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Improving Dynamic Programming Strategies for Partitioning

B.J. van Os and J.J. Meulman

Leiden University, The Netherlands

Abstract: Improvements to the dynamic programming (DP) strategy otifooning (non-
hierarchical classification) as discussed in Hubert, Arabhd Meulman (2001) are pro-
posed. First, itis shown how the number of evaluations irtRgrocess can be decreased
without affecting generality. Both a completely nonredamidand a quasi-nonredundant
method are proposed. Second, an efficientimplementatibatbfapproaches is discussed.
This implementation is shown to have a dramatic increaspéed over the original pro-
gram. The flexibility of the approach is illustrated by arzahg three data sets.
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1. Introduction

The application of dynamic programming to a data analygiblpm in clas-
sification can be found as early as Fisher (1958). Fisheribescan algorithm
for the partitioning problem, where the objects within eatadss must be con-
tiguous with respect to a given object order. Because tiisrithm solves the
problem in polynomial time, the algorithm has become qudpybar and has
been reinvented several times (Olstad and Manne 1995; LinLee 1997,
Alpert and Kahng 1997). Moreover, a few efficiency improvemseéave been
suggested (Olstad and Manne 1995), and the method itsetfdsasused in an
heuristic approach to solve large partitioning probleménigyosing an empiri-
cally obtained order on the objects (Alpert and Kahng 19957).
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The formulation of a DP recursion for partitioning (hereafP) with-
out any contiguity constraints on the objects was first suggeby Jensen
(1969). Not surprisingly, given current desktop computpayver, DP meth-
ods have recently met a renewed interest, e.g., see thet rem@prehensive
overview of old and new applications of DP to combinatoriatadanalysis
given by Hubert, Arabie, and Meulman (2001). Using DP stia® these au-
thors also offer a series of programs including severaldieat with restricted
and unrestricted partitioning problems.

An overview of other mathematical programming techniquerspharti-
tioning problems can be found in Hansen and Jaumard (1997ecknique
closely related to dynamic programming is branch-and-dowvhich is an-
other partial enumeration technique. Where DP reduces dhgican space
(as compared to complete enumeration) by exploiting thecjpie of optimal-
ity, branch-and-bound tries to reduce the solution spacexpjoiting bound-
ing equations, specific to the objective function (a parécaluster criterion).
Branch-and-bound has been applied to partitioning problsath as within
sum-of-squares partitioning (also knownfsmeans) (Koontz, Narendra, and
Fukunaga 1975; Diehr 1985), within sum of dissimilaritiestipaning (Klein
and Aronson 1991; Brusco 2003), and minimum-diametertfaring (Hansen
and Delattre 1978). Success of the branch-and-bound appdegends upon
the quality of the bounds and the particular data set thatadyaed, and run-
ning time is not known in advance. However, branch-and-daioes not need
a large amount of storage space such as DP and therefore odle harger
problem instances. In contrast, the appeal of the DP apprimapartitioning
certainly lies in its flexibility to handle a broad range of hageneity criteria
optimally — with and without restrictions — and its currebildy to cope with
nontrivial problem sizes in a priori known running time. Fatmore, Hubert
et al. (2001) have successfully shown the possibility oéeging the original
DP approach heuristically to handle even larger problemssiin this paper a
new, more efficient DP formulation for partitioning will begsented.

2. The Dynamic Programming Recursion for Partitioning

Suppose we have the set partitioning problem: given a sat objects,
represented by their indice&s = {1,..., N}, find a collection ofK" mutually
exclusive and exhaustive subsetssofay{S, ..., Sk}, defining thepartition
P, such that some objective functigi{P) is optimized overP € &, the set
of feasible partitions. Furthermore, it is assumed that wee ftbefined some
homogeneity (or heterogeneity) function on the subsetsthedlata; for an
arbitrary subseby,, this function will be denoted b¥(S;). For dynamic pro-
gramming to work, the functioyfi(-) is required to be monotone over the subset
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homogeneity function&(Sy). Here we will assume an additive function for
f(+), and have the overall mathematical program

K
opt > h(Sk),
P =1

subject to

SpePed

Sy # 0

SE NSy :(Z)forl-c;ék’,

K
U S, =S.
k=1

(1)

Suppose we lef;(S") denote the optimal value for partitioning the $&tC .S
into k clusters. Then, dynamic programming provides an exact idhgorby
exploiting the recursion

2 () = (S — k) + h(Sk)) for k > 1,
sy = [ = o i o ek
f(8") = h(s"),

subject to the constraints of the mathematical program.hénsimplest case
when® is the full set of partitions, these constraints imply tmefd) any cluster
S, C S’ does not exceed the size bounds

1< S < |9 = (k= 1). ®3)

The overall optimal value for the mathematical program iggiay f (.S).

This recursion is used both by Jensen (1969) and Hubert, @railnid
Meulman (2001) (HAM for short). Although the recursion imaiegely leads
to an implementable algorithm, efficient DP algorithms s#rthe first level,
wherek = 1, and the formulation of such a backward algorithm is noiztiv
Both the approach of Jensen and the one used by HAM leave fotrg @o-
tential unexplored. The issue is that although the recur&dis correct, it is
much too general. Any particular subset, §ay4, 7}, will be enumerated for
all clusters{Sx|k = 1, ..., K}, and evaluated in all stages of the recursion. The
order of the particular clusters in the final partition is lesent, however, and
such generality is not needed. An immediate implementatfdhis recursion
consequently involves redundancies in the entities pestks the enumera-
tive processes. An efficient algorithm requires a nonredoindiefinition of the
enumeration processes involved. This definition will be thénnfiacus of this
paper. Moreover, for a successful implementation of suchlgorithm, both
the enumerative processes and the storage and retrievalinfad values must
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be implemented very efficiently. An example of such an impletagon will
be given.

