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1. Introduction 
 

The desire to organize data into homogeneous groups is common and 
natural. The results can provide either immediate insights or a foundation 
upon which to construct other analyses. This is what cluster analysis is all 
about – finding useful groupings that are tightly knit (in a statistical sense) 
and distinct (preferably) from each other.  Sometimes the distinction is made 
(see, e.g., Hand, Mannila, and Smyth 2001) between such naturally 
occurring statistical clusters and other groupings that are obtained for 
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convenience, as in a partitioning a homogeneous set of data into contiguous 
pieces.  The primary focus here is on the former. 
          Because of its utility, clustering has emerged as one of the leading 
methods of multivariate analysis.  Early books on the subject (e.g., Anderson 
1958; Rao 1965) did not treat clustering at all, but for at least twenty five 
years now it has been considered mainstream (e.g., Gnanadesikan 1977; 
1997; Seber 1984; Johnson and Wichern 1982, 2002).  Excellent specialty 
books on clustering are also easy to find (e.g., Hartigan 1975; Everitt, 
Landau, and Leese 2001; Kaufman and Rousseeuw 1990; Gordon 1999).  
Moreover, many multivariate books aimed at specific areas of application 
cover clustering as well: e.g., Legendre and Legendre (1998) and Shaw 
(2003) in ecology; Brown (1998) in geohydrology; and Baxter (2003) in 
archaeology.  Hastie, Tibshirani, and Friedman (2001) treat cluster analysis 
in the context of unsupervised learning and data mining. 
         Cluster analysis (CA), principal components analysis (PCA), and 
discriminant analysis (DA) are three of the primary methods of modern 
multivariate analysis.  In 2003, there were over 1,100 papers published 
involving CA and over 1,600 utilizing PCA. About 700 dealt with DA.  PCA 
and DA are, of course, longstanding core parts of the field.  Their statistical 
theories are rich and supported by clear and crisp mathematics.  The same 
can’t be said for CA, notwithstanding many noble and important efforts.   
          One way to contrast CA and DA is to think of them as at the opposite 
ends of a spectrum. At the CA end there is no information at all about the 
number of groups or their content. At the DA end, both the number of 
groups and their content are known. The focus is on characterizing group 
differences and assigning “unknowns” to one of the known groups.  In the 
real world, there are many occasions where the actual problem lies 
somewhere along this spectrum rather than exactly at either end.  Perhaps 
there is information about the number of groups (clusters) or group 
membership.  Or maybe there is uncertainty about the accuracy of pre-
assigned group labels. In other words, there is really a continuum of 
problems to consider, only some of which have been fully explored. 

Sometimes PCA is used as a method to find clusters directly, 
bypassing any of the usual CA algorithms.  The logic for doing so is fuzzy 
but goes something like this: PCA is a vehicle for reducing dimensionality 
and visualizing data in a reduced number of dimensions corresponding to the 
leading PCs.  Insofar as these PCs—and more often than not the number is 
taken to be two or three—capture the directions of greatest variability in the 
data, and this variability is largely “between” as opposed to “within group” 
in nature, one may be able to get away with this crude approach to clustering.  
However, pitfalls abound (see, e.g., Chang 1983). 
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         In fact, there is no easy and rigorous way to quickly extract clusters 
from complex data.  In particular, there is no straightforward eigenanalysis 
that can be counted on to reveal cluster structure in the same manner that 
such an approach yields directions of greatest variability in PCA and greatest 
group separation in DA.  This is one reason that literally hundreds of 
different algorithms have been proposed to get the job done.  Each has its 
own pluses and minuses.  Care needs to be exercised at all phases: the form 
in which the data are analyzed, the choice of algorithm and any associated 
parameters, and the manner in which outputs are checked for validity. 
 This challenging situation is one of the motivations behind this 
paper.  Effective clustering is very much an imprecise art.  With usage 
proliferating, making sure that it is practiced effectively is a more important 
objective than ever. 

 
2. Usage Trends 

 
             To assess usage trends in CA, extensive use was made of three Web 
of Science® databases: the Science Citation Index ExpandedTM, the Social 
Sciences Citation Index®, and the Arts & Humanities Citation Index®.1  
These databases index, respectively, 5,900 scientific journals in 150 
scientific disciplines, 150 journals across 50 social sciences disciplines, and 
over 1,100 arts and humanities journals.  The databases can be searched on a 
yearly basis, where “year” refers to the year in which an entry was made to 
the database. This is most often the year of publication.  The total number of 
records in the three databases ranges from roughly one million in 1995 to 1.3 
million in 2003. 
 The period, 1995-2003, was chosen in order to concentrate on the 
last decade and those years for which full results were available at the time 
the study began.  As 2004 results became available, they were added in 
selectively. 

Titles, key words, and abstracts of documents in the three databases 
were searched for the phrase, cluster analysis.  It should be noted that the 
AHCI did not contain searchable abstracts until 2000, but it also turned up 
only thirteen distinct hits during the entire period of the search. 
  Searching on “cluster analysis” by itself, and not other names by 
which CA often goes by, was a conscious decision to minimize “false posi-
tive”  counts of papers that  might be talking about clusters  or clustering in a 
____________  
1.  The Web of Science, the Social Sciences Citation Index, and the Arts & Humanities 
Citation Index are registered trademarks and the Science Citation Index Expanded is a 
trademark of The Thomson Corporation. 
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                    Figure 1. Number of papers involving cluster analysis, 1995-2003. 
 

 
nontechnical or nonstatistical sense (more on this later). 
 The search results are shown in Figure 1. The trend is clearly 
upward and accelerating, with counts ranging from 646 in 1995 to 1,156 in 
2003. In Figure 2, the raw counts are normalized by the number of records in 
each year. The pattern is similar but the growth rate is sharper in the more 
recent years. (Later evidence for 2004 suggests that the growth may have 
abated: the raw CA count dropped to 1,118 while the ratio of CA records to 
the total number of records increased less than one percent.) During this 
same period, 1995-2003, the count for DA increased as well, but at a slower 
rate, from 531 to 698. The numbers for PCA (with or without the “s” on 
“component”) more than doubled from 743 to 1,621.  
            As mentioned, restricting the CA search to “cluster analysis” paints a 
very conservative picture of the activity level.  To illustrate, during the 1995- 
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Figure 2. Ratio of number of articles involving cluster analysis to total number in databases, 
multiplied by 10,000, for 1995-2003. 
 
