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Abstract: In this paper, the potentialities of transvariation (Gini, 1959) in measuring 
the separation between two groups of multivariate observations are explored. With this 
aim, a modified version of Gini’s notion of multidimensional transvariation is 
proposed. According to Gini (1959), two groups G1 and G2 are said to transvary on the 
k-dimensional variable X=(X1,…, Xh,…, Xk) if there exists at least one pair of units, 
belonging to different groups, such that for h=1, …, k the sign of the difference 
between their Xh values is opposite to that of m1h −m2h, where m1h and m2h are the 
corresponding group mean values of Xh. We introduce a modification that allows us to 
derive a measure of group separation, which can be profitably used in discriminating 
between two groups. The performance of the measure is tested through simulation 
experiments. The results show that the proposed measure is not sensitive to 
distributional assumptions and highlight its robustness against outliers. 
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Dedication

I would like to dedicate this article to the memory of Camilo Dagum 
(Emeritus professor of the University of Ottawa, Canada, and Full professor 
at the Faculty of Statistical Sciences, University of Bologna, Italy) who 
suddenly passed away on November 5, 2005 in Ottawa. His departure is a 
great loss to the world’s statistical and economic scientific community. He 
has been a source of inspiration to his students over a long career of teaching 
and research that spanned more than fifty years. 

Camilo Dagum’s versatile scientific knowledge, combined with an 
inquisitive mind, enabled him to carry out a remarkable scientific work in 
Economics, Statistics, Econometrics and Philosophy of Science. His 
rigorous scientific contributions have stood the passing of time, and many 
among them, belong to today scientific paradigm. He pursued  research on 
functional and personal income distributions, inequality within and between 
income distributions, wealth distribution, personal and national human 
capital and poverty, producing pioneering and seminal papers in all the 
above topics which gave birth to new research paths.   

He worked with Professor Corrado Gini at the University of Rome, 
Italy, on the theory of transvaration, subject to which he made significant 
contributions with applications in economics. In fact, the theory of 
transvariation was the main topic of his doctorate dissertation which led to a 
series of papers later published in Spanish, Italian, English, French and 
German.  

Above all, Professor Dagum will always be remembered as a man of 
great honesty, unparallel humanity , and a true Gentle man.  

I am personally indebted to him for his continuing support and 
encouragement to carry out research on the theory of transvariation. 

1. Introduction 

In the discriminant analysis context, an important issue that should be 
addressed before any classification rule is devised regards a measure of 
whether any rule we can construct (given a set of k variables) is likely to be 
effective enough for the research purposes. An indication about the best 
discrimination performance that can be achieved may be yielded by 
estimating how much separated the class conditional distributions are. 
According to Hand, two classes “… are described as ‘perfectly separable’ or 
simply ‘separable’ if the support regions of the population distributions do 
not intersect. This means that, at any given point of the measurement space, 
objects from only one class will be observed” (Hand 1997). In most practical 
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cases, however, classes (or populations) are not perfectly separable and the 
definition of a suitable measure of separability is required. 

Several measures of distance or divergence between two distributions 
have been proposed in the statistical literature (see Hand (1997) or 
Krzanowski and Marriott (1995) for a review). They may be grouped in two 
main categories, corresponding to two conceptually different approaches: 
probabilistic measures and distance-based measures.

Probabilistic separability measures are derived as a measure of the 
‘distance’ between the class-conditional probability density functions, f1 and 
f2: in this category one can find measures based on ideas of information 
theory, like Jeffrey’s (1948) divergence, measures related to Bhattacharyya’s 
(1943) affinity coefficient between f1 and f2 , and measures built as a 
decreasing function of the misclassification errors (see, for example, Lissack 
and Fu 1976). The use of probabilistic separability measures requires that 
some assumptions are made about the class probability distributions; 
otherwise, in a nonparametric approach, f1 and f2 can be approximated 
resorting to nonparametric density estimation (in high-dimensional settings 
however, the latter solution is prone to the curse of dimensionality). 

Within the distance-based approach, when the observed variables are 
continuous, the most commonly employed measure of between-class 
distance in the two class case is the Mahalanobis distance 

∆2 = (µ1-µ2)’ -1(µ1-µ2),

where µ1 and µ2 are the population mean vectors and  is the common 
covariance matrix (Mahalanobis 1930, 1936). In this measure, widely used 
in classical multivariate statistics, the distributions are assumed to be 
homoscedastic and are summarized in terms of their first-order and second-
order moments. Mitchell and Krzanowski (1985) have shown that the 
Mahalanobis distance is appropriate when the class conditional distributions 
are members of the elliptic class having fixed shape but varying location: in 
fact, in this case the two distributions are completely specified by their mean 
vectors and their common covariance matrix. If the two populations are 
normally distributed - the most important special case of elliptical 
distributions - with identical covariance matrix, it can be shown that the 
amount of overlap between them is a function of the Mahalanobis distance. 
However, for skewed distributions ∆2 may not succeed in distinguishing 
between separated or overlapping distributions, as Figure 1 clearly shows. 