2.1 Jensen’s Formulation

Jensen (1969) was the first to introduce a dynamic programfamuu-
lation for an unrestricted partitioning problem, where thiigective function
was defined as in (1) for a particular homogeneity functiorresging the ho-
mogeneity of a cluster by the average squared distanceséetthe objects
in the cluster. Jensen goes through significant detail in ehefitie number of
feasiblestategthe number of instances 6f;, S, C S’ in the recursion) and the
total number of feasiblarcsin the DP network (the number of feasible tran-
sitions from a feasible state in stageo a feasible state in stage+ 1), using
the general recursion. He notes that in this formulatiotegsdme redundancy
occurs due to symmetry, and defines the maximum number obfeasics re-
quired to optimally solve the problem in his formulationndéed asvVAT. In
other formulations hereafter, the number of arcs will beagkd as the number
of recursive evaluations

Jensen shows how in principle some redundancies can be eemav
distribution form of a partition is a sequence of numbersatieg the cluster
sizes of an ordered sequence of clusters. For example, dstecing seven
objects into 3 clusters, examples of distribution forms &¢(1)(1), (4)(2)(1),
(3)(3)(1), etc. As shown above, Jensen proposes to only considetiquasti
according to distribution forms where the cluster sizesrezge from left to
right. Furthermore, he notes that in the recursive procestmgek = 2, half of
the transitions can be left out: if we evaluate the recurédorsomeS; C S’,
we can ignore the evaluation 6f;, the complement set. Jensen even suggests
elimination of some more redundancies for stage 3 explicitly by looking at
distributional forms; however, for growin§f and N, removing redundancies
by such a process becomes cumbersome, and implementajigiresea lot of
bookkeeping. It must be noted that Jensen does not give aletargigorithm
description, nor a program to execute the DP process. Theuiyorggrams
offered can not simply be combined to construct an efficieplémentation of
his ideas. Moreover, as we will see in the final comparison ®ftifiectiveness
of several approaches, his formulation still leaves a latoiundancies in the
process.

Dodge and Gafner (1994) have further elaborated on the iteatob-
ution forms. Their approach incorporates a relaxation ofothginal problem
leading to a reduction in the number of evaluations neededjraventing the
occurrence of redundancies. Their approach does not gearémt optimal
solution of the original problem, as does the general madtieal program
considered in this paper.
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2.2 The HAM Approach to Partitioning

Hubert, Arabie, and Meulman (2001) were the first to give a detep
FORTRAN program (DPCL1U) for the general partition problem (@glud-
ing mini-max objective functions. They do not consider dethiprocedures
to avoid redundancies in the recursive process, excepioraspects of the
process. First, they avoid recalculating subset homoges#ieterogeneities by
identifying two phases in the DP process. In the first phase€3fa a homo-
geneity/heterogeneity measures;,) is evaluated for al’v —1 possible subsets
Sk. The measures used by HAM require on average for each subsetlzen
of operations ofN? (average dissimilarity) up to approximateN® (compar-
ing dissimilarities within versus between clusters); diere the order of this
phase is eitheO(N22V) or O(N32V)1. All these subset homogeneities are
stored and retrieved in later stages. Second, they proposeguing through
the recursion to obtain all optimal partitions of the fult $einto & clusters,
2<k<K.

The rationale behind their approach is that although at Skagee are
only interested in an optimal partitioning of the full seg(iS” = S), for eval-
uating thisf (.S) we will have to refer to all optimal partition valugg, _, (B)
into K — 1 clusters of all subset8 C S. Therefore, we have to enumerate all
S’ C S, while enumerating for each’ all possible partitions into two subsets
A and B, and evaluate the recursion (2) for all those bipartitiofise number
of recursive evaluations made in the algorithm is

N

2. (]SV) (2" - 1), @)

s=k—1

In the last stage where = K, only S’ = S is considered and the number of
evaluations |s{g) The basic enumerative process is therefore of the type “gen-
erate all subsets out of all subsets” and the order of sucleeps isO(3").

Note that this order is considerably higher than for Sta¢malculating all sub-

set homogeneities). Because at each stage the stfbsef is also evaluated,

all optimal partitions in less thai clusters are also given. In a sense, this
can be viewed as avoiding redundant calculations, an idéatairzed in the
following sections. There are, however, quite a number ofimedncies left

in this approach, and several alternatives for removingetas well as a com-
pletely nonredundant formulation will be presented in Secfl.4. The actual

L A function g(n) is said to beof order f(n), denoted byg(n) = O(f(n)), if there exists positive
constantg:g andng such thay(n) < co f(n) for all m > no; for an introduction, see Day (1996).
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implementation used in DPCL1U will also be greatly improved.
2.3 Removing Redundant Evaluations by Applying Size Bounds

The symmetry in finding the solution through the recursion istpoomi-
nently seen when evaluations are done at Stagehere f_ (S’ — Si) isin
fact h(S’ — Sy), but it occurs at higher stages as well. A practical perspec-
tive for exploiting such symmetry is to define bounds for theesiof subsets
involved in evaluating the recursion (without looking exijily at distribution
formg. First, consider Stageand suppose we evaluate a partitioningbinto
A andB; if AhassizdA| = s (s < N), thenB has to be of sizéB| = N — s.