 
2003 period, there were 7,380 CA papers picked up by this search.  Adding 
additional terms in succession via an OR-operation pushes the total much 
higher: “hierarchical clustering” (8,131), “dendrogram” (8,923),   “numerical 
taxonomy” (9,156), and “unsupervised learning” (9,720). However one 
chooses to look at the data, it appears that  there are at present well over 
1,000 papers appearing annually for which CA has a prominent role.  

The 1,156 records for 2003 were broken down by field, as defined by 
the Web of Science databases.  Fifty percent of them fell into the ten 
disciplinary categories shown in Figure 3.  All are part of the life sciences, 
interpreted broadly.  In fact, the pattern is similar for all the years studied 
(including 2004) with plant sciences the top runner in each case representing 
between 8.7 and 12.4% of the CA papers.   



8 J.R. Kettenring 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.  Top ten areas of application, 2003. 

 
 

To probe deeper into the nature of the papers, a random sample of 100 
of the 1,156 records from 2003 was drawn and their abstracts reviewed in 
detail. Five of the sampled papers were on general aspects of CA 
methodology. Another five appeared to be false positives in that they were 
either not full papers or their use of CA was suspect. Yet another eight 
involved a tight coupling of methodology development and application.  
Counting this latter group as only “half application”, there were 14 records 
in the sample of 100 that were not applications of CA. Using 14%, then, as 
the estimate of the fraction of non-applications papers, and adjusting the 
2003 total count of 1,156, there are still roughly 1,000 applications papers 
for this year as picked up by the search on “cluster analysis” alone. 

In 24 cases the type of CA employed was clear. In 17 of them, a form 
of hierarchical cluster analysis (HCA) was chosen.   Five relied on k-means 
CA, and one involved both methods.  No other types were mentioned.  In 
addition, 23 employed both CA and PCA in the analysis, affirming the close 
allegiance of these two methods. 
 Many of the papers in the sample were identified for study of the 
full text.  The patterns observed in the just cited summary statistics, such as 
heavy reliance on HCA, were confirmed in the collection of complete papers. 
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3. Examples 
 
Drawing from the roughly 2,000 papers from 2003 and 2004 that were 

screened, ten were chosen to illustrate the range of current applications and 
practices found in the literature.  (This is by no means a complete character-
ization!) 

 
Example 1 (aquatic plants; Kim, Shin, and Choi 2003).  This is a typical, 
modest-sized application of HCA and PCA. The study involves taxonomic 
relationships among 77 aquatic plants coming from four “currently 
recognized species.”  Twenty five quantitative variables—various length, 
width, thickness, angular, gap, and ratio measurements—were used to 
characterize the plants.  Apparently each was standardized to zero mean and 
unit variance as a preprocessing step. (Standardizing variables as a prelude 
to CA is often called autoscaling.) The HCA was carried out using the rule 
that intercluster distance is the average of the pairwise (Euclidean) distances 
between plants in one group and those in the other.  Sneath and Sokal (1973, 
p. 230) describe this average-distance approach to HCA as “probably the 
most frequently used clustering strategy” and evidence from the current 
literature would seem to confirm that this is still the case. 

The four plant species appear as four fairly distinct clusters in a scatter 
plot of the first two PCs and also as four major branches arising at different 
levels in the dendrogram  from the HCA.  Thus the authors used their 
knowledge of the existing species to decide how to extract a partition from 
the hierarchical representation, rather than the usual practice of making a 
straight line cut of the tree.   In that sense, this is not a “zero knowledge” 
clustering application.  

The primary finding from this research was the matching of the data-
based clusters with the currently recognized species, which helped clarify 
their taxonomic relationships. 

 
Example 2 (disease co-occurrence; John, Kerby, and Hennessy 2003).  The 
authors develop a fresh approach to identifying patterns of co-morbidity that 
can be used to predict adverse health outcomes. Their study is based on a 
random sample of over 1,000 rural American Indian elders aged 60 or over 
from one tribe.  Information was collected on the presence or absence of 11 
chronic conditions, the variables in the study. Relations among the 
conditions were studied via several approaches.  These included HCA of the 
conditions based on their pairwise correlations. In the process, different 
measures of correlation and different inter-cluster similarity rules were 
employed. Four clusters emerged consistently. The largest of them was 
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labeled cardiopulmonary. Various statistical models, some involving the 
clusters, others not, and all including gender, age, educational attainment, 
and marital status, were tested for their ability to explain four health 
outcome indices. Bottom line: CA improved the modeling effort and 
“identifie[d] specific health problems that have to be addressed to alter 
American Indian elders’ health-related quality of life.” Moreover, compared 
to other approaches considered, CA “appears to better target particular 
health problems for prevention or remediation.” 
 