An estimate of  ∆2  may be easily obtained in a plug-in fashion.  It is 
well known that the conventional sample covariance matrix, and 
consequently the sample Mahalanobis distance,  are highly  sensitive  to out- 
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Figure 1.  Two bivariate skewed distributions having the same Mahalanobis distance
but a different amount of overlap.

lying observations. (A natural way to make it robust is by replacing the 
population mean vectors and the matrix  with more robust location and 
scale estimates). Furthermore, when data stem from heteroscedastic
distributions, the use of the pooled covariance matrix in the estimated
Mahalanobis distance might reduce its performance. 

More generally, in the distance-based approach, distances between
two classes are found starting from distances between individuals. Given a 
suitable measure of the distance between two k-variate observations, the 
quantity of interest is the average of this distance over pairs of units coming
one from each class (Devijver and Kittler 1982). Among the different
choices of pairwise distance measures, the Euclidean metric allows for both 
analytical and computational simplifications. However, the measures derived
according to this approach show a behaviour analogous to that of
Mahalanobis distance, as they are related to the same statistics which are 
involved in the sample Mahalanobis distance. Following Rao’s work (Rao
1982) on diversity and dissimilarity indices, Cuadras, Fortiana and Oliva 
(1997) have introduced between-class distances based on dissimilarities
between observations and studied their properties in nonparametric
discrimination; the main benefit of this approach is that the use of 
dissimilarities allows for any combination of data types. For numeric
variables, measuring dissimilarity through the squared Euclidean distance or
through the Manhattan distance completely neglects the covariance
structure, and when a weighted Euclidean distance is employed (with weight 
equal to the inverse covariance matrix), Mahalanobis distance is obtained
again.

In this paper, we propose a measure of separation between two groups
of multivariate observations, which simultaneously takes into account 
location, variability and skewness characteristics of the class-conditional
distributions, while being a moment-free statistic. It is based on Gini’s
notion of transvariation (Gini 1916 1959).
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The use of univariate transvariation as a measure of group distance is 
not new. As it will be shown in the next section, univariate transvariation 
between two groups is related to Hand’s concept of separability: in 
particular, univariate transvariation measures highlight different aspects of 
the overlap between the groups. Dagum (1980) introduced two measures 
related to univariate transvariation in order to evaluate the economic distance
between two populations through a measure of inequality between the 
corresponding income distributions. Dagum’s proposal opened a new field 
of research in econometrics about the measures of distance between income 
distributions (Shorrocks 1982): in particular, Ebert (1984) and Chakravarty 
and Dutta (1987) proposed to axiomatically characterize the measure, by 
asking it to satisfy suitable properties derived from economic theory 
arguments; Yitzhaki (1994) and Deutsch and Silber (1997) further explored 
the potentialities of transvariation in measuring the degree of overlapping 
between distributions (for a review, see Dagum 2005). However relevant 
within the domain of income inequalities, all these contributions are not 
suitable for our purpose as they are necessarily focused on the univariate 
setting, income being the only feature they deal with, whereas we want to 
measure multivariate separation. 

In the field of discrimination and classification, Montanari (2004) has 
recently proposed to derive a two-group linear discriminant function as the 
linear combination of the observed variables along which a measure of 
transvariation is minimized; this solution is searched for through a projection 
pursuit algorithm. Several transvariation measures are employed and 
compared in that work, and finally a new linear discriminant function is 
introduced which outperforms Fisher’s linear discriminant function  when 
that is not optimal. The approach of Montanari deals again only with 
univariate transvariation, as it looks for suitable one-dimensional 
projections.

The aim of the present paper is to explore the potentialities of 
multivariate transvariation in measuring the separation between two groups. 
The main issue is that Gini’s definition of transvariation with respect to more 
than one variable (which is the natural generalisation of the univariate one) 
may not always be interpreted as a measure of inseparability. We therefore 
suggest a modification of Gini’s notion of multidimensional transvariation, 
which is derived by considering sequentially the group transvariation along 
any single variable, but on suitably chosen subsets of units, as illustrated in 
Section 3; at the end of Section 3 two illustrative examples on real data are 
presented. In Section 4 the performance of the proposed measure is assessed 
by simulation studies. 
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2.  Univariate Transvariation 

Univariate transvariation between two groups has been defined by
Gini (1916) as follows: 

Definition 1.
Two groups G1 and G2, of n1 and n2 units respectively, are said to 

transvary on the variable X with respect to their corresponding mean values 
m1X and m2X (m1X ≠m2X), if the sign of at least one of the differences x1i−x2j
(i=1,…, n1; j=1,…, n2) which can be defined between the X values belonging
to the groups is opposite to that of m1X −m2X.

