Journal of Classification 24:123-143 (2007)
DOI: 10.1007/s00357-007-0002-1

Asymmetric Agglomerative Hierarchical Clustering Algorithms
and Their Evaluations

Akinobu Takeuchi

Jissen Women’s University, Japan
Takayuki Saito

Tokyo Institute of Technology, Japan
Hiroshi Yadohisa

Doshisha University, Japan

Abstract: This paper presents asymmetric agglomerative hierarchical clusizigog
rithms in an extensive view point. First, we develop a new updating fornmul¢hese
algorithms, proposing a general framework to incorporate many it#igm. Next we
propose measures to evaluate the fit of asymmetric clustering resulttatozen we
demonstrate numerical examples with real data, using the new updatingléoand the
indices of fit. Discussing empirical findings, through the demonstratizenples, we
show new insights into the asymmetric clustering.

Key Words: Asymmetric data; Asymmetric dendrogram; Clustering analysis; Dissimi-
larity; Goodness of fit.

Authors’Addresses: Akinobu Takeuchi, Faculty of Humanities andab&ciences,
Jissen Women'’s University, 4-1-1 Osakaue, Hino, Tokyo 191-8348an, e-mail: akitake @
univ.jissen.ac.jp; Takayuki Saito, e-mail: gyo@valdes.titech.adijmshi Yadohisa, e-mail:
hyadohis@mail.doshisha.ac.jp



124 A. Takeuchi, T. Saito, and H. Yadohisa

1. Introduction
1.1 Background

Let us suppose a situation in which one observes pairwistaethips
amongn objects. The entire set of data takes a formnok n data matrix
D = (d;;) whered;; is a nonnegative numerical value, indicating the degree
of relationship of an ordered pdit, j]. There are often cases for whidh is
asymmetric, that isd;; # dj;. For examples of such asymmetric measures,
we mention brand switching, psychological (dis)similgritocial exchange, ci-
tation and so on (Zielman and Heiser 1996; Saito and Yadohi6&)20For
analysis of asymmetric data, researchers have developddisnand methods
by a variety of approaches, such as multidimensional sgatilustering, net-
work analysis, graphical representation techniques (Saitbyadohisa 2005).

1.2 Purpose

We are concerned with clustering of asymmetric data. Riefgto Saito
and Yadohisa (2005), it is found that there have been degdlopny methods
and algorithms to deal with the asymmetric clustering. haged that some of
them have been given in terms of agglomerative hierarclicstering algo-
rithms (AHCA).

In this paper we are interested in extensions of the asynun@&tCA
and their evaluations. In Section 2, we provide asymmetriatipg formu-
las to define asymmetric AHCA. Then we generalize asymmetri€Alh a
comprehensive framework, and present the representdatiasymmetric den-
drograms to show the results of asymmetric AHCA. In Sectiow&turn to
measures of the goodness of fit for asymmetric AHCA in orderv&uate the
clustering results. With some measures to indicate theedegfrasymmetry of
data, we suggest three measures for the evaluation. In SekLtiwe present
numerical examples for illustrative purposes of asymm&HCA. In Section
5, we summarize our contribution to asymmetric AHCA.

In passing extension of average linkage algorithms (Anelerth973) for
symmetric case to asymmetric case is briefly described in@e2tilt requires
some development of formulas which is provided in Appendix.

1.3 Notation
In what follows, we consider the situation in which the relaship be-

tween a pair of objects is given by an asymmetric dissintjlarieasure. How-
ever, all the description of this paper can be applied to asgiric similarity
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measures. Lef;; denote the dissimilarity for an ordered pairj]. Then, the
asymmetry means that there exists at least one pair of shjentd j such
thatd;; # d;;. Itis assumed that there exist no missing values. We will
not deal with diagonal elements in the clustering algorghnHowever, we
letd; =0 (i = 1,2,--- ,n) to define some measures of goodness of fit for
asymmetric AHCA in Section 3. We use a natural numbeo indicate the
I-th cluster, such a€';. Letn; be the number of objects which belongdg.
Expression € C; states that objeatbelongs toC;. Letd;; denote the dis-
similarity for an ordered pailC;, C;]. Note thatd;; # dj; in general. Let;

be the combined distance at the stage whgrwas generated in a clustering
process (Yadohisa et al. 1999). When the result of the ciagtés represented
by a dendrogram,; indicates the height of’;. When(C; is merged with(C'y,

the resultant cluster is written 85 ; = C; U Cj.

