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Abstract:  Traditional techniques of perceptual mapping hypothesize that stimuli 
are differentiated in a common perceptual space of quantitative attributes. This 
paper enhances traditional perceptual mapping techniques such as 
multidimensional scaling (MDS) which assume only continuously valued 
dimensions by presenting a model and methodology called CLUSCALE for 
capturing stimulus differentiation due to perceptions that are qualitative, in 
addition to quantitative or continuously varying perceptual attributes or 
dimensions.  It provides models and OLS parameter estimation procedures for 
both a two-way and a three-way version of this general model.  Since the two-
way version of the model and method has already been discussed by Chaturvedi 
and Carroll (2000), and a stochastic variant discussed by Navarro and Lee 
(2003), we shall deal in this paper almost entirely with the three-way version of 
this model.  We recommend the use of the three-way approach over the two-way 
approach, since the three-way approach both accounts for and takes advantage of 
the heterogeneity in subjects’ perceptions of stimuli to provide maximal 
information; i.e., it explicitly deals with individual differences among subjects. 
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1. Introduction 
 
One area in which MDS and related areas of “perceptual mapping” 

have been extensively applied is marketing research. Perceptual maps have 
been a very useful tool for marketers in understanding product differ-
entiation (Dickson and Ginter 1987), product positioning and product 
preferences. The general practice has been to construct perceptual maps 
assuming a relatively small set of common perceptual dimensions for all the 
existing as well as potential new products to determine optimal positioning 
for marketing strategies. Product differentiation is defined as a function of 
distances (usually Euclidean) between products in the space of a common set 
of perceptual dimensions.  

Certain popular approaches that attempt to explain product 
differentiation in market research, such as two-way and three-way 
multidimensional scaling (MDS) (Arabie, Carroll and DeSarbo 1987; Carroll 
and Arabie 1997; Carroll and Green 1997; Eliashberg and Manrai 1992; 
Kruskal and Wish 1978; Manrai and Sinha 1989) and factor or components 
analysis – particularly three-way factor analytic models (Harshman and 
Lundy 1984) – typically treat products as bundles of common perceptual 
attributes. These techniques assume that all objects are differentiated via 
only differences in levels of common physical or perceptual attributes that 
are “quantitative” in nature, thereby ignoring the effects of additional 
differentiation that could arise due to “qualitative” – i.e., nominally scaled or 
categorical – perceptual features such as perceptions unique to objects  (e.g., 
country of origin of the manufacturer; or classification of internet access 
services providers as DSL providers vs. broadband service providers, etc.) in 
addition to certain common, quantitative perceptions of reliability, ease-of-
access, cost, etc.  Though Carroll (1976) first introduced Hybrid models and 
Carroll and Winsberg (1995), Chaturvedi and Carroll (1998), and Chaturvedi 
and Carroll (2000) later presented models and methods to capture 
differentiation arising simultaneously from both quantitative dimensions and 
qualitative features, their current models could only deal with one class of 
qualitative features – those that were unique to each brand in the set of 
products being analyzed. It should be noted that Chaturvedi and Carroll 
(2000) in their introductory CLUSCALE talk, had provided the earliest 
empirical illustration of the 2-way CLUSCALE procedure – called 2-way 
HYCLUS then – (ahead of  Navarro and Lee 2003, and standing for “Hybrid 
CLUStering”, a name that was changed because of possible confusion with 
S.C. Johnson’s  Hierarchical Clustering Procedure called HICLUS). 

In this paper, we develop a descriptive perceptual mapping 
methodology based on proximity data (e.g., product or other stimulus 
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similarity or dissimilarity matrices, multiple correlation or covariance 
matrices, or other measures of association) to explain object differentiation 
due not only to quantitative perceptual dimensions, but also to qualitative 
perceptual features associated with select objects within a set. Our model 
also deals with the inherent heterogeneity with respect to the importance 
people place on these quantitative perceptual dimensions and qualitative 
perceptual features. 

Traditional techniques of two-way and three-way multidimensional 
scaling (Carroll and Chang 1970; Kruskal 1964a,b; Torgerson 1958) or 
three-way factor analysis (Harshman and Lundy 1984) that are used in 
constructing perceptual maps in marketing, psychological, or other 
applications, do not readily accommodate product or other stimulus 
differences based on discrete stimulus attributes or features. For example, 
traditional perceptual maps based on a set of dimensions common to all 
political candidates may not represent adequately the feature defining how 
the candidates differ based on their political affiliation (e.g., Democratic vs. 
Republican), even though they may take a similar stand on many political, 
economic and other issues.  In the marketing context, how does one quantify 
the amount of differentiation of American cars from cars made by foreign 
manufacturers, though American cars have similar perceived product 
attribute levels as competing models? In the final analysis, this can only be 
attributed to features that are qualitative in nature (e.g., American vs. 
Foreign), in addition to any differentiation that might arise due to 
quantitative perceptual dimensions.  

This paper suggests that objects can be differentiated not only in a 
common quantitative perceptual space, but also in terms of a set of discrete 
or qualitative perceptual features.  This group of discrete features could be 
potentially overlapping, inducing an overlapping cluster structure on the 
products (see Arabie and Carroll 1980; Carroll and Arabie 1983; Chaturvedi 
and Carroll 1994). Thus, differentiation occurs not only because of 
differences in the common perceptual space, but also because of differences 
in the qualitative perceptual features or (possibly overlapping) classes or 
clusters.  We also posit that the quantitative dimensions and the qualitative, 
possibly overlapping, features or clusters need not be equally important to all 
individuals in differentiating or choosing among objects.  Well-informed 
subjects who have knowledge of the objects or other stimulus attributes or 
experience with the stimuli may use a combination and/or a subset of either 
the quantitative dimensions or the qualitative features in differentiating the 
various stimuli. Thus, some subjects might attach more importance to a 
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particular discrete perceptual feature or quantitative perceptual dimension 
than do others. 

The CLUSCALE (simultaneous CLUstering and multidimensional 
SCAL[E]ing) approach developed in this paper assumes a three-way model 
based on proximity data on objects aimed at estimating not only the common 
quantitative object/stimulus and subject spaces defining a common 
quantitative perceptual structure, but also discrete object clusters or features 
and a discrete subject space (defining subjects’ importance weights for these 
discrete, qualitative features) which together comprise the unique perceptual 
structure. 

The paper is structured as follows:  first, we will briefly introduce the 
CLUSCALE model, and describe its components – the INDSCAL and 
INDCLUS models. Then we will present a description of the CLUSCALE 
model, followed by a description of the estimation procedure – the  
CLUSCALE method. We then present an empirical application of 
CLUSCALE to a data set on cars, and finally, we will provide concluding 
remarks.  

 
2. The Components of CLUSCALE: INDSCAL and INDCLUS 

 
The three-way version of CLUSCALE combines the INDSCAL 

(Carroll and Chang 1970) and INDCLUS (Carroll and Arabie 1983) models 
for three-way multidimensional scaling and overlapping clustering 
respectively, based on scalar product matrices derived from multiple 
proximity matrices. It is actually a special case of a very general class of 
two-way, three way and higher-way models called, generically, 
CANDCLUS (for CANonical Decomposition CLUStering; see Carroll and 
Chaturvedi 1995). CLUSCALE is a model for scalar-products-like data. 
Before we describe CLUSCALE in detail, we will describe briefly the 
INDSCAL and INDCLUS models.  