If we would evaluate all partitions involving of sizel < |A| < s, we evalu-
ate at the same time all partitions involvidgof size N — s < |B| < N — 1.
Therefore, all permutations of 2 clusters out%f(i.e. respecting cluster or-
der) can be defined by defining all C S’ of sizel < |A| < N —1. By
exploiting the above mentioned symmetry, all partition® i@ clusters ofS’
(without respecting cluster order) can be defined by all asb$e” S’ of size

1 <Al < [%] (we adopt here Jensen’s notatigm to denote the integer part
of ).

’ We can extend this approach to stages 2 by noticing that if an upper
bound of [£'] is provided for|A], all partitions involvingA for [{] + 1 <
|A| < [4] are implicitly evaluated since they are assessed as a pntiafg
the optimal partitioning S’ into k£ — 1 partitions at a previous stage. We can
define an even stricter upper bound fdt if we devise the algorithm such that
it first generates subsef8, and then subsetd. In that case, the upper bound
for | A| can be defined & 'i" :

After exploiting the symmetry by using the size boundsfithe amount
of work can be further decreased by working backwards. Até&tagwe do
not have to evaluate partitions of &l C S, because we are interested in an
optimal partitioning ofS. Therefore, we can define a lower bound f6f| at
stagest < K by

L(k)=L(k+1)—[L(k+1)/k+1], (5)

whereL(K) = N. The upper bound (k) is given byU (k) = N — (K — k) if
we are only interested in an optimal partition idtoclusters, and by/ (k) = N
for all k£ if we want all optimal partitions intd: clusters,1 < & < K. This
results in a total number of evaluations at Stag# respectively either

N—(K—k) [+]

>0 ®

s=L(k) s'=1
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or

S M) ()

— Sl vt
s=L(k) s

Section 2.5 gives some totals for the different processesdimcted problem
sizes. Note that (6) and (7) are both smaller than Jendét’B, except fork =

3 and N < 9 where Jensen explicitly removes all redundancies. Oneléghou
also note that (7) is much larger for= 2 than fork > 2 if N becomes large.
Therefore the workload of obtaining all optimal partitions o K clusters is
only slightly dependent on the number of clust&rsAlso, the total number of
evaluations given by (6) for larg®¥ decrease# K becomes large.

2.4 A Formulation Completely Nonredundant with Respect to Cluster
Order

Although we so far have been able to avoid many redundangiepb
plying size bounds, some redundancies are still left ursétqal. We will now
develop a general way of avoiding redundancies due to te&uance of the
order of clusters in a partition for all stages. First, coasifitage 2 and define
two complementary set§, 4 being a set of subsets C S’, and(2 g being a set
of subsetsB C §’, subject to

Q4] = 29171 — 1, |Qp| = 25171 — 1,
QuNOQp = (Z),
(8" — A) € Qp,VA € Q4.

Constructing two such sef$,4 and(Q) g is relatively easy. Suppose we take out
one object of S’ to form S”. Then defing2y = {A C §"} andQp = {B =
(8" —A)+i| AC S"}. Clearly, Q4 andQ2p are complementary, and because
all A C Q4 do not contain, Q4 NNz = 0. A nonredundant enumeration of all
partitions into two subsets then reduces to enumeratihg S, B = S’ — A.

For stages: > 2, a non-redundant enumeration process can be accom-
plished by generating all partitions starting with an aebig order of the ob-
jects, extending the mechanism shown above for a partitimtivo clusters
at Stage2. Suppose we want to generate all possible partitions for tetep
enumeration exclusively, without generating redundandige to different or-
derings. We start to define the first clustgrof a partition intoX” groups by

S1 C S, subject to
{i} € S;1< (S| <N — (K -1),
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where{i} is the object with smallest index number out$ifi = 1. Similarly,
clusterS; can be defined by

VS : Sy € S — 51, subjectto
{i'} € S9;1 < |S3] < N — (K —2),

wherei’ is the object with smallest index ¢f — S;. Using this approach, the
algorithm in Table 1 enumerates all possible partitionsSdhto K clusters

if started with ENUMERATE(K, S). (The enumeration approach taken here is
implicit in a recursion for Stirling numbers of the seconddkgiven by Hartigan
(1975, p. 130), and was proposed by Klein and Aronson (199 Brfumeration

in a branch-and-bound algorithm.)

Fortunately, we can apply a similar mechanism to our DP tiamtng
recursion. When an optimal partition into exacHyclusters is needed, we can
skip K — k objects at each Stage< k£ < K, due to the exclusion of specific
smallest objects the enumeration procedure. The total number of evalugtion
for stages:, 2 < k < K is given by

N§k> { <N (K — k:)) Z’“ <s - 1> } )
s=k 8 s'=0 s’

This approach to obtain a partition intg@ clustersonly is completely non-
redundant with respect to different orderings of subsetthéenumeration
processes required for recursion (2).