Any pair of units (i∈G1, j∈G2) satisfying this condition is said to 
transvary. The number of transvarying pairs is denoted by:

(
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since the convention is adopted of counting half the number of the pairs 
having identical members as transvarying pairs. 

Gini (1959) introduced several measures of univariate transvariation
between two groups, each highlighting different aspects of group 
transvariation, which have also been extended to more than two groups (see 
Dagum 1959, 1965). Because of its robustness properties (Montanari 2004), 
we focused our attention on transvariation probability.

By using the median in place of the mean value in Definition 1, Gini
(1916) defines transvariation probability as the ratio of the actual number of 
transvarying pairs to its maximum

       tp = s12/max(s12) (2)

Thus, transvariation probability takes values in the interval [0,1] and
the more the two groups overlap, the greater the values it takes. Its
complement to 1 formally translates the notion of separability described by 
Hand (see Section 1). 
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Gini notes that s12 tends to increase, ceteris paribus, as the distance 
between the group medians decreases and that it finally reaches its 
maximum when the medians coincide. But it can be shown that, after 
performing such a shift, the value of s12 may not be the maximum attainable. 
This happens because Gini’s remark is strictly appropriate if both of the 
variable distributions are symmetric: in this case, it can also be shown that 
max(s12)=n1n2/2. According to Gini, this value can be taken as an 
approximation of the unknown maximum value in more general situations. 
However, he himself admits that, in some cases, transvariation probability 
may even take values greater than 1 when this plug-in value is introduced in 
(2). Therefore, the maximum of s12 should be determined by trial and error, 
that is by shifting one of the groups by various amounts (for further 
discussions, see Gini (1959)). Finally, max(s12) depends on the data and 
should be computed numerically, since no general closed form exists for it: 
this represents an unpleasant aspect of the definition given in (2). We were 
intrigued by this issue, which motivated the following remarks. 

Gini introduced transvariation probability in order to evaluate the 
degree of uncertainty in predicting the sign of the difference between the 
feature values in any two units, each belonging to one of the two groups, by 
means of the sign of the difference between the corresponding group 
medians. In our opinion, it seems more coherent with Gini’s aim to consider 
the median of the n1n2 differences instead of the difference between the 
group medians. In fact, denoting the median of D={x1i−x2j, i=1,…, n1; j=1,…, 
n2} by δ, then when δ>0 (δ<0) the frequency of positive (negative) values in 
D is greater than 0.5. Thus, the (sign of the) statistic δ has an objective 
predicting power. Moreover, when δ=0, negative and positive differences are 
equally likely, i.e. the relative positions of the two groups do not allow any 
prediction and uncertainty is maximized1. Thus, the situation of maximum 
transvariation may be obtained by shifting one of the groups so that the 
median of the n1n2 differences is equal to 0. The resulting number of 
transvarying pairs is always equal to n1n2/2, whatever the group distributions 
are.

For these reasons, we suggest the following modification of Gini’s 
Definition 1. 

____________ 

1. The statistic δ is known in the statistical literature as the Hodges-Lehmann estimator of the 
location shift parameter ∆ in the translation model, saying that the group parental populations 
are the same except one of them is shifted by the amount ∆ (Hodges and Lehman 1963). Let F
and G be the distribution functions corresponding to the two populations; then, the translation 
model is  G(t)=F(t −∆), for every t.
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Definition 1*. 
Two groups G1 and G2, of n1 and n2 units respectively, are said to 

transvary on the variable X if the sign of at least one of the n1n2 differences 
x1i−x2j which can be defined between the X values belonging to the groups is 
opposite to that of the median of such differences.

Then, the number of transvarying pairs according to Definition 1* is 
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As a result, transvariation probability may be defined as 
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transvariation probability in (4) is but twice an estimate of the minimum
between p=P(1X<2X) and its complement to 1, where 1X (2X) is a random
member from the parental population of group G1 (G2). This probability is an 
interesting parameter in the two-sample problem, particularly in applied 
reasearch, due to its natural sense and interpretability. Many efforts have 
been devoted in the statistical literature to attach confidence bounds to it (see 
Hollander and Wolfe (1999) for a review). Recently, Fligner and Policello
(1981) have proposed a modification of the Mann-Whitney-Wilcoxon
statistic which can be used to test the null hypothesis H0: p=1/2, i.e. the 
hypothesis of maximum transvariation probability.

3.  Multivariate  Transvariation 

Gini’s extension of the notion of transvariation between two groups in
the multivariate context requires that at least one pair of units, each taken
from one of the groups, simultaneously transvaries on each variable 
according to Definition 1. More precisely, multivariate transvariation is
defined as follows (Gini and Livada 1943; Dagum 1971): 
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Definition 2.
Two groups G1 and G2, of n1 and n2 units respectively, are said to 

transvary on the k-dimensional variable X with respect to their 
corresponding  mean vectors m1X and m2X , if there exists at least one pair 
(x1i, x2j), where i∈G1 and j∈G2, such that for h=1,…, k the sign of the h-th
entry in vector x1i −x2j is opposite to that of the h-th entry in vector m1X −m2X
(this entry not being null). 