 
2.1 The INDSCAL Component of the Hybrid Model 

 
INDSCAL determines a common quantitative perceptual space for a 

set of stimuli, given pair-wise proximity (dissimilarity/similarity) data on 
these stimuli from multiple data sources. Heterogeneity is incorporated by 
assuming that each subject (or other source of data) weights each perceptual 
dimension differently. Since the INDSCAL model and method is well 
known to MDS users, we will discuss only the most basic aspects of the 
INDSCAL/SINDSCAL model and method. For more details we refer the 
reader to Carroll and Chang (1970), Carroll (1972), Pruzansky (1975), and 
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Arabie, Carroll and DeSarbo (1987). The INDSCAL model for proximity 
data (similarities or dissimilarities) is of the form: 
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where F is generally a linear function since INDSCAL/SINDSCAL is a 
metric model and method (unless F is explicitly stipulated to be some other 
function based on theoretical or other principles).  In most cases, if the ijk ’s 
are similarities F will be a linear function with negative slope; if 
dissimilarities F will be a positive linear function. It should be noted that the 
INDSCAL model differs from the classical two-way metric MDS model 
associated with Torgerson (1952, 1958) only in the introduction of a 
differential pattern of weights for each of a number (K) of subjects or other 
data sources.  If we drop the k subscripts and the weights kr  it is exactly 
equivalent to that model, so that this classical metric method is, in a sense, a 
special case of INDSCAL.  

s

w

The INDSCAL/SINDSCAL methods fit both the “group stimulus 
space” and “subject/source space directly to estimated scalar products 
derived from the basic proximity data, based on what is called the “scalar 
products form” of the INDSCAL model. The first step in 
INDSCAL/SINDSCAL is to convert the distance form of the model given in 
equation (1) to a  “scalar products form” first by estimating the function F. 
This is accomplished by solving the so-called “additive constant problem” 
after converting similarities into dissimilarities, and, if needed, by reversing 
the scale. After this, further data preprocessing steps are applied to convert 
the estimated distances to estimated scalar products (see Carroll and Chang 
1970) – specifically, to K matrices (the kth of which is an II ×  generally 
symmetric matrix of scalar products between pairs of stimuli I or other 
objects for subject/source k). After this conversion of the data to scalar 
products form, the scalar products ijkb  between stimuli/objects i and j for 
subject/source k, can be shown to be of the form: 
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This scalar products form of the INDSCAL model can be estimated in 
many ways. In the INDSCAL method, this is done by the use of a procedure 
called CANDECOMP, for CANonical DECOMPosition of N-way tables, 
which provides a generalization of singular value decomposition (SVD) to 
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three-way or higher-way data (Carroll and Chang 1970; Carroll and 
Pruzansky 1984). The SINDSCAL procedure (Pruzansky 1975) makes use 
of the symmetric nature of the data and implements an efficient 
CANDECOMP based approach for parameter estimation. 

 
2.2 The INDCLUS Component of the CLUSCALE Model 

 
The INDCLUS model (Carroll and Arabie 1983; Arabie, Carroll, and 

DeSarbo 1987; Chaturvedi and Carroll 1994) also assumes three-way data in 
the form of multiple proximity matrices, but assumes that objects share a 
common set of unknown discrete features, which could be potentially 
overlapping. INDCLUS determines the unknown discrete features, while 
simultaneously accounting for differential weighting of the discrete features 
by each data source. INDCLUS is inherently formulated as a scalar products 
model, but one entailing discrete (0, 1) features rather than continuous 
dimensions, with continuous weights for subjects or other sources of data.  
INDCLUS is a three-way generalization of its two-way predecessor called 
“ADCLUS” (Shepard and Arabie 1979; Arabie and Carroll 1980).  

Since ADCLUS/INDCLUS are models for similarity data – whose 
values are assumed to be non-negative, there is a problem of an additive 
constant that needs to be solved for when fitting these models to derived 
scalar products data.  For illustration, consider the form of the ADCLUS 
model:  

 
  (3) 
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where  is the similarity between stimuli or other objects i and j, 

jtit  are discrete (0, 1) variables indicating that i and/or j are/is  
respectively either a member of the t

ijs
pp and

th cluster (indicated by  p = 1) or not a 
member (p = 0), and where “≅ ” means “equals, except for otherwise 
unspecified error terms”, or, simply, “approximately equals”. The “weights” 

t  are assumed to be non-negative, which means the entire summational 
expression on the right (a weighted sum of features possessed by both i and 
j) must itself necessarily be nonnegative. Since the 

u

II × matrix  is 
a derived scalar products matrix and would contain both positive and 
negative values, a judicious choice of the additive constant c added to all 
elements would enable the predicted scalar products model to take on all real 
values – not just non-negative values.  Note that 

)( ijs=S

c can be viewed either as 
such an additive constant converting interval scale scalar products estimates 
into (nonnegative) ratio scale estimates, or as the weight for a (T+1)st cluster 
comprising the universal set, in which every object is contained. 
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The three-way generalization of ADCLUS/MAPCLUS, called 
“INDCLUS” (Carroll and Arabie 1983), standing for INdividual Differences 
CLUStering, simply allows a distinct profile of cluster/feature weights for 
each subject/source for the T clusters, as well as a different additive constant 

 for each of the K subjects/sources.  Thus, the INDCLUS model can be 
stated as:  
( )kc

 . (4) ∑
=

+≅
t

kjtitktijk cppus
1 

3. CLUSCALE - A Hybrid Model Combining INDSCAL and INDCLUS 
 
The CLUSCALE model is a hybrid model that combines the 

INDSCAL and INDCLUS models in an additive fashion.  Thus, the form of 
the CLUSCALE model, which we write below assuming scalar products 
data is: 

 
  (5) 
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where: 

• R is the number of quantitative perceptual dimensions 
• T is the number of qualitative or discrete features 
• bijk is the derived scalar product of stimuli i and j for subject k,  
• wkr is the non-negative importance weight of the kth subject on the rth    
      quantitative perceptual dimension,  
• xir is the coordinate of the ith stimulus on the rth quantitative  
      perceptual dimension,  
• ukt is a non-negative importance weight of the kth subject for the tth  
      qualitative or discrete feature,  
• pit is the binary variable representing the presence (value of 1) or 

absence (value of 0) of the tth qualitative or discrete feature for the ith 
stimulus.  

• ck is the additive constant for subject k. 
 
The CLUSCALE model can be re-stated in matrix form as:  
 
 

  (6) k k k
′ ′≅ + +B XW X PU P C

 
where: 

• I is the number of stimuli 
• k denotes the kth subject, or other data source (e.g., kth market 

segment), for , where K is the total number of subjects 
or other data sources. 