Example 3  (cultures; Allik and McCrae 2004).  This study considers the 
geographic distribution of personality traits across a broad range of 36 
cultures from around the world. The analysis was based on 28,000 responses 
to a 240 item questionnaire. The questions pertain to 30 specific traits, 
referred to as facets, of personality. The facets in turn define five basic 
factors—neuroticism, extraversion, openness to experience, agreeableness, 
and conscientiousness. The factor structure has been replicated in the 
different cultures and is “well suited to an investigation of personality and 
geography.” Scores on each facet were adjusted to avoid confounding of age 
and sex with culture. Several other issues of within-culture variability were 
also addressed.   
             HCA, using Ward’s method for minimizing the within cluster error 
sum of squares, was used “to summarize similarities between cultures across 
a range of variables.”  The 30 facet scores were first standardized across the 
36 cultures prior to computing inter-culture Euclidean distances for the CA.  
The analysis was repeated using the five factors in place of the 30 facets and 
choosing different distance metrics in place of Euclidean distance. All 
approaches yielded “similar solutions.”   
 The dendrogram from the 30 facet solution is shown in Figure 4.  
The authors interpret the entire structure at different levels.  Most of the 
early joins make intuitive geographic sense, e.g., Austrians, Germans, and 
German-speaking Swiss are merged together.  At a slightly larger linkage 
distance, there is a branch containing Canadians, Americans, and Turks, 
which is harder to explain.  Notwithstanding such specific anomalies, the 
authors conclude that “cluster analysis showed that geographically 
proximate cultures often have similar profiles.” 
 
Example 4 (media usage; van Rees and van Eijck 2003).  The authors point 
out that in the West, “the majority of the population spends more leisure 
time  on  media-related  activities  than  on  any  alternative  leisure pursuit.” 
Hence the purpose of their study: “to gain greater insight into the nature of 
media [usage patterns] and their corresponding audiences.” 
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Figure 4. Dendrogram of clusters of cultures.2 

 
 

____________ 
 
2.  Reproduced from Allik and McCrae, Journal of Cross-Cultural Psychology (35/1) pp. 1-28, 
copyright 2004 by Sage Publications, Reprinted by Permission of Sage Publications Inc. 
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            In particular, van Rees and van Eijck study the use of 19 kinds of 
media, including the Internet, in the Dutch population.  A diary of time 
budget data was compiled for a sample of nearly 1,800 subjects.  For each 
one, a score was developed representing the time spent on each media 
category over the course of a week.  The authors applied Ward’s method of 
HCA to the 19 media types.  The resulting nested structure lent itself to 
natural interpretations of how the media audience split itself.  For example, 
one half of it corresponds to subjects who prefer the Internet, quality 
newspapers, videos, etc. while the other half is connected with those who 
prefer regional newspapers, radio and television, etc. The authors go on to 
interpret the finer grained structure, moving up from the trunk of the tree.   
 
Example 5 (juvenile offenders; Stefurak, Calhoun, and Glaser 2004).  This 
is a study of a sample of 103 male juvenile offenders. It’s based on a well-
developed 165-item adolescent assessment instrument that measures 12 
personality traits, as well as other scales of interest.  A separate instrument 
was used as well “as a source of external validity of groupings derived from 
a cluster analysis of [the 12] Personality Patterns scales.”  Ward’s method of 
HCA was applied, as in Example 4, and four clusters of juveniles were 
identified (presumably by cutting the hierarchical tree but details are not 
given) because they “yielded an optimal balance between within cluster 
homogeneity and between-cluster heterogeneity.”  Each cluster was assigned 
a name to underscore its perceived clinical relevance.  The largest one, the 
reactive depressives, “suggests the importance of considering the role of 
internalizing problems as a conduit to delinquency in addition to antisocial 
personality.” 

 
Example 6 (chromatography; Le Mapihan, Vial, and Jardy 2004).  Chroma-
tography is a physical method used to separate complex mixtures such as 
pharmaceutical products into their basic components.  The separation occurs 
inside a column that is either packed or coated in a special manner.  The 
mixture to be separated is passed through the column with the aid of a 
moving gas or liquid solvent.  The components of the mixture are separated 
in the process and emerge at different times called retention times.  These 
data from the output of a detector downstream from the column are used to 
analyze the mixture. (See Miller 2004 for more background.) 

Numerous approaches have been developed for preparing the columns. 
The paper by Le Mapihan et al. investigates ways of characterizing 
“columns representative of those commonly used in the pharmaceutical 
industry.”  They consider 12 column types and two different solvents for a 
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total of 24 column-solvent combinations, which they refer to as the 
“individuals” in their analysis. 

The data consist of a matrix of 210 chromatographic variables by 24 
individuals. After autoscaling, extensive use was made of PCA to reduce 
dimensionality. Euclidean distances among the individuals were computed 
from “autoscaled PC scores” and fed into a HCA (centroid method, 
Euclidean distance) to find clusters. The goal was “to provide interpreted 
classifications and to reduce drastically the test [time and effort] by 
eliminating redundant information.”   

In one featured case, the dendrogram was cut to yield a partition of 
nine clusters, and these, along with their subclusters, were overlaid on the 
scatter plot of the first two PCs to aid interpretation.  Various other scenarios 
were considered, which in statistical terms amount to setting aside subsets of 
the variables in search of a minimal set that would replicate the information 
in the full PC-HCA analysis. 

Le Mapihan et al. conclude that the “combination of PCA and HCA 
proved to be an invaluable asset both for understanding classifications and 
selecting objectively the best [chromatographic test] conditions.”  By 
optimizing the conditions, the amount of test time needed was reduced by a 
factor of six or down to roughly one day.  

 
Example 7 (archaeology; Hall 2004).  Multivariate methods, including CA, 
have been widely applied to the analysis of archaeological data.  In this 
paper Hall studies data on the geochemical characteristics of 175 sherds of a 
special type of pottery from six sites in the Tokyo Bay region of Japan.  The 
motivation for using CA was to determine if sherds from different sites 
belong to the same clusters.  This would suggest that “potters utilized raw 
materials that were geochemically similar, and prepared the paste in similar 
fashion” and “people were moving pottery between sites.”  

