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Improving Dynamic Programming Strategies for Partitioning
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Leiden University, The Netherlands

Abstract: Improvements to the dynamic programming (DP) strategy for partitioning (non-
hierarchical classification) as discussed in Hubert, Arabie, and Meulman (2001) are pro-
posed. First, it is shown how the number of evaluations in theDP process can be decreased
without affecting generality. Both a completely nonredundant and a quasi-nonredundant
method are proposed. Second, an efficient implementation ofboth approaches is discussed.
This implementation is shown to have a dramatic increase in speed over the original pro-
gram. The flexibility of the approach is illustrated by analyzing three data sets.
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1. Introduction

The application of dynamic programming to a data analysis problem in clas-
sification can be found as early as Fisher (1958). Fisher describes an algorithm
for the partitioning problem, where the objects within eachclass must be con-
tiguous with respect to a given object order. Because this algorithm solves the
problem in polynomial time, the algorithm has become quite popular and has
been reinvented several times (Olstad and Manne 1995; Lim and Lee 1997;
Alpert and Kahng 1997). Moreover, a few efficiency improvements have been
suggested (Olstad and Manne 1995), and the method itself hasbeen used in an
heuristic approach to solve large partitioning problems byimposing an empiri-
cally obtained order on the objects (Alpert and Kahng 1995, 1997).
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The formulation of a DP recursion for partitioning (hereafter DPP) with-
out any contiguity constraints on the objects was first suggested by Jensen
(1969). Not surprisingly, given current desktop computingpower, DP meth-
ods have recently met a renewed interest, e.g., see the recent comprehensive
overview of old and new applications of DP to combinatorial data analysis
given by Hubert, Arabie, and Meulman (2001). Using DP strategies, these au-
thors also offer a series of programs including several thatdeal with restricted
and unrestricted partitioning problems.

An overview of other mathematical programming techniques for parti-
tioning problems can be found in Hansen and Jaumard (1997). Atechnique
closely related to dynamic programming is branch-and-bound, which is an-
other partial enumeration technique. Where DP reduces the solution space
(as compared to complete enumeration) by exploiting the principle of optimal-
ity, branch-and-bound tries to reduce the solution space byexploiting bound-
ing equations, specific to the objective function (a particular cluster criterion).
Branch-and-bound has been applied to partitioning problems such as within
sum-of-squares partitioning (also known asK-means) (Koontz, Narendra, and
Fukunaga 1975; Diehr 1985), within sum of dissimilarities partitioning (Klein
and Aronson 1991; Brusco 2003), and minimum-diameter partitioning (Hansen
and Delattre 1978). Success of the branch-and-bound approach depends upon
the quality of the bounds and the particular data set that is analyzed, and run-
ning time is not known in advance. However, branch-and-bound does not need
a large amount of storage space such as DP and therefore can handle larger
problem instances. In contrast, the appeal of the DP approach to partitioning
certainly lies in its flexibility to handle a broad range of homogeneity criteria
optimally — with and without restrictions — and its current ability to cope with
nontrivial problem sizes in a priori known running time. Furthermore, Hubert
et al. (2001) have successfully shown the possibility of extending the original
DP approach heuristically to handle even larger problem sizes. In this paper a
new, more efficient DP formulation for partitioning will be presented.

2. The Dynamic Programming Recursion for Partitioning

Suppose we have the set partitioning problem: given a set ofN objects,
represented by their indicesS = {1, . . . , N}, find a collection ofK mutually
exclusive and exhaustive subsets ofS, say{S1, . . . , SK}, defining thepartition
P, such that some objective functionf(P) is optimized overP ∈ Φ, the set
of feasible partitions. Furthermore, it is assumed that we have defined some
homogeneity (or heterogeneity) function on the subsets andthe data; for an
arbitrary subsetSk, this function will be denoted byh(Sk). For dynamic pro-
gramming to work, the functionf(·) is required to be monotone over the subset
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homogeneity functionsh(Sk). Here we will assume an additive function for
f(·), and have the overall mathematical program
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Sk ∈ P ∈ Φ

Sk 6= ∅

Sk ∩ Sk′ = ∅ for k 6= k′,
K
⋃

k=1

Sk = S.

(1)

Suppose we letf∗
k (S′) denote the optimal value for partitioning the setS′ ⊆ S

into k clusters. Then, dynamic programming provides an exact algorithm by
exploiting the recursion

f∗
k (S′) =







f∗
k (S′) = opt

Sk⊂S′

(f∗
k−1(S

′ − Sk) + h(Sk)) for k > 1,

f∗
1 (S′) = h(S′),

(2)

subject to the constraints of the mathematical program. In the simplest case
whenΦ is the full set of partitions, these constraints imply that in (2) any cluster
Sk ⊂ S′ does not exceed the size bounds

1 ≤ |Sk| ≤ |S′| − (k − 1). (3)

The overall optimal value for the mathematical program is given byf∗
K(S).

This recursion is used both by Jensen (1969) and Hubert, Arabie, and
Meulman (2001) (HAM for short). Although the recursion immediately leads
to an implementable algorithm, efficient DP algorithms startat the first level,
wherek = 1, and the formulation of such a backward algorithm is nontrivial.
Both the approach of Jensen and the one used by HAM leave part of the po-
tential unexplored. The issue is that although the recursion(2) is correct, it is
much too general. Any particular subset, say{1, 4, 7}, will be enumerated for
all clusters{Sk|k = 1, . . . , K}, and evaluated in all stages of the recursion. The
order of the particular clusters in the final partition is irrelevant, however, and
such generality is not needed. An immediate implementationof this recursion
consequently involves redundancies in the entities processed in the enumera-
tive processes. An efficient algorithm requires a nonredundant definition of the
enumeration processes involved. This definition will be the main focus of this
paper. Moreover, for a successful implementation of such analgorithm, both
the enumerative processes and the storage and retrieval of optimal values must



210 B.J. van Os and J.J. Meulman

be implemented very efficiently. An example of such an implementation will
be given.