Kk 2,1=
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• R is the number of quantitative perceptual dimensions 
• T is the number of qualitative/discrete features 
• Bk is an II ×  scalar product-like similarity matrix for subject/source 

k  
• X is an RI ×  “stimuli × quantitative dimensions” matrix defining 

coordinates of the R dimensions of the continuous perceptual space 
• Wk is an RR ×  diagonal matrix of nonnegative importance weights 

for the R quantitative dimensions for the kth subject or other source 
of data  

• P is an TI ×  binary matrix of qualitative discrete features (or cluster 
membership variables) for T (possibly overlapping) clusters 

• Uk is an TT ×  diagonal matrix of nonnegative weights for T clusters 
for the kth subject or other data source 

• Ck is a matrix whose off-diagonal entries all consist of the additive 
constant ck.   

 
3.1 Model Properties 

 
The CLUSCALE model is, in spirit, a model belonging to a general 

family of hybrid models envisioned first by Carroll (1976), that involved 
modeling of continuous and discrete structure in data.  A lot of rich work has 
been done since Carroll’s presidential address to the Psychometric Society in 
1976. More specifically, the CLUSCALE model in Equations (5) and (6) is a 
distance model in both the INDSCAL and INDCLUS components. While 
not obvious, the predicted similarities sijk (Equation 3) between objects i and 
j for individual k corresponding to the INDCLUS component can be 
converted to distances by the linear transformation dijk = C – sijk where C is a 
constant, determined by the expression  C = max (sijk-silk-sljk)  ∀   i, j, l ∈  1, 
… , I; k = 1, …, K. 

In terms of the CLUSCALE model identification, the sub-model 
corresponding to its INDSCAL sub-component solves for the rotational 
indeterminacy inherent in two-way MDS models. The central advantage of 
the model in Equations (5) and (6) above is that the quantitative perceptual 
dimensions corresponding to INDSCAL are not subject to the orthogonal 
rotational indeterminacy inherent in most classical perceptual mapping 
procedures, but have a fixed orientation. The quantitative dimensions of 
CLUSCALE do suffer from the same scale indeterminacy as INDSCAL in 
the object and subject spaces and are subject to scale indeterminacies among 
the quantitative dimension coordinates and the importances that the subjects 
attach to these dimensions.  These are resolved – up to possible reflection of 
coordinate axes – by constraining the sum of squares of the object 
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A three-way methodology based on the CANDCLUS method of 
Carroll and Chaturvedi (1995) is used to fit the CLUSCALE model.  It 

coordinates on each quantitative perceptual dimension to equal one. 
CLUSCALE also entails an indeterminacy enabling permutations of the 
order of both the quantitative dimensions and the qualitative features, 
generally resolved by ordering them based on relative variance accounted for 
(VAF).  There are no other theoretical or empirical indeterminacies that we 
have observed in the CLUSCALE model. 

It should be noted that fitting this hybrid model combining INDSCAL 
and INDCLUS is not equivalent to fitting the INDSCAL and INDCLUS 
models separately to these data and then simply defining an additive 
combination of the two resulting models.  In general, the combined hybrid 
model can be expected to require fewer total components (the R dimensions 
plus the T discrete features) than the sum of those for these separate 
solutions.  This will occur because the continuous dimensions and discrete 
features in those two separate solutions will generally tend to be somewhat 
correlated.  Often this correlation is of a quite simple nature – a quantitative 
dimension in one solution may correlate strongly with a qualitative feature in 
the other – but equally often it may be much more complex, involving 
correlations between complex linear (or even nonlinear) combinations of 
dimensions and features in the two.  

One may ask the question:  Why are discrete features necessary at all? 
Why could we not just replace all discrete features with continuous 
dimensions, even if they might be a bit more “noisy”? The best answer to 
this question is as follows: if there is indeed a truly discrete feature or 
property (e.g., male-female, domestic-foreign, electronic-mechanical, 
power-manual, animal, vegetable or mineral, etc.),  its most effective and 
parsimonious representation can only be through a discrete feature or 
property than by a continuous dimensional one. We believe that the number 
of degrees of freedom for a discrete feature is less than that for a continuous 
spatial dimension.  Another way to look at this is that it is more appropriate 
and mathematically more efficient, effective and meaningful to represent a 
truly discrete feature, property or cluster structure discretely rather than 
continuously.  We believe that, in time, theoretically justifiable measures 
will be devised to reliably establish when and under what conditions a 
discrete representation is, in fact, more parsimonious and meaningful then a 
more continuous/spatial dimensional one.  For the moment, though, we must 
leave this as a yet unsolved theoretical/statistical problem. 

 
4. The CLUSCALE Method: Estimation Procedure 
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should be noted that the CANDCLUS method combines the CANDECOMP 
method of Carroll and Chang (1970), with a methodological principle based 
on a row-wise separability property (Chaturvedi and Carroll 1994) of Lp-
norm based loss functions for the CANDECOMP family of models, and 
develops a generalized procedure to estimate not just quantitative 
dimensions and weights, but also discrete factors and weights for any of the 
N ways based on any  Lp-norm based loss function.  

Specifically, in equation (6) above, matrices X, W, P, U, and C are all 
unknown. Only the data matrices Bk are known. Determining the OLS 
parameter combines continuous optimization with a discrete, non-linear, 
integer programming problem. We alternate between estimating the R 
quantitative perceptual dimensions in the R-Step and the T qualitative 
discrete features (possibly overlapping) in the T-step, until convergence 
occurs to at least a locally optimal solution.  By starting from a number of 
“rational” and/or random starting configurations, as is routine in MDS and 
related work, we aim to find the best solution for a particular combination of 
values of R and T, and generally do. If the same solution is found several 
times from different starts, we can assume without serious doubt that the 
solution is the best possible (i.e., the globally optimal) solution. 

 
4.1 R-Step: Estimating the Parameters of the R Quantitative Perceptual 

Dimensions 
 
The parameters associated with the R quantitative dimensions (first 

part of equations 5 and 6 involving matrices X and W) are estimated by 
iterating  between estimating the object/stimulus space (matrix X) and 
subject space (Wk’s) in an alternating least squares fashion, using the 
following equation: 

  
 ˆˆ ˆ ˆ ˆ ˆ ˆ error

k k k k
PU= − = +−

k
B B P'  C  XW X'  (7) 

  
As stated earlier in this paper, this methodology is too well 

documented to be described here again in detail.   
 

4.2 T-Step: Estimating the Parameters of the T Qualitative or Discrete 
Features 

 
The parameters associated with the T discrete (possibly overlapping) 

features are estimated using the “one-cluster-at-a-time” SINDCLUS 
methodology of Chaturvedi and Carroll (1994), which we will describe in 
greater detail here, since it is less well known than the CANDECOMP 
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method.  Assuming that the parameters for the quantitative, perceptual space 
(X, W ) are known, at least conditionally, we reformulate (6) as: k  
 ˆ ˆ ˆ ' er

k k k k k
= − = + +B B XW X' PU Q C ror  (8) 

 
Note that this is a relaxation of (6), since the CLUSCALE model 

assumes P=Q. We do not impose this constraint in the estimation procedure. 
We typically find that for symmetric data, the iterative procedure converges 
to P=Q at the locally optimal solutions. Ten Berge and Kiers (2005) provide 
details on an estimation procedure that does impose the constraint of P=Q. 
The estimation problem is to determine the ordinary least squares estimates 
of binary P and Q, diagonal but continuous Uk, and the matrix Ck whose off-
diagonal elements are ck. This is a 0-1 non-linear integer programming 
problem.  Assuming random starts for Q, Uk, and Ck , we use the following 
four-steps in an iterative fashion until the algorithm converges to at least a 
locally optimal solution. 