2. Asymmetric AHCA and Representation of Clustering Results

Researchers proposed so far some updating formulas for segiror
asymmetric AHCA. The updating formula proposed by Lance anflidis
(1966, 1967) for symmetric case is widely used since it iegplnany cluster-
ing algorithms by suitable selection of some parameters.uketbbreviate it
LWUF.

In this section, we describe briefly those symmetric and asytmcup-
dating formulas. Then we define a more general updating fortoulapresent
asymmetric AHCA. Further, we give a representation of theramsgtric AHCA
by using the new updating formula. Clustering results othanmetric AHCA
are shown by asymmetric dendrograms.

2.1 Symmetric Updating Formulas

Let us state LWUF for dissimilarity; ;) - between cluste€’;; and an-
other clusteC'i as

dank = ardix +aydyx + Bdry +vldix — dyk|, (1)

where parameters;, a5, 5 and~ are either constants or functionsof, n;

andng. This formula implies many symmetric AHCA including singlekage
algorithm (Sneath 1957), complete linkage algorithm (Ma®ui960), group
average algorithm and weighted average algorithm (McQui®67), Ward'’s
algorithm (Ward 1963), centroid algorithm (Gower 1967),da@ algorithm
and flexible algorithm (Lance and Williams 1966).
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Jambu (1978) extended LWUF for dissimilarity; ;. between cluster
Cry and another cluster'y as

diung = ardik +aydyc+Bdry+vldix — dyx|+0rhr+d,hy+ehk, (2)

whereay, a5, 8 and~y are the same in LWUF, and newly add&d ¢, € are
also parameters to define the algorithms.

By using this formula, several algorithms such as meanrditity al-
gorithm (Podani 1989) and sum of squares algorithm (Jamb@;1P@dani
1989) are stated, which cannot be represented by LWUF. Sdmizard Lebeaux
(1983) and Gordon (1996) for details of symmetric AHCA. Ntitet the dis-
similarities are assumed to be symmetric in the descrifdhis subsection.

2.2 Asymmetric Updating Formulas

For asymmetric case, an extended updating formula was peopby
Yadohisa (2002). Incorporating the asymmetry into the fdation gives rise to
two types of updating formulas. The updating formula for idmigirity d(; )k
for [Cr, Ck] is written as

diang = Oégl)f(l)(dn(, dir) + ozf,”f(”(dm, dicy) + BV gW(drs, dyr)

+y WD (dixe, dicr) = FO(dxc, dies)]. 3)
The updating formula for dissimilari® ;s for [Ck, Cp,] is written as
iy = a?)f(z)(dno dicr) + OJSQ)f(2)(dJK, drcy) + 5(2)9(2)(d“, dyr)

+y@ O i, dicr) — fP(dyxc, dic)l- 4)

Here o', oV, ol?, o), s, 3@ (1) 42 are constants or functions
in terms ofnz, n; andng, which are specified prior to analysis, arfitd),
@, ¢M ¢ are functions of two dissimilarities determined prior t@bssis.
This pair of formulas is called extended updating formula (EUF)

In the same way as the symmetric case, we update the dissiieddoy
using EUF, calculating the dissimilarities between clusegrstagen + 1 on
the basis of the dissimilarities at stage Unlike the symmetric case, these
formulas update/; ;) x anddg ;5 separately. In the same way as LWUF, the

parameters such aé,l) control the combination of the clusters. In addition,
functions f1), @, ¢ and¢® control some weighting of the asymmetric
relationship between a pair of clusters. The EUF implies aelamgmber of
asymmetric AHCA (see Saito and Yadohisa (2005) for details).

As is shown later, EUF cannot represent some of the asymmigt@A
dealt with in this paper. Then let us propose a more generat@gyric updat-
ing formula to state comprehensive treatments of the asyrowdHCA.
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Definition 1 (Asymmetric updating formula):

The updating formula for dissimilarity; s i for [C1;, Ck] is written as

dankg = aﬁ”f“)(dm, dir) + ale)f(l)(dJK, dicy) + BV gW(drs, dyr)
WD (drge, dier) — FO(dyre, dies)|
+8h + 6P by + eWhge + ¢, (5)

The updating formula for dissimilari® ;s for [Ck, C1,] is written as

dry = o) £ (g, dier) + agz)f(Q) (dyrc,dics) + B8P g (drs, dyr)
Dy, dier) — FP(dgx, dicy)]
6Py + 6P hy +ePhg + ¢, (6)

Hereal", (1), o, a2, B0, 82, 1), @), 51, 62), 51, 62, ), ),
¢M, and¢®@ are constants or functions of, n; andn g, which are specified
prior to analysis, ang™®, 2 ¢(1) and¢® are functions of two dissimilari-
ties determined prior to analysis. We call these pairs ahfdas asymmetric
updating formula (AUF) hereafter. Figure 1 shows asymmeissichilarities
between clusters.