The data consist of 16 minor and trace element composition 
measurements for each sherd.  All of the measurements were transformed to 
a log scale.  Hall points out that it is common in pottery studies to assume 
that such transformations normalize geochemical data, but there are no 
guarantees.  He then uses PCA to reduce the number of variables to five, 
accounting for 92% of the total variation in the PCs. Thirteen outliers were 
identified via box plots of the PCs and (apparently) set aside for the CA. 
Hall applied the multivariate normal model-based clustering methodology of 
Banfield and Raftery (1993), which has the appealing feature of allowing for 
different within cluster covariance matrices.  In this case a two-cluster model 
with equal  covariance matrices was selected.  Hall interpreted the clusters in 
terms of the six sites from which the sherds originated and noted that they 
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“correspond to the local sedimentary raw materials near [them].”  He goes 
on to observe several types of “significant differences” between the clusters 
using standard statistical techniques.  As additional support for the two-
cluster solution, he returns to the 16 log transformed variables and applies 
DA with cross-validation to correctly classify 97% of the 162 non-outlier 
cases. 

 
Example 8 (stem cells; Sperger, Chen, Draper, Antosiewicz, Chon, Jones, 
Brooks, Andrews, Brown, and Thomson 2003). This is one of numerous 
examples of the use of CA to study gene expression data. The infusion of 
such papers probably accounts for much of the growth in usage of CA 
described in Section 2. Several articles provide excellent overviews of the 
area, e.g., Jiang, Tang, and Zhang  (2004), Domany (2003), and Sebastiani, 
Gussoni, Kohane, and Ramoni (2003).  

Sperger et al. compare the gene expression profiles of human 
embryonic stem cells using average similarity HCA and Pearson correlation 
coefficients as described in Eisen, Spellman, Brown, and Botstein (1998).  
Among other findings, the HCA “showed that the five independent cell lines 
clustered tightly together, reflecting highly similar expression profiles.” 
Detailed interpretations of other meaningful expression patterns in the 
dendrogram are also provided.  Nearly 10,000 profiles were involved in the 
analysis.  The results are presented in a heat map (also called Eisen plot or 
clustergram), which provides a striking visual display of color-coded 
summaries of the data juxtaposed against the dendrogram.  It effectively 
illuminates the clustered data in spite of its volume.   

 
Example 9 (purebred domestic dogs; Parker, Kim, Sutter, Carlson, 
Lorentzen, Malek, Johnson, DeFrance, Ostrander, and Kruglyak 2004).  This 
work explores genetic relationships among 85 domestic dog breeds, using 
four or five unrelated dogs per breed.  A Bayesian clustering algorithm, 
structure (Falush, Stephens, and Pritchard 2003), tailored to inferring 
population structure from genotype data, was used to test the hypothesis that 
“breed membership could be determined from individual dog genotypes.”  
Numerous analyses of subsets of 20 to 22 breeds at a time produced clusters 
of dogs that most often all came from the same breed.  Six closely related 
breeds tended to cluster together in pairs, for instance, Alaskan Malamute 
and Siberian Husky.   

Several more analyses were done to substantiate the genetic 
distinctiveness and to explore the relationships of the breeds. Experiments 
were run with varying values of  k, the assumed number of sub-populations. 
An especially attractive summary is the use of colored profile plots to 
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indicate an individual dog’s estimated proportion of membership in a cluster, 
based on the model.   

The authors conclude that their work both supports traditional 
groupings and reveals new ones.  It helps lay “the foundation for studies 
aimed at uncovering the complex genetic basis of breed differences in 
morphology, behavior, and disease susceptibility.” 

 
Example 10 (remote sensing; Braverman, Fetzer, Eldering, Nittel, and 
Leung 2003).  This problem differs from the others in several respects.  First, 
the data—sensing measurements from NASA’s Earth Observation System—
are truly massive in nature.  Second, the data arrive in streams giving rise to 
the challenge of summarizing them without sacrificing their distributional 
character.   A third difference is that CA is used purely for data reduction 
rather than to yield directly interpretable clusters.  Indeed, the end result 
could be a mixture of “natural” and “convenience” clusters as discussed in 
Section 1. 

The approach is to break the stream of data down into chunks of only 
a few days worth so that it all can be stored in memory and summarized.  
The summary is based on a k-means CA of each chunk on a cell-by-cell 
basis within a spatial grid.  For each cell, the algorithm is run with a fixed 
value for k and a number of random starting points (20 and 30 in a case 
presented).   The run yielding cluster centroids with the minimum mean 
squared error with respect to the original data is chosen, and these centroids, 
plus the corresponding cluster sizes and their mean squared errors are used 
to represent the original data.  A typical real-life application might entail 200 
variables measured on different scales (Braverman 2005).  Accordingly, one 
must face up to the same standardization and reduction challenges here as in 
several of the previous examples.  Based on their experimental data, the 
authors conclude that the summaries “capture important distributional 
features of the data related to physical processes” but anticipate that 
“modifications may be necessary” for a data production environment.  

 
4. Commercial Applications 

 
Commercial use of CA is hardly new.  In particular, market 

segmentation services, based on cluster analysis, have been around a long 
time.  See, for example, www.claritas.com for description of a system that 
develops clusters of people with like characteristics or preferences and then 
attaches catchy names to them such as “Money & Brains”. The basic 
approach, which involves k-means clustering, has been described in several 
publications, including The New Yorker (2/1/82).  
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To identify more recent applications, magazines, newspapers, and 
other electronic sources appearing in 2003-2004 were scoured, again via 
online searching of databases.  Details about how the clustering was carried 
out are rarely provided and are no doubt regarded as proprietary information 
in most cases.  Here are a few examples illustrating the variety: 

 
The Wall Street Journal (11/24/04) ran an article with the headline 
“Clustering Can Diversify a Real-Estate Portfolio”.  It’s based on a report 
from Prudential Real Estate Investors that argues for diversifying 
investments across clusters of major metropolitan areas as opposed to simple 
geographic diversification. 
 