 
Step T1. Estimate P, given current Uk, current Q, and current Ck 
Step T2. Estimate Q, given P from step T1, current UK, and current Ck

Step T3. Estimate Uk, given P from step T1, Q from step T2, and 
current Ck

Step T4. Estimate Ck, given P from step T1, Uk, from step T2, and Q 
from step T3 

 
We repeat steps T1 through T4 until convergence to at least a locally 

optimal solution occurs. Upon convergence, estimated P and Q matrices are 
usually equal for symmetric data. 

 
Step T1: Estimate P, given current Uk, current Q, and current Ck 

Let  
–   G be an I x KI matrix ]B|...|B|B|B[ k321  
–   ut be a vector of weights for the tth cluster (or feature) 
–   pt be an I x 1 binary vector representing the tth column of Matrix P 
–   qt be an I x 1 binary vector representing the tth column of Matrix Q 
–   D be a (T+1) x KI matrix (including the universal cluster), where the  
     tth  row  of  D  is  dt where dt  = ut ⊗ qt (where ⊗ denotes the Kron- 
     ecker product) 
–   P be an I x (T+1) binary matrix of stimuli x clusters 
–   P-t  is matrix P with the tth column dropped
–   D-t is matrix D with the tth row dropped 
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Assuming parameters for all clusters except the tth cluster are known, and 
assuming dt is known the estimation problem becomes estimating pt in  

t t t t E rror− −
′− = +G P D p d

or equivalently, estimating pt in 

t t t Error′= +*G p d
where . t t

∗
− −≡ −G G P D t

 
This is done by using the Elementary Binary Least Squares procedures 
(EBLSP) described in Chaturvedi and Carroll (1994).  This procedure is then 
repeated for t = 1, …, T.  

 
Step T2. Estimate Q, given P from step T1, current Uk, and current Ck 

Let  
– H be an I × KI matrix ]B|...|B|B|B[  k321
– ut be a K × 1 vector of weights for the tth cluster 
– pt be an I × 1 binary vector representing the tth column of Matrix P 
– qt be an I × 1 binary vector representing the tth column of Matrix Q 
– E be a (T+1) × KI matrix (including the universal cluster), where the 

tth row of E is et where et = ut ⊗ pt . 
–    Q be an I × (T+1) binary matrix of stimuli × clusters 
–    Q-t  is matrix Q with the tth column dropped
– E-t is matrix E with the tth row dropped 

 
Assuming parameters for all clusters except the tth cluster are known, and 
assum ng et is known the estimation problem becomes estimating qt in  i

 
Errort t t t− −

′− = +H Q E q
 

e

∗ ′= +H q e

t

 

o
 

r equivalently, estimating qt in 

Errort t  t 
where  . t t

∗
− −≡ −H H Q E

 
This is also done by using the EBLSP procedure. This procedure is 

then repeated for . Tt ,2,1=
 

Step T3. Estimate Uk, given P from step T1, Q from step T2, and current Ck 

Let  
– J be a K x I2 matrix that contains the I2 elements of Matrices kB  in 

the kth row 
– ut be a K x 1 vector of weights for the tth cluster 



CLUSCALE 281 

– pt be an I x 1 binary vector representing the tth column of Matrix P 
– qt be an I x 1 binary vector representing the tth column of Matrix Q 
– F be a (T+1) × I2 matrix (including the universal cluster), where the 

tth row of F is row vector f't where ft = pt ⊗ qt . 
– U be a K × (T+1) binary matrix of stimuli × clusters 
– ft = pt ⊗ qt  
–    U-t  is matrix U with the tth column dropped
– F-t is matrix F with the tth row dropped 

 
Assuming parameters for all clusters except the tth cluster are known, and 
assuming ft is known the estimation problem becomes estimating ut in 

t t t t Error− −
′− = +J U F u f

or equivalently, estimating ut in 
 

Error +′=∗
ttt fuJ  

where . ttt −−
∗ −≡ FUJJ

 
We use a closed form expression to find the OLS estimates of these 

continuous parameters.  It should be noted, too, that non-negativity 
constraints can easily be imposed on the elements of the vector ut by simply 
“zeroing out” any values whose estimates have negative values in this “one 
component   at   a   time”   approach.   This  procedure  is  then  repeated  for 
t = 1, …, T. 

 
Step T4. Estimate Ck, given P from step T1, Uk, from step T2, and Q from step 
T3 

This step is analogous to step T3, with both pt and qt known. A closed 
form solution yields the OLS solution in this case also.  

It should be noted that for data based on a single proximity matrix 
(K=1), the CLUSCALE algorithm described above gets modified slightly.  
The R-step of the CLUSCALE algorithm uses the singular value 
decomposition (SVD) for estimating the parameters associated with the 
quantitative perceptual dimensions rather than the CANDECOMP 
methodology presented in Carroll and Chang (1970) for reasons detailed in 
that 1970 paper.  The T-step of the CLUSCALE algorithm remains the same 
as when there are multiple data sources (K >1 subjects or other data sources).  
This slightly modified algorithm is called the two-way CLUSCALE method 
throughout the remainder of this paper. It is important to note, however, that 
while, in the case of three-way data, because of the well established 
“dimensional uniqueness” property of INDSCAL, the dimensions in the 
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spatial component of CLUSCALE are uniquely identified,  in the two-way 
case the spatial component is subject to the same rotational indeterminacy 
that is characteristic of other two-way MDS methods based on the Euclidean 
metric.  

5. Partitioning Variance 
 
One issue that arises is of apportioning the total VAF in the 

CLUSCALE model into a contribution of the continuous, spatial structure 
and that of the discrete, cluster-like structure.  This is a difficult question, 
closely related to that of attributing variance to correlated independent 
variables in a multiple regression context.  In fact, we would argue that the 
latter is a general question of which the former is a special case. 

Let us just consider the regression case. As mentioned above, the 
problem of uniquely associating VAF to individual independent variables is 
one that has no unique solution, although many possible solutions have been 
discussed in the statistical literature.  A general discussion of this problem is 
provided by Green, Carroll and DeSarbo (1978), while a particularly elegant 
symmetrical solution (independent of order in which the variables are 
entered into the regression equation, and having the property that the 
individual variable VAF’s sum to the total VAF) is offered, which results in 
a measure of predictor variable importance called “delta squared”. 

As has been discussed by Carroll and Chang (1970), Carroll and 
Chaturvedi (1995) and earlier in the current paper, once the continuous 
dimensions and/or the discrete feature vectors have been discussed, (whether 
one is dealing with the INDSCAL, INDCLUS or hybrid CLUSCALE 
model) the subject weights are estimated by a special case of multiple linear 
regression. The independent variables in this formal regression problem are 
what are sometimes called “columnwise Kronecker products” of the 
dimension and/or feature vectors (the former only in the case of INDSCAL, 
the latter for INDCLUS, and the two combined for CLUSCALE). 