2.3 Asymmetric AHCA

Let us formulate asymmetric AHCA by using AUF. L€} andCr be
arbitrary clusters, andsr anddrs denote asymmetric dissimilarities between
them. Conside€';; andC, particular clusters to be combined at a stage (see
Figure 1). Without loss of generality, it is assumed that elu€’x may be
a singleton, or was formed before clustér; has been formed. To include
many algorithms in this formulation, we introduce functidn The function
W defines a combining criterion of two asymmetric dissimilastbetween
clusters (see formula (7)). For example it maynlxex, min, mean, and so on.

The algorithms consist of recursion of two steps; the first kiegelec-
tion of the objects for combining and the second step for tipgahe asym-
metric dissimilarity between clusters.

Definition 2 (Asymmetric AHCA):

The clustering algorithms determined by recursion of thiewdhg two steps
are called asymmetric AHCA. Suppose that an asymmetriondilssity matrix
is given.
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Figure 1. Asymmetric dissimilarities between clusters

Step 1 : For a given asymmetric dissimilarity matrix, fifd;, C';] such that it
attains the minimum ofl” values over all the pairs of clusters. For clarity,
writing

= mi dsgr,d 7
vrg §11<111%W( SR dRS), (7)
we determingC;, C' ;] which satisfies;; = W (dr s, dr).

Step 2: Join the two clusters which are selected in Step 1 and uplatg,
anddK(U) by AUF.

The entire process repeats Step 1 and Step 2 until all the obpects cluster.
Thewyy value in (7) is called combined distance at the stage.

By using AUF (5) and (6), we can extend several symmetric AHGA
asymmetric ones, for example, average linkage algoritbknslérberg 1973),
mean dissimilarity algorithm (Podani 1989), and sum of segsialgorithm
(Jambu 1978). It should be noted that these asymmetric AH@¥at be rep-
resented by EUF. The average linkage between the merged gatggréhm
and the average linkage within the new group algorithm in ekbdrg (1973)
are called group average algorithm and total average égorrespectively, in
this paper.

We characterize some of asymmetric AHCA in Table 1 with sjmtpa-
rameters in AUF. In Table 1, algorithm names are abbreviasesingle linkage
algorithm (SL), complete linkage algorithm (CL), weightedrage algorithm
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Table 1. Asymmetric AHCA by AUF parameters

Algorithm[ (" o gy 4O 6" 55" e® ¢
(= o) (=) (= 89) (= 1) (=6) (=65) (=) (=)
1 1 1
ASL — — ——
SL,, 5 5 0 5 0 0 0 0
1 1 1
ACL — — —

w 5 5 0 5 0 0 0 0
AWA % % 0 0 0 0 0 0
ACE i o Mg 0 0 0 0

v Nry Nry TL?,

1 1 1
AMD 3 3 ~1 0 0 0 0 0
AWD L ) 0 0 0 0

v Nrsx Ny Nrsx
AFX,, % % B(<1) 0 0 0 0 0
AGA,, e 0 0 0 0 0 0

Nry Nry
ATA,, ("LI’.»K) ("JQK) ( éj) 0 0 0 0 —s"
("IJK) ("IJK) ("IJK) ("IJK)
2 2 2 2
ASS,, Nk Nk Nyy 0 —ny -1y —MNg 0
Nrsk Ny Nk Nk Ny Nrsx
o | L O 1), =) ) D
("IJK) ("IJK) (nIJK) (”1]1() ("IJK) (”1]1()
2 2 2 2 2 2

In the table, definitions are given & (z,y) = z, f@(x,y) = y, gV (x,y) =
9 (z,y) = W(=,y). HereW stands for a function such asax, min, mean, etc. The
symbol( ) means a binomial coefficient,, = n,+n,, n,,c = n,+n,+ny, s =
sr+ s; + sx. For definitions ofs;, s, ands,, refer to Appendix.