Forbes (5/24/04) described how an online bank, ING Direct, uses regression 
analysis to determine variables that contribute the most to profitability.  It 
then uses those variables to develop  “clusters of neighbors” with similar 
attractive profitability profiles as potential new customers.  The strategy can 
be thought of as clustering to find a particular group or groups of interest 
without bothering to find all of them.  This is an instance of what Friedman 
and Meulman (2004) call targeted clustering. 

 
Business Week (5/3/04) reported that several startup companies are 
developing clustering technology to organize the results of online searches 
into folders with computer-generated names.  One of these companies is 
Vivisimo, which operates clusty.com.  To try out the clusty system, a search 
was made of “cluster analysis” that returned 214(!) primary folders, 
including seemingly sensible ones labeled “hierarchical cluster”, “tools”, and 
“gene expression” as well one labeled “U.S.”, which included a paper on 
cluster bombing in Afghanistan.  Clustering the results of searches, based on 
their verbal content, and automatically labeling the clusters, presents its own 
set of challenges! (See also BusinessWeek Online, 1/4/05.)  FORTUNE.COM 
(12/16/03) described a new software tool, called Grokker, for organizing 
search results into a hierarchically-structured visual map summary.  
Apparently, some form of HCA is involved in the software engine that 
produces the visual map. (See also The New York Times, 5/9/05.) 

 
The New York Times (3/21/04) contained a story on how a clustering 
algorithm can be used to assist the creation of new song hits.  The process 
was glamorized as “Hit Song Science.”  It’s based on acoustic similarities 
between songs and the ability to tell if a new song is near a cluster of old hit 
songs, even though it might not sound like any of them.  The system was 
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developed by Polyphonic HMI, a company in Barcelona.  (See also Time 
Magazine, 10/24/05.) 

 
Other commercial applications spotted on various newswires include: 

segmenting users of mobile technology, mining microarray data, analyzing 
hydrocarbon quality in petroleum fields, designing a new hedge fund index, 
modeling magazine circulation, managing software defects, and detecting 
fraud in insurance claims. 

 
5. Discussion 

 
Sections 2-4 document and illustrate the upsurge of CA applications.  

Reflecting on the practices that were observed in the literature review, 
several stand out as excellent and some as dangerous.  It is also apparent that 
various gaps ought to be filled to provide better methodology for 
practitioners.  The main purpose of this discussion section is to highlight 
some of these specific practices and research opportunities.  

Overall, though, practitioners would benefit from a deeper 
understanding of the properties of all the methods and processes involved.  
Good practice typically involves looking at the data in different forms, 
considering alternative metrics and distance functions, comparing the results 
from different clustering algorithms, and checking the stability and validity 
of findings. Generally, it is wise to stick as close to the data as possible and 
not, for example, to become overly enamored with a nice looking 
dendrogram. 

Over twenty years ago a study similar in spirit to this one, but 
covering a wider range of multivariate methodologies, recommended that 
practitioners take a more critical view of multivariate techniques, including 
CA, and try to avoid canned analyses (Gnanadesikan and Kettenring 1984).  
While there are plenty of examples to the contrary, the typical application of 
CA is still dominated by faith-based, fixed processes and unquestioned 
acceptance of results.  With applications on the rise, it is even more critical 
today to raise the standards. 

A convenient high-level view of CA is as a three-step process that 
involves preprocessing of the data, invoking algorithms to assist in 
identification of clusters, and assessing the results.  The subsections that 
follow can be mapped to these three stages except the last one, Section 5.8, 
deals with the process as a whole.  The discussion is tightly keyed to the 
examples in Section 3. These are listed in Table 1 for easy reference. 
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Table 1.Ten Featured Examples from Section 3 
 

1 Aquatic plants 
2 Disease co-occurrence 
3 Cultures 
4 Media usage 
5 Juvenile offenders 
6 Chromatography 
7 Archaeology 
8 Stem cells 
9 Purebred domestic dogs 
10 Remote sensing 

 
 

5.1 Autoscaling 
 
It has long been understood that scales of the variables can have a 

huge impact on the outcome of a CA.  Often the nature of the variables is 
intrinsically different, as in Example 1, making it awkward and unappealing 
to work with them in their original forms.  The most popular tactic for 
getting out of this mess is to autoscale each of them separately.  This 
seemingly innocent initial step can obscure clusters in the data and render 
them undetectable in the output of a clustering algorithm.   

If one could only standardize or transform the raw data so that any 
clusters present would appear as homogeneous spherical point clouds, then 
most of the popular CA algorithms would be able to extract them easily.  Of 
course, only some data sets will lend themselves to such treatment.  Even 
then, while procedures are available for finding sphericizing linear 
transformations (see Art, Gnanadesikan, and Kettenring 1982 and the SAS 
procedure called ACECLUS), their success depends in part on selecting 
suitable starting conditions for an iterative algorithm.   

Sometimes simple transformations of variables, such as taking logs as 
in Example 7, can be very helpful for ameliorating scaling problems.  
Evidence in the current literature suggests they are underutilized. 

Scaling to put the variables on the same footing is one consideration.  
Another is differential weighting to intentionally overemphasize those which 
are more likely to help the CA.  In the extreme, some variables may merit 
zero weighting.  The comment in Gnanadesikan, Kettenring, and Tsao 
(1995a) that “worry-free approaches do not yet exist” for any of these 
scaling challenges still holds. 
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Scaling of variables is a sensitive issue for most applications and 
algorithms.  Effective alternatives to autoscaling should be a top research 
priority. 