Specifically, using the delta squared measure for each dimension 
and/or feature, one has a consistent means of attributing variance for each 
individual subject uniquely to a) dimensions in an INDSCAL solution, b) 
features or clusters in a CLUSCALE solution or c) dimensions and features 
in a CLUSCALE solution.  Note that the measures are defined separately for 
each subject, since it is that subject’s weights for dimensions and/or clusters 
that are calculated via regression.  Thus, if an overall partition of VAF for 
dimensions and/or features, the delta squared for each for each subject must 
be summed over subjects, separately for each dimension and/or feature, to 
derive a partition of total VAF in the overall model being fit. 
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Two-way CLUSCALE was first applied to an average proximity 
matrix derived from the 24 proximity matrices corresponding to the 24 
consumers. After a large number of CLUSCALE runs (ranging from 
1through 5 quantitative dimensions and 1 through 5 discrete perceptual 
features), we chose a solution with R=2 quantitative perceptual dimensions 
and T=2 qualitative perceptual features, accounting for 82% of the variance 
in the averaged data, based on the criteria of  (a) a “scree-test”; and (b) 
interpretability of the solution.  Since, the focus of this paper is entirely on 
the three-way CLUSCALE model and methods, we do not describe the two-
way CLUSCALE solution in detail.  We will only remark that, as would be 
expected in the two-way case, an orthogonal rotation of the quantitative two-
way MDS component of the two-way CANDCLUS model provided a 
solution essentially identical to the dimensions in the “group stimulus space” 

Given the additive property of the delta squared measure, the 
CLUSCALE solution VAF can be partitioned into separate additive VAFs 
for the continuous dimensions and the discrete features. This can be 
accomplished by summing the total delta squared measure of VAF for each 
dimension over the R dimensions to get a total VAF for the continuous 
structure in the model fit while, analogously, summing these measures over 
the T features to define a VAF for the discrete structure. The additive 
property of delta squared guarantees that these two separate VAF 
components will add to the total VAF for the overall CLUSCALE model 
that has been fit! This provides a very general and unique basis for 
partitioning variance between the quantitative dimensions and the qualitative 
features. This will be discussed later in the paper. 

 
6. Application to Car Data 

 
Chaturvedi (1993) provides pair-wise dissimilarity data collected from 

24 MBA students at a university on the east coast of USA.  Sixteen cars 
were chosen for the study.  The sixteen cars used in the study were: Alpha 
Romeo 164L, BMW 325I, Buick Riviera, Ferrari 348TB, Ford Mustang, 
Honda Accord, Honda Prelude, Hyundai Sonata, Lincoln Town Car, 
Mercedes Benz 190E, Plymouth Sundance, Pontiac Firebird, Rolls Royce, 
Toyota Celica, Toyota Lexus SC 400, and Volkswagen Golf.  The order of 
presentation of the 120 pairs of cars was randomized across the 24 
subjects/consumers in order to eliminate order effects. 

 
6.1 Application of Two-Way CLUSCALE to the “Average” Proximity 

Matrix from 24 Consumers 
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of the three-way CLUSCALE solution, to be discussed below. The 
qualitative discrete feature representation in the two-way analysis did not 
correspond very well, however, with that in the three-way CLUSCALE 
solution – primarily because, we believe, of the greater number of such 
features extracted in the three-way analysis (T=3).  We believe the reason for 
this difference in number of features in the two- and three-way CLUSCALE 
analyses was probably the fact that the greater richness of the data analyzed 
in the three-way case (and of the model being fitted) enabled reliable fitting 
of more such discrete features/properties.  Those fitted in the two-way case 
(only two, T=2 in this case) may have been some form of composite of the 
three such features fitted for the three-way model. 

 
6.2 Application of Three-Way CLUSCALE to the 24 Proximity Matrices 

 
Three-way CLUSCALE was then applied to the 24 proximity matrices 

corresponding to the 24 consumers. As with the application of two-way 
CLUSCALE, we obtained a variety of CLUSCALE solutions ranging from 1 
through 5 quantitative perceptual dimensions, and 1 through 5 qualitative 
perceptual features. Table 1 presents the VAF (Variance-Accounted-For) for 
these solutions. We found a solution with R=2 quantitative perceptual 
dimensions and T=3 qualitative perceptual features, accounting for 72.1% of 
the variance in the data, to be most interpretable.  The other solutions had 
only parts of the solutions interpretable (either some or all of the quantitative 
dimensions or qualitative features).  

Figure 1 presents the two quantitative perceptual dimensions extracted 
using three-way CLUSCALE. Since the orientation of the brands with 
respect to the axes is fixed (no rotational indeterminacy in the solution), a 
good interpretation of the axes would provide “face validity” to the 
quantitative dimensions of the CLUSCALE solution.  In this case, the two 
dimensions were interpreted as the “Price” dimension, and a bi-polar 
“Luxuriousness-Sportiness” dimension. The price dimension clearly rank 
orders the “Super-luxury” cars such as Rolls-Royce and Ferrari from the 
“Luxury-cars” such as Mercedes Benz, BMW, Alpha Romeo, Lincoln Town 
Car, and Toyota Lexus, followed by the only full-sized car in the set – Buick 
Riviera. The mid-sized cars Pontiac Firebird, Honda Accord, Honda Prelude, 
Toyota Celica, and Ford Mustang follow next. Hyundai Sonata, Plymouth 
Sundance, and Volkswagen Golf, the small sized, low cost cars, come at the 
end. The bipolar Luxuriousness-Sportiness dimension clearly separates the 
pure sports or sporty cars such as Ferrari, Ford Mustang, Pontiac Firebird, 
Alpha Romeo, etc. from the big, luxurious sedans such as Lincoln Town 
Car, Buick Riviera, etc. from the non- sporty, non-luxury cars such as Honda 
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Table 1:  CLUSCALE, INDSCAL, and INDCLUS  Solutions: Variance Explained (VAF) for 
different numbers of dimensions and features 

 
 Number of Clusters 
 0 1 2 3 4 5 
# Dimensions       

0  19.9 24.2 32.3 37.4 40.0 
1 37.8 62.5 64.6 66.8 68.1 69.9 
2 45.4 69.0 70.7 72.1 72.5 72.9 
3 52.1 72.9 73.7 74.0 74.5 75.0 
4 57.2 74.9 75.3 75.6 75.8 76.3 
5 60.3 76.5 76.9 77.1 77.2 77.5 
 
 

 
                               Figure 1. Three-Way CLUSCALE: 2 Dim. Solution 
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Table 2: CLUSCALE:  Discrete Features 
Three-Way Solution:  3 Overlapping Discrete Features 

Very Expensive 
and Very cheap 

cars
American Cars

Popular Continental 
European and Japanese 

Cars

Alpha Romeo 0 0 1
BMW 0 0 1
Buick Riviera 0 1 0
Ferrari 1 0 0
Ford Mustang 0 1 0
Honda Accord 0 0 1
Honda Prelude 0 0 1
Hyndai Sonata 1 0 0
Lincoln Town Car 0 1 0
Mercedes Benz 0 0 1
Plymouth Sundance 1 1 0
Pontiac Firebird 0 1 0
Rolls Royce 1 0 0
Toyota Celica 0 0 1
Toyota Lexus 0 0 1
Volkswagen Golf 1 0 1

 
 
Accord, Hyundai Sonata, Plymouth Sundance, and Volkswagen Golf, which 
are placed near the origin of this axis. 