(WA), centroid algorithm (CE), median algorithm (MD), flexébllgorithm
(FX), group average algorithm (GA), total average algoritfiA), sum of
squares algorithm (SS), and mean dissimilarity algorithm).(Bbr each of
them, we code the corresponding asymmetric clusteringrighgo by attach-
ing “A", for example, ACL for asymmetric CL and so on. One maplize the
advantage of AUF to EUF, that ATA, ASS and ADI are incorporately by us-
ing AUF. Regarding asymmetric TA, in particular, we provitie formulation
and its updating formula in Appendix.
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2.4 Asymmetric Dendrogram

To illustrate the result of asymmetric AHCA, we may consideveral
extensions of the customary dendrogram. We make use of aajetendro-
gram (Saito and Yadohisa 2005) in the following sectionshihdendrogram,
some distance information is provided to customary derdrag(see Figure
2). The height of continuous bars in the figure shows combins@mie; ;.

In addition,d;; andd;; are also displayed by dotted bars at each combining
stage. These three values at each stage are used for evadiadtibe clustering
results in what follows. The left dendrogram shows the caselfp > d;j,

and the right one shows the case flo; < dj;. Note that the continuous bar
might coincide with one of the dotted bars whe is set asnax(dy, dr) or
min(dys,dyr). For details about the general dendrogram, see Saito and Yado
hisa (2005).

3. Measures of the Goodness of Fit for Asymmetric AHCA

In order to evaluate clustering results derived by asymmatdCA, let
us consider some measures. At first we like to use measures oktiree of
asymmetry in the data matri® = (d;;). Define a symmetri§ = (s;;) and a
skew-symmetricA = (a;i,) as

S = (D+D')/2, (8)
A = (D-D'))2, 9)
whereD’ is the transposed matrix d@. Then we see that
D = S+A, (10)
IDI* = |IS|I* + [lA[*, (11)
and
Var({d;r}) = Var({s;r}) + Var({a;i}), 12)

where|| - ||? and Vaf{-}) are concerned with? elements of each matrix. For
measures of asymmetry of data, we choose to use the follanitices:

0 = |A|*/|D|? (13)
¢ = Var({a;r})/Var({d;.}), (14)

which were suggested by Saito and Yadohisa (2005). The vafubgge in-
dices are bounded as

, (15)
(16)

o O
IAIN
IN N
_ e

0
¢
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Combined distance Combined distance
A A
dyt e N
u, | Y+
d,L | i Y S S
CI C/ CI CJ
dy >dy, dy, <dy

Figure 2. Asymmetric dendrograms

It is noticed that formulas from (8) to (14) are valid even tata matrices
including nonzero diagonal elements. Other measures ohagjry of data
might be used (Gower 1977).

Next we consider measures of the fit of an asymmetric dendrogpa
the data to which a certain asymmetric AHCA has been applietlus explain
basic ideas by referring to Figure 3, which illustrates thanegle of an asym-
metric dendrogram. By;;, we denote the combined distance at each merger
of two clusters(C andC';. Then we have the resultant symmetric dissimilarity
matrix V, such as

0 VAB V(AB)(CD) V(AB)(CD)
vV — VAB 0 U(AB)(©D) V(AB)(CD) | (17)
VU(AB)(CD) Y(AB)(CD) 0 veD
V(AB)(CD) YV(AB)(CD) veD 0

To state the process of clustering, we have another mattheafesultant asym-
metric dissimilarity matrix such as

0 U

AB UAB)(CD) U(AB)(CD)
_ UBA 0 UAB)(CD) WAB)(CD) (18)
U(CEDY(AB) WCD)(AB) 0 ucp ’
U(CD)(AB) W(CD)(AB) upc 0

With V andU, we like to consider some measures to indicate the fit.
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Combined distance
A

UAB [ o
VABT
UBA e

Figure 3. Example of an asymmetric dendrogram

Now we think of the general case of a result of AHCA, andfet (u;;)
be the resultant asymmetric dissimilarity whese elements are read from the
asymmetric dendrogram. We retain the original dissintyariatrix D = (d;;).