Any pair of units (i∈G1, j∈G2) satisfying this condition is said to 
jointly transvary. By using the marginal median vector in place of the mean 
vector in Definition 2, Gini and Livada define multivariate transvariation 
probability as the ratio of the number of such jointly transvarying pairs to its 
maximum. No closed form for the maximum is given: it occurs when one of 
the groups is shifted so that the group marginal median vectors coincide. 

Several nonparametric (rank-based) multivariate techniques apply 
univariate nonparametric methods to analyze the multivariate observations 
componentwise (see, for example, Hettmansperger (1984)). However, they 
often have difficulties in cases of dependence between component variates. 
This is true for multivariate transvariation as well, since it can no longer 
yield an indication of group overlapping, as opposite to the univariate case. 
In fact, the number of pairs satisfying Definition 2 may be greater than 0 
even if the groups are completely separated in the multidimensional space. 
Figure 2 shows an illustrative example. The groups are taken from two 
bivariate normal distributions. As it can be easily seen, the mean values of 
both the variables are greater in G1 than in G2. Taken the pair (i, j) as an 
example (marked with a cross in the figure), both the variables assume in 
unit i∈G1 smaller values than those they take in unit j∈G2. In other words, 
this pair of units satisfies Gini’s definition of bidimensional transvariation on 
the observed variables. Therefore, even if the groups are perfectly separable 
in R2 (since their convex hulls do not intersect), they do transvary according 
to Definition 2. 

It is worth noting that the natural generalization of the univariate 
definition to the multidimensional context would be appropriate provided 
that the class conditional densities of the variable X are somehow estimated. 
In this case, the unknown probability of observing a jointly transvarying pair 
after choosing at random one member from each population could be 
estimated by deriving the density of the vector variable X1 −X2 (where X1
and X2 denote the values X assumes in the two classes) and integrating it on 
the right hyper-quadrant. 

Trying to overcome the difficulty illustrated in Figure 2 amounts to 
defining  a  transvariation-based  measure  of  group  separation in the multi- 
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Figure 2.  The symbols denote group membership: the dot for group G1 and the square for
group G2. Even if the groups are perfectly separable in R2, there are some pairs of units,
belonging to different groups, which transvary according to Definition 2 (one of them is 
marked with a cross).

variate space. Due to the reasons illustrated in Section 2,  in the following 
we will refer to the notion of univariate transvariation given in Definition 1*.

A good measure of group separation should be able to detect and
explore the region where the groups overlap, or where their boundary lies 
(provided it exists): an indication about the amount of overlapping could be 
derived from the number of units lying in this region.

When only one variable, say X, is observed, this region may be
identified in transvariation terms: more precisely, it corresponds to the X
range in the set G1’∪G2’, where G1’ (and G2’, respectively) is the set of the
units in G1 (G2) which transvary on X with at least one unit in G2 (G1). The 
elements of G1’∪G2’ are the members of the transvarying pairs: in this sense
the subsets G1’ and G2’ are important, as far as separability is concerned, 
since variable X does not succeed in discriminating between them in
transvariation terms.

In the multivariate case, each unit is observed with respect to several 
variables at the same time. The joint characteristics of the data set may be
studied also by conditioning with respect to a subset of the variables. When 
dealing with joint transvariation, this means that when one more variable is
observed besides X, attention should be restricted to the previously described 
subsets G1’ and G2’. When turning back to the modification we wish to 
introduce in Definition 2, this implies that the median of the differences (see
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Definition 1*) between the current variable values in the two groups should
not be computed on the whole set of n1n2 pairs: this would mean ignoring
any information provided by the variables already considered. Its 
computation should be restricted to the subsets G1’ and G2’ of the elements
which transvary on the variables so far examined.

This proposal entails a sequential procedure, whose results depend on
the variable ordering. It seems reasonable to take the variables in increasing
order of (univariate) transvariation so as to use, at each step, as much
information as possible: in fact, the more the two groups transvary, the less 
confident we are in the sign of the median of the differences.