To obtainall optimal partitions intok clusters;2 < k < K, it is most
efficient to go through all stages in a slightly different wayobtain all those
partitions in one pass, in stead of repeating the above appdo— 1 times.
This time, we can only exclude an object for clustgr The total number of
evaluations for Stagk becomes

E{(N—(f—@)i(ss—/l)} o

s=k s'=0

with the difference from argument (8) being the upper limit 2 for s'. It
appears that this method to obtain partitions all partgjch < k£ < K, is
still very efficient in removing redundancies (see Section Bu it no longer
upholds the nonredundancy mechanismllastages and therefore will be called
guasi-nonredundant

2.5 Relative Efficiency of the Different Formulations

Table 2 gives a comparison of the number of evaluations rbfedeev-
eral DP formulations. The first column denotes the partitiavbfgm size, ex-



Improving Dynamic Programming Strategies for Partitianin 215

Table 1:Algorithm ENUMERATE(k, S’). Enumerate all possibleth clustersSy, € P, S, C S’

if k=1 then
print Sq,...,Sk;
else
{i} = the object with smallest index number.
forall {S, c S |{i'} € Sk;1 <|Sk|<N—(K—k)}do
execute ENUMERATE(k — 1,5 — Si)
end for
end if

pressed inV and K. For each problem, the first row gives the number of eval-
uations; the second row gives a ‘speedup’ factor relatiteéonvorkload in the
second column defined by the number of evaluations given selenformula-
tion. Note that this is a highly theoretical number, becalesesen neither gave
a precise algorithm nor a program for performing that nundfevaluations.
The next two columns give workloads for the two new formulasiovhen par-
titioning into exactlyK clusters. The last three columns give workloadsor
to K clusters for the HAM approach, as well as the two new forniorest that
respectively exploit symmetry by size bounds and are quasiedundant.

When it comes to partitioning into exactly clusters, both new formu-
lations are better than Jensen’s. The nonredundant foriomlet especially
superior, and the advantage increases wkiemdK increase. The redundancy
eliminations of Jensen’s formulation are only effectiveemtpartitioning into
a small number of clusters. When partitioning it¢o K clusters, the quasi-
nonredundant formulation is also superior compared to tAlHormulation,
and the speedup factor can be very large especially vihenlarge. Note that
in some cases (8/20 and 9/25), the size symmetrical apprsactre efficient
than the quasi-nonredundant approach due to the fact thett Whincreases
beyond, say,§//3), the number of evaluations of the size symmetric approach
is very small for the final stages. This is a result of the symyngirte bounds,
while at the same time the backward size bounds decreaseithigen of eval-
uations for earlier stages.

Two remarks are in order. First, the DP approach is not moreeaitic
than complete enumeration for partitioning i = 2 clusters. ForK = 3,
the approach is only slightly more efficient than completeneaation because
all subset homogeneities are calculated only once. Secbnayst be noted
that these comparisons are highly theoretical. They do ezphe relative ef-
ficiency of redundancy eliminations but the actual worklo&gmgrams us-
ing the approaches is highly dependent upon the implenientat these algo-
rithms. These implementations differ substantially fordifeerent approaches.
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Table 2:Relative efficiency of DP processes for partitioning.

KIN Jensen  Size Sym. NR HAM Size Sym. Quasi-NR
NAT Konly K only all all all
4/10 27010 22750 11028 149311 25986 17078
1.00 1.19 2.45 1.00 5.75 8.74
7/10 11340 10960 1840 190570 42531 13648
1.00 1.03 6.16 1.00 4.48 13.96
4/15 9.37E6 6.88E6  3.08E6 4.14E7 7.03E6 4.66E6
1.00 1.36 3.04 1.00 5.89 8.88
6/15 1.36E7 7.71E6  2.50E6 6.13E7 9.36E6 7.88E6
1.00 1.77 5.44 1.00 6.55 7.78
9/15 7.87E6 3.51E6 466559 7.09E7 1.09E7 6.23E6
1.00 2.24 16.88 1.00 6.50 11.38
5/20 3.97E9 2.09E9  8.15E8 1.37E10 2.12E9 1.71E9
1.00 1.90 4.87 1.00 6.46 8.01
8/20 4.62E9 1.76E9  5.37E8 2.09E10 2.33E9 2.81E9
1.00 2.63 8.61 1.00 8.97 7.44
15/20 | 6.74E7 4.14E7  1.30E6 2.32E10 2.45E9 5.04E8
1.00 1.63 52.00 1.00 9.47 46.03
5/25 | 9.82E11 4.93E11 2.03E1f 3.37E12 4.94E11 4.22E11
1.00 1.99 4.84 1.00 6.82 7.99
9/25 | 1.66E12 4.37E11 1.51E11 6.13E12 5.38E11 8.65E11
1.00 3.80 11.01 1.00 11.39 7.09
18/25 | 1.87E10 453E9  1.45E8 7.06E12 5.45E11 1.64E11
1.00 4.12 129.0 1.00 12.95 43.05

Note: Each second row displays the speedup factors relative to the firstic@im
each set of three columns. NR = NonRedundant process.

2.6 Efficient Implementations of the Algorithm

Implementing the DP algorithm primarily consists of canyiout a
representation—enumeration problem using what is comyna@iérred to as
Gray-Coding (Nijenhuis and Wilf 1975). This solution is basa the principle
of representing sets gtomicvectors ominary representations that in turn can
be seen as integers and used as ordinal numbers or indicasciEssing array
entries. Finding an efficient implementation turns out to bem-nivial prob-
lem dependent on the problem size parameters. Althougtr sotfas paper an
effort has been made to theoretically remove all redun@anein actual imple-
mentation of the non-redundant approach need not be fasteran implemen-
tation involving (some) redundancies. In practice a badacsought between
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a very fast implementation with some redundant operatiodssamuch slower
implementation that is completely non-redundant. Fortelgafor problems
where one partitions in a relatively small number of clusterhighly effective
solution exists that is both very fast and almost non-rednhdA FORTRAN

implementation is given in Program 1. Implementation detailthis program
can be found in Van Os (2001), as well as a hybrid approachctirabines
fast and slow-but-precise implementations. Recentelgchovized implemen-
tation of the fast approach is proposed that speeds-ujpvedialarge problems
(IV > 20) up to 5 times by exploiting memory caches (submitted manpi3c