As extension of Cophenetic correlation coefficient (SokalRaulf 1962)
in the case of symmetric clustering to the case of asymmatrtering, we set

__ _ Cov({dis}, {vis})
(Var({di;})Var({v;;}))>

where variance and covariance terms are concerned withgmly- 1) off-
diagonal elements. This convention is applied to formulasioing those terms
later. We note the following relations:

Cov({di;}, {vij}) = Cov({si;}, {vij}) + Cov({as;}, {vi;}),  (20)
Cov({ai;}, {vij}) = Z ;v — n(nl—l) Z ajj Z vi; = 0, (21)
i#£j i#] i#j

Z Ai5V55 = 0, Z Qi = 0. (22)

i#] i#]

; (19)
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Then we have
Cov({di; }, {vi;}) = Cov{si;}, {vis})- (23)
Hence the cophenetic correlation coefficient is stated as
p — GO {vi}) - (24)
(Var({di;})Var({v;}))

As another measure of fit, let us propose the sum of squareis eatio
1, (Hartigan 1967). Through simple manipulation, we have

ID-V[*=|S-V|*+ Al (25)
because
tr[(S — V)A] = 0. (26)
Then we presenp, as
|D -~ V|?
Yy = ———5— (27)
D>

It turns out that both (24) and (27) indicate the fitV6fto S for a dendrogram.
Therefore it is realized that we should Ugg asymmetric information given by
the dendrogram. This consideration gives rise to a suggesfitwo measures

such as
p = Coldy} fuy)) (28)
(Var({d;;})Var({u;;}))>
ane DU
— _ . 29
N VTE 29)
Let us transformp to w by .
W = ma (30)

which indicates the degree of goodness of fit.

As a third measure of fit, it is suggested to compute rank catrogl co-
efficient between{u;;} and{d;;}, using Spearman’s and Kendall'sr. As
shown in (18), many ties occur in the valueddimatrix. In view of this prop-
erty, we incorporate the correction factors of Siegel (19663he computation
of p andr.

Let us provide numerical illustrations for what have beengssted so
far. Given an asymmetric dissimilarity matrix

0 30 80 90

10 0 70 100
110 90 0 80 |~
120 110 60 O

D= (31)



134 A. Takeuchi, T. Saito, and H. Yadohisa

we have its symmetric pa and skew-symmetric padd. FromD and A, the
degrees of asymmetry of the data are indicated by 0.018 and¢ = 0.050.
When we set the arithmetic mean for functidn for example, we can perform
the asymmetric complete linkage algorithm (abbrev. Agdy to the data. Then
the result is represented by the asymmetric dendrogram uré-y From the
dendrogram, we derive

0 20 110 110 0 30 100 100
20 0 110 110 10 0 100 100
V=110 110 0 70|39 U= 120 0 g0 ©2
110 110 70 0 120 120 60 0

according to (17) and (18). Givel andU, the goodness of fit for ACheanis
evaluated by = 0.951, w = 0.972, p = 0.898 andT = 0.823.

4. Numerical Examples

Let us give numerical examples by using some of asymmetric A
measures of the goodness of fit for clustering results.

We take up the data of brand switching of soft drinks betwaengeri-
ods (DeSarbo 1982), which are reported in Table 2. The brardsigint soft
drinks (A: Coke, B: 7-up, C: Tab, D: Like, E: Pepsi, F: Sprite, G: thepsi,
H: Fresca). The data matrix in the table shows the brand swicim terms
of proportions with the rowwise sum being unity. As is sedre matrix is
asymmetric and each entry means the similarity betweenraoparands. To
apply asymmetric AHCA to the dafa;; }, it is required to transform them into
dissimilarity data{d;; } by a monotone function,

dij = 1000 x (mj?((oij) - Oij) + 1. (33)
7]
We setd;; = 0 (¢ = 1,---,8). The results are given in Table 3. The degree
of asymmetry of the transformed data is showrgby 0.032 and¢ = 0.180.
Thus the degree of skew-symmetry is small in terms of the nerhilg it is
intermediate in terms of the variance.
For purposes of demonstration, we selected four typicakalgns (ASL,
ACL, AGA and ATA) among asymmetric AHCA, which are derivedrfisin-
gle linkage, complete linkage and average linkage, readgtFor investigat-
ing the effect ofi¥, we take up two most distinct functions/ = min and
W = max. Table 4 summarizes clustering processes of ASL, ACL, AGA and
ATA. The values in the columuy ; indicate the combined distance at each stage.
In the table,C; andC'; show merged clusters. We illustrate the dendrograms
of clustering results for each algorithm in Figure 5.
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Combined distance
A