Therefore, the suggested modification of Gini’s Definition 2 gives rise 
to the following algorithm for evaluating the k-dimensional transvariation. 
(Here the previous notation (x1i, x2j) is simplified to (xi, xj)):

s ←1
Transvariation probability (see tp in (3)) between G1 and G2 on
each variable is computed
The variable Xs corresponding to the minimum tp value is considered 
The set of the pairs (i, j) such that 

  (xsi −xsj) ⋅ median{(xsi −xsj), i ∈ G1, j ∈ G2}<0
  is recorded to determine G1’ and G2’
Do while s less than k

Transvariation probability, tp, between G1’ and G2’ on each of the
remaining k−s variables is computed
s ←s+1
The variable Xs corresponding to the minimum tp value is

considered
The current set of the pairs (i, j) is updated by selecting, among its 

elements, the pairs for which 
(xsi −xsj) ⋅ median{(xsi −xsj), i ∈ G1’, j ∈ G2’}<0

Subsets G1’ and G2’ are updated
End

The resulting set of selected pairs are the jointly transvarying pairs 
according to the modified definition. Their number will be denoted by .*

12sk
As an example, let us apply the proposed sequential definition on the

data illustrated in Figure 2, where Gini’s multivariate transvariation failed in 
measuring group separation. The first variable to be considered, X1, is the 
one whose values are reported in abscissa, since it yields the minimum
transvariation  probability value. The median  of  the  differences x1i−x1j  (i
∈G1, j ∈G2) is positive; G1’ and G2’ are determined. At step 2 the 
“restricted” median of the differences between the values of the remaining
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variable, x2i−x2j (i ∈G1’, j ∈G2’), is computed. It is negative. Then, the current 
set of transvarying pairs (i, j), i ∈G1, j ∈G2 are those for which x1i<x1j and 
x2i>x2j. As it can be easily seen, there are no units in G1 whose X1 value is 
smaller, and whose X2 value is greater, than that of any unit in G2 (2

*
12s = 0). 

Therefore, the groups G1 and G2 do not transvary on the observed two-
dimensional vector variable. 

Multivariate transvariation probability may be defined again as the 
ratio of  to its maximum*

12sk

ktp = k
*
12s /max(ks12

*).    (5) 

Coherently with Definition 1*, the maximum is obtained as the
number of transvarying pairs after shifting one group so that for each
variable the median of the differences is equal to 0. Finally, we propose a 
measure of group separability by taking the complement to 1 of multivariate
transvariation probability.

Simulation studies have shown that in the normal case the modified
transvariation probability tends, for larger data sets, to the transvariation
probability obtained by explicitly using the normality assumption (Gini and
Livada 1943), which is a function of mean vectors and of variance-
covariance matrices just like the Mahalanobis distance. Thus, in the normal
case the modified transvariation probability and the Mahalanobis distance 
yield equivalent information as far as separability is concerned.

A numerical example 
The proposed procedure has been applied to Fisher’s iris data, after 

selecting observations from the two species Versicolor and Virginica; the 
results are illustrated in Figures 3-5.  The data set consists of 100 units, 50
from each of the two groups, which have been observed with respect to the 
following variables: 

  X1=sepal length
  X2=sepal width
  X3=petal length 

X4=petal width

At the beginning, the entire data set is considered: let’s assume
G1=Versicolor, G2=Virginica. The variable showing the lowest
transvariation probability is X3, and the median of the 50× 50 differences
between the X3 values in G1 and those in G2 is negative. 

Then, by identifying the members of the pairs which transvary along
X3 (marked with the cross in Figure 3, whichever their group membership is)
subsets G1’ and G2’ are determined. Transvariation probability between these
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Figure 3. The square and the dot denote group membership (the dot corresponds to the
species Versicolor and the square  to the species Virginica). The values of X3 are reported on 
the x-axis and those of X4 on the y-axis. The symbol + denotes the members of pairs 
transvarying with respect to X3 (i.e. the elements of the subsets G1’ and G2’ at the first step of
the procedure). Among them, the members of pairs which transvary with respect to X4 (i.e. the
elements of the subsets G1’ and G2’ at the second step of the procedure) are additionally
marked with the symbol ×  . 

subsets of observations is computed with respect to each of the remaining
variables. Variable X4 yields the minimum transvariation probability value;
the sign of the median of the differences between  the X4 values belonging to 
G1’ and to G2’ is negative. 

Among the elements of G1’ and G2’, the members of the pairs which
transvary with respect to X4 are selected (denoted with the additional symbol
×  in Figure 3) and thus subsets G1’ and G2’ are updated. Transvariation 
probability between these current subsets of observations is computed with 
respect to each of the remaining variables (X1 and X2), and variable X2 is 
selected, whose corresponding median of the differences is positive. 

 Subsets G1’ and G2’ are updated by selecting, among the elements on 
the current subsets, the members of the pairs transvarying along X2 (denoted 
with the cross + in Figure 4). The median of the differences between the 
values of the last variable, X1, in these new subsets is positive.
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At the end of the procedure, subsets G1’ and G2’ are determined by
selecting, among the elements on the current subsets, the members of the
pairs which transvary with respect to X1 (marked with the cross + in Figure 
5): more specifically, the units in G1’ correspond to specimens 17, 19, 23,
29, 34, 35 in the Versicolor group and those in G2’ correspond to specimens
20, 24, 27, 28, 34, 39, 50 in the Virginica one. Each element of G1’ (G2’) is
the first (second) member of at least one transvarying pair along Xh, for 
h=1,…,4.

