ by AFXmin. For the
caseW = max, the bestr is attained by AGAmax, the bestω by AGAmax, and
the bestρ by ATAmax. Combining both cases for each fit index, we find that the
bestr is given by AFXmin, the bestω is by both AWAmin and AGAmin, and the
bestρ by ATAmax. Furthermore, there is a general tendency that ACE, AMD
and AWD give lower degrees of fit than the other algorithms.

As we stand to a basic view that symmetrization of asymmetricdata dis-
cards some important information involved in data, from which the study of this
paper started. Then we are not concerned with discussing possible advantages
of asymmetric AHCA to symmetric AHCA, but with proposing asymmetric
AHCA and their evaluations. However, it may be interesting to compare those
results of asymmetric AHCA with performance of symmetric AHCA using the
same set of data. Then we symmetrized the data of Table 3, and applied to them
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Table 4. Clustering results of soft drink data by using ASL, ACL, AGA andATA

ASLmin vIJ CI CJ dIJ dJI ASLmax vIJ CI CJ dIJ dJI

1 1.0 C D 1.0 274.0 1 227.0 A E 227.0 184.0
2 122.0 C E 122.0 331.0 2 229.0 A B 229.0 175.0
3 135.0 A H 325.0 135.0 3 254.0 D H 252.0 254.0
4 175.0 B H 175.0 254.0 4 245.0 G H 245.0 230.0
5 175.0 C G 230.0 175.0 5 175.0 C G 1.0 175.0
6 176.0 B F 254.0 176.0 6 262.0 A F 262.0 176.0
7 184.0 F G 204.0 184.0 7 275.0 A G 275.0 122.0

r: 0.597, ω: 0.913,ρ: 0.444 r: 0.521, ω: 0.881,ρ: 0.570

ACLmin vIJ CI CJ dIJ dJI ACLmax vIJ CI CJ dIJ dJI

1 1.0 C D 1.0 274.0 1 227.0 A E 227.0 184.0
2 135.0 A H 325.0 135.0 2 254.0 A B 254.0 221.0
3 176.0 B F 262.0 176.0 3 254.0 D H 252.0 254.0
4 221.0 E F 285.0 221.0 4 281.0 C G 281.0 175.0
5 268.0 C G 281.0 268.0 5 306.0 A F 306.0 247.0
6 281.0 G H 281.0 351.0 6 308.0 C H 281.0 308.0
7 321.0 F G 356.0 321.0 7 356.0 A H 356.0 321.0

r: 0.720, ω: 0.949,ρ: 0.580 r: 0.602, ω: 0.944,ρ: 0.732

AGAmin vIJ CI CJ dIJ dJI AGAmax vIJ CI CJ dIJ dJI

1 1.0 C D 1.0 274.0 1 227.0 A E 227.0 184.0
2 135.0 A H 325.0 135.0 2 241.5 A B 241.5 198.0
3 176.0 B F 262.0 176.0 3 254.0 D H 252.0 254.0
4 201.5 C E 201.5 342.0 4 262.0 G H 256.5 262.0
5 229.3 C G 282.0 229.3 5 252.3 C H 187.7 252.3
6 253.0 F H 253.0 270.5 6 284.3 A F 284.3 209.0
7 268.4 F G 294.1 268.4 7 327.6 A H 327.6 250.8

r: 0.755,ω: 0.976,ρ: 0.543 r: 0.686, ω: 0.971,ρ: 0.723

ATAmin vIJ CI CJ dIJ dJI ATAmax vIJ CI CJ dIJ dJI

1 1.0 C D 1.0 274.0 1 227.0 A E 227.0 184.0
2 134.7 C E 134.7 228.3 2 236.7 A B 236.7 207.7
3 135.0 A H 325.0 135.0 3 254.0 D H 252.0 254.0
4 176.0 B F 262.0 176.0 4 259.3 G H 255.7 259.3
5 182.0 C G 208.3 182.0 5 255.8 C H 223.5 255.8
6 220.5 F H 220.5 232.2 6 260.5 A F 260.5 222.8
7 239.6 F G 254.3 239.6 7 297.8 A H 297.8 254.0

r: 0.676, ω: 0.952,ρ: 0.367 r: 0.670, ω: 0.966,ρ: 0.743

eight algorithms of symmetric AHCA. For eight dendrograms derived by those
algorithms, we computed the goodness of fit in terms of the three indices. Table
6 summarizes the results. It is found that the asymmetric AHCA approach gives
generally higher fit than the symmetric AHCA approach for indicesr andρ but
they do not exhibit clear differences forω. It is stressed that this comparison in
terms of the three indices is based on a single set of data.
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Figure 5.Dendrograms for soft drink data by using ASL, ACL, AGA and ATA
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Table 5. Goodness of fit for soft drink data using asymmetric AHCA

Algorithm r ω ρ Algorithm r ω ρ

ASLmin 0.597 0.913 0.444 ASLmax 0.521 0.881 0.570
ACLmin 0.720 0.949 0.580 ACLmax 0.602 0.944 0.732
AWAmin 0.754 0.976 0.543 AWAmax 0.654 0.967 0.737
ACEmin 0.432 0.846 0.266 ACEmax 0.433 0.863 0.405
AMDmin 0.448 0.844 0.361 AMDmax 0.165 0.846 0.082
AWDmin 0.701 0.786 0.663 AWDmax 0.652 0.766 0.694
AFXmin 0.763 0.928 0.666 AFXmax 0.640 0.906 0.691
AGAmin 0.755 0.976 0.543 AGAmax 0.686 0.971 0.723
ATAmin 0.676 0.952 0.367 ATAmax 0.670 0.966 0.743
Note:β = −0.25 in AFXmin and AFXmax