 
5.2 PCA and CA 

 
Confusion about the role of PCA for reducing dimensionality and the 

number of variables entering the CA is another huge problem.  As a possibly 
interesting orthogonal projection of the data, it can be very useful.  But what 
is really going on?  Assume there are g groups or clusters of n data points 
and they are known.  Proceeding as in analysis of variance, the total sums of 
squares and cross-products matrix, T, can be decomposed into within and 
between matrices, i.e., T = W + B.  If the groups are reasonably 
homogeneous, W/(n – g) provides a statistically sensible estimate of the 
common group covariance structure, and  B/(g – 1) captures the variation 
among the group means.  Standard practice is to base PCA on eigenanalysis 
of W and DA on eigenanalysis of W-1B.  The latter computation yields so-
called discriminant variables that are designed to pull the groups apart, in 
contrast to the eigenanalysis of T (which is convenient) or W (which we 
don’t know in the CA context).  In situations where the groups are so 
separated that the role of W is sufficiently diminished or the groups have 
nearly spherical covariance structure so that W is roughly proportional to the 
identity matrix, I, then working directly on T without knowing the group 
structure should work fine. This is the reason that PCA often yields 
“interesting results” in practice—Example 6 may be one such case—and not 
because it is an optimal transformation to statistically uncorrelated 
components independent of the cluster structure.  Many of these points can 
be found in the literature (e.g., Jolliffe 2002; Gnanadesikan, Kettenring, and 
Tsao 1995b).  Yeung and Ruzzo (2001) investigated empirically the 
effectiveness of using the first few PCs for CA of both gene expression and 
synthetic data. Their conclusion: “Overall, we would not recommend PCA 
before clustering except in special circumstances.” 

 
Another challenge is to develop viable alternatives to PCA for 

reducing dimensionality in CA problems. 
 

5.3 Variable Clustering 
 
Numerous applications in the literature boil down, in statistical 

parlance, to clustering variables instead of, or in addition to, the objects or 
observations.  Examples 2, 4, and 8 are of this kind.   
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In Example 4, the clustering of variables (media types) is used 
indirectly to discover how the objects (the audience) are segmented.   A 
more direct approach of clustering the 1,800 subjects would seem preferable, 
notwithstanding the additional computational effort that this would entail.  
Indeed, one can envision situations where clustering media types would 
reveal very little about audience segments. Another strategy would be to 
carry out a two-way clustering so that any detailed block structure of 
segments and audience would be revealed all at once.  Kaufman and 
Rousseeuw (1990) provide several references to such methods.  Friedman 
and Meulman (2004) present a new procedure for clustering objects when 
their structure is defined by possibly different subsets of the variables. 

Example 2 is closer to a pure variable clustering problem.  In this case, 
there is a random sample of data from a single population of Indian elders.  
Correlation coefficients, appropriate for binary data, nicely summarize 
similarity relationships among the variables, and there is no confounding of 
them with group effects.   

In Example 8, HCA is used to cluster gene expression profiles (the 
variables) across cell lines (the samples).  As is typical in such studies, the 
samples are not the usual statistical random samples and may cover “all 
kinds of experimental conditions,” according to Jiang et al. (2004).  This 
raises concerns about the impact of unusual observations because of the well 
known sensitivity of Pearson correlations to outliers. Jiang et al. mention 
jackknife-based and Spearman’s rank-order correlation coefficients as 
alternatives that also have their own limitations.  Other robust estimators, 
such as one based on standardized sums and differences, developed by 
Devlin, Gnanadesikan, and Kettenring (1975), provide viable alternatives.  
Cherepinsky, Feng, Rejali, and Mishra (2002) describe a shrinkage-based 
correlation metric that improves accuracy for CA of microarray data.  Basing 
the CA on Fisher’s z-transform of Pearson-type correlations would reduce 
the problem to one of location differences only.   

More generally, while hardly a new idea, the use of CA either to 
group variables that are similar, as an end in itself, or to reduce the number 
of variables to be used to cluster observations is an appealing, relatively 
underdeveloped, and underappreciated strategy.  The trick is to do execute 
the variable clustering so that it is not thrown off if the observations 
themselves are clustered. 

 
A deeper understanding of how best to cluster variables for such 

purposes would be very beneficial to practitioners. 
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5.4 DA and CA 
 
As pointed out in Section 1, DA and CA are at the opposite ends of a 

spectrum of problems ranging from zero knowledge to complete knowledge 
about cluster structure.  Examples 1 and 9 involve situations where there is 
suspected or partial knowledge of this kind.   

Portions of this continuum are reflected in the rapidly growing 
literature on semi-supervised learning in general (see Zhu 2005 for an online 
updated survey) and semi-supervised clustering in particular (see Grira, 
Crucianu, and Boujemaa 2004 for a brief survey and Basu, Bilenko, and 
Mooney 2004 for a concrete example of a new algorithm of this type—a 
natural generalization of k-means).  These methods utilize extra information, 
such as group labels on some of the data or constraints designed to keep 
certain pairs of points in the same or different clusters.  

 
New methods for dealing with problems along the CA-DA spectrum 

should provide data analysts a richer set of CA algorithms to choose from. 
 

5.5 Tree Cutting 
 
The most popular way of obtaining a partition of data into clusters is 

to perform a straight line cut of the dendrogram at an “appropriate” level and 
then to treat each separate branch as a cluster.  Several software systems, e.g., 
R and Clustan, conveniently assist in such surgery.  Examples 5 and 6 
illustrate the approach.   