2.7 Resources Needed by the Algorithm

The resources needed for providing an exact solution arademable.
Although the calculation of the exact number of evaluatioeeded is cum-
bersome, it can be numerically verified that they all have toperty that the
workload approximately grows with a factor three if the @bjset size is in-
creased by one. The order of the algorithm therefor@(8"). In Figure 1
the development of workload for the most efficient procesdattqd for parti-
tioning a fixed number of object® into an increasing number of clusteks
The figure shows a remarkable similarity between problemaawidifferent
number of objects. In general, partitioning into two clustis a special case of
smaller magnitude. As mentioned before, the DP workloadjisvalent here
to complete enumeration and equafs. On the other hand, partitioning into
three clusters does require a huge workload, and this amgito be the case up
to partitioning into roughlyV/3 clusters. The development of actually running
time on a computer follows this pattern, with an increastofdoetween 2.7 and
3.7 for each extra object added, depending upon the amouméfory cache
installed. For problems where the storage requirementsapp or exceed the
physical memory available, the running time increases ndoe=to memory
swapping.

The storage facilities needed for different problems arerdéO (27).

In Table 3 the requirements for different problems are surired. The re-
quirements for ‘optimization only’ (first column) refer toghequirements for
finding the objective function value for the optimal soluti@s well as the last
found cluster of that solution (the cluster that includesabject with the high-
est index). The second column gives requirements for rétgethe complete
optimal cluster solution, including all clusters, whilestkhird column gives
storage requirements for retaining all information of tieenplete DP process,
such that for example optimal solutions to subproblems @arelrieved. As
a result of these requirements, it can be concluded that teenmum prob-
lem size to be handled by modern desktop computers is in tigeraf 25-29
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N=25

Number of Evaluations
o
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Number of Clusters

Figure 1: Number of evaluations needed by DP for partitigmihobjects.

objects. If the available memory is limited, the requireisenf all problems
can be reduced to that of the least demanding problem (thed#isin first

column), by solving the problem while retrieving only thast found’ cluster,
and afterwards retrieving the other clusters by solvingiced problems. This
trades memory requirement for (often very) little addidbexecution time, be-

cause the reduced problems require éﬁvly‘s"| times the execution time of
the unreduced problems.

2.8 Applications

The DPP algorithm can be applied to many different problemguster-
ing of objects and variables (e.g., see Hubert et al. 2004;03&2001). Here
we apply the algorithm first to the prototypical case of anrafation approach
to clustering:K-means clustering, or minimizing the sum of squared erton(s
of squared distances) between an object and its clustaoaknfpart from the
classical heuristic (relocation) algorithms that do namuntee an optimal solu-
tion, one particular exact polynomial algorithm has beappsed by Hansen,
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Table 3: Storage requirements for optimal speed implenientof DP, partitioning
N objects intoK clusters.

Optimization Optimization Full Information
Clusters Only + Partitioning
2,..., K 32N (3K +1)(2N) K2N

39N ToN+1 9oN+1

The storage requirement is the total number of integers and singleipremsl numbers to be
stored simultaneously.

Jaumard, and Mladenovic (1998) faipartitioning (i.e. K = 2) and hierarchi-
cal devisive clustering particularly for this criterionhigh can deal with fairly
large problems in low dimensional space. In contrast, theeat algorithm
findspartitions (i.e. K > 2) for relatively small problems without restrictions
on the dimensionality. In the last application the algarittvill be applied to
cluster problems that explicitly operate on a dissimilantatrix. The data
of the first application are originally from Euromonitor (197®. 76-77),
taken from Hand, Daly, Lunn, McConway, and Ostrowski (1994¢ data are
also available athttp://1ib.stat.cnu. edu/ DASL/ Dat afi | es/
Eur opeanJobs. ht nl ). The data consist of the percentage employed in nine
different industries in 26 European countries during thed®gr. The nine in-
dustries are: agriculture, mining, manufacturing, powsapies, construction,
service industries, finance, social and personal servioegransport and com-
munications.

As is generally the case in the optimization approach, tigerahm
does not provide an immediate solution for determining tamioer of clus-
ters needed. However, besides the use of an external enitenw the number
of clusters (for an overview, see Milligan and Cooper 1985tlighn 1996)
that suggest a three-cluster solution for the present aisathe DPP algorithm
can be used to provide a series of optimal solutions for a murabclusters.
Given the optimality guarantee, such a series of solutioligive the user an
exact account of the usual trade-off between a greater @xityplof the solu-
tion (larger number of clusters) and a larger variance atealfor (VAF). In
this application, the algorithm has been used to provideekaet solutions for
clustering in two up to nine groups. On a PC with a P4 3.1 GHZ dhiipak
1.4 GB memory and approximately 14 hours to get these nindisos. (The
HAM program was not actually run on this problem, but woulddntaken over
450 days and 4.5 GB of memory.)