Table 6. Goodness of fit for soft drink data using symmetric AHCA

Algorithm r ω ρ

SL 0.455 0.932 0.224
CL 0.541 0.947 0.496
WA 0.555 0.962 0.523
CE 0.095 0.854 0.020
MD 0.103 0.844 0.059
WD 0.507 0.779 0.488
FX 0.542 0.931 0.524
GA 0.556 0.962 0.523
TA 0.532 0.955 0.513

Note:β = −0.25 in FX

5. Concluding Remarks

For asymmetric AHCA, this paper developed new updating formulas
AUF ((5) and (6)), which are more general than EUF ((3) and (4)). Using
the new formulas, we presented the general framework of asymmetric AHCA,
giving nine algorithms explicitly (Table 1). Changing function W and/or pa-
rameters, we can incorporate many algorithms. For evaluation of clustering
results of asymmetric AHCA, we suggested fit indices in terms of r, ω andρ.
For demonstration of our study, we presented numerical examples with real
data using nine algorithms and evaluated them. As far as we are concerned
with the soft drinks data, we observe that AGA gives the best result. It is not
the goal of this paper to claim precedence of performance of some algorithms
over the others. Hence, to make such a claim, one would need toinvestigate
numerical study in more detail. There might be choices for updating formulas
of asymmetric AHCA, functions ofW , and definitions for measuring goodness



140 A. Takeuchi, T. Saito, and H. Yadohisa

of fit, which should be different from those suggested in this paper. It remains
to perform a comprehensive study under possible choices of them.

Appendix

In Table 1, we have specified parameters for an algorithm, which is de-
veloped from the total average algorithm (TA) for the case ofsymmetric data.
Here let us describe the derivation of those parameters. At first we review the
definition of symmetric TA, and show the updating formula. Thenwe formulate
asymmetric TA and present its updating formula.

To describe symmetric TA, consider a merger of clustersCP andCQ.
Then the total average, which is called average linkage with the new group in
Anderberg’s formulation, is defined by

dPQ =
∑

i<j

∑

(i,j∈CP Q)

dij

/(

nPQ

2

)

. (34)

On the basis of this definition, we like to derive an updating formula for
the total average algorithm. Denote the sum of dissimilarities withinCG by sG

and that betweenCP andCQ by tPQ, such as

sG =
∑

i<j

∑

(i,j∈CG)

dij and tPQ =
∑

i∈CP

∑

j∈CQ

dij . (35)

Using these definitions, we derive the updating formula for mergingCIJ

andCK as follows.

d(IJ)K = s(IJ)K

/(

nIJK

2

)

(36)

= (sIJ + sK + t(IJ)K)

/(

nIJK

2

)

= (sI + sJ + tIJ + sK + tIK + tJK)

/(

nIJK

2

)

= (sI + sK + tIK + sJ + sK + tJK + sI + sJ + tIJ)

/(

nIJK

2

)

−(sI + sJ + sK)

/(

nIJK

2

)

=

{(

nIK

2

)

dIK +

(

nJK

2

)

dJK +

(

nIJ

2

)

dIJ − (sI + sJ + sK)

} /(

nIJK

2

)

=

{(

nIK

2

)/(

nIJK

2

)}

dIK +

{(

nJK

2

)/(

nIJK

2

)}

dJK (37)

+

{(

nIJ

2

)/(

nIJK

2

)}

dIJ −

{

1

/(

nIJK

2

)}

(sI + sJ + sK).
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Let us turn to generalize the symmetric TA to an algorithm for asymmet-
ric TA. Let CG be a singleton or a merger ofCP andCQ,

CG = CP ∪ CQ (CP ∩ CQ = φ). (38)

Considering asymmetric case, let

sG =







0, (nG = 1),
(

nPQ

2

)

·A(dPQ, dQP ), (nG > 1).
(39)

Here functionA indicates a kind of average dissimilarities betweenCP andCQ.
For two dissimilaritiesd andd′, it is required to satisfy

A(d, d′) ≥ 0 and A(d, d) = d. (40)

For asymmetricdij , let

tPQ =
∑

i∈CP

∑

j∈CQ

dij . (41)

Using (39) and (41), we define asymmetric TA as follows.

d(IJ)K = (sIJ + sK + t(IJ)K)

/(

nIJK

2

)

,

dK(IJ) = (sIJ + sK + tK(IJ))

/(

nIJK

2

)

.

(42)

Referring to the case of symmetricdij , it is noted that (42) coincides with (34)
for whatever choice of functionA.

From the definition of asymmetric TA, we derive AUF as follows.

d(IJ)K = (sIJ + sK + t(IJ)K)

/(

nIJK

2

)

= (sIJ + sK + tIK + tJK)

/(

nIJK

2

)

= {sIJ + sI + sK + tIK + sJ + sK + tJK − (sI + sJ + sK)}

/(

nIJK

2

)

=

{(

nIK

2

)

dIK +

(

nJK

2

)

dIJ +

(

nIJ

2

)

A(dIJ , dJI) − (sI + sJ + sK)

}

/(

nIJK

2

)

(43)

It is found that (43) is an expression of AUF by putting parameters as
follows:
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α
(1)
I = α

(2)
I =

(

nIK

2

)/(

nIJK

2

)

,

α
(1)
J = α

(2)
J =

(

nJK

2

)/(

nIJK

2

)

,

β(1) = β(2) =

(

nIJ

2

)/(

nIJK

2

)

, (44)

γ(1) = γ(2) = δ
(1)
I = δ

(2)
I = δ

(1)
J = δ

(2)
J = ε(1) = ε(2) = 0,

ζ(1) = ζ(2) = −(sI + sJ + sK)

/(

nIJK

2

)

,

f (1)(x, y) = x, f (2)(x, y) = y, g(1)(x, y) = g(2)(x, y) = A(x, y).
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