But what really matters in multivariate transvariation is the number of
the pairs which simultaneously transvary along each variable, 4s12

* (note that 
each member of such pairs is forced to belong, respectively, to the subsets
G1’ and G2’ described just above). In this example only one pair among the
50× 50 pairs (xi, xj), i ∈G1 and j ∈G2, was found to satisfy this condition,
that is x1i ≤x1j , x2i ≤ x2j , x3i ≥ x3j , x4i ≤ x4j. This pair is composed by specimen
34 in the Versicolor group, xi =(6.0, 2.7, 5.1, 1.6), and specimen 34 in the 
Virginica one, xj =(6.3, 2.8, 5.1, 1.5). Multivariate transvariation probability
between the two species Versicolor and Virginica with respect to the 
observed variables results to be equal to 0.0048, indicating that the groups
are almost perfectly separable. 

An additional application
We present an application of the proposed separability measure on

real data in a variable selection context. The data set is taken from Reaven
and Miller (1979) and concerns an investigation on diabetes. It lists the 
values of the following 5 variables for 145 non-obese adult human subjects:
relative weight, fasting plasma glucose, glucose area, insulin area and steady 
state plasma glucose. It also indicates if the subject suffers from chemical
diabetes, from overt diabetes or is normal. 

Imagine that we want to select a subset of the 5 above mentioned
variables for discriminative purposes. For example, we could be interested in
identifying the most informative pair of variables in discriminating between
chemical and overt diabetic classes. For this purpose, the graphical 
inspection of the scatter-plot matrix of the predictors can be useful. In
addition, for each of the

⎟⎟⎠

⎞
⎜⎜⎝

⎛
2
5

different pairs of variables, both Mahalanobis distance and the proposed
separability measure  have been computed.  Our aim is to compare the rank- 



Group Separability 157

Figure 4. The square and the dot denote group membership (the dot corresponds to the
species Versicolor and the square  to the species Virginica). The elements of the subsets G1’
and G2’ at the second step of the procedure are plotted. The values of X4 are on the x-axis and
those of X2 on the y-axis. The symbol + denotes the members of the pairs transvarying with
respect to X2 (i.e. the elements of the subsets G1’ and G2’ at the third step of the procedure).

ings of the pairs  (in terms of group separation)  yielded  by  these measures
and, if the rankings are different, to see which of the two measures is in 
accord with the scatter-plot indications. 

The pair of variables yielding the maximum value of Mahalanobis 
distance is ‘glucose area – insulin area’. However, as the scatter-plot in the
left panel of Figure 6 clearly shows, there is some overlapping between the
groups with respect to these variables. On the contrary, the first 4 places of
the ranking yielded by the transvariation-based measure are taken by the 4 
pairs having the variable ‘plasma’ as a member (with values of modified
bivariate transvariation probability ranging from 0 to 0.018). It suggests that 
the variable ‘plasma’ is fundamental in the separation between the groups
and that it is almost sufficient, as clearly indicated by the scatter-plots (the 
right panel of Figure 6 reports, as an example, the plot of the pair  ‘plasma –
relative weight’).
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Figure 5. The square and the dot denote group membership (the dot corresponds to the species 
Versicolor and the square to the species Virginica). The elements of the subsets G1’ and G2’
at the third step of the procedure are plotted. The values of X2 are on the x-axis and those of
X1 on the y-axis. The symbol + denotes the members of the pairs transvarying with respect to 
X1 (i.e. the elements of the subsets G1’ and G2’ at the fourth and last step of the procedure).

4. A  Simulation  Study 

The proposed separability measure has been tested on several
simulated data sets and its performance compared with that of the sample
Mahalanobis distance, as a commonly used measure of group separation, and
of the Matusita distance (Matusita 1956), as a prototype of probabilistic 
separability measures: 

1
2 2

( )1 2 1 2
ˆ ˆ ˆ ˆ, ( ) ( )MD f f f f d= x x x ,

where 1  and 2  denote the probability density estimates obtained by the 
kernel method (Silverman 1986; Wand and Jones 1995) and numerical
integration is applied.

f̂ f̂
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Figure 6.  Two bivariate scatter-plots of the diabetes data by Reaven and Miller (1979). Codes
1 and 2 stand for “chemical diabetic” and “overt diabetic”, respectively.

The sequential procedure described in Section 3, the separability 
measures described above and the instructions for generating the simulated
samples have been implemented in GAUSS. 