However, tree cutting, if done mindlessly, can be perilous.  Consider 
the data in Figure 5, consisting of three spherical clusters each of size 25.  
The left one was generated from a standard bivariate normal distribution 
(means = 0, correlation = 0, and variances =1). The two tighter clusters were 
generated similarly with means = 2 and variances = 0.1 in one case, and 
means = 3 and variances = 0.1 in the other.  Any sensible approach to 
clustering such data should be able to detect such clear structure.  Applying 
HCA (average method, Euclidean distance) results in the dendrogram shown 
in Figure 6.  While the three-cluster structure is easily spotted, there is no 
single horizontal cut of the tree that will reproduce it.  Fair warning to tree 
cutters!  (See Stuetzle 2003 for related discussion.) 

 
Because of the popularity of HCA, more sophisticated tools for 

extracting clusters from the dendrogram would be very beneficial. 
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Figure 5. Scatter plot of three simulated spherical clusters each of size 25. The more dispersed 
cluster is centered at (0, 0) with variances of (1,1).  The other two each have variances of (0.1, 
0.1). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  Dendrogram from HCA of data in Figure 5 (average method, Euclidean distance).  
The symbols “o” and “x” represent points in the two tight clusters, and “+” denotes those 
from the more dispersed cluster.  There are three clearly defined branches that completely 
capture the three-cluster structure. However, no horizontal line cut of the tree will capture 
them. 
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5.6 Very Large Problems 
 
Perhaps the single most striking fact behind the usage data is that most 

published applications are of moderate size in terms of number of 
observations (n) and dimensions (p).  Example 1, with n = 77 and p = 25, 
and Example 3, with n = 36 and p = 30, are typical.  Nevertheless, the 
current literature contains a sprinkling of instances where the number of 
objects being clustered is truly huge.  Examples 8 (large p) and 10 (large n) 
are such cases.  In addition, the literature on data mining includes much 
discussion of large CA problems.   

Large streaming data sets, as in Example 10, are increasingly common 
in many contexts, such as network performance analysis and message 
monitoring for intelligence purposes.  As this trend continues, there will be 
more demand for methods that cope well with such situations.  Murtagh 
(2002) discusses many issues that arise in these very large problems.  Xu and 
Wunsch (2005) review a number of approaches that have been developed for 
“big n” and “big p” problems.  Already there are software modules for 
clustering “big n” data sets in several of the standard packages.   

Sampling is often a sensible strategy when n is large, especially if it 
can be done repeatedly, so as not to miss small clusters completely. The 
results can be compared across samples and integrated as appropriate.  Some 
special purpose algorithms (e.g., Maitra 2001; Rocke and Dai 2003; Tseng 
and Wong 2005) are built around the idea of sampling.   

Data sharpening (Tukey and Tukey 1981) is a tactic for reducing the 
number of objects to be clustered.  The idea is to move or remove individual 
points depending upon the density of those around them.  Stanberry, Nandy, 
and Cordes (2003) apply a dendrogram sharpening technique to fMRI data.  
Its effect is to “discard all small-sized children-nodes with a large-sized 
parent node.”  Sharpening techniques involve distance metrics, and hence 
issues of scale and metric loom large.   

 
There is an increasing need for CA methods that can effectively 

handle problems with “big n” and/or “big p.” 
 

5.7 Validation and Interpretation 
 
The need for solid validation and careful interpretation of CA results 

is clear and has been recognized by many researchers.  To cite one recent 
instance, Bottomley and Nairn (2004) report on the results of experiments 
with marketing managers and found that “random data devoid of meaningful 
structure were perceived as equally useful for purposes of market 
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segmentation as real data.” There are a variety of approaches that can be 
applied ranging from simple graphical displays to formal inferential 
procedures to gain confidence that the clusters are more than artifacts of the 
CA algorithm or process. Many of these are illustrated by the examples in 
Section 3. 

In wrapping up their discussion of graphical displays for CA, 
Kaufman and Rousseeuw (1990) commented that the topic “has so far 
received too little attention in the literature.”  Sadly, the situation has not 
improved very much over the last 15 years.  The literature search uncovered 
many cases of PC scatter plots (Examples 1, 6, and 7), but few other 
techniques such as  scatter plot matrices of the raw data, with or without 
brushing, or of DA-based projection plots designed to give the best view of 
clusters in lower dimensions. Interactive graphical tools, based on grand 
tours (Buja, Cook, and Swayne 1996) or parallel coordinate plots (Wegman 
1990) can also be effective in searching for cluster structure in moderate-
sized multivariate data. 

Example 1 is a situation that might have benefited from DA projection 
plots, utilizing either the discriminant variables or simpler ones obtained 
using the eigenvectors of B, with B based on either the four pre-specified or 
the recovered groupings. Several versions of such plots are described in 
Gnanadesikan, Kettenring, and Landwehr (1982). 

The tantalizing dendrogram from Example 3, shown in Figure 4, cries 
out for a return to the raw data.  Is Turkey coupled with the United States 
and Canada because of a process anomaly or because of something 
interesting in the data?  Heat maps would be helpful in answering such a 
question.  This display technique, which has blossomed in microarray 
studies, deserves a prominent spot in the CA toolkit. 

Sensitivity analyses are relatively easy to do and can be very useful in 
ensuring robust results.  In Example 2, the co-morbidity study, two different 
similarity metrics and HCA algorithms (average similarity and complete 
linkage) were applied to check on the sensitivity of findings to these choices.  
When using an iterative procedure, such as k-means CA, experimenting with 
different starting points, as in Example 10, can help to avoid sub-optimal 
results.  As Steinley (2003) has shown, implementations in commercial 
packages usually yield solutions that are only locally optimal. A referee 
recommends a series of random restarts: “This enables a probability 
statement about the chance that the next restart will discover a previously 
unobserved local maximum, and the chance that it will be better than any 
[one] previously found.” 