Table 2 presents the solution for the three discrete perceptual features 
extracted from the cars data. Two of the discrete features are clearly 
interpreted as an “American cars” feature, and a “Popular Continental 
European and Japanese cars” feature.  The “American cars” feature includes 
all American cars in the set of cars presented to the subjects, and only the 
American cars (Buick Riviera, Ford Mustang, Lincoln Town Car, Plymouth 
Sundance, and Pontiac Firebird). The “popularly or affordably priced 
Continental European and Japanese cars” feature includes all European cars 
(except Ferrari), and all Japanese cars. We modify “European” by 
“continental”, as opposed to British or Irish, to exclude Rolls Royce, which 
is a British car, and so not a “Continental European” car.  Rolls Royce could 
also conceivably be excluded from this cluster/feature for similar reasons as 
those given below for Ferrari not being included in this cluster.  
Alternatively, we could drop the modifier “Continental” and argue that Rolls 
Royce is excluded not because it’s not a Continental car, but because it’s not 
affordably priced. In order to test this alternative hypothesis, we’d need to 
include some inexpensive British or Irish cars in the choice set. We use the 
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phrase “popular or affordably priced” in the feature above to mean cars that 
have wide ownership in the car market.  Ferrari, by virtue of its high price 
and niche positioning in the car market, has a narrow ownership (low market 
penetration), and is relatively “less popular” in that sense.  Hence, when we 
say that Ferrari is not a popular car, it simply means that not too many 
people might have the wherewithal to buy this car, and hence, might never 
consider buying it, so that this car may not be “popular” among these con- 
sumers.  The third feature that we derived, we termed “very expensive and 
very cheap cars.” This feature was very stable since it showed up across 
multiple solutions, as we varied the values of R (the number of continuous 
perceptual dimensions) and T (the number of discrete perceptual features).  
This feature includes the two super luxury cars – Ferrari and Rolls Royce, 
and the three small sized/economy cars – Hyundai Sonata, Plymouth 
Sundance, and Volkswagen Golf. It could also be characterized as the 
complement of a feature called “moderately priced cars,” or as “not in 
choice consideration set” because the cars are either too extremely high 
priced to be affordable, or too low priced to offer good “perceived quality.”  
It could also mean, for a similar reason, that this feature includes cars with 
which these particular consumers tested had a low degree of familiarity 
because these are cars they “will not consider buying at all.”  

Table 3 presents the importance weights of the 24 consumers for the 
two normalized quantitative perceptual dimensions, the three normalized 
qualitative perceptual features, and the additive constant (representing a 
weight for a normalized qualitative perceptual feature corresponding to the 
universal set with all the brands in it).1  This table captures the heterogeneity 
that exists in the marketplace. Consumer 3, for example, differentiates cars 
based primarily on price (weight of 0.32), and the qualitative perceptual 
features: “American cars” (weight of 0.25), and “Popular European and 
Japanese cars” (weight of 0.14).  Consumer 8, on the contrary, has relatively 
higher weights across all five perceptual dimensions and features, 
representing a pretty well informed and discriminating consumer. Consumer 
15 is more like Consumer 3, using the price dimension and the “American 
Car” feature primarily for differentiation of cars.  
 _________ _ 
1. All important weights have been rescaled for unit length quantitative dimensions and 
qualitative features. All the quantitative dimensions and qualitative features have been 
normalized to unit length.  This was accomplished by dividing each quantitative dimension 
and qualitative feature vector by the square root of the sum of squares of the stimulus 
coordinates, whether these are continuous values (for the quantitative dimensions) or (0,1) 
binary indicator variables encoding cluster membership/feature possession in the case of 
discrete features. 
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Table 3:  Three-Way CLUSCALE: Consumer Importances for the 2 Dimensions and 3 
discrete clusters + Constant 

Consumer
Bipolar 

Luxuriousness/ 
Sportiness

Price
Very Expensive 
and Very Cheap 

Cars

American 
Cars

Popular 
European and 
Japanese Cars

Constant

1 0.16 0.05 0.03 0.07 0.07 -0.10
2 0.12 0.07 0.03 0.02 0.01 -0.06
3 0.10 0.32 0.08 0.25 0.14 -0.19
4 0.06 0.38 0.09 0.07 0.08 -0.10
5 0.07 0.40 0.06 0.05 0.04 -0.07
6 0.27 0.28 0.05 0.13 0.12 -0.13
7 0.28 0.19 0.01 0.04 0.05 -0.05
8 0.29 0.38 0.18 0.23 0.24 -0.26
9 0.14 0.23 0.03 0.03 0.05 -0.05
10 0.22 0.25 0.10 0.06 0.10 -0.13
11 0.19 0.38 0.05 0.06 0.04 -0.06
12 0.13 0.41 0.06 0.04 0.04 -0.06
13 0.10 0.31 0.04 0.05 0.05 -0.07
14 0.17 0.18 0.04 0.02 0.02 -0.10
15 0.12 0.32 0.05 0.15 0.10 -0.14
16 0.10 0.35 0.04 0.06 0.02 -0.05
17 0.21 0.29 0.00 0.13 0.07 -0.08
18 0.08 0.40 0.06 0.08 0.08 -0.10
19 0.15 0.11 0.03 0.09 0.13 -0.12
20 0.21 0.44 0.12 0.16 0.17 -0.18
21 0.13 0.35 0.02 0.03 0.02 -0.05
22 0.22 0.29 0.04 0.06 0.07 -0.09
23 0.26 0.25 0.13 0.10 0.15 -0.18
24 0.25 0.30 0.13 0.08 0.07 -0.11

Dimensions Discrete Features

 
 

In Table 4, we present the additive decomposition of the VAF from 
the CLUSCALE model to VAFs attributable to the quantitative dimensions 
and the qualitative features. We use the approach discussed earlier for 
partitioning VAF based on summing VAF for the continuous spatial and 
discrete feature-like structure. This, as argued earlier, results in a unique 
partitioning of the total VAF. Table 4 reveals the VAF decomposition across 
all 24 subjects, and across the order of entry of the individual components in 
the decomposition (the quantitative dimensions and the qualitative features). 
It can be seen that the order of entry of the two components does not change 
the VAF drastically. As a final step in partitioning VAF, we average the two 
sets of VAFs (entering first and entering second) for each of the two 
components of the CLUSCALE solution to arrive at the additively 
decomposed VAFs components for each subject and overall. 
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6.3 Analysis of the Car Data Via the INDCLUS Model (Using 
SINDCLUS Program) and the Extended INDSCAL (or EXSCAL) 
Model, Using the METric EXSCAL (or METEXSCAL) Program 

 
We also analyzed these data separately via the INDSCAL and 

INDCLUS models, in order to compare the results and make a more 
convincing case for the use of the hybrid CLUSCALE model combining 
both the continuous dimensions characteristic of INDSCAL and the discrete 
features or clusters characteristic of INDCLUS. 