The distributional situations considered in this Monte Carlo study are
reported in Table 1: all of them are three-variate. For each situation, 100 data 
sets of size 100 (50 units from each population) were generated. Each data 
set was projected onto the planes obtained by rotating the (x1, x2) plane about 
x1 axis through the projection matrix

1         0           0
0    cos( )    sin( )

where the rotation angle θ = π/180, 2π/180, …, π.
Group separation has been evaluated on each plane by means of

Mahalanobis distance, of Matusita distance and of the modified multivariate
transvariation probability, and finally the value θl corresponding to the 
maximum group separation in the l-th data set according to each of the three
measures has been recorded. The distributions of θl over the 100 simulated
data  sets  for  each  of  the  three  measures  have been derived and summar- 
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Table 1. Distributional Situations

Parental Distributions

Π1 Π2

Situation 1 Normal

µ1=(0,1,1)

1

1 0 0
0 1 0.5
0 0.5 1

= =V

Normal

µ 2=(0,0,0)

2=V

Situation 2 Log-normal

t1=(0,0,1) µ 1=(0,0,0)  1=I3

Log-normal

t2=(0,0,0) µ 2= µ 1  2=I3

Situation 3 Log-normal

t1=(0,0,0) µ 1=(0,0,1)  1=I3

Log-normal

t2=t1 µ 2=(0,0,0)  2= I3

Contaminating  Distributions

Π1’ Π2’

Situation 1a Normal

µ 1=(0,1,1)  1=144*V

Normal

µ 2=(0,0,0)  2=144*V

Situation 1b Normal

µ 1=(0,0,0)  1=144*V

Normal

µ 2=(0,1,1)  2=144*V

ized by means of the following descriptive measures (Upton and Fingleton
1985):

the mean direction , defined as the solution of the system

( )
( )2 2arcsin  ,S C S= +

2 2arccos C C S= +
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 where 

(
1

1 cos l
l

C
L =

= )
L

, ( )
1

1 sin l
l

S
L =

=
L

,

and the measure of dispersion 

( )
1

1 1 cos l
l

D
L =

L

= .

The results are shown in Table 2. 
The parameters of the normal homoscedastic distributions of Situation

1 have been chosen so that the plane maximizing population separability 
corresponds to 45 degrees. In situations 1a and 1b these distributions are 
contaminated by 15% of the normal distributions listed in the last part of
Table 1: in the former situation the outlying distributions are contaminating
only the scale, their marginal standard deviation being equal to 12. In 
addition, mean vectors are exchanged in the latter situation. 

The simulation results show that in the normal homoscedastic case the 
measures we compared yield the same information as far as separability is 
concerned. As far as the comparison between the modified transvariation
probability and the Mahalanobis distance is concerned, this result is coherent 
with what has been anticipated in Section 3 and is illustrated in Figure 7. 

In the normal homoscedastic case, the Mahalanobis distance attains
its maximum exactly where the transvariation-based measure is minimized.
Obviously, the latter performs worse in terms of precision, since it does not
rely on any distributional assumption.

The good performance of DM is probably due to the solution we
adopted to the problem of automatically specifying the bandwidth 
parameters in the formulation of the multivariate kernel density estimator:
since the issue of data driven bandwidth selection in multivariate kernel
density estimation has not been resolved so far, we resorted to a “rule of
thumb”  (see, for example, Scott, 1996, p.152)  derived under the assumption
that the unknown density is a k-variate normal one, which is just the case of
Situation 1. In its general formulation, the rule requires that the observed
variable variances (or the whole covariance matrix) are estimated; if the
sample variance is used (as we did), DM inherits the sensitiveness of this 
estimator to outlying observations, as well as the Mahalanobis distance. This 
is clearly shown in Table 1 where, in Situation 1a and Situation 1b, both the
separability measures prove to be derailed by outlying observations in 
detecting the best plane. The measure based on the modified transvariation 
probability  seems to be  affected by outlying data to a lesser extent.  This is 
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Table 2. Summary results for the angle θ corresponding to maximum group separation 
according to several separability measures: mean directions (in degrees) and dispersion 
measures (in brackets) for 100 replications in each distributional situation. 

Distributional Situations 

Situation 1 Situation 1a Situation 1b Situation 2 Situation 3 

MAHALANOBIS

DISTANCE

45.15

(0.003)

46.30

(0.093)

 50.65 

(0.182)

89.98

(0.123)

93.146

(0.137)

MATUSITA

DISTANCE

45.06

(0.003)

52.16

(0.127)

50.49

(0.105)

93.38

(0.100)

90.51

(0.085)

TRANSVARIATION 

BASED MEASURE

45.19

(0.008)

44.53

(0.026)

44.88

(0.028)

91.05

(0.012)

89.68

(0.061)

due to the fact that in the definition of transvariation probability what 
matters is only if a pair of units is a transvarying pair or not, whereas the 
“amount” of such a transvariation is not taken into account. 

The robustness of the transvariation-based measure against outlying 
observations has been confirmed in another simulation experiment, where 
two normal heteroscedastic populations were considered, and outliers 
contaminating scale and affecting both location and scale estimates were 
introduced, as in Situation 1a and Situation 1b, respectively.  