100

50+

1 2 3 4

Figure 4. Numerical example of an asymmetric dendrogram

Let us mention some findings from Table 4 and Figure 5. Firsthg it i
stressed that the monotonicity for the combined distana®issatisfied for
asymmetric algorithms ASkay, AGAL.x and ATA.«, for which the monotonic-
ity is known to hold in the case of symmetric AHCA. Secondlg thustering
results are influenced by the function typelgfmore than by the linkage type.
Thirdly, the present results of ASL, and ASL,.x do not show the chain ef-
fect in the sense of Lance and Williams (1967) that is freduestiserved in
the case of symmetric SL. Fourthly, examining the values ims$eofr, w and
p indices, we notice the following points. For the cd$e = min, AGAmuin
attains the best fit in terms efandw, and ACL,,;, does the best in terms of
p. For the casél = max, AGAnax gives the best in terms efandw, while
ATA ax does the best in terms pf Across cases df = min andW = max,
AGA .in shows the best fit in terms efandw and ATA,.x does the best fit in
terms ofp.

To investigate the points mentioned above, we performethanstudy,
using other algorithms of asymmetric AHCA. Changing thasealof parame-
ters in AUF, we can implement various clustering algorithargd then obtain
the corresponding results. To find the best result in thessearings, we will
refer to the goodness of fit.
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Table 2. Soft drink brand switching data

Period [t + 1]

Period [t] A B C D E F G H

A Coke 612 107 .010 .033 .134 .055 .013 .036
B:7-Up 186 .448 .005 .064 .140 .099 .012 .046
C:Tab .080 .120 .160 .360 .080 .040 .080 .080
D: Like .087 .152 .087 .152 .239 .043 .131 .109
E : Pepsi 177 132 .008 .030 .515 .076 .026 .037
F : Sprite 114 185 .029 .071 .157 .329 .029 .086
G:DietPepsi| .093 .047 .186 .093 .116 .093 .256 .116
H : Fresca 226 .093 .053 .107 .147 .107 .067 .200

Table 3. Transformed data of dissimilaritie® £ 0.032, ¢ = 0.180)

Period [t + 1]

Period [¢] A B C D E F G H

A : Coke 0 254 351 328 227 306 348 325
B:7-Up 175 0 356 297 221 262 349 315
C:Tab 281 241 0 1 281 321 281 281
D: Like 274 209 274 0 122 318 230 252
E : Pepsi 184 229 353 331 0 285 335 324
F : Sprite 247 176 332 290 204 0 332 275
G :DietPepsi| 268 314 175 268 245 268 0 245
H : Fresca 135 268 308 254 214 254 294 0

Let r, w, p be index values of clustering results by using the nine al-
gorithms of asymmetric AHCA (ASL, ACL, AWA, ACE, AMD, AWD, AFX,
AGA, ATA), respectively. Examining the fit values in Table &, ls summarize
findings as follows. For the ca3® = min, the best is attained by AFXn,
the bestv by both AWA,,.;, and AGA,,;,,, and the besp by AFX,.;n,. For the
casellV = max, the best is attained by AGA,.x, the bestu by AGA,,,.«, and
the besp by ATA..x. Combining both cases for each fit index, we find that the
bestr is given by AFX.in, the bestv is by both AWA,;, and AGAi,, and the
bestp by ATA..x. Furthermore, there is a general tendency that ACE, AMD
and AWD give lower degrees of fit than the other algorithms.

As we stand to a basic view that symmetrization of asymmdaia dis-
cards some important information involved in data, fromatfthe study of this
paper started. Then we are not concerned with discussingbfmasivantages
of asymmetric AHCA to symmetric AHCA, but with proposing asyetric
AHCA and their evaluations. However, it may be interestingdmpare those
results of asymmetric AHCA with performance of symmetric@Musing the
same set of data. Then we symmetrized the data of Table 3, aliddw them