2.1 Jensen’s Formulation

Jensen (1969) was the first to introduce a dynamic programmingformu-
lation for an unrestricted partitioning problem, where theobjective function
was defined as in (1) for a particular homogeneity function expressing the ho-
mogeneity of a cluster by the average squared distances between the objects
in the cluster. Jensen goes through significant detail in defining the number of
feasiblestates(the number of instances ofSk, Sk ⊂ S′ in the recursion) and the
total number of feasiblearcs in the DP network (the number of feasible tran-
sitions from a feasible state in stagek to a feasible state in stagek + 1), using
the general recursion. He notes that in this formulation quite some redundancy
occurs due to symmetry, and defines the maximum number of feasible arcs re-
quired to optimally solve the problem in his formulation, denoted asNAT . In
other formulations hereafter, the number of arcs will be phrased as the number
of recursive evaluations.

Jensen shows how in principle some redundancies can be removed. A
distribution form of a partition is a sequence of numbers denoting the cluster
sizes of an ordered sequence of clusters. For example, for clustering seven
objects into 3 clusters, examples of distribution forms are: (5)(1)(1), (4)(2)(1),
(3)(3)(1), etc. As shown above, Jensen proposes to only consider partitions
according to distribution forms where the cluster sizes decrease from left to
right. Furthermore, he notes that in the recursive process atstagek = 2, half of
the transitions can be left out: if we evaluate the recursionfor someSk ⊂ S′,
we can ignore the evaluation ofSk, the complement set. Jensen even suggests
elimination of some more redundancies for stagek = 3 explicitly by looking at
distributional forms; however, for growingK andN , removing redundancies
by such a process becomes cumbersome, and implementation requires a lot of
bookkeeping. It must be noted that Jensen does not give a complete algorithm
description, nor a program to execute the DP process. The two subprograms
offered can not simply be combined to construct an efficient implementation of
his ideas. Moreover, as we will see in the final comparison of the effectiveness
of several approaches, his formulation still leaves a lot ofredundancies in the
process.

Dodge and Gafner (1994) have further elaborated on the idea of distrib-
ution forms. Their approach incorporates a relaxation of theoriginal problem
leading to a reduction in the number of evaluations needed, circumventing the
occurrence of redundancies. Their approach does not guarantee the optimal
solution of the original problem, as does the general mathematical program
considered in this paper.
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2.2 The HAM Approach to Partitioning

Hubert, Arabie, and Meulman (2001) were the first to give a complete
FORTRAN program (DPCL1U) for the general partition problem (1),includ-
ing mini-max objective functions. They do not consider detailed procedures
to avoid redundancies in the recursive process, except for two aspects of the
process. First, they avoid recalculating subset homogeneities/heterogeneities by
identifying two phases in the DP process. In the first phase (Stage1), a homo-
geneity/heterogeneity measureh(Sk) is evaluated for all2N−1 possible subsets
Sk. The measures used by HAM require on average for each subset a number
of operations ofN2 (average dissimilarity) up to approximatelyN3 (compar-
ing dissimilarities within versus between clusters); therefore the order of this
phase is eitherO(N22N ) or O(N32N )1. All these subset homogeneities are
stored and retrieved in later stages. Second, they propose proceeding through
the recursion to obtain all optimal partitions of the full set S into k clusters,
2 ≤ k ≤ K.

The rationale behind their approach is that although at StageK we are
only interested in an optimal partitioning of the full set (i.e. S′ = S), for eval-
uating thisf∗

K(S) we will have to refer to all optimal partition valuesf∗
K−1(B)

into K − 1 clusters of all subsetsB ⊆ S. Therefore, we have to enumerate all
S′ ⊆ S, while enumerating for eachS′ all possible partitions into two subsets
A andB, and evaluate the recursion (2) for all those bipartitions.The number
of recursive evaluations made in the algorithm is

N
∑

s=k−1

(

N

s

)

(

2N−s − 1
)

. (4)

In the last stage wherek = K, only S′ = S is considered and the number of
evaluations is

(

N
2

)

. The basic enumerative process is therefore of the type “gen-
erate all subsets out of all subsets” and the order of such a process isO(3N ).
Note that this order is considerably higher than for Stage1 (calculating all sub-
set homogeneities). Because at each stage the subsetS′ = S is also evaluated,
all optimal partitions in less thanK clusters are also given. In a sense, this
can be viewed as avoiding redundant calculations, an idea maintained in the
following sections. There are, however, quite a number of redundancies left
in this approach, and several alternatives for removing those as well as a com-
pletely nonredundant formulation will be presented in Section 2.4. The actual

1 A function g(n) is said to beof order f(n), denoted byg(n) = O(f(n)), if there exists positive
constantsc0 andn0 such thatg(n) < c0f(n) for all n > n0; for an introduction, see Day (1996).
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implementation used in DPCL1U will also be greatly improved.