Furthermore, in order to evaluate robustness against skewness, two 
lognormal distributions are considered in Situation 2. Both of them 
correspond to a unit normal distribution, but their threshold parameters, t1
and t2, are different, so that the plane maximizing population separability 
corresponds to a rotation angle of 90 degrees. The results reveal that 
transvariation probability yields an accurate estimate of this angle, 
displaying the most stable behaviour throughout. 

In the situations so far examined the two population distributions are 
the same apart from a location shift. Situation 3 is different. Two log-normal 
distributions are considered, corresponding to two normal distributions 
having unit variance-covariance matrices but different mean vectors. Their 
maximally separated bivariate marginals correspond to a rotation angle of 90 
degrees. The transvariation-based measure and the other nonparametric 
measures lead to close results and outperform Mahalanobis distance, which 
is severely affected by deviations from normality. 
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Figure 7. Values of the Mahalanobis distance (black line) and of the modified transvariation 
probability (gray line) as a function of the rotation angle for two samples, of 100 units each, 
taken from the normal homoscedastic populations of Situation1 (see Table 1). The values of
both the measures have been normalized, so as to ease the graphical comparison of the two 
curves.

The simulation results seem therefore to suggest that the proposed
definition of multivariate transvariation probability may be useful in 
measuring group separability and may be competitive, if not preferable, with 
respect to the alternatives we have considered. 

At the end of this section, we present another example, where some of 
the measures we dealt with are compared (see Figure 8): the sample
Mahalanobis distance, the sample version of Gini’s multidimensional
transvariation probability (Definition 2) and its version for normal data, and
finally the proposed multidimensional transvariation probability.
Analogously to the example illustrated in Figure 7, one data set of size 200 
was generated by taking 100 units from each of two normal homoscedastic
distributions with covariance matrix ={1 0 0.8,0 1 0,0.8 0 1} and mean
vectors µ 1={3,0,1} and µ 2={0,0,0}, respectively. It was projected onto the 
planes obtained by rotating the (x1, x2) plane on x1 axis at steps π/180 wide.
The values of the above-mentioned measures are illustrated in Figure 8 as a 
function of the rotation angle, ranging from 0 to π.

5. Concluding Remarks and Open Issues

In this paper a modified version of Gini’s notion of multidimensional
transvariation is proposed, which can be a useful tool for measuring the
separation between two groups of multivariate observations. The measure of
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group separation we present is easy to be interpreted, since it is derived as a 
normalized index, and it is shown to be distribution-free and  robust against 
outlying observations. 

In two-group discriminant analysis it could be used as a descriptive 
measure for determining how good a subset of variables is; it could be 
employed in feature extraction as well, as a measure to be minimized when 
the best discriminant low dimensional subspace is searched for (in a 
projection pursuit perspective). In both cases, its use in discrimination is 
preliminary with respect to the problem of assigning new cases to one of the 
groups, which has not been addressed in this paper. As a matter of fact, a 
coherent transvariation-based allocation rule can be devised, which however 
does not seem to inherit the property of being robust against outliers. 

About the proposed separability measure, the following two remarks 
are worth noting. Firstly, both Gini’s original definition of multidimensional 
transvariation and the one proposed are based on hyper-rectangular axis 
oriented sets. Thus, the number of jointly transvarying pairs is not invariant 
under affine transformations in both the formulations. However, it is 
invariant under scale transformations and location shifts. Moreover, the 
proposed measure may be prone to the curse of dimensionality since as the 
sequential procedure designed for its numerical evaluation considers further 
variables, statistics are computed on smaller and smaller data sets, attention 
being focused on subsets G1’ and G2’.

The measures of separability can be used in variable selection, in 
order to evaluate the effectiveness of different sets of variables in 
discriminating between the classes. Discriminant rules with too many 
variables may be difficult to interpret, and the predictive performance of a 
sample classification rule tends to be affected adversely by the inclusion of 
irrelevant or redundant variables (McLachlan 1992); moreover, when many 
variables are included, the overall error rate will start to increase, due to the 
problem of dimensionality versus sample size, known as the peaking
phenomenon.

When the primary aim of the analysis is discrimination, the relative 
importance of a subset of variables should be assessed in terms of the 
separation they provide among the groups. In the sequential procedure 
described in Section 3, at each step the individual contribution of each 
variable – allowing for those previously selected – to the separation of the 
populations is assessed. This suggests that a forward variable selection 
algorithm could be derived. We are at present evaluating the performance of 
this  proposal as an alternative distribution-free solution to variable selection
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Figure 8.  Values of the four measures as a function of the rotation angle for two samples, of 
100 units each, taken  from two normal homoscedastic populations with covariance matrix

 ={1 0 0.8,0 1 0,0.8 0 1} and mean vectors µ 1={3,0,1} and µ 2={0,0,0}, respectively. The
values of the measures have been normalized, so as to ease the graphical comparison of the 
two curves.

in discriminant analysis2, especially when compared with the rank 
transformation, which is undoubtedly very simple to use and compu-
tationally less expensive (see Conover and Iman 1980). 
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