Asymmetric Agglomerative Hierarchical Clustering Algtwins 137

Table 4. Clustering results of soft drink data by using ASL, ACL, AGA aid

ASLmin vy Cr Cj; drg djr || ASkmax vy Cr C; drg dir
1 1.0 C D 1.0 274.( 1 2270 A E 227.0 184.0
2 1220 C E 122.0 3310 2 229.0 A B 229.0 175.0
3 1350 A H 325.0 135.0 3 2540 D H 252.0 254.0
4 175.0 B H 175.0 254.(0 4 2450 G H 245.0 230.0
5 175.0 C G 230.0 1750 5 1750 C G 1.0 175.0
6 176.0 B F 254.0 176.0 6 2620 A F 262.0 176.0
7 1840 F G 204.0 184.0 7 275.0 A G 275.0 122.0
r: 0.597, w: 0.913,p: 0.444 r: 0.521, w: 0.881,p: 0.570
ACLwmin vig Cr Cj dry djr ||ACLmax wvig Cr C; diy  djr
1 1.0 C D 1.0 274.( 1 2270 A E 227.0 184.0
2 1350 A H 325.0 135.0 2 2540 A B 254.0 221.0
3 176.0 B F 262.0 176.0 3 2540 D H 252.0 254.0
4 221.0 E F 285.0 2210 4 2810 C G 281.0 175.0
5 268.0 C G 281.0 268.0 5 3060 A F 306.0 247.0
6 281.0 G H 281.0 351.0 6 308.0 C H 281.0 308.0
7 321.0 F G 356.0 321.0 7 356.0 A H 356.0 321.0
r: 0.720, w: 0.949,p: 0.580 r: 0.602, w: 0.944,p: 0.732
AGAmin vig Cr C; diy  djr ||AGAmax vig Cr Cy drg  dyr
1 1.0 C D 1.0 274.( 1 2270 A E 227.0 184.0
2 135.0 A H 325.0 135.0 2 2415 A B 2415 198.0
3 176.0 B F 262.0 176.0 3 2540 D H 252.0 254.0
4 2015 C E 2015 3420 4 2620 G H 256.5 262.0
5 2293 C G 282.0 2298 5 2523 C H 187.7 252.3
6 253.0 F H 253.0 270.b 6 2843 A F 284.3 209.0
7 2684 F G 294.1 2684 7 3276 A H 327.6 250.8
r: 0.755,w: 0.976,p: 0.543 r: 0.686, w: 0.971,p: 0.723
ATAmin vy Cr Cy dry  dyr || ATAmax vig Cr Cy diy  dir
1 1.0 C D 1.0 274.( 1 2270 A E 227.0 184.0
2 1347 C E 134.7 22838 2 236.7 A B 236.7 207.7
3 135.0 A H 325.0 135.0 3 2540 D H 252.0 254.0
4 176.0 B F 262.0 176.0 4 2593 G H 255.7 259.3
5 1820 C G 208.3 1820 5 2558 C H 2235 255.8
6 2205 F H 2205 232.p 6 2605 A F 2605 2228
7 2396 F G 254.3 2396 7 2978 A H 297.8 254.0
r: 0.676, w: 0.952,p: 0.367 r: 0.670, w: 0.966,p: 0.743

eight algorithms of symmetric AHCA. For eight dendrograresived by those
algorithms, we computed the goodness of fit in terms of thestim@ices. Table
6 summarizes the results. Itis found that the asymmetric Ald@proach gives
generally higher fit than the symmetric AHCA approach for @edi- andp but
they do not exhibit clear differences for It is stressed that this comparison in
terms of the three indices is based on a single set of data.
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Figure 5.Dendrograms for soft drink data by using ASL, ACL, AGA and ATA
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Table 5. Goodness of fit for soft drink data using asymmetric AHCA

Algorithm r w p Algorithm r w p

ASLmin 0.597 0.913 0.444| ASLmax 0.521 0.881 0.570
ACL min 0.720 0.949 0.580| ACLmax 0.602 0.944 0.732
AWA Lin 0.754 0.976 0.543] AWAL.x | 0.654 0.967 0.737

ACEmin 0.432 0.846 0.266| ACEmax 0.433 0.863 0.405
AMD ;;n | 0.448 0.844 0.361] AMD.x | 0.165 0.846 0.082

AWD i, 0.701 0.786 0.663] AWDmax | 0.652 0.766 0.694
AFX min 0.763 0.928 0.666| AFXmax 0.640 0.906 0.691
AGAmin 0.755 0.976 0.543| AGAax 0.686 0.971 0.723
ATA nin 0.676 0.952 0.367| ATAmax 0.670 0.966 0.743

Note: 5 = —0.25 in AFXmin and AFXpax

Table 6. Goodness of fit for soft drink data using symmetric AHCA

Algorithm r w p
SL 0.455 0.932 0.224
CL 0.541 0.947 0.496
WA 0.555 0.962 0.523
CE 0.095 0.854 0.020
MD 0.103 0.844 0.059
WD 0.507 0.779 0.488
FX 0.542 0.931 0.524
GA 0.556 0.962 0.523
TA 0.532 0.955 0.513