We applied a generalization of INDSCAL called EXSCAL (Carroll 
and Winsberg 1995), which stands for Extended INDSCAL, and assumes 
“specific” as well as “common” dimensions underlying the stimuli (which is, 
in some sense analogous to the discrete features assumed in the INDCLUS 
model). The version of EXSCAL we used is a metric one called 
METEXSCAL (Chaturvedi 1993; Chaturvedi and Carroll 1998) rather than 
the “quasi-nonmetric” approach proposed by Carroll and Winsberg (1995) 
because we feel this method is more directly comparable to the CLUSCALE 
model, since CLUSCALE is also a metric approach. The METEXSCAL 
model is also more general than EXSCAL, since it allows completely unique 
“specificities” for each combination of a subject and a stimulus, whereas 
EXSCAL constrains the specificities to be a product of a general specificity 
for the stimulus multiplied by a weight (analogous to an INDSCAL subject 
weight) for the particular individual subject. For these reasons we feel 
METEXSCAL is more appropriate for this comparative analysis than 
EXSCAL, or than the INDSCAL model without specificities. Also, other 
analyses have demonstrated that the INDSCAL analysis results in stimulus 
dimensions and subject weights for these dimensions that are very similar to 
those in the METEXSCAL analysis. 

As for the INDCLUS analysis, we used a method called SINDCLUS 
devised by Chaturvedi and Carroll (1994) which uses a somewhat different 
algorithm than Carroll and Arabie (1983) used to fit this model. The 
SINDCLUS algorithm is much faster and more efficient than the earlier 
INDCLUS approach, and has been shown essentially always to produce the 
same or better solutions for a given set of data, especially for larger data sets. 

 
7. The METEXSCAL Analysis 

 
The METEXSCAL analysis reported here was first reported by 

Chaturvedi (1993) in his dissertation, and later also described by Chaturvedi 
and Carroll (1998). After attempting the analysis in dimensionalities ranging 
from 1 to 5, the decision was made, based on both VAF as a function of 
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dimensionality and on interpretability of the solutions, that the most 
appropriate dimensionality was four. The four common dimensions were 
interpreted as “Luxuriousness” (Dimension 1), “Sportiness” (Dimension 2), 
“Fuel Economy” (Dimension 3) and “Acceleration” (Dimension 4). 

The basis for this interpretation of the dimensions, as well as the 
justification for choosing the four-dimensional structure, is provided by 
Chaturvedi (1993) and by Chaturvedi and Carroll (1998), and will not be 
repeated here. The two dimensional plots of each of dimensions 2, 3 and 4 
plotted against dimension 1 are given in Figures 2, 3, and 4 respectively.  
The importance weights (or saliences) of these dimensions for each of the 24 
subjects are provided in Table 5. 

This four dimensional METEXSCAL solution accounted for 68.7% of 
the variance in the derived scalar products, but this required a total of (n-2) 
R + mR + mn = 536 parameters (for n=16 stimuli [cars], m = 24 subjects and 
R = 4 dimensions). Chaturvedi (1993) also fit an ordinary INDSCAL model 
(with no specificities) to these data, which accounted for 57.2% of the 
variance (with a total of 152 parameters for the four common dimensions 
and their subject importance weights).  A pseudo – F test to compare the 
METEXSCAL model to the INDSCAL model (both in four dimensions) 
indicated that, despite the large number of additional parameters, 
METEXSCAL actually fit these data statistically significantly better than 
INDSCAL (as indicated by a p value associated with the pseudo – F statistic 
of p < 0.001, which, even though this statistic cannot be assumed to be 
distributed precisely as F with the appropriate degrees of freedom, 
nevertheless suggests strongly that METEXSCAL fits significantly better 
than INDSCAL). A similar pseudo – F test was also used to ascertain that 
the four dimensional METEXSCAL model fit significantly better than the 
three-dimensional model did.  In contrast to these two versions of the 
INDSCAL model, with and without specificities, the CLUSCALE solution 
accounted for 72.1% of the variance with two quantitative (spatial, or 
INDSCAL-like) dimensions and three qualitative (or discrete, INDCLUS-
like) features. The number of parameters fit by this (R = 2 and T = 3) 
CLUSCALE solution was R(m + n –2) +Tn + (T + 1)m = 220 (using a very 
conservative formula that assumes that one binary parameter equals one 
continuous one, which in fact, is highly unlikely). Summarizing these 
comparative results we have the four dimensional METEXSCAL model 
accounting for 68.7% of the variance with 536 parameters, INDSCAL (also 
in four dimensions) accounting for 57.2% of the variance with 152 
parameters, while three-way CLUSCALE (with two continuous dimensions 
and  three  discrete  features)  accounts  for  72.1%  of  the variance with 220 
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Figure 2. METEXSCAL Solution: Dimension 1 vs. 2 for cars 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. METEXSCAL Solution: Dimension 1 vs. 3 for cars 
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Figure 4. METEXSCAL Solution: Dimension 1 vs. 4 for cars 
 
 
parameters (a conservative upper bound, we would argue). Since 
METEXSCAL fit the data significantly better than INDSCAL, it would 
appear that the only relevant statistical comparison of these results should be 
between the METEXSCAL and three-way CLUSCALE model. Since the 
CLUSCALE model accounts for over 3.4% more variance than does the 
METEXSCAL model, with only about 40% of the number of parameters, we 
don’t even have to attempt a statistical test, since it is clear that the 
CLUSCALE model (with R=2 and T=3) does fit these data quite signifi-
cantly better than does the METEXSCAL (or the ordinary INDSCAL) 
model with R=4 dimensions. 

  

One question that remains to be answered : What about ignoring the 
interpretable structure present in dimensions 3 and 4 and the specificities of 
the METEXSCAL solution if we select the CLUSCALE solution over the 
METEXSCAL solution?  There are two explanations. The first explanation 
lies in looking at the degree of superior fit achieved by the CLUSCALE 
solution compared to the METEXSCAL solution. Since the CLUSCALE 
solution out-performs the METEXSCAL solution comprehensively on 
statistical grounds, we have to choose the better-fitting (more parsimonious) 
and interpretable solution of CLUSCALE over the not-as-well fitting but 
interpretable solution of METEXSCAL. The second explanation for 
preferring  the  CLUSCALE  solution  is  that  it reveals structure (American 
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Table 5. Importance Weights in Metexscal Common Space for Cars 

 
cars vs. foreign cars) that has been shown to be extremely important in 
people’s choice of cars (O’Boyle 1996),  and that can more reasonably be 
expected be more salient in determining people’s similarity judgments than 
dimensions 3 and 4 of METEXSCAL. However, METEXSCAL does 
provide certain interpretations that might not be captured by CLUSCALE 
such as the relatively salient weights for subjects 2 and 19 for Fuel 
Economy, and for Subject 24 for Acceleration (Table 5). Moreover, 
METEXSCAL clearly separates Luxuriousness and Sportiness, which might 
be advantageous sometimes. 