2.3 Removing Redundant Evaluations by Applying Size Bounds

The symmetry in finding the solution through the recursion is most promi-
nently seen when evaluations are done at Stage2, where f∗

k−1(S
′ − Sk) is in

fact h(S′ − Sk), but it occurs at higher stages as well. A practical perspec-
tive for exploiting such symmetry is to define bounds for the sizes of subsets
involved in evaluating the recursion (without looking explicitly at distribution
forms). First, consider Stage2 and suppose we evaluate a partitioning ofS′ into
A andB; if A has size|A| = s (s < N ), thenB has to be of size|B| = N − s.
If we would evaluate all partitions involvingA of size1 ≤ |A| ≤ s, we evalu-
ate at the same time all partitions involvingB of sizeN − s ≤ |B| ≤ N − 1.
Therefore, all permutations of 2 clusters out ofS′ (i.e. respecting cluster or-
der) can be defined by defining allA ⊆ S′ of size1 ≤ |A| ≤ N − 1. By
exploiting the above mentioned symmetry, all partitions into 2 clusters ofS′

(without respecting cluster order) can be defined by all subsets A ⊆ S′ of size
1 ≤ |A| ≤

[

N
2

]

(we adopt here Jensen’s notation[ i
j
] to denote the integer part

of i
j
).

We can extend this approach to stagesk > 2 by noticing that if an upper
bound of

[

N
k

]

is provided for|A|, all partitions involvingA for
[

N
k

]

+ 1 ≤

|A| ≤
[

N
2

]

are implicitly evaluated since they are assessed as a part offinding
the optimal partitioningS′ into k − 1 partitions at a previous stage. We can
define an even stricter upper bound for|A| if we devise the algorithm such that
it first generates subsetsS′, and then subsetsA. In that case, the upper bound

for |A| can be defined as
[

|S′|
k

]

.

After exploiting the symmetry by using the size bounds onA, the amount
of work can be further decreased by working backwards. At Stage K, we do
not have to evaluate partitions of allS′ ⊆ S, because we are interested in an
optimal partitioning ofS. Therefore, we can define a lower bound for|S′| at
stagesk < K by

L(k) = L(k + 1) − [L(k + 1)/k + 1] , (5)

whereL(K) = N . The upper boundU(k) is given byU(k) = N − (K − k) if
we are only interested in an optimal partition intoK clusters, and byU(k) = N
for all k if we want all optimal partitions intok clusters,1 < k < K. This
results in a total number of evaluations at Stagek of respectively either

N−(K−k)
∑

s=L(k)
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N

s
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s′
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or

N
∑

s=L(k)
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s
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∑
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s

s′

)











. (7)

Section 2.5 gives some totals for the different processes forselected problem
sizes. Note that (6) and (7) are both smaller than Jensen’sNAT , except forK =
3 andN < 9 where Jensen explicitly removes all redundancies. One should
also note that (7) is much larger fork = 2 than fork > 2 if N becomes large.
Therefore the workload of obtaining all optimal partitions up to K clusters is
only slightly dependent on the number of clustersK. Also, the total number of
evaluations given by (6) for largeN decreasesif K becomes large.

2.4 A Formulation Completely Nonredundant with Respect to Cluster
Order

Although we so far have been able to avoid many redundancies by ap-
plying size bounds, some redundancies are still left unexploited. We will now
develop a general way of avoiding redundancies due to the irrelevance of the
order of clusters in a partition for all stages. First, consider Stage 2 and define
two complementary sets,ΩA being a set of subsetsA ⊆ S′, andΩB being a set
of subsetsB ⊆ S′, subject to

|ΩA| = 2|S
′|−1 − 1, |ΩB| = 2|S

′|−1 − 1,

ΩA ∩ ΩB = ∅,

(S′ − A) ∈ ΩB,∀A ∈ ΩA.

Constructing two such setsΩA andΩB is relatively easy. Suppose we take out
one objecti of S′ to form S′′. Then defineΩA = {A ⊆ S′′} andΩB = {B =
(S′′−A)+ i | A ⊆ S′′}. Clearly, ΩA andΩB are complementary, and because
all A ⊆ ΩA do not containi, ΩA∩ΩB = ∅. A nonredundant enumeration of all
partitions into two subsets then reduces to enumerating∀A ∈ S′, B = S′ − A.

For stagesk > 2, a non-redundant enumeration process can be accom-
plished by generating all partitions starting with an arbitrary order of the ob-
jects, extending the mechanism shown above for a partition into two clusters
at Stage2. Suppose we want to generate all possible partitions for complete
enumeration exclusively, without generating redundancies due to different or-
derings. We start to define the first clusterS1 of a partition intoK groups by

S1 ⊂ S, subject to

{i} ∈ S1; 1 ≤ |S1| ≤ N − (K − 1),
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where{i} is the object with smallest index number out ofS: i = 1. Similarly,
clusterS2 can be defined by

∀S1 : S2 ⊂ S − S1, subject to

{i′} ∈ S2; 1 ≤ |S2| ≤ N − (K − 2),

wherei′ is the object with smallest index ofS − S1. Using this approach, the
algorithm in Table 1 enumerates all possible partitions ofS into K clusters
if started with ENUMERATE(K, S). (The enumeration approach taken here is
implicit in a recursion for Stirling numbers of the second kind given by Hartigan
(1975, p. 130), and was proposed by Klein and Aronson (1991) for enumeration
in a branch-and-bound algorithm.)

Fortunately, we can apply a similar mechanism to our DP partitioning
recursion. When an optimal partition into exactlyK clusters is needed, we can
skip K − k objects at each Stage2 ≤ k ≤ K, due to the exclusion of specific
smallest objectsin the enumeration procedure. The total number of evaluations
for stagesk, 2 ≤ k < K is given by

N−(K−k)
∑

s=k

{

(

N − (K − k)

s

) s−k
∑

s′=0

(

s − 1

s′

)

}

. (8)

This approach to obtain a partition intoK clustersonly is completely non-
redundant with respect to different orderings of subsets inthe enumeration
processes required for recursion (2).