There are many effective ways to work with subsets of the data to 
check results and aggregate findings.  In Example 2, the sample was 



The Practice of Cluster Analysis 25 

 

randomly split into two so that results from one data set could be cross-
validated against the other.  In Example 9, many analyses were run with 
different subsets of the data leading to consensus results that go well beyond 
what one might learn from a single application of CA. Example 7 illustrates 
how DA cross-validation techniques can be used as a check on CA.  In 
addition to providing an overall figure of merit, such calculations, which 
treat the tentative clusters as known groups, can help distinguish ones that 
are well determined from those that are not.  A different twist is to work with 
subsets of the variables to find a minimal one that will reproduce the clusters 
found using all of them, as done in Example 6. 

Many of the examples compare or combine the results of applying 
different methods to the same or augmented data.  For instance, in Example 
3, the HCA results were augmented with a multidimensional scaling 
representation of the cultures based on dissimilarity inputs equivalent to 
those used to obtain Figure 4.  A two-dimensional solution showed all the 
cultures but two distributed in a circular pattern that could be interpreted in 
terms of geography and religion.  These results nicely complemented the 
HCA findings.  In one major analysis from the chromatography study of 
Example 6, the dendrogram was cut to yield a partition of nine clusters of 
the 24 column-solvent combinations and these, along with their subclusters, 
were overlaid on the scatter plot of the first two PCs to aid interpretation.  In 
Example 4, strong use was made of factor and regression analyses to support 
and explain the clusters of media repertoires. 

There are various ways to gain insights from familiar statistics that 
summarize goodness of fit and quantify cluster separations.  Kruskal’s 
gamma statistic was applied in Example 2 to conclude that the “four-cluster 
model has recovered the structure fairly well.”  In Example 5, heavy use was 
made of ANOVA results and Tukey pairwise multiple comparisons to assess 
the differences among the cluster means on the 12 individual variables.  As a 
way of indicating which comparisons are relatively more different, this is an 
excellent pragmatic procedure (and many variations on this idea are 
available).  However, the fact that the clusters are data-based, rather than 
prespecified, renders formal statements of statistical significance invalid.  
This misleading extra step is fairly prevalent in the literature. 

Model-based approaches to clustering have undergone vigorous 
development in recent years (Fraley and Raftery 2002).  Powerful methods 
and supporting software (Fraley and Raftery 2003) are available to support 
applications. With such approaches one can capitalize on the added structure 
to make a variety of inferences about the model such as the number of 
clusters present and their shapes. Typically the modeling is centered on the 
assumption that the data are adequately represented by a mixture of 
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multivariate normal distributions, as in Banfield and Raftery (1993) and 
Yeung, Fraley, Murua, Raftery, and Ruzzo (2001). Examples 7 and 9 both 
utilize model-based approaches.   

Clearly, there are many dimensions to consider under the heading of 
validation and interpretation.  This discussion has only scratched the surface. 
Fortunately, many useful aids already exist, and their use is evident in the 
examples and broader literature.  Yet, there is nothing close to agreement on 
exactly how one should proceed.  

 
The research community should push to establish a set of best 

practices that users can draw on for interpretation and validation of their 
results. 

 
5.8 Circularity 

 
Circularity is used here to refer to the risk of obtaining CA results that 

are more due to the vagaries of the process than to the strength of the cluster 
structure in the data.  Because CA is filled with so many opportunities to be 
fooled, this is a not a trivial issue.  The risk is especially high in applications 
relying on “one shot” computations without any validation. 

Autoscaling provides an example of such a risk.  It’s a process that 
invites trouble: variables are standardized to put them on “equal footing”, 
because it seems the right thing to do, and unwittingly the ability to detect 
clusters that would otherwise have been apparent is diminished.  Invoking 
Mahalanobis distances for HCA, as discussed in the paper described in 
Example 6, amounts to generalized autoscaling and is even harder to justify 
and more likely to mislead.  It also illustrates the fallacy of thinking that 
methods that are invariant to linear transformations of the data are always 
desirable.   

The use of PCA to reduce dimensionality prior to CA introduces its 
own distortions. Apart from the flaws mentioned already in Section 5.2, 
different PCs (and hence different CAs) are obtained usually, depending 
upon whether the analysis is done on T or an autoscaled version of it. 

Methods of sharpening that are based on distances have a similar 
problem. The points that are moved or removed depend heavily on the 
metric involved. 

Another version of circularity stems from the choice of clustering 
algorithm. A k-means algorithm favors finding spherical clusters. A 
complete-linkage HCA will have the same tendency. All algorithms have 
their tendencies for finding certain types of cluster structure. Some of them 
are well understood, others not. In a sense, the choice of a particular 
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algorithm biases the analysis towards solutions that play to its strengths, 
such as uncovering spherical clusters.  (Fisher and Van Ness 1971 offer a 
principled approach for determining a “best” algorithm, which they describe 
as a “perplexing problem.”) 

 
Improving the process by protecting against intrinsic biases due to 

circularity should significantly improve the usefulness of CA for 
practitioners. 

 
6. Conclusions 

 
The use of CA has grown at an astounding rate during the last decade. 

Applications can be found across a wide spectrum of fields, literally “a” to 
“z”, ranging from archaeology to zoology, and especially in the life sciences. 
Advances in reliable methods and flexible software have come at a slower 
pace. Packaged algorithms are often used too routinely, without regard to 
their limitations. The impact can be serious: progress on important problems 
is slowed, because informative cluster structures remain hidden, or even 
reversed, because invalid ones are “discovered”. The best hope for 
improving matters is for continued progress on the research front, including 
deeper understanding of the properties of different methods, and effective 
communication of best practices to the wider research community.  
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