In Table 4 partitions from two up to seven clusters are given.
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Table 4: Partitioning European Countries upon EmploymeBtlindustries

Number of clusters
Countries 2
Belgium
Denmark
Netherlands
Finland
Norway
Sweden
Ireland
United Kingdom
France

W. Germany
Luxembourg
Austria

Italy
Switzerland
Spain
Portugal
Greece
Bulgaria
Poland
Rumania
USSR
Czechoslovakia
E. Germany
Hungary
Turkey
Yugoslavia
VAF 27% 48% 57% 64% 68% 72%

NRPRRRPRPRPRRPRPRPRRPRREPRPRRPRREPRPRREPREPRRPRERERRR
WNNRNNNNNNRRPRPRRPRRPRREPRPRREPRPRERRERRERERLRPRW
PRWWWNNNNNNNRRREPRRREPREPRRERRERERERERD

7
1
1
1
1
1
1
2
2
2
2
2
2
3
4
4
3
3
5
5
5
5
6
6
6
7
7

QOB WWWWWWNDNNNNNNRERPRPRPERPEPEREERERO
OO UMMM WWWWNNNNNNRERRERRPREPRO

[N)
w
I

The three-cluster solution makes a major split between thst Bfero-
pean countries and the Eastern bloc countries. Turkey anoisiaga (the latter
still one country at the time) form a cluster very distinairfr the others. The
six-cluster solution splits the western countries int@éhgroups, and separates
the Eastern bloc countries Czechoslovakia, East Germany andafy from
the rest, a grouping persistent among other partitionse€&,gPortugal, Spain
and Switzerland are countries that share characteristisswaral groups and
are therefore not consistently assigned to any of thesegraepending on the
number of clusters taken.

The data for the second application describe the proteinuropson of
25 European countries (Turkey is not included) for nine fooougs (Weber
1973, taken from Hand et al. 1994): red meat, white meat,,eqgils, fish, ce-
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Table 5: Partitioning European Countries based on Prot@isumption

Number of clusters
Countries 2 3
Albania
Bulgaria
Romania
Yugoslavia
Hungary
USSR
Czechosloval
Poland

E Germany
Austria
Netherlands
W Germany
Belgium
France
Ireland
Switzerland
UK
Denmark
Finland
Norway
Sweden
Greece
Italy
Portugal
Spain
VAF 38% 51% 60% 66% 72% T77%

RFRRNMNNMNNMNNONNONNONNRNNNNNNNNRRRR R R
WWWNNNNNRNNNNNNNNNNRRRR R R
ARADWWWWNRNRNRNRNRNNNNNNRRRR R RN
U UADRMRDRWWWWWWWWRNRNNNNR R R RO

COUURARRERDRWWWWWWWWNNNNNEREPRO®
NOOUUUURARMRMREMRNWWWWNNNNERR R RN

[EnY
w
N
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reals, starchy foods, nuts (pulses, nuts, and oil-seeds¥raits and vegetables.
The DPP-algorithm was used to provide optimal partitions upre nlusters,
which took 4.3 hours (P4 3.1 GHZ microcumputer) and 320 MB pdafsnem-
ory. Table 5 gives the partitions from two up to seven clisster

The three-cluster partition splits the countries in a Nakgt/Central
European cluster that eats more red and white meat, eggs #gdaur South
European countries that eat much more fish, fruit and vegetedobel six former
Eastern bloc countries that eat more cereals and nuts, dedish and dairy
products. All six partitions show a distinct grouping of otues in geograph-
ical regions that exhibits a largely hierarchical naturbgeve, for example, in
a five-group partition, the Central/West European countaiiesseparated from
Scandinavia that eats considerably less meat, very littlig, fvegetables and
nuts, and much more fish. North/mid-East European countriespditefrom
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South-east European countries that have a distinct patteemtgmely little
fish and starchy foods consumption, little white meat, egglsnaitk and a very
large consumption of nuts and especially cereals (the sporeding geograph-
ical partition is displayed in Figure 2).

The third application applies the algorithm to data invodyinter-occupa-
tion dissimilarities. The data are derived by Smith (2001ifra subset of the
U.S. Department of Labor Employment and Training Administra O*NET
Content Model Data (1998, pp. 739-742) which contains matngs on the
level of 48 occupational skills associated with 25 occup@l units. Thus, the
data to be analyzed consist of Euclidean distances among 2basccupations:
accountant, photographer, optometrist, engineer, achitarmer, electrician,
actuary, technical writer, reporter, school administretocial worker, dietician,
chef, lawyer, realtor, biologist, chemist, computer pesgmer, physical ther-
apist, nurse R.N., physicist, dentist, carpenter, and crarsi To demonstrate
the flexibility of the algorithm, the dissimilarity data wectustered optimally
in four different ways bysolvingMathematical Program 1 for four different ho-
mogeneity function&(Sy) defined on each clustél,. These are (a) the sum of
dissimilarities inSy; (b) the sum of dissimilarities ii§;, divided by the number
of objects inSy; (c) the number of instances in which the dissimilarity with
Sy, is strictly greater than one betwegpandsS — S, (dissimilarity inconsisten-
cies); and (d) the number of times an object withjnhas a larger dissimilarity
to another object withity), than it has to an object ifi— S, (object inconsisten-
cies). (The average dissimilarity ), was also considered, but solutions based
on this criterion show a strong tendency to include as mamglaion clusters
within each partition as possible, typically — 1 singletons, and is therefore
hereafter not considered.)

The DPP-algorithm was used to provide optimal partitions upigate
clusters for all four criteria, which took 14.9 hours (P4 3.HZmicrocum-
puter) and 640 MB virtual memory. The sequences of optimditfwars with
increasing number of clusters for criteria a, ¢, and d exl@dargely hierar-
chical nature, similar to the hierarchies found by Smith @0@ho fitted ul-
trametric and additive trees based o.anorm. The partitions obtained for
criteria b, ¢, and d are strongly similar, and the four- ané-fieluster parti-
tions for criteria b, ¢, and d are equivalent. Criterion attminimizes the sum
of dissimilarities inSy, resulted in partitions where all clusters appear to have
equal size as much as possible, and these partitions domibitexhierarchical
nature.