To obtainall optimal partitions intok clusters,2 ≤ k ≤ K, it is most
efficient to go through all stages in a slightly different way to obtain all those
partitions in one pass, in stead of repeating the above approachk − 1 times.
This time, we can only exclude an object for clusterS1. The total number of
evaluations for Stagek becomes

N−1
∑

s=k

{

(

N − (K − k)

s

) s−2
∑

s′=0

(

s − 1

s′

)

}

, (9)

with the difference from argument (8) being the upper limits − 2 for s′. It
appears that this method to obtain partitions all partitions, 2 ≤ k ≤ K, is
still very efficient in removing redundancies (see Section 2.5, but it no longer
upholds the nonredundancy mechanism atall stages and therefore will be called
quasi-nonredundant.

2.5 Relative Efficiency of the Different Formulations

Table 2 gives a comparison of the number of evaluations needed for sev-
eral DP formulations. The first column denotes the partition problem size, ex-
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Table 1:Algorithm ENUMERATE(k, S′). Enumerate all possiblekth clustersSk ∈ P, Sk ⊂ S′

if k = 1 then
print S1, . . . , SK ;

else
{i} = the object with smallest index number inS′

for all {Sk ⊂ S′ | {i′} ∈ Sk; 1 ≤ |Sk| ≤ N − (K − k)} do
execute ENUMERATE(k − 1, S′ − Sk)

end for
end if

pressed inN andK. For each problem, the first row gives the number of eval-
uations; the second row gives a ‘speedup’ factor relative tothe workload in the
second column defined by the number of evaluations given in Jensen’s formula-
tion. Note that this is a highly theoretical number, becauseJensen neither gave
a precise algorithm nor a program for performing that numberof evaluations.
The next two columns give workloads for the two new formulations when par-
titioning into exactlyK clusters. The last three columns give workloads for2
to K clusters for the HAM approach, as well as the two new formulations that
respectively exploit symmetry by size bounds and are quasi-nonredundant.

When it comes to partitioning into exactlyK clusters, both new formu-
lations are better than Jensen’s. The nonredundant formulation is especially
superior, and the advantage increases whenN andK increase. The redundancy
eliminations of Jensen’s formulation are only effective when partitioning into
a small number of clusters. When partitioning into2 to K clusters, the quasi-
nonredundant formulation is also superior compared to the HAM formulation,
and the speedup factor can be very large especially whenK is large. Note that
in some cases (8/20 and 9/25), the size symmetrical approachis more efficient
than the quasi-nonredundant approach due to the fact that when K increases
beyond, say, (N/3), the number of evaluations of the size symmetric approach
is very small for the final stages. This is a result of the symmetry size bounds,
while at the same time the backward size bounds decrease the number of eval-
uations for earlier stages.

Two remarks are in order. First, the DP approach is not more efficient
than complete enumeration for partitioning intoK = 2 clusters. ForK = 3,
the approach is only slightly more efficient than complete enumeration because
all subset homogeneities are calculated only once. Second, it must be noted
that these comparisons are highly theoretical. They do express the relative ef-
ficiency of redundancy eliminations but the actual workload of programs us-
ing the approaches is highly dependent upon the implementation of these algo-
rithms. These implementations differ substantially for thedifferent approaches.
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Table 2:Relative efficiency of DP processes for partitioning.

K/N Jensen Size Sym. NR HAM Size Sym. Quasi-NR
NAT K only K only all all all

4/10 27010 22750 11028 149311 25986 17078
1.00 1.19 2.45 1.00 5.75 8.74

7/10 11340 10960 1840 190570 42531 13648
1.00 1.03 6.16 1.00 4.48 13.96

4/15 9.37E6 6.88E6 3.08E6 4.14E7 7.03E6 4.66E6
1.00 1.36 3.04 1.00 5.89 8.88

6/15 1.36E7 7.71E6 2.50E6 6.13E7 9.36E6 7.88E6
1.00 1.77 5.44 1.00 6.55 7.78

9/15 7.87E6 3.51E6 466559 7.09E7 1.09E7 6.23E6
1.00 2.24 16.88 1.00 6.50 11.38

5/20 3.97E9 2.09E9 8.15E8 1.37E10 2.12E9 1.71E9
1.00 1.90 4.87 1.00 6.46 8.01

8/20 4.62E9 1.76E9 5.37E8 2.09E10 2.33E9 2.81E9
1.00 2.63 8.61 1.00 8.97 7.44

15/20 6.74E7 4.14E7 1.30E6 2.32E10 2.45E9 5.04E8
1.00 1.63 52.00 1.00 9.47 46.03

5/25 9.82E11 4.93E11 2.03E11 3.37E12 4.94E11 4.22E11
1.00 1.99 4.84 1.00 6.82 7.99

9/25 1.66E12 4.37E11 1.51E11 6.13E12 5.38E11 8.65E11
1.00 3.80 11.01 1.00 11.39 7.09

18/25 1.87E10 4.53E9 1.45E8 7.06E12 5.45E11 1.64E11
1.00 4.12 129.0 1.00 12.95 43.05

Note: Each second row displays the speedup factors relative to the first column of

each set of three columns. NR = NonRedundant process.

2.6 Efficient Implementations of the Algorithm

Implementing the DP algorithm primarily consists of carrying out a
representation–enumeration problem using what is commonly referred to as
Gray-Coding (Nijenhuis and Wilf 1975). This solution is based on the principle
of representing sets byatomicvectors orbinary representations that in turn can
be seen as integers and used as ordinal numbers or indices foraccessing array
entries. Finding an efficient implementation turns out to be a non-trivial prob-
lem dependent on the problem size parameters. Although so far in this paper an
effort has been made to theoretically remove all redundancies, an actual imple-
mentation of the non-redundant approach need not be faster than an implemen-
tation involving (some) redundancies. In practice a balance is sought between
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a very fast implementation with some redundant operations and a much slower
implementation that is completely non-redundant. Fortunately, for problems
where one partitions in a relatively small number of clusters, a highly effective
solution exists that is both very fast and almost non-redundant. A FORTRAN
implementation is given in Program 1. Implementation details of this program
can be found in Van Os (2001), as well as a hybrid approach thatcombines
fast and slow-but-precise implementations. Recentely, a vectorized implemen-
tation of the fast approach is proposed that speeds-up relatively large problems
(N > 20) up to 5 times by exploiting memory caches (submitted manuscript).

2.7 Resources Needed by the Algorithm

The resources needed for providing an exact solution are considerable.
Although the calculation of the exact number of evaluationsneeded is cum-
bersome, it can be numerically verified that they all have the property that the
workload approximately grows with a factor three if the object set size is in-
creased by one. The order of the algorithm therefore isO(3N ). In Figure 1
the development of workload for the most efficient process is plotted for parti-
tioning a fixed number of objectsN into an increasing number of clustersK.
The figure shows a remarkable similarity between problems having a different
number of objects. In general, partitioning into two clusters is a special case of
smaller magnitude. As mentioned before, the DP workload is equivalent here
to complete enumeration and equals2N . On the other hand, partitioning into
three clusters does require a huge workload, and this continues to be the case up
to partitioning into roughlyN/3 clusters. The development of actually running
time on a computer follows this pattern, with an increase factor between 2.7 and
3.7 for each extra object added, depending upon the amount ofmemory cache
installed. For problems where the storage requirements approach or exceed the
physical memory available, the running time increases moredue to memory
swapping.

The storage facilities needed for different problems are of orderO(2N ).
In Table 3 the requirements for different problems are summarized. The re-
quirements for ‘optimization only’ (first column) refer to the requirements for
finding the objective function value for the optimal solution, as well as the last
found cluster of that solution (the cluster that includes the object with the high-
est index). The second column gives requirements for retrieving the complete
optimal cluster solution, including all clusters, while the third column gives
storage requirements for retaining all information of the complete DP process,
such that for example optimal solutions to subproblems can be retrieved. As
a result of these requirements, it can be concluded that the maximum prob-
lem size to be handled by modern desktop computers is in the range of 25-29
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Figure 1: Number of evaluations needed by DP for partitioning N objects.

objects. If the available memory is limited, the requirements of all problems
can be reduced to that of the least demanding problem (the last cell in first
column), by solving the problem while retrieving only the ‘last found’ cluster,
and afterwards retrieving the other clusters by solving reduced problems. This
trades memory requirement for (often very) little additional execution time, be-

cause the reduced problems require only1
3

N−|SK |
times the execution time of

the unreduced problems.

2.8 Applications

The DPP algorithm can be applied to many different problems in cluster-
ing of objects and variables (e.g., see Hubert et al. 2001; Van Os 2001). Here
we apply the algorithm first to the prototypical case of an optimization approach
to clustering:K-means clustering, or minimizing the sum of squared error (sum
of squared distances) between an object and its cluster centroid. Apart from the
classical heuristic (relocation) algorithms that do not guarantee an optimal solu-
tion, one particular exact polynomial algorithm has been proposed by Hansen,
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Table 3: Storage requirements for optimal speed implementations of DP, partitioning
N objects intoK clusters.

Optimization Optimization Full Information
Clusters Only + Partitioning

2, . . . , K 3

2
2N ( 1

2
K + 1)(2N ) K2N

K 3

4
2N 7

8
2N+1 9

8
2N+1

The storage requirement is the total number of integers and single precision real numbers to be

stored simultaneously.

Jaumard, and Mladenovic (1998) forbipartitioning (i.e. K = 2) and hierarchi-
cal devisive clustering particularly for this criterion, which can deal with fairly
large problems in low dimensional space. In contrast, the current algorithm
findspartitions (i.e. K ≥ 2) for relatively small problems without restrictions
on the dimensionality. In the last application the algorithm will be applied to
cluster problems that explicitly operate on a dissimilarity matrix. The data
of the first application are originally from Euromonitor (1979, pp. 76-77),
taken from Hand, Daly, Lunn, McConway, and Ostrowski (1994) (the data are
also available athttp://lib.stat.cmu.edu/DASL/Datafiles/
EuropeanJobs.html). The data consist of the percentage employed in nine
different industries in 26 European countries during the Cold War. The nine in-
dustries are: agriculture, mining, manufacturing, power supplies, construction,
service industries, finance, social and personal services, and transport and com-
munications.

As is generally the case in the optimization approach, the algorithm
does not provide an immediate solution for determining the number of clus-
ters needed. However, besides the use of an external criterion for the number
of clusters (for an overview, see Milligan and Cooper 1985; Milligan 1996)
that suggest a three-cluster solution for the present analysis, the DPP algorithm
can be used to provide a series of optimal solutions for a number of clusters.
Given the optimality guarantee, such a series of solutions will give the user an
exact account of the usual trade-off between a greater complexity of the solu-
tion (larger number of clusters) and a larger variance accounted for (VAF). In
this application, the algorithm has been used to provide theexact solutions for
clustering in two up to nine groups. On a PC with a P4 3.1 GHZ chip it took
1.4 GB memory and approximately 14 hours to get these nine solutions. (The
HAM program was not actually run on this problem, but would have taken over
450 days and 4.5 GB of memory.)

In Table 4 partitions from two up to seven clusters are given.
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Table 4: Partitioning European Countries upon Employment in 9 Industries

Number of clusters
Countries 2 3 4 5 6 7
Belgium 1 1 1 1 1 1
Denmark 1 1 1 1 1 1
Netherlands 1 1 1 1 1 1
Finland 1 1 1 1 1 1
Norway 1 1 1 1 1 1
Sweden 1 1 1 1 1 1
Ireland 1 1 1 1 2 2
United Kingdom 1 1 1 1 2 2
France 1 1 1 2 2 2
W. Germany 1 1 1 2 2 2
Luxembourg 1 1 1 2 2 2
Austria 1 1 1 2 2 2
Italy 1 1 1 2 3 3
Switzerland 1 1 1 2 3 4
Spain 1 1 2 2 3 4
Portugal 1 1 2 3 3 3
Greece 1 2 2 3 4 3
Bulgaria 1 2 2 3 4 5
Poland 1 2 2 3 4 5
Rumania 1 2 2 3 4 5
USSR 1 2 2 3 4 5
Czechoslovakia 1 2 3 4 5 6
E. Germany 1 2 3 4 5 6
Hungary 1 2 3 4 5 6
Turkey 2 3 4 5 6 7
Yugoslavia 2 3 4 5 6 7
VAF 27% 48% 57% 64% 68% 72%

The three-cluster solution makes a major split between the West Euro-
pean countries and the Eastern bloc countries. Turkey and Yugoslavia (the latter
still one country at the time) form a cluster very distinct from the others. The
six-cluster solution splits the western countries into three groups, and separates
the Eastern bloc countries Czechoslovakia, East Germany and Hungary from
the rest, a grouping persistent among other partitions. Greece, Portugal, Spain
and Switzerland are countries that share characteristics ofseveral groups and
are therefore not consistently assigned to any of these groups, depending on the
number of clusters taken.

The data for the second application describe the protein consumption of
25 European countries (Turkey is not included) for nine food groups (Weber
1973, taken from Hand et al. 1994): red meat, white meat, eggs, milk, fish, ce-
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Table 5: Partitioning European Countries based on Protein consumption

Number of clusters
Countries 2 3 4 5 6 7
Albania 1 1 1 1 1 1
Bulgaria 1 1 1 1 1 1
Romania 1 1 1 1 1 1
Yugoslavia 1 1 1 1 1 1
Hungary 1 1 1 2 2 2
USSR 1 1 1 2 2 2
Czechoslova 2 2 2 2 2 2
Poland 2 2 2 2 2 2
E Germany 2 2 2 2 2 3
Austria 2 2 2 3 3 3
Netherlands 2 2 2 3 3 3
W Germany 2 2 2 3 3 3
Belgium 2 2 2 3 3 4
France 2 2 2 3 3 4
Ireland 2 2 2 3 3 4
Switzerland 2 2 2 3 3 4
UK 2 2 2 3 3 4
Denmark 2 2 3 4 4 5
Finland 2 2 3 4 4 5
Norway 2 2 3 4 4 5
Sweden 2 2 3 4 4 5
Greece 1 3 4 5 5 6
Italy 1 3 4 5 5 6
Portugal 1 3 4 5 6 7
Spain 1 3 4 5 6 7
VAF 38% 51% 60% 66% 72% 77%

reals, starchy foods, nuts (pulses, nuts, and oil-seeds), and fruits and vegetables.
The DPP-algorithm was used to provide optimal partitions up to nine clusters,
which took 4.3 hours (P4 3.1 GHZ microcumputer) and 320 MB physical mem-
ory. Table 5 gives the partitions from two up to seven clusters.

The three-cluster partition splits the countries in a North/West/Central
European cluster that eats more red and white meat, eggs and milk; four South
European countries that eat much more fish, fruit and vegetables; and six former
Eastern bloc countries that eat more cereals and nuts, and little fish and dairy
products. All six partitions show a distinct grouping of countries in geograph-
ical regions that exhibits a largely hierarchical nature, where, for example, in
a five-group partition, the Central/West European countriesare separated from
Scandinavia that eats considerably less meat, very little fruit, vegetables and
nuts, and much more fish. North/mid-East European countries aresplit from
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South-east European countries that have a distinct pattern ofextremely little
fish and starchy foods consumption, little white meat, eggs and milk and a very
large consumption of nuts and especially cereals (the corresponding geograph-
ical partition is displayed in Figure 2).

The third application applies the algorithm to data involving inter-occupa-
tion dissimilarities. The data are derived by Smith (2001) from a subset of the
U.S. Department of Labor Employment and Training Administration’s O*NET
Content Model Data (1998, pp. 739–742) which contains mean ratings on the
level of 48 occupational skills associated with 25 occupational units. Thus, the
data to be analyzed consist of Euclidean distances among these 25 occupations:
accountant, photographer, optometrist, engineer, architect, farmer, electrician,
actuary, technical writer, reporter, school administrator, social worker, dietician,
chef, lawyer, realtor, biologist, chemist, computer programmer, physical ther-
apist, nurse R.N., physicist, dentist, carpenter, and musician. To demonstrate
the flexibility of the algorithm, the dissimilarity data wereclustered optimally
in four different ways bysolvingMathematical Program 1 for four different ho-
mogeneity functionsh(Sk) defined on each clusterSk. These are (a) the sum of
dissimilarities inSk; (b) the sum of dissimilarities inSk divided by the number
of objects inSk; (c) the number of instances in which the dissimilarity within
Sk is strictly greater than one betweenSk andS−Sk (dissimilarity inconsisten-
cies); and (d) the number of times an object withinSk has a larger dissimilarity
to another object withinSk than it has to an object inS−Sk (object inconsisten-
cies). (The average dissimilarity inSk was also considered, but solutions based
on this criterion show a strong tendency to include as many singleton clusters
within each partition as possible, typicallyK − 1 singletons, and is therefore
hereafter not considered.)

The DPP-algorithm was used to provide optimal partitions up to eight
clusters for all four criteria, which took 14.9 hours (P4 3.1 GHZ microcum-
puter) and 640 MB virtual memory. The sequences of optimal partitions with
increasing number of clusters for criteria a, c, and d exhibit a largely hierar-
chical nature, similar to the hierarchies found by Smith (2001), who fitted ul-
trametric and additive trees based on aL1-norm. The partitions obtained for
criteria b, c, and d are strongly similar, and the four- and five- cluster parti-
tions for criteria b, c, and d are equivalent. Criterion a, that minimizes the sum
of dissimilarities inSk, resulted in partitions where all clusters appear to have
equal size as much as possible, and these partitions do not exhibit a hierarchical
nature.

To determine the number of clusters two indices were computed for all
optimal partitions found: the C-Index (Hubert and Levin 1976) that is based
upon the sum of within cluster dissimilarities (function a.); and the Gamma-
Index (Baker and Hubert 1975) that is based upon the number ofconsistent/
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Figure 2: A geographical display of a partition of Europe based upon protein consump-
tion.

inconsistent comparisons involving between and within cluster distances (func-
tion c.) The number of clusters of the partitions with lowest C-Index and the
highest Gamma-Index indicate the ‘correct’ number of clusters. When examin-
ing these index values as a function of an increasing number of clusters for each
particular criterion, both a noticeable decrease in the C-Index values as well as
an increase in Gamma values indicated that at least four clusters were needed.
The optimal index values occur at a rather high number of clusters, indicating
partitions with too many clusters to be informative. The differences, however,
between those optimal index values and the index values for partitions with
seven clusters are small, and both indices are known to have aslight tendency
to overestimate the number of clusters (Milligan and Cooper1985). Therefore,
a maximum of seven clusters was chosen. In Table 6 optimal partitions into
seven clusters for all four criteria are given.

Several clusters can be readily identified, such as a cluster oftechni-
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Table 6: Partitions into 7 clusters of 25 Occupations according to overall skill dissimi-
larities for four objective functions.

Objective function
sum of dissimilarities weighted sum of dis. dis. inconsistencies object inconsistencies
actuary actuary actuary actuary
technical writer technical writer technical writer technical writer
reporter reporter reporter reporter
architect architect architect architect
school administrator school administrator school administrator school administrator
dietician dietician dietician dietician
accountant accountant accountant accountant
lawyer lawyer lawyer lawyer
realtor realtor realtor realtor
social worker social worker social worker social worker
optometrist optometrist optometrist optometrist
nurse R.N. nurse R.N. nurse R.N. nurse R.N.
dentist dentist dentist dentist
physical therapist physical therapist physical therapist physical therapist
electricia electrician electrician electrician
carpenter carpenter carpenter carpenter
photographer photographer photographer photographer
farmer farmer farmer farmer
chef chef chef chef
musician musician musician musician
computer programmer computer programmer computer programmer computer programmer
engineer engineer engineer engineer
biologist biologist biologist biologist
chemist chemist chemist chemist
physicist physicist physicist physicist

cal/scientific occupations (engineer, biologist, chemist,physicist, programmer);
a ‘health-service’ cluster (optometrist, nurse R.N., dentist, physical therapist)
that might be combined with a cluster involving communication skills (realtor,
social worker), or if separated, includes the lawyer; a ‘writing’ cluster (actuary,
technical writer, reporter); a ‘technical hand-tool’ cluster (electrician, carpen-
ter). Two clusters are more difficult to interpret, the ratherheterogeneous clus-
ter of architect, school administrator, dietician, and accountant); and an ‘artistic
skill’ cluster (photographer, chef, musician) that oddly includes ‘farmer’. This
might be explained by the fact that the occupation of farmer also involves a
rather heavy use of tools, and in the five-cluster solution these occupations are
consistently combined with the other ‘tool’ cluster (electrician, carpenter).

To indicate the difficulty of obtaining optimal solutions by aheuristic
strategy for these data, all problems were also ‘solved’ by an iterative relocation
heuristic that executes the best object to centroid relocation available at each
iteration and updates the centroids immediately (see, Van Os 2001, p. 24), a
K-means variant comparable to those proposed by Späth (1985) and Hanson
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Table 7: The proportion of (local) optima out of 100 starts found by an iterative reloca-
tion algorithm for the occupations data.

Objective Function
K a b c d
2 .21 .73 .50 .29
3 .03 .83 .99 .01
4 .40 .78 .94 .66
5 .08 .55 .97 .56
6 .06 .09 .31 .39
7 .01 .14 .22 .20
8 .01 .03 .10 .13
9 .02 .04 .04 .05
10 .01 .06 .18 .06
11 .01 .09 .18 .06
12 .01 .11 .28 .03
Bold values indicate a local optimum

and Mladenovic (2001). Using 100 random starts, for each problem the best
solution out of those 100 starts was compared to the optimal solution found by
the DP algorithm for the same problem, and the number of timesthis (local)
optimum was found was determined. The results are displayed in Table 7. It
appears that the occurrence of local optima increases as thenumber of clusters
increases, and is especially severe for the sum of dissimilarities criterion (a),
for which the global optimum is almost never found.

2.9 Discussion

The present paper gives a much more efficient way of exploiting the DP
partitioning recursion. At the same time the application ofthe algorithm shows
that a high price in terms of computing resources is to be paidfor obtaining an
exact solution. Often, for well structured data, good heuristics can provide the
same solutions in seconds or minutes, but without the guarantee of optimality.
For other data sets and more difficult objective functions, many local optima
may occur (for examples, see Van Os 2001). Moreover, given the current low
cost of computing resources and the effort and time that is usually needed for
collecting the data, for many scientific purposes the resources needed may be
considered relatively minor. The main limitation of the algorithm therefore is in
its practical inability to handle data sets larger than, say, 28 objects. Although
computing resources increase continuously, it is not expected that this limit will
be extended greatly in the near future given the orderO(3N ) of the algorithm;
this is however to be expected given the NP-hardness of the general partitioning
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problem. As an alternative, the exact DP algorithm has been extended into
a heuristic approach that can handle large datasets, although no longer with
a guaranteed global optimum (Hubert et al. 2001), and that combined with an
approach similar to genetic algorithms appears to be fairlyeffective (see Van Os
2001). The latter source also shows how the DP algorithm can beaccelerated
further for specific cases by combining branch-and-bound techniques with DP,
but this does not affect the storage requirements needed andtherefore does not
alter the general size limit.

The attractiveness of DP as an exact algorithm certainly stems from its
flexibility to handle many different optimization approaches to clustering (i.e.,
many different objective functions). The overview given by Hansen and Jau-
mard (1997) provides several alternative exact algorithmsbut they all handle
very specific cases; none of these approaches have the generalapplicability of
the current algorithm. Also, the resources needed by our algorithm are known
in advance, whereas (mixed-)integer linear programming (ILP) techniques pro-
vide fast solutions for some data sets, but seem to run forever when applied to
others. Indeed, as is suggested by a comparative study of a DPalgorithm and a
ILP algorithm for seriation (Brusco 2001), DP may be the method of choice for
problems that are within its inherent size limits.

The applicability of our algorithm therefore spans into several areas: the
exact analysis of small data sets, the approximate analysisof large data sets
through heuristic extensions, and its ability to provide benchmarks for verify-
ing the ability of heuristics to provide optimal solutions in comparative studies.
The latter also gives a more thorough understanding of the relative merits of dif-
ferent objective functions. Historically, comparative studies of cluster methods
(for an overview, see Milligan 1996) are subject to the fact that the many cluster
methods proposed involve the combination ofbothan algorithm and a cluster
criterion. Studying the many cluster criteria/objective functions in combination
with modern heuristics may reveal that some objective functions are indeed ef-
fective but much more difficult to apply optimally, as is suggested in Van Os
(2001, pp. 103–105) for objective functions designed for clustering variables
based upon correlations and canonical correlations.
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2.10 Appendix: A Fortran Program for Single Stage Recursion Processing

Program 1 A single stage of the recursion

SUBROUTINE DPPSingleStage(F1,Fk 1,Fk,NFk,N,MOpt,K,
+ NSub,LastOnly)

C Function: Processes stage k (2<k<NSub) of the recursion of
C DP partitioning
C Version: 1.0, Januari 2001 5
C Author: B. J. van Os
C N: Number of objects
C NSub: Number of clusters
C Mopt: (1=MIN SUM, 2=MIN MAX)
C LastOnly: (.TRUE. = process for solution in NSub clusters only, 10
C .FALSE.= process for solutions in 2. .NSub clusters)
C Fk: Fk(AB) is optimal F for partitioning set AB at stage k
C Fk 1: Fk 1(AB) is optimal F for partitioning set AB at stage k-1
C F1: F1(A) is heterogeneity of set A (first stage)
C if F1(A)=Z, A is considered not admissable (bounding) 15
C NFk: NFk(AB) last added cluster to optimal partition of AB
C Size: function that returns the number of objects (# bits set)
C of its argument
C Parameter block.

INTEGER N,MOpt,K,NSub 20
REAL F1((2**N) −1),Fk 1((2**N) −1),Fk((2**N) −1)
INTEGER NFk((2**N) −1)
LOGICAL LastOnly

C Externals
INTEGER Size 25

C Local variables/constants
REAL Z
PARAMETER (Z=1.0E+20) ! sufficiently large
INTEGER FirstA,O,LastA,MaxO
INTEGER IndexAB,IndexA,IndexB,LastB,IncrB,NotA 30
REAL Temp



228 B.J. van Os and J.J. Meulman

Program 1 continued

C Program start.
MaxSizeAB=(N−(NSub−K))
IF (LastOnly) THEN

MaxO=MaxSizeAB
ELSE 5

MaxO=N−1
END IF

C O is the leftmost object to be ’taken out’ out of the
C (N-(NSub-K)) right objects. Loop over all admissable O 10

DO O=MaxO,K,−1
MaxSizeA = Min ((1+O−K),N−(NSub−1))
FirstA=ISHFT(1,O−1)
LastA=ISHFT(1,O)−1

C initialize F for sets AB (when overwriting Fk1 with Fk) 15
DO IndexAB = FirstA,LastA

Fk(IndexAB) = Z
END DO

C in IndexA all possible sets A will be generated 20
C out of the O rightmost objects that at least include object O

DO IndexA = FirstA,LastA
IF ((Size(IndexA) .LE . MaxSizeA)

+ .AND. (F1(IndexA) .LT . Z)) THEN
C Given admissable IndexA, in IndexB all possible subsets 25
C out of the O rightmost objects have to be generated,
C that do not include IndexA, to form IndexAB=IndexA+IndexB

NotA=NOT(IndexA)
IndexB=IEOR((ISHFT(1,O)−1),IndexA)
LOOPB: DO WHILE (IndexB .GT. 0) 30

IndexAB=IndexA+IndexB
IF (MOpt .EQ. 1) THEN

Temp=Fk 1(IndexB)+F1(IndexA)
ELSE

Temp=MAX(Fk 1(IndexB),F1(IndexA)) 35
END IF
IF (Fk(IndexAB).GE.Temp) THEN

Fk(IndexAB) = Temp
NFk(IndexAB) = IndexA

END IF 40
IndexB = IAND((IndexB−1),NotA)

END DO LOOPB
END IF

END DO ! over all A
END DO ! over all O 45
RETURN
END
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