Note: 3 = —0.25in FX

5. Concluding Remarks

For asymmetric AHCA, this paper developed new updating tdas
AUF ((5) and (6)), which are more general than EUF ((3) and. (4)king
the new formulas, we presented the general framework of astric AHCA,
giving nine algorithms explicitly (Table 1). Changing fuien W and/or pa-
rameters, we can incorporate many algorithms. For evaluaif clustering
results of asymmetric AHCA, we suggested fit indices in tering @ andp.
For demonstration of our study, we presented numerical plesrwith real
data using nine algorithms and evaluated them. As far as wea@icerned
with the soft drinks data, we observe that AGA gives the bestlt. It is not
the goal of this paper to claim precedence of performancemisalgorithms
over the others. Hence, to make such a claim, one would neiegdstigate
numerical study in more detail. There might be choices foratipd formulas
of asymmetric AHCA, functions ofi/, and definitions for measuring goodness
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of fit, which should be different from those suggested in tl#pgr. It remains
to perform a comprehensive study under possible choicdseai.t

Appendix

In Table 1, we have specified parameters for an algorithm, lwisicle-
veloped from the total average algorithm (TA) for the caseyshmetric data.
Here let us describe the derivation of those parameters. gkiviie review the
definition of symmetric TA, and show the updating formula. Therformulate
asymmetric TA and present its updating formula.

To describe symmetric TA, consider a merger of clustégsand Cy,.
Then the total average, which is called average linkage \ighnew group in
Anderberg’s formulation, is defined by

n
dPQ — Z Z zg/< PQ) (34)
1<J (’L,]ECPQ

On the basis of this definition, we like to derive an updatingrfola for
the total average algorithm. Denote the sum of dissimiégrivithin C by s
and that betweet@'p andCg by tpg, such as

SG:Z Z dij and tpg = Z Z dz] (35)

i<j (i,jeCe) i€Cp jECq

Using these definitions, we derive the updating formula forgimg C; ;
andCk as follows.

n
d(IJ)K: S(IJ)K/( I2JK> (36)
n
= (SIJ + Sk + t(IJ)K)/( 12”()

n
= (SI+SJ+tIJ+8K +t1K+tJK)/( 12JK>

n
- (SI + S +tIK + Ss + Sk +tJK + Sr + Sy +t17)/< IQJK)

(s + 5, +5K)/<n12m)

{5 s (13 e (13 )= mwn} /(75)
- {(0)/ () {(2) /(5 )
+{(n2>/<nK>} _{1 (n K>} (51 + 5, + 52).
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Let us turn to generalize the symmetric TA to an algorithm fymamet-
ric TA. Let Cq be a singleton or a merger 6fp andCy,

Ca=CpUCqg (CpﬁCQZ(ﬁ). (38)
Considering asymmetric case, let
07 (nG = 1)7
0 (ngcz) - A(dpq,dgpr), (ng >1). (39)

Here functionA indicates a kind of average dissimilarities betwégnandCy,.
For two dissimilarities andd’, it is required to satisfy

A(d,d)>0 and A(d,d) = d. (40)

For asymmetriel;;, let

trg=Y_ Y di. (41)

1€Cp jeCq
Using (39) and (41), we define asymmetric TA as follows.

n
dank = (817 + sk + t(IJ)K)/( I;K>7

n
dy(ryy = (517 + sk + tK(IJ))/( IgK)

Referring to the case of symmetuig;, it is noted that (42) coincides with (34)
for whatever choice of functiod.
From the definition of asymmetric TA, we derive AUF as follows.

n
Ak = (SIJ+SK+t(IJ)K)/< IQJK)
Nrsx
— (SIJ+$K+tIK+tJK)/( 9 >
= {31J+81+3K+t11<+SJ—|—$K—|—tJK_(SI+SJ+SK)}/<TLI2,]K)
{(n;x>d,x + (n;K>d11 + (n2IJ>A(dIJ7dJ[) — (51 + s, —|—5K)}
Nrx
43
/(") w

It is found that (43) is an expression of AUF by putting partere as
follows:

(42)
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NOJENCS (n;jx)/<mém>7
- (3)/(%)
50 — 5@ — <”5J) / ”I;K) (44)
A = 42 = 59) — 55,2) — 551) — 5(J2) =W =2 =,
¢ =@ = (g 45,4+ SK)/ ”I;K>

FD(a,y) =z, fO(z,y) =y, ¢V (z,y) = P (x,y) = A(z,y).
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