 
8. The INDCLUS Analysis 

 
The SINDCLUS method (Chaturvedi and Carroll, 1994) of fitting the 

INDCLUS (Carroll and Arabie, 1983) model was then applied to the 24 
proximity matrices corresponding to the 24 subjects.  We obtained a variety 
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of INDCLUS solutions ranging from two through eight clusters. Table 1 
presents the variance accounted for as the number of extracted clusters was 
varied from one through five.  We found only the two-cluster solution to be 
interpretable. The solutions with three to eight clusters/features all yielded 
two clusters which had the same interpretations as those in the two-cluster 
solution, but the remaining clusters in these solutions were not interpretable 
at all. The details of the two cluster INDCLUS solution are presented in 
Table 6.  

The two-cluster solution was a partitioning solution, separating the 
Luxury cars (Alpha Romeo, BMW, Ferrari, Lincoln Town Car, Mercedes 
Benz and Toyota Lexus) from the Non-Luxury cars (Ford Mustang, Honda 
Accord, Honda Prelude, Toyota Celica, Pontiac Firebird, Plymouth 
Sundance, and Volkswagen Golf).  Buick Riviera was the only car that was 
not a part of either cluster.  
          In order to minimize the chance of merely locally optimal SINDCLUS 
solutions, we tried up to 300 random starts for each solution.  Clearly, the 
INDCLUS model was failing to capture all the discrete structure present in 
the data. Since this two-feature INDCLUS solution accounts for only 24.2% 
of the variance, this is clearly not, by itself, providing a satisfactory account 
of these data.  Although, as mentioned above, the third, as well as all the 
other “higher order” features were not at all interpretable, we can 
nevertheless consider what the VAF was for these solutions.  This measure 
of fit (VAF) was only 32.3% for the three feature solution, and even with as 
many as eight (8) features only reached a value of 45.5%.  So, if we follow 
the often stated “upper bound” that the number of clusters in an overlapping 
clustering model should be about half the number of objects, we still find 
that, at best, we account for less than half the variance (45.5%), with a 
number of parameters (counted in the same conservative manner as 
described earlier) equal to nT + m (T + 1) = (16) (8) + 24 (9) = 344! 

Based on the pattern of results obtained via these METEXSCAL, 
INDSCAL and INDCLUS analyses of these data, we conclude that the three-
way CLUSCALE model and the solutions obtained for these illustrative data 
by optimally fitting this hybrid model to them can not in any sense be 
inferred from these separate analyses.  In fact, the two dimensions obtained 
via three-way CLUSCALE do not resemble closely any of the dimensions of 
those fit via METEXSCAL or INDSCAL. 

Rather, they appear to be meaningful composites of these and 
(perhaps) of some of the features exhibited in the INDCLUS analysis.  For 
example, the first dimension is a bipolar one contrasting luxuriousness and 
sportiness  –  combining in a meaningful and interpretable manner these  two 
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Table 6:  Two Cluster INDCLUS Solution 
   

Cars Luxury Non-Luxury 
Alpha Romeo 1 0 
BMW 325 I 1 0 
Buick Riviera 0 0 
Ferrari 1 0 
Ford Mustang 0 1 
Honda Accord 0 1 
Honda Prelude 0 1 
Hyundai Sonata 0 1 
Lincoln Town Car 1 0 
Mercedes Benz 190 1 0 
Plymouth Sundance 0 1 
Pontiac Firebird 0 1 
Rolls Royce 1 0 
Toytoa Celica 0 1 
Tyota Lexus 1 0 
Volkswagen Golf 0 1 

 
 
separate dimensions that emerged from the METEXSCAL and INDSCAL 
analyses. The three features in this hybrid three-way CLUSCALE solution 
do not resemble the two highly complementary features of “luxury” and 
“non-luxury” found in the INDCLUS analysis in any way. They are based 
on entirely different aspects of the stimuli – e.g., the American vs. “foreign” 
cars, cars that are moderately priced vs. either very inexpensive or very 
expensive ones, and Continental European or Japanese cars vs. the opposite. 

These results make it very clear, we feel, that the hybrid three-way 
CLUSCALE model, as well as the corresponding method for fitting it, is a 
genuinely different model from any simple combination of separate 
INDSCAL and INDCLUS models for these data, while, consistent with this 
fact, fitting the INDSCAL model followed by independently fitting the 
INDCLUS model to the same data yields little if any insight into the precise 
nature of the optimal hybrid CLUSCALE model for these data. This 
CLUSCALE solution is clearly a case in which “the whole is more than the 
sum of its parts”. 

 
9. Conclusions 

 
This paper has presented a new perceptual mapping technique 

CLUSCALE that enhances traditional techniques for perceptual mapping, 
such   as  two-way   multidimensional  scaling   and  factor   analysis  in  two 
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 important ways – (a) by explaining product differentiation that might exist 
due to perceptual features that are qualitative (i.e., possessed, in an all or 
none fashion, by a subset of the brands being analyzed), in addition to 
quantitative or continuously varying perceptual dimensions, and (b) by 
incorporating heterogeneity in the form of different profiles of weights for 
different consumers/subjects or consumer segments for these derived 
quantitative perceptual dimensions and qualitative perceptual features. 

The paper also presents a methodology for least squares parameter 
estimation, which can be used in psychological, marketing research, and 
other social and behavioral science applications.  For example, advertising 
agencies, and advertising tracking agencies which periodically monitor a 
brand’s or a category’s performance, can now track shifts in consumers’ 
perceptions regarding various brands over time by using multiple 
longitudinal measurements from the same respondents.  More generally, this 
methodology can be used to develop quite powerful perceptual maps of 
stimuli such as the brands or products in this marketing example reflecting 
both the effects and nature of continuous dimensions on which the brands or 
products vary continuously and of qualitative features representing all or 
none attributes or features which a brand or product either possesses or does 
not possess, inducing an overlapping cluster structure on the brands, 
products or other stimuli.  Differential weights for both the continuous 
dimensions and the qualitative features allow the user (e.g., the marketing 
manager in the current example) to assess the degree and nature of stimulus 
homogeneity – e.g., market homogeneity vs. heterogeneity—while the 
nature of the three-way data analyzed and the CLUSCALE model fit leads to 
this representation being rotationally uniquely determined . 

We would argue that these attributes of the CLUSCALE model, 
considered as a whole, make it a very comprehensive model and method for 
perceptual mapping, based on three-way or individual differences (direct or 
derived) proximity data.  When combined with appropriate preferential 
choice data on the same stimuli (e.g., brands or products), using preference 
mapping (Carroll 1980) combined with conjoint analysis (Green and 
Srinivasan 1990) to account for the preference data in terms of the recovered 
quantitative dimensions and qualitative features, respectively, this should 
lead to a very methodologically complete and interpretively satisfying 
approach to representation of a group of subjects’ perceptions and 
preferences for a set of stimuli, or in the marketing context, for market 
structure analysis. 
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