To determine the number of clusters two indices were contpiateall
optimal partitions found: the C-Index (Hubert and Levin 1p%tat is based
upon the sum of within cluster dissimilarities (function;and the Gamma-
Index (Baker and Hubert 1975) that is based upon the numbeorndistent/
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Scandinavia
Central/West European

South European

B North/mid-East European
B south-east European

Figure 2: A geographical display of a partition of Europedzhspon protein consump-
tion.

inconsistent comparisons involving between and withisigudistances (func-
tion c.) The number of clusters of the partitions with loweskin@ex and the
highest Gamma-Index indicate the ‘correct’ number of dustWhen examin-
ing these index values as a function of an increasing nunflodusters for each
particular criterion, both a noticeable decrease in thad&x values as well as
an increase in Gamma values indicated that at least foutectugrere needed.
The optimal index values occur at a rather high number of etasindicating
partitions with too many clusters to be informative. Theaténces, however,
between those optimal index values and the index valuesdditipns with
seven clusters are small, and both indices are known to halighd tendency
to overestimate the number of clusters (Milligan and Cod@85). Therefore,
a maximum of seven clusters was chosen. In Table 6 optimétipas into
seven clusters for all four criteria are given.

Several clusters can be readily identified, such as a clustacbhi-
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Table 6: Partitions into 7 clusters of 25 Occupations adogrtb overall skill dissimi-
larities for four objective functions.

Objective function

sum of dissimilarities | weighted sum of dis. | dis. inconsistencies | objectinconsistencies
actuary actuary actuary actuary

technical writer technical writer technical writer technical writer
reporter reporter reporter reporter

architect architect architect architect

school administrator | school administrator | school administrator | school administrator
dietician dietician dietician dietician

accountant accountant accountant accountant

lawyer lawyer lawyer lawyer

realtor realtor realtor realtor

social worker social worker social worker social worker
optometrist optometrist optometrist optometrist

nurse R.N. nurse R.N. nurse R.N. nurse R.N.

dentist dentist dentist dentist

physical therapist physical therapist physical therapist physical therapist
electricia electrician electrician electrician
carpenter carpenter carpenter carpenter
photographer photographer photographer photographer
farmer farmer farmer farmer

chef chef chef chef

musician musician musician musician

computer programmef computer programmef computer programmerf computer programmer
engineer engineer engineer engineer

biologist biologist biologist biologist

chemist chemist chemist chemist

physicist physicist physicist physicist

cal/scientific occupations (engineer, biologist, chenpisysicist, programmer);
a ‘health-service’ cluster (optometrist, nurse R.N., é#nphysical therapist)
that might be combined with a cluster involving communigatskills (realtor,
social worker), or if separated, includes the lawyer; atwg’ cluster (actuary,
technical writer, reporter); a ‘technical hand-tool’ diers(electrician, carpen-
ter). Two clusters are more difficult to interpret, the ratheterogeneous clus-
ter of architect, school administrator, dietician, andoactdant); and an ‘artistic
skill’ cluster (photographer, chef, musician) that oddigludes ‘farmer’. This
might be explained by the fact that the occupation of farnigp avolves a
rather heavy use of tools, and in the five-cluster soluti@sé¢hoccupations are
consistently combined with the other ‘tool’ cluster (etegitin, carpenter).

To indicate the difficulty of obtaining optimal solutions byhauristic
strategy for these data, all problems were also ‘solvedrbyeaative relocation
heuristic that executes the best object to centroid ralmtatvailable at each
iteration and updates the centroids immediately (see, \@2@D1, p. 24), a
K-means variant comparable to those proposed lat5(1985) and Hanson
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Table 7: The proportion of (local) optima out of 100 startgrfd by an iterative reloca-
tion algorithm for the occupations data.

Objective Function
K a b c d
2 21 .73 .50 .29
3 .03 .83 .99 .01
4 .40 .78 .94 .66
5 .08 .55 .97 .56
6 .06 .09 31 .39
7 .01 14 .22 .20
8 .01 .03 .10 A3
9 .02 .04 .04 .05
10 .01 .06 .18 .06
11 .01 .09 .18 .06
12 .01 A1 .28 .03

Bold values indicate a local optimum

and Mladenovic (2001). Using 100 random starts, for eachlpm the best
solution out of those 100 starts was compared to the optiolatisn found by

the DP algorithm for the same problem, and the number of titmiss(local)

optimum was found was determined. The results are displayd@dble 7. It

appears that the occurrence of local optima increases amithber of clusters
increases, and is especially severe for the sum of dissiti@kcriterion (a),

for which the global optimum is almost never found.

2.9 Discussion

The present paper gives a much more efficient way of exploitiedtP
partitioning recursion. At the same time the applicatiothaf algorithm shows
that a high price in terms of computing resources is to be fmidbtaining an
exact solution. Often, for well structured data, good h&ia$ can provide the
same solutions in seconds or minutes, but without the gtegasf optimality.
For other data sets and more difficult objective functionspyrlacal optima
may occur (for examples, see Van Os 2001). Moreover, giverctinrent low
cost of computing resources and the effort and time thatusliysneeded for
collecting the data, for many scientific purposes the ressuneeded may be
considered relatively minor. The main limitation of the aitfum therefore is in
its practical inability to handle data sets larger than, 88yobjects. Although
computing resources increase continuously, it is not eplebat this limit will
be extended greatly in the near future given the ofdg”") of the algorithm;
this is however to be expected given the NP-hardness of trerglgrartitioning
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problem. As an alternative, the exact DP algorithm has beg&mnded into

a heuristic approach that can handle large datasets, ghhoo longer with

a guaranteed global optimum (Hubert et al. 2001), and thabdawed with an

approach similar to genetic algorithms appears to be faffgctive (see Van Os
2001). The latter source also shows how the DP algorithm cacbelerated
further for specific cases by combining branch-and-bounhigaes with DP,

but this does not affect the storage requirements needetharefore does not
alter the general size limit.

The attractiveness of DP as an exact algorithm certainly steom its
flexibility to handle many different optimization approashe clustering (i.e.,
many different objective functions). The overview given bgriden and Jau-
mard (1997) provides several alternative exact algoritboisthey all handle
very specific cases; none of these approaches have the gappliahbility of
the current algorithm. Also, the resources needed by owrighgn are known
in advance, whereas (mixed-)integer linear programmibB)techniques pro-
vide fast solutions for some data sets, but seem to run fovelren applied to
others. Indeed, as is suggested by a comparative study ofagdRthm and a
ILP algorithm for seriation (Brusco 2001), DP may be the metbichoice for
problems that are within its inherent size limits.

The applicability of our algorithm therefore spans into savareas: the
exact analysis of small data sets, the approximate analydeege data sets
through heuristic extensions, and its ability to providedienarks for verify-
ing the ability of heuristics to provide optimal solutiomsdomparative studies.
The latter also gives a more thorough understanding of théwelmerits of dif-
ferent objective functions. Historically, comparativadies of cluster methods
(for an overview, see Milligan 1996) are subject to the faat the many cluster
methods proposed involve the combinatiorboth an algorithm and a cluster
criterion. Studying the many cluster criteria/objectivadtions in combination
with modern heuristics may reveal that some objective fonstare indeed ef-
fective but much more difficult to apply optimally, as is sugge in Van Os
(2001, pp. 103-105) for objective functions designed fostdring variables
based upon correlations and canonical correlations.
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2.10 Appendix: A Fortran Program for Single Stage Recursion Processing

Program 1 A single stage of the recursion

SUBROUTINE DPPSingleStagéF1,Fk_1,Fk,NFk,N,MOptK,

+ NSuhLastOnly)
C Function: Processes stage k<(R<NSub) of the recursion of
C DP partitioning
C Version: 1.0, Januari 2001 5
C Author: B. J. van Os
C N: Number of objects
C NSub: Number of clusters
C Mopt: (1=MIN SUM, 2=MIN MAX)
C LastOnly: (.TRUE. = process for solution in NSub clusterdyp 10
C .FALSE.= process for solutions in 2..NSub clusters)
C Fk: Fk(AB) is optimal F for partitioning set AB at stage k
C Fk.1: Fk_1(AB) is optimal F for partitioning set AB at stage k-1
C F1: F1(A) is heterogeneity of set A (first stage)
C if F1(A)=Z, A is considered not admissable (bounding) 15
C NFk: NFk(AB) last added cluster to optimal partition of AB
C Size: function that returns the number of objectshits set)
C of its argument
C Parameter block.
INTEGER N,MOpt,K,NSub 20
REAL F1(@**N) —1),Fk_1((2**N) —1),Fk((2**N) —1)

INTEGER NFK(@2**N) —1)
LOGICAL LastOnly

C Externals

INTEGER Size 25
C Local variables/constants

REAL A

PARAMETER  (Z=1.0E+20) ! sufficiently large

INTEGER FirstA,O,LastA,MaxO

INTEGER IndexAB,IndexA,IndexB,LastB,IncrB,NotA 30
REAL Temp
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Program 1 continued

C Program start.
MaxSizeAB=(N-(NSub-K))
IF (LastOnly) THEN
MaxO=MaxSizeAB

ELSE 5
MaxO=N-1
END IF
C O is the leftmost object to be 'taken out’ out of the
C (N-(NSub-K)) right objects. Loop over all admissable O 10

DO O=MaxO,K—-1
MaxSizeA = Min ((L+O—K),N—(NSub—1))
FirstA=ISHFT(L,0—1)
LastA=ISHFT(,0)—1
C initialize F for sets AB (when overwriting Ek with Fk) 15
DO IndexAB = FirstA LastA
Fk(IndexAB) = Z

END DO
C in IndexA all possible sets A will be generated 20
C out of the O rightmost objects that at least include object O

DO IndexA = FirstA,LastA
IF ((Size(IndexA) LE. MaxSizeA)
+ AND. (F1(IndexA) LT. Z)) THEN
Given admissable IndexA, in IndexB all possible subsets 25
out of the O rightmost objects have to be generated,
that do not include IndexA, to form IndexAB=IndexA+IndexB
NotA=NOT (IndexA)
IndexB=IEOR((ISHFTL,0)—1),IndexA)
LOOPB: DO WHILE (IndexB GT. 0) 30
IndexAB=IndexA+IndexB
IF (MOpt .EQ. 1) THEN
Temp=Fk 1(IndexB)+F1(IndexA)
ELSE
Temp=MAX(Fk_1(IndexB),F1(IndexA)) 35
END IF
IF (Fk(IndexAB)GE.Temp) THEN
Fk(IndexAB) = Temp
NFk(IndexAB) = IndexA
END IF 40
IndexB = IAND((IndexB-1),NotA)
END DO LOOPB
END IF
END DO ! over all A
END DO ! over all O 45
RETURN
END